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Abstract

We discuss the theory of the second-order ordinary differential equation initiated by Cartan, con-
centrating especially on Cartan’s notion of duality between such equations, and its consequences.
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1. Introduction

There has been a flurry of interest recently among some relativists in Cartan’s theory
of the second-order ordinary differential equation, to be found in his paper of [B)24
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on projective connections. The origin of this interest can be traced to a paper of Newman
and co-worker$7]; in the introduction to this paper the authors describe how they discov-
ered, to their surprise, that work of Cartan on the invariants of differential equations was
relevant to their programme of reformulating general relativity in terms of null surfaces.
The relevant study is in fact concerned with third-order ordinary differential equations, and
was carried out by Chern using Cartan’s methods; moreover, the relevance is to the con-
formal geometry of three-dimensional rather than four-dimensional Lorentzian manifolds.
Nevertheless Newman and co-workers found this discovery to be fruitful, and were able to
generalize the approach of Cartan and Chern so as to apply it to the full four-dimensional
theory.

There is a general philosophy at work here, that it is possible to construct certain kinds
of geometric structures on the spaces of solutions of suitable types of differential equations.
Thus in the case of the third-order ordinary differential equation one is able to create from
the equation a conformal class of Lorentzian metrics on the solution space, provided that a
certain function associated with the equation vanishes; this function is a relative invariant
of the equation under contact transformations, and is known as thms#tmann invariant
after its discoverer.

Constructions of this kind are both useful and intriguing, and it is natural therefore
that they should be studied as objects of interest in their own right. The simplest case
is that of the second-order ordinary differential equation. Two papers on this topic have
appeared recently. The firf@] deals directly with the kind of question just described,
namely the construction of a geometric structure on the solution space of a second-order
ordinary differential equation and the identification of a function @ff&chmann type, here
a relative invariant of the equation under point transformations. The s¢8pedamines
the relation between the geometry of a second-order ordinary differential equation and that
of a Cauchy—Riemann structure from a somewhat similar point of view, and describes the
construction of a conformal class of split-signature four-dimensional metrics associated
with each second-order ordinary differential equation, analogous to the Fefferman metrics
associated with Cauchy—Riemann structures.

Cartan’s seminal influence on these studies is universally acknowledged; but it seems
fair to say that that influence is not always completely understood. His paper on projective
connections is a case in point. The paper falls into two parts, the first and larger of which
deals in effect with the projective differential geometry of affine connections, or equivalently
with systems of second-order ordinary differential equations of geodesic type, and the
second with the geometry of a single second-order ordinary differential equé;jpuma =
f(x, y, dy/dx) with no such restriction as to its type; we should make it clear that we shall
be concerned here almost entirely with the second part of the paper. In it Cartan shows
how to construct what he calls a normal projective connection associated with the equation,
whose curvature has in effect two components, which he aadisdb; they are relative
invariants of the equation under point transformations (coordinate transformations of the
formx = ¢(x, y), y = ¥(x, y)). The vanishing o& is the necessary and sufficient condition
for the equation to be equivalent to a system of affine geodesic type on the two-dimensional
manifold whose coordinates axeandy; the normal projective connection associated with
the differential equation then reduces to that of the affine type associated with the geodesic
system as described in the first part of the paper. GivendatkaD, the vanishing ob is
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the necessary and sufficient condition for the equation to be rectifiable, that is, reducible
to the form &y/di2 = 0 by a point transformation. So much is to be found in Cartan’s
paper. There remains unanswered an obvious question, namely what is the significance of
b independent of the vanishing a?

This question can be answered in a couple of different ways. One answer is to identify
b in terms of the projectively invariant tensors associated with the projective equivalence
class of sprays associated with the equation; this will be explained briefly below, and is dealt
with at greater length ifd]. The other, which is the one of interest here, is in effect provided
in [8]: the geometric structure on the solution space of the equation sought therein is a pro-
jective connection of affine type, abdurns out to be the correspondingivwschmann-like
invariant, whose vanishing is the condition for such a structure to exist. We can express this
result as follows (similar accounts have been givej2jA]). The second-order differential
equation should be considered as a line-element field (a vector field determined up to a
scalar factor) on PM, the projective tangent bundle of the two-dimensional maniblaf
coordinatex andy. The solution space is the base space of the fibratioTdf B defines.

Thus PI'M has a double fibration with one-dimensional fibres. Either can be thought of as
defining a differential equation; we therefore have two equations, which we describe as dual
to each other. Interchanging the roles of the fibrations has the effect of interchanging the
roles ofa andb; thusb = 0 is the condition for the dual equation to be of affine geodesic
type.

This notion of duality is discussed by Cartan himself in a single rather brief and not
very transparent section 8]; the significance of the vanishing bfjust described is not
made explicit there, though it is a simple consequence of what is said. It is derived in
Appendix Ato [7], in an argument due to Tod which owes nothing to Cartan’s approach. It
is also derived if8]; here the methods used are closer to Cartan’s in general, but still they
differ significantly from those of the relevant section[8F.

Given the currentinterest in Cartan’s results, it seems timely to explain them in his terms
as an alternative to reconstructing them by other means, and this we shall do here for duality
of second-order ordinary differential equations. One unexpected result of our analysis is
that Cartan’s account appears to be wrong in some details, if it iBetrhajeét to say
so. As well as clarifying such points, we are able to throw a somewhat different light on
the relation between the geometry of a differential equation and CR geometry from that
described if9] (though we should make it clear that we do not discuss here the Fefferman
metrics).

One difficulty the modern reader faces with Cartan’s writings on connections is that his
idea of a connection is mathematically subtly different, and conceptually very different, from
the much more familiar one of Ehresmann. Fortunately there is now a good modern account
of Cartan’s theory of connections due to Shgif®; we briefly describe the relevant parts
of the theory from Sharpe’s point of view Bection 2 In Section 3we explain Cartan’s
construction of the normal projective connection associated with a differential equation.
The theory of duality is discussed in a manner close to Cartar8gation 4 In Section 5
we reconsider the matter, treating the two fibrations on a more equal footing than before.
The results we obtain in this way are immediately transferable to the study of CR structures,
as we describe iection 6 We have reprinted the section of Cartan’s paper which deals
with duality asAppendix A for ease of reference.
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2. Cartan projective connections

As we noted above, Cartan’s view of a connection is rather different from that for-
malized later by Ehresmann. In the case of a projective connection it involves a mani-
fold with a projective space attached to each point, and the different projective spaces
are ‘connected’ to one another by an infinitesimal relationship. The modern view of this
concept described by Sharfi)] relates it to Klein's notion of geometry, which in ef-
fect proposes that a geometry should be considered as a homogeneous space of a Lie
group.

Let & be a Lie group with Lie algebrg. The infinitesimal properties of the multipli-
cation on® are encoded in its Maurer—Cartan formg-&alued left-invariant 1-form»™
defined by settingX, &) = X for any X € g, whereX is the left-invariant vector field on
& corresponding tX. Then for eacly € &, &, : T,& — g is an isomorphism, and &lso
satisfies the important properties ti#fto = ad(g™")@ and that d™+ (1/2)[@ A @] = 0. If
® is a matrix group then we may write &sg—* dg, and this often simplifies the notation;
we shall henceforth assume tléis a matrix group.

A Klein geometry is then a homogeneous space p$o that it is a manifold with a
transitive left action of; we shall also suppose that the action is effective. Take a point
&0 € M, and let$ be the stabilizer ofp; thenM can be identified with the coset spasgs.

In this way,® becomes a right principah-bundle overM with projectiong — g&o; we
may alternatively refer to the pai#y $) as the Klein geometry.

In the description given by Sharpe, a Cartan geometry on a maffiddnodelled on a
Klein geometry 6, $). Itis aright principak)-bundler : P — M of the correct dimension
(that is, dimP = dim & = dim $) 4+ dim M) together with gg-valued 1-formw on P, the
Cartan connection form, sharing as many of the properties of the Maurer—Cartan fm ~
possible:

e if his the Lie algebra ofy and X € b then(X, w) = X, whereX is the vertical vector
field onP generated by through the action of;

e foreachp € P,w, : T,P — gis an isomorphism,;

e foreachh € , Rjw = ad(i )w.

One property of the Maurer—Cartan form which is not required to hold in this more
general context is the vanishing obd- (1/2)[w A w], and indeed the curvatur of a
Cartan connection is defined to be th®alued 2-form

.Q:dw—i—%[a)/\w];

for a matrix Lie algebra the components of the curvature matrix may be Writtﬂ‘} as

da); + a)f{ A a)’]‘ The vanishing of the curvature is then a necessary and sufficient condition
for the Cartan geometry to be locally isomorphic to the Klein geometry on which it is
modelled. In addition, the curvature satisfies the Bianchi identizy=d[$2 A w], and the
torsion of the connection is defined to be fh®-valued 2-formo(£2), wherep : g — g/b

is the projection.
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An important concept in a Klein geometry is that of the development of a curve. A
curve in the Lie algebrg can be ‘developed’ to a curve in the homogeneous sgece
through any given point, in the following way. #fi— X(¢) is the curve ing, andgo € &,
there is a unique curve— g(r) in & such that{g(¢), ®) = X(¢) andg(0) = go; g(?) is a
solution of the differential equatiog = gX. The development oX(z) into &/$ through
& = go$ is then defined to be the curgé) = g(r)$H in &/9. If y is a local section o
over some neighbourhood &fin /%), then the curveg(s) (in &) and&(?) (in /9) are
related byg(z) = y(&(¢))h(¢) for some curve — h(z) in §; the curves(r) andh(r) satisfy
the differential equation

W lh+h e yv'o)h=g"1g = X.

The notion of development is also appropriate for a Cartan geometry=>Ifp(z) is a
curve inPthent — (p(t), wp()) is a curve ing which can be developed intb/ $) as before;
this development is(r) = g(r)$ where(g, @) = (p, ). But® andw transform identically
under the action ofy, which means thai(r) depends only on(p(z)); thus a curve itM and
a point in®/$ determine a curve i /$ starting at the given point, called a development
of the curve inM into & /9. If the Klein geometry contains straight lines, a curvéMns
called a geodesic of the Cartan geometry if its development through any point is a straight
line.

For the purposes of calculation it is convenient to choose a gauge, in other words a local
sectiono of P, as we can then study a connection using form®oif these transform cor-
rectly under change of gauge then we can always recover the connection form on the larger
manifoldP if required. The gauged Cartan connection form*i®, so that this is g-valued
local 1-form onM with the properties that*w|, is an injective mag@ M — g, and that
poc*w|, : TyM — g/b is an isomorphism. 1§ is another gauge then on the intersection
of their domainss(x) = o(x)h(x) for somef-valued functiorh; the transformation rules
are then

5w =h"Y(o"w)h + h~1dn, 52 = h Y (o*Q)h.
The differential equation for a development, when expressed in the galgeomes
hYh + h~YE, o) = (x, 0¥ w),
this comprises ding equations for dimg/h) unknownst and dimh unknownsh.
We shall (as did Cartan) use a gauge in our calculations below, and omit"the
significant part of the procedure is to make successive changes of gauge in order to simplify
the gauged connection and curvature forms.

3. The manifold of elements

Our particular concern in this paper is with what Cartan calls a ‘manifold of elements
with projective connection’ in the two-dimensional case. An element is a pair consisting of
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a point of a differentiable manifolfl and a one-dimensional subspace of the tangent space
to M at that point. Thus a manifold of elements is the projective tangent burfdied? a
two-dimensional manifold/l. We denote by Preal projective space of two dimensions; its
projective tangent bundle7#P? can be expressed as the homogeneous spagewhere
® = SL(3, R) and$ is the subgroup o consisting of its upper triangular elements. A
manifold of elements with projective connection is a Cartan geometry7ari modelled
on PT'P?, in which certain conditions regarding the development of curves, arising out of
the projective tangent structures of the underlying manifold and the model geometry, are
satisfied; we shall describe these conditions shortly.

Before doing so, however, we must deal with various matters arising from the basic
definition. First, we point out that one can introduce local coordinatesian By taking
local coordinatesy, y) on M, and by noting that every equivalence class of tangent vectors

for whichu # 0 has a unique representative of the form
3,0
— y _’

ox dy

then (, y, y') arelocal coordinates orf®/, and we shall always work with such coordinates,
while recognising that they do not cover those equivalence classes of tangent vectors for
whichu = 0.

Next, we make some remarks about changes of gauge for a projective connection on
such a manifold. It is a connection form —a trace-freex33 matrix of local 1-forms on
PTM—andH an $)-valued function, then the connection form regaugediby

HloH + H 1dH,

and if 2 is the curvature 2-form correspondingshen the regauged curvatureds 12 H.
If

T

Il
o o x
o w U
A &~

with ABC = 1, then

Al —CD DE- BF
H1=| 0o B! —AE
0 0 c1
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It is the effect of a change of gauge on the strictly lower triangular terms that is
of immediate interest. SincHE~1dH is upper triangular it has no effect on these terms.
Suppose that

*k %k %k
o=|u *x x|,
w v k
then
k k k
H loH = Tox x|,
w v %
where

' = AB u — A%Ew, v = BC Wv+ Cc 1Dw, w = AC 1w.

The effect of a change of gauge on a curvature form which is strictly upper triangular will
be of interest later. If

0 U =«
=10 0 V|,
0O 0 O
then
0 U =«
HQH=|0 0 V|,
0O 0O O
where

U=A"'BUu Vv =8BV
We shall also need the equations for the development of a curve. It is easy to see that
0
1

/

n

R O O

1
Enn)— | &
n
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is a local section of SL(R) — PTP?, and that the corresponding gauged Maurer—Cartan
formis

0 0 O
ds 0 O
dn—n'ds dy O
Following Cartan, we shall write the connection fomexplicitly as
W o] o)
w = a)l a)% C()%
a)2 a)% 0)%
The development equations for a cugvén PTM give
aé —b(i —n'8) = (1.oY), ol —n'E) = (¥, 0P

for some functiong(z), b(¢), c(r).

Having established these formulae, we return to the conditions we shall impose on the
development of a curve. They concern two particular kinds of curveldii:Rertical curves
and natural lifts. With respect to the coordinatesy( y') described above, a curve iTH
is vertical if its tangent vector is annihilated by dnd dv, and a curve in PM is a natural
lift if its tangent vector is annihilated by the contact form-d y'dx. (Cartan calls a tangent
vector to a natural lift a ‘multiplicity’.) Our conditions are that

e the development intoPP? of a vertical curve in PM is vertical;
e the development into PP? of a natural lift in PIM is a natural lift.

These conditions therefore require that i vertical then(y, o) = (7, w?) = 0, while if
y is a natural lift theny, »?) = 0. It follows that

o' = rdx 4 pdy, w? = v(dy — y'dx)

for some functions., u andv on PTM.
We can now simplify the connection matrxusing a change of gauge. By setting

A=+ y )3, B=(M+)yunA, C =VvA, E = uA,

we can maken! = dx andw? = dy — y'dx = 6. We can also writeo? asw? = k(dy’ —

f dx) + 16 for some functiond, k andl on PTM, and the coefficienk must be non-zero
since the forms?!, w2 andw% must be linearly independent. Set & f dx = ¢; the forms

dx, 6 and¢ constitute a local basis of 1-forms, and we shall generally carry out calculations
in this basis, in this section and the next.
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So far, therefore, we have chosen a gauge such that

0

wg * *
w=| dx * *
0 ko+10 x

The remaining gauge freedom involves the functibrendF, and so with a further gauge
change using

1 D F
H=|(0 1 O
0O 0 1
we obtain
a)g—Ddx—FQ * *
H loH + H1dH = dx * *

0 kp +1'6

We may therefore choose the gauge for any projective connection on a manifold of elements
so that

for some functiornk. Let us call this the standard gauge for the projective connection.
It differs from Cartan’s choice of standard gauge in the way we have chosen to use the
remaining gauge freedom after fixing* andw?; our choice generalizes more readily to
higher dimensional cases, as we shall show elsewbgre _

A geodesic of this projective connection is a curve whose development satisfig§ =
0 andy’ = 0; that is, a geodesic is a curve whose tangents are annihilated by aotlyp,
and is therefore a solution of the second-order differential equation

&’y dy
ae =\ )
Thus geodesics are the base integral curves of the vector field

ro 8+ /8+f8
T oox y8y ay’
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on PTM, the ‘second-order differential equation field’ corresponding to the projective con-
nection. Note thaf” is determined by the conditions

(IIdx) =1, (70) =(I;¢) = 0.

Under a change of coordinates on the base manifigldith the induced change oi¥®1, I
will acquire an overall factor (depending on the coordinate transformation functions)—so
we are really working, not with a vector field, but with a line-element fieldI") say.

Having fixed the gauge, the next step is to impose gauge-invariant conditions on the
curvature in order to single out a particular connection from the class of connections being
considered. Cartan shows in effect that there is a unique choice of the remaining connection
forms so that the curvatu® is strictly upper triangular With?(l) a multiple of dc A 6. (In
fact Cartan does not go quite as far as this: his connection is determined only up to the
addition of a (1-form) multiple of the identity matrix, and his curvature is upper triangular
with equal diagonal elements. However, the ambiguity ican be eliminated by insisting
that it takes its values inl(3, R), that is, that it be trace-free; the curvature will then be
trace-free also. Cartan in effect works with the projective group considered as &)L (3
modulo multiples of the identity.) The unique connection obtained in this way is called by
Cartan the normal projective connection on the manifold of elements, associated with the
second-order differential equation.

A calculation equivalent to Cartan’s, but differing from his in that it is carried out in terms
of our gauge rather than his, leads to the following result. Given a second-order differential
equation, represented by a line element figll, among the projective connections with
the base integral paths af') as geodesics there is a unique one whose curvaturestoisnm
strictly upper triangular With?g semi-basic, that is, a multiple ofch dy = dx A 6. In our
standard gauge th&#(3, R)-valued connection forma of this connection is given explicitly
in terms of the basis of 1-formslx, 0, ¢} and the vector field™ by

0 Edx + pb pdx + py6
w=|dv 3fydrtgfyyd §fyydvt ghiyyd |
0 ¢ - %f)”e _:lEfy’dx_ %fy’y’g

where
§= fy + %f;’ - %F(fy’)v P = %fyy’ + ]_igfy’fy’y’ - %F(fy’y’),
and the subscripts denote partial derivatives; the other coeffigientan be expressed as
1 1.2 1 1
py = glwy + 18y — 5ty fyyy = 5T (fyyy)-

These somewhat formidable looking expressions can be written in relatively simple form in
terms of the fundamental invariants (as Douddalls them) of the projective equivalence
class of sprays associated with as we shall show elsewhds .
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A further calculation reveals the important fact th?% is a scalar multiple ob A ¢
alone: in fact

1 1
Q5= —%fyyyy0 Ao
Thus

0 bdxAB *
=10 0 ab AN |,
0 0 0

wherea = —(1/6) f/,/,/,. Cartan says that it is pointless to calculatand since itis given
by

b= %fzfy’y’y’y’ + %fny’y’y’ + %y/ffyy’y’y’ + %fxw’y’ + %y/fxyy’y’
2
+ %y’ Syyyy + %(fx + y/fy)fy’y’y’ - %fy’fxy’y’ - %(3f + y/fy’)fyy’y’
2 2 1 2
- §nyy’ - §y/f.vyy’ - ?fyfy’y’ + §fy’f>’y’ + fyys

one sees his point. However, direct comparison of this expression with one given by Shenin
[11] shows that it is essentially one of the two basic projectively invariant tensors associated
with I, the one first defined by Berwa]d]. The coefficieng, on the other hand, determines
the Douglas tensor, the other projectively invariant tef8iThe vanishing of the Douglas
tensor (and equivalently the vanishinga)fis the necessary and sufficient condition for
to be projectively equivalent to an affine spray; when this holds (in two dimensions), the
vanishing of the Berwald tensor (and equivalently the vanishirty) &f the necessary and
sufficient condition forl” to be projectively flat, or rectifiable.

The remaining entry in the curvature fori29, is not of much concern because it is
completely determined by andb by means of the Bianchi identity.

Results essentially equivalent to those of Cartan described above are obtaj@gd in
but by the use of Cartan’s method of equivalence rather than by direct consideration of the
connection as ifi3].

4. Duality

Cartan states that ‘the idea @femenin projective geometry is self-dual, as is the idea
of multiplicity’ (seeAppendix A). We next explain these remarks.

Two-dimensional real projective spacé B the space of rays iR3. For [X] € P,
where [X] is the ray through the point e R® — {0}, the projective tangent space t6 P
at [X] can be identified with the set of lines througki][in P2. Let R be another copy
of R3, considered as the dual Bf, and P* the projective space dR3*. If the condition
(X, U) = 0 holds for someX € R3 — {0} andU € R3* — {0}, it holds for allX’ in the ray
throughX and U’ in the ray throughJ, so defines a submanifoBlof P> x P2*. Now [U]
defines a line in Pthrough [X] if and only if (X, U) = 0; so we can identifgwith PTP?.
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But equally, [x] defines a line in P* through /] if and only if (X, U) = 0, so we can also
identify Swith PTP%*. That is,Swith projection on the first factor isFP?, with projection

on the second factor isTP2*. The idea of an element in projective geometry—a point of
the manifold I"P>—is self-dual, in the sense th&ts invariant under the interchange of
[X] and [U].

Let us take coordinatesxy, y’) on PTP?, such that £, y) corresponds toX] =
[x,y,1] € P and 3/dx + y'9/dy is a tangent vector atX[]. This vector is tangent to
the linet — [x + ¢, y + y't, 1]. The ‘line coordinates’y, v, w] of this line must satisfy
u(x +1)+ v(y + y't) + w = 0 for all t; we may take: = —y', v =1, w = xy’ — y, so that
(x, y, ¥") corresponds to the point

([)C, Ys 1]1 [—y/, 1 xy/ — y]) e S.

This gives a way of assigning coordinatesstm which (x, y) are coordinates in the base
corresponding to projection on the first factor. Now consider using coordinat&o&sed
on the other projection: we take (for obvious reasons) the base point in thedfotmuf],
and use coordinates,(w, w’) such that/ou + w’d/dw is the representative tangent vector.
Then by a similar argument one finds that the corresponding pofisin

([—w', uw' —w, 1], [u, 1, w).

The coordinate transformation drelating these two sets of coordinatesxis= —w’,
y=uw —w,y = —u. Then

dy —ydx =udw + w du — dw — u dw’ = —(dw — w' du),

that is to say, the two contact forms, corresponding to the two projections, differ only in
sign. Thus the idea of a multiplicity—a vector annihilated by the contact form—is self-dual
also.

The plan now is to marry this enhanced structure of the model geometry, associated with
the duality of points and lines in two-dimensional projective geometry, with the normal
projective connection construction.

Let M and M be two two-dimensional manifolds, a®k codimension 1 submanifold
of M x M, which is fibred over botM andM (with one-dimensional fibres). Then for any
peM,{peM]|(p p) e S}isapathinM, sayoy; andforp e M,{p e M | (p, p) € S}
determines a 1-parameter family of patjs C M such thatp € o for all such p. We
require that this construction defines a path spacépithat is, for everyp € M and
[u] € PT,M there is a unique € M with (p, p) € S such that the direction of the tangent
to o, atx is [#]. We also require that the similar construction with unbarred and barred
guantities interchanged defines a path spac@formhen we can identify§ — M with
PTM by (p, p) € S = [u] where [4] is the direction of the tangent tg; atp; and likewise
for§ - M and P'M.
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Take coordinatesx(y) on M and (¢, y) on M, and suppose that the submanif@adf
M x M is given by®(x, y, x, y) = 0. Theno(x,, 3, is @(x, v, X0, yo) = 0, and the vector

(&%)
JE— y JE—
dx dy (x0,¥0)

(representative of some tangent vector witk 0) is tangent to this path if

@,(x0, y0, X0, y0) + ¥ @y(x0, yo, X0, y0) =

where®(xg, yo, X0, yo) = 0. Thus the mag — PTM is given by &, y, x, y) = (x, v, y')
where

D(x,y,x,y) =0 and &(x,y,x,y) + Y Py(x,y,x,y) =0.

It may appear that, must be non-zero: but bearing in mind that we have assumed that
u # 0,itbecomes cIearthatwe actually requwe thatind®, do not vanish simultaneously.
Similarly, the mapS — PTM is given by §, v, X, y) — (%, y, ¥) where

D(x,y,x,y)=0 and Px(x,y,x,y) + Y Py(x, y,x,y) =0,

and®y and@; must not vanish simultaneously.
The condition that the first pair of equations determin@sdy in terms ofx, y andy’
is that the matrix

0 &, o
Py Py Pyx
Py Pxy Dyy

is non-singular; the same condition ensures that the second pair of equations can be solved
for x andy in terms of the barred quantities. Notice that this condition subsumes those
mentioned immediately above, namely tkat and®, do not vanish simultaneously and
neither do®; and®y. We assume therefore that this condition holds everywhef® and

we write it asA # 0, whereA is the determinant,

A = =D PPy + Oy PyPyx + Py PxPyy — Py Py Do
= —@,05(Dux + Y Pyxr + Y Py + Y'Y Py5)

for @, @3 # 0.
Take some fixed point('y) € M such that the path it defines M can be parametrized
by x; theny’ = dy/dx, and dy/dx? satisfies

dy dy d?y
cbxx+2dx¢x)+<dx) Py + 5P =0
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Thus the path is a solution of the second-order differential equation

d?y dy
dxz _,f X,y7 dx E)

where f(x, y, y') is obtained by eliminating andy between the equations
=0, D, +yd, =0, Dy +2YPyy + ()P, + f®, =0.

The right-hand sidg7(;?, y, y') of the equation giving the dual paths is obtained by elimi-
natingx andy between the equations

& =0, P+ Ydy=0, i + 2) Oy + (V)2 Pyy + fPy = 0.

There are two Cartan normal projective connection forms associated with this struc-
ture, one corresponding to the differential equatidn/dx? = f, the other to the equation
d?y/dx2 = f. Each can be represented by a connection fori8. drine connection associ-
ated with the equation’@/dx? = f takes the form

* * *
o=|dx
6

*

*

¢—3fy0 *

with = dy — ydx and¢ = dy — fdx. We shall express the lower triangle®fn terms
of unbarred quantities. According to Cartan (fggendix A), the result should be the
anti-transpose ab, that s, its reflection in the anti-diagonal (which runs from the lower left
to the upper right corner). This is not quite the whole story, however: for one thing, we can
expect only that it will hold up to a gauge transformation. It will turn out that a scalar
multiple of 9; then in view of the effect of a gauge transformation on the lower triangle
entries given earlier, it will be enough to work modaélo

We must regardy, y, y') and (, y, ) as alternative coordinates 8rwith the coordinate
transformation given implicitly by

¢(x7y,;7§)20, ®x(X,y,£§)+y/¢y(x7y,£§):O,
Px(x, y, X, y) + Y Py(x, y, x,y) =0,
it can be shown that the Jacobian matrix of the variahles,(y’) with respect to the
variables , y, ¥') is non-singular by virtue of the assumption tlat4 0. Moreover,

Dy + 2y/¢xy + (y/)zgpyy + f@, =0,

and similarly for f.
In the following working we consider everything as expressed implicitly in terms of the
unbarred coordinates. By taking the exterior derivative of the equétier0 and expressing
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dy and dyin terms of9, 6, dx and dc we obtain
(Pr + Y ®,) dx + @,0 + (Px + Y Py) dx + &30 = 0,

so that

By taking the exterior derivative of the equatién + y'®, = 0 and expressing all 1-forms
in terms of d, 6, ¢ and their barred versions we obtain

(Prx + 2y/¢xy + (y/)z(pyy + f(py) dx + (@xx + y/qjyf'f‘ )7¢x§+ y/ycby;) dx
+(Pry + Y Pyy)0 + (Pry + Y Py3)0 + Py = 0.
Thus

2
ar= 2

Py 40
7 ¢ (mod¥).

Note thatA is unchanged when barred and unbarred quantities are interchanged: thus

2

y o5

dr = — Y$ (mod o).

Thus in summary

= 5%y (mods). @ o @
= — Mo y = ——0, =
=a o T %0t

dx (mod?¥).

We now seek by means of a gauge transformation to redtmea form as close as possible
to the standard one for a projective connection. Guided by CartarAfggendix A), we
expect this to involve the interchange of the positions of thamdk¢ + /6 terms, that is
to lead to

k
kep + 16

* %
*
0 dr =

*

However, in the case of the normal projective connection we will kaxel; it is clear
from the relations derived above and the formulae for the effects of a gauge transformation
derived earlier, that this is impossible, for it would require takip@® andC (the diagonal
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entries in the gauge transformation matrix) to satisfy

@y A A B ®,9%

A
c o B 920y C A

)

and these equations are inconsistent. We cannot prevent a minus sign occurring somewhere
in the bottom left-hand corner. For definiteness we take

A
q)§q>;’

=1

'S«|'S
o |

A
C

<

the other coefficients of the gauge transformation matrix are chosen so as to elimimate the
component oio‘f, and also the .dandé components Otf)g_. That is to say, there is a unique
gauge transformation matrkt such that

* % *
HYoH+HYdH = | ¢+16 * * |;
-0 dx «¢

We now show that given a trace-free matrix-valued 1-fesrwith 2 = —0, @? = dx,
and zzr% a multiple of ¢, the remaining elements @b are uniquely determined by the
following conditions on its curvature ford¥ (defined in the usual way):

e [1 is strictly upper triangular;
e [1}is amultiple of d A 6.

To obtain this result one simply carries out the calculations used to fix the normal projective
connection as described in the previous section, but in anti-transposed form, as follows.

The strategy is to compute the relevant componentd @f turn, and to examine the
consequences of taking them to be zero. In the following calculatign®tc. are functions
each of which is arbitrary at the stage at which is introduced, though it is determined
subsequently. It is worth noting that for any functipn

dy = I'(p) dx + 0 + ¢y .
Moreover,
do = —¢ A dx, dp = —df Adx = —(fy0 + fyd) Adx.

The notation for the components af and I7 follows the same system as that for the
components ob.
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First of all
M2 = -0 A @? + dx A (@] — @3);
this vanishes if and only if
o) =rdx+ 10, @ =5+ rodx — A6
Next,
M?=—-do—0A () —@3) +dx Aol = (¢ — @) Adx — 0 A (@ — @3),
which is zero if and only if the coefficient gf in w! is 1, and
w8=w§—udx+v«9, ot = ¢+ ub.
But the trace ofo vanishes, so
0= (o — w)dx + (=1 4 v)0 + 302 = (Ao — ) dx + (=4 + 1) + 3k,
sothatc = 0,10 = u, A = v, and
w3 =0, w9 = —wi = —pdx + 6.

Thirdly,
M = d(p + ub) + (& + ub) A (g — w1) — w3 A6
= —df Adx+du A0 — e Ade 4 2(p+ ub) A (—pdx + v0) — w2 A6
= Bu+ fy)dv A ¢+ ((fy + T(1) + 21%) dx + (i + 20)p — @3) A 6.
The necessary and sufficient conditions f6¥ = 0 are therefore

p==3fy. =+ 5 - 30 dv+ @ = 3fyy)o + b

The conditions derived so far are those necessary and sufficient for the connection to be
torsionless. We next consider the diagonal elementg.of

M =—-0nw)+de Aoy = (g +pde) A0+ (20— 1 fyyy) dx A
this vanishes if and only if

wg = —pdx + 06, V= %fy/y/.
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Notice that the latter condition makes the&omponent oﬁzrzl zero. Furthermore,

1 0

178 = dwg + w(l) AN
=d@G fy de+ L fyyd) + (=2 fyy e+ O A (P — 0 + pdr A
=(p = 3fw — 28 Sy fyy + gD (Fyy D A+ (X = §fyryy)0 A .
So we require that
Z%fyy’ l8f - F(f\ ) /Z%fy”’

for 73 to be zero. When this hold&]} will be zero also, since the trace Bf must vanish.

We have now fixed the whole @ with the exception of the coefficientin =9. We
determine this by imposing the condition tfﬂ% be semi-basic, that is, that it be a multiple
of dx A 6. Before proceeding to evalualg it is useful to note that

0 2 1 2 1 1
B_y’ (fy + §f€’ - §F(fy/)> = :_,’fyy’ + §fy’fy/y/ - éF(fy’y’) = 2p.
Using this we find that

d
By —— 172 = (py + 0)6,

3017l will be semi-basic if and only i = —p,.
ThIS completes the determination @f. We see that in fact is given in terms of the
first normal projective connectian by

e =—wh oy =w; Oy=-w0 O =0 o] =-o
o3 = o?, o? = —?, o? = ol ol = —w).

Note the differences in sign from Cartan’s version giveAppendix A In fact
w=—Ko'K

whereo! is the transpose @ andK is the matrix

0 0 -1
K=(0 1 0
-1 0 O

It is easy to check that whetr andw are related as above, their curvatuiésand §2
are related in the same way: this would not be true if the minus signs did not appear in
the relationship, and indeed there would be no obvious relation between the curvature
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components if that were the case. The essential point isMhat —KM'K = M’ is a
homomorphism of the matrix Lie algebra:

[M1, M3] = K[M], M3]K = —K[My, M2]"K = [My, M2]"

Indeed, this is true for ani¢ for which K? is the identity; but without the overall minus
sign one obtains instead an anti-homomorphism, and then

dw’ + %[a)/ Ao'] =do — %[a) Aol

It follows from the fact thaf7 = — K27 K that

0 abdno *
nm=10 0 bdx A0
0 0 0

Consider again the gauged version of the second normal projective connéttitnH +
H~1dH. Its curvature isH ~12H, where

That is,
0 A-1Bbdrn6 * 0 BOAG *
HQH=|0 0 BlCabrg |=|0 0 adcnd|,
0 0 0 0 0 0
where
C_ Az
0= —=—0=——=2d,
(@52 B @y (P3)°
and
P (®y)° B 5o (®,)°P5 b
A A A2

ThusH 'wH + H~'dH satisfies the conditions that uniquely determingand there-
fore isw:

HloH+ H1dH = w.
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It follows that H—12H = IT, so the coefficients and g are justb and a, respectively,
whence

Il
S
S
Il

a

Thus the vanishing db is the necessary and sufficient condition for the dual second-
order differential equation to be projectively affine; moreover, if a second-order differential
equation and its dual are both projectively affine then the first equation is rectifiable, and
of course its dual is rectifiable also. This interpretation of the significanbésafiot drawn
explicitly by Cartan, though it is implicit in what he writes. It has been derived recently in
[7] and[8], by methods differing from each other and from Cartan’s.

There is a further fact worth pointing out. Cartan says, in relation to the coefficients of
the curvature of the normal projective connection, that

/v“ aba)z, ///\/abwla)za)i, //a1/8b5/8a)1a)2,
/ / a5/8b1/8w2wf

are ‘invariant integrals’; that is to say,
Vabe, Vabdx A6 A ¢, a8p™/8 dx A 6, a¥8bY80 A ¢

are well-defined forms. These forms are essentially invariant under duality; in fact

45[79:—(1/%0, \/E»l;df/\e_/\az—x/%dx/\e/\qb,
while

aBp B A0 =B 8o np,  aBMEO AP = a/BpY/Bdx A6

5. Contact structure and duality

The conditionA # 0 imposed in the last section may be interpreted in another way,
pointed out in[2]: it states that the 1-formt = @, dx + &, dy = —(Pxdx + &5 dy) sat-
isfiest A d # 0 onSand therefore defines a contact structure on this three-dimensional
manifold. From the point of view of the last section this is not at all surprising, since
is a multiple of d — ¥’ dx, which is a contact form and is even in standard coordinate
representation. However, this observation suggests approaching the question in a differ-
ent way, and when one does so the duality of the connection becomes somewhat more
transparent.

Suppose given a three-dimensional manifekhuipped with a contact structure, which
it will be convenient to think of as a two-dimensional distributiBrvhich is non-integrable
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in the sense that for any pair of linearly independent vector fi¢lsdY in D, [ X, Y] & D.
Any 1-form © on Swhich is an annihilator of> satisfies the conditioft A d?9 # 0. We
further suppose that a basis has been chose® fand we denote the basis vectorsXy
andX. Then{X, X, [X, X]} is a basis for vector fields o let {¢, ¢, ¥} be the dual basis
of 1-forms.

In the case under consideration in the previous section we wouldtakbe tangent to
one of the fibres of the double fibration®&ndX to the otherD would be the distribution
spanned byX and X and# would be a scalar multiple ob, dx 4+ @, dy. The purpose
of the present discussion is to examine again the effect on the Cartan connection form of
interchanging the roles of the fibrations, but in doing so to treat them on an equal footing.
We will accomplish this by working in terms of the dual bases described above; when we
interchangeX and X the new 1-form basis becomésg, ¢, —}. For the normal Cartan
projective connection described in previous sections we have

X=T X=—,
ay’

and therefore
- 0 d
(X, X] = == — fy=—;
ay dy

the 1-forms a, ¢ — (1/3)f,/8, 9 which occupy the lower triangle positions in the connection
matrix are not dual to this basis of vector fields, and herein lies the main difference between
the previous discussion and the following one. The dual 1-form basis is actdally —

fy0, —0}. Indiscussing the Cartan connection from the new point of view we will therefore
take the lower triangle of the connection form to be

*
*

*

S

Il

A
|| * *

in the case just discussed this will be gauge-equivalent to the version used previously. We
emphasise that now may be any vector field tangent to the first fibration anany
vector field tangent to the second. Thus in the present version of the theory transforma-
tions of the formX — 1X, X — AX, for any non-vanishing functions and, will be
allowed; such transformations induce gauge transformations of the kind discussed previ-
ously, with coefficients given by, » and their derivatives. Little more need be said about this
point.

It follows from their definitions that the exterior derivatives of the basis 1-forms can be
written as

dp =y A9, (Z:—l///\l? dd=—pAg+xAD,

wherey, IZ andy are certain 1-forms which are linear combinationg @nde.
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It will be convenient to change notation: we will denote the connection form by

o B Y
wo=| ¢ —(a+d)
- ) o

We are assuming thatandX, and therefore, ¢ andd, are fixed; thus the only remaining
gauge freedom is that coming from a gauge transformation of the form

1 0 F
H=]10 1 0/,
0 0 1
for which
o+ FO * *
H 'oH+H 1dH = ) —(a+d) *
—9 @ o — F

We may therefore fix the gauge by requiring that o’ is independent of (that is, that it
is a linear combination ap andg), and this we do henceforth.

It is not difficult to show, using the same kind of argument as the one in the previous
section, thaty, o/, B, 8/ andy are uniquely determined, in terms #f v+ and x and their
derivatives, by the requirements that the curvatiref » takes the form

0 B =«
2=|10 0 B
0O 0 O

with B a multiple ofp A ©#. The conditions that the torsion vanishes amount to the following
equations:

dp — e+ )YAp— B AD =0, dp+ (@ +2dYA@+ BAD =0,
dy — (@ —dYAD+oAp=0.

It follows from the last of these, together with the gauge-fixing assumptiony thai’ = .
The first two equations then determine thandg components of, and therefore’/, in
terms ofyr, ¥ and x, and thep andg components off and 8’ in terms ofa anda’. The
conditions that the diagonal elementss®fanish are

de+BAp—yA®=0, d/ — B Ap+yAd=0,
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or equivalently
da+d)+B8Arp—BF Ap=0, da—d)+BArp+B Ap=2y AP

The ¢ A ¢ component of the first of these determines theomponent ofx + ¢/, and
therefore ofw ando’ since they have the sanflecomponent; the remaining components
determine the} components off and8’. Theg A ¢ component of the second equation is
satisfied identically, and the other two components giveglamd e components of. It
remains to find the component of,. We have

B=dB+Qu+d)AB+YyArq, B=df —(@+2d)YAB —yre.
We show first thatB A ¢ = 0, from which it follows thatB is a multiple ofp A ¢ if and

only if B A ¢ =0, a condition which clearly determines titecomponent ofy. Now by
taking the exterior derivative of the second of the torsion equations we find that

dBAY =B AdY —d(a+2a') A+ (o + 2d') A dg
=BAAS+BAPAQG+HYATAQG—(@+2d)ABAD
=BAM+oAp+(@+2)A)—yApAD
=(—QRa+d)AB—yAQ)AD,

which is to say thaB A ¥ = 0. A similar argument shows th& A ¥ = 0.
ThusB will be a multiple ofp A ¢ if and only if

YyAeAe=(dB+ Qo+ a)AB)Ag.
But
dBAgp=pBAdp+d(yAd),
from which it follows that
B+ Q@+ YABAp=BAB A®+d(y AD).
A very similar calculation gives
dB —(@+2YABYAe=BAB AD+dy AY)=(dB+ Ra+a)AB)Ae.

ThatistosayB A ¢ = Oifand only if B A ¢ = 0, so that the conditions thBtis a multiple
of ¢ A ¥ and B’ is a multiple ofp A © are the same. o

We can now discuss the effects of the duality transformakor X, X — X. The
notation is supposed to suggest the idea that this acts like complex conjugation; we should
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then think ofs as purely imaginary, and as real. The dual connection fom —

« B ¥y
w=|¢ —(@+ad) B |,
) %) o

is assumed to be gauged so that o’ is independent oft, as before. The connection is
then uniquely determined by the conditions

dp— Qa+d)Ag+B AD=0, dp+(@+2&)Ap—BAD=0,
dy —(@—d)AD+eAp=0

(vanishing of torsion),
da+BA@+yAD=0, dd — B Ag—yAd=0

(vanishing of the diagonal elements.éj; and

VAPAG=—(dB+ e +a)AB)Ag=—(df —(@+22)AB) Ao

(B A @ = 0 or equivalentlyB’ A ¢ = 0).
From the torsion equations (both the initial ones and their conjugates) we obtaia, first,

o =a—d = x,whencer’ + & = o + . Using this in the other two pairs of equations,

which give
QRe+a)+ @ +a)rp+ (B —P)AD=0,
(+&)+20 +Q)Ag+(B—B))AD =0,

we find that
@+a)rApAd=((+a)ApA=0.

Thuse’ + & is a multiple of¢, sayx®, and likewisex + & = k. Butthen ' — B) A © =
—3k® A @. On the other hand,

do + @) =k AS+ k(@ Ag—x AN =B —B) Ao~ +7)AD;

taking the exterior product witl¥ givesk = 0. Thuse’ = —a ande’ = —«. Moreover,
B — Bis a multiple of$, and so similarly i3 — 8'; but

B-Bre=@+NAr0=B-F) A,
whences’ = 8, B/ = B, andy A & = —y A ¢ Finally, from the conditions oB and B,

YApAg=—dB+ (@ +20)AB)Ap=—yApAg,
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S0y = —y.
It follows that we can write

o B Y
wo=| ¢ —(a—a) B
— 7 —a

withy = —y; andw = —Kw' K, as explained in the previous section. Tiiss —KQTK,
and soB’ = B, B’ = B.

6. CR structures

It is mentioned iff2] and shown in detail ifP] that there is a close analogy between the
Cartan geometry of second-order differential equations, onthe one hand, and the geometry of
three-dimensional Cauchy—Riemann structures, or CR structures, on the other. The methods
of the previous section make this analogy particularly obvious.

The geometry of CR structures deals with codimension 1 real submanifos ahd
is concerned with finding invariants of such submanifolds with respect to biholomorphic
transformations of€2. We can define such a submanifold, Sagis the zero set of a suitable
real-valued functiomd(x, y, x, y) on C2, where nowx andy are complex coordinates, and
the bar really does mean the complex conjugate. Since

&, dx + @, dy + &5y dx + P5dy =0

on§ if we sety = &, dx + @, dy = —(P5dx + @y dy) thend is pure imaginary. The
complex vector fieldX and X, where

a a

vor Py

X=9

and X is its conjugate span the two-dimensional distribution annihilated”bynder a
biholomorphic transformation df?, X and X get multiplied by complex scalars. If the
bracket X, X]is everywhere linearly independent$indX, or equivalently it A di # 0,
then the CR structure is said to be non-degeneratd¥§edy scaling as necessary we can
then choose a complex 1-form bagis ¢, ¥} adapted to the structure, with= —.

The arguments of the previous section may now be repeated more-or-less verbatim to
obtain the following result: for giveX there is a uniquel(3, C)-valued 1-formw on Swith

S

|

A
|| * *

*
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a — o being independent af, whose curvature? is strictly upper triangular,

0 B =«
2=|10 0 B
0O 0 O

whereB is a multiple ofp A ¢. In fact

o B Y
wo=| ¢ —(a—a) B
— 7 —a

for certain complex 1-forms, 8 andy, wherey is pure imaginary. MoreoveB’ = B,
andB is a relative invariant of the structure. Furthermore, the conjugaigisfgiven by
o = —Kw' K, or equivalently

oK+ Kol =0, ol =a'.

Now K defines a Hermitian form of signature- 4 —), so we see thab takes its values
in su(2, 1). This reproduces, albeit in gauged form, and with some minor differences in
numerical factors, the basic analysiqJ9f.
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Appendix A. What Cartan says about duality

Here is the relevant section, 23, of Cartan’s paper (with the notation brought up to date
where necessary):

La notion délémentesta elle-néme, en gonetrie projective, sa propre dualistique,
ainsi que la notion dmultiplicite. Par suite toute vagié d’elémentsa connexion projective
se transforme par duaien une autre varé d’élementsa connexion projective, lgmints
de la premére correspondant agéodEsiquesde la seconde, eeciproquement. Si I'on
déesigne par la lettres les composantes de la connexion projective de la seconde, on a,
comme il est facile de voir,

wg = a)g wl = w% ol = a)z, w? = a)% w% = w%,

wf = a)l, wg = a)g, wzl = a)g, w% = a)g.
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Les relations qui appartienneaitune connexion projective normale se transforment donc
par dualie en

m?=o, ni=0, m'=0 m-ni=0  [3-nf=o;

elles conserventlaéme forme. Quaritla condition que le coefficientiew! A »? dans2}
est nul, elle devient la condition que le coefficientae A zzrf dansHiJ soit nul. Autrement
dit, la dualistique d’'une vagt d'élémentsa connexion projective normale est encore une
varieté d'élémentsa’connexion projective normale

La relation qui existe entre les deaux familles @edpsiques de deux vates normales
dualistes estvidente. Si

F(x,y,a,b) =0,

est 'equation @rérale des godcesiques de la premie, lorsqu’on y regardeety comme

les variables ponctuelles af b comme les constantes arbitraires, c’est augsjuation

des godksiques de la seconde \&#, a condition d'y regardea et b comme les vari-

ables ponctuelless ety comme les constantes arbitraires. La relation entre legteari
normales dualistes se traduit donc analytiguement par une certaine correspondance entre
deuxéquations direntielles ordinaires du seconde ordre (ouilantre les deux classes
d’équations diférentielles qu’on obtient en transformant chacune d’elles par une transfor-
mation ponctuelle arbitraire). Cette correspondenceja&ié etudiee par M.A. Koppisch

SOus son aspect purement analytique.
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