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ABSTRACT: This article introduces a new method which combines a Yee-cell-based discre-
tisation of Maxwell’s equations and reduced-order modeling (ROM). The specific approach
presented here handles both high-frequency and low-frequency parts of the simulation
bandwidth. The combination of the robust Laguerre-SVD (LSVD) method and a Laplace-
transformed state-space description of the discretised Maxwell’s equations makes this broad-
band robustness possible. Three interconnection-type problems illustrate the feasibility of the
new approach. © 2005 Wiley Periodicals, Inc. Int J RF and Microwave CAE 15: 187-196, 2005.
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l. INTRODUCTION

There is a clear demand for simulation tools that
incorporate the full-wave behavior of passive inter-
connects and at the same time provide the designer
with a lumped-circuit representation or a pole/zero
model for further use in overall system simulations
and optimisation. The well-known quasi-static ap-
proximations, such as in PEEC-based methods [1],
suffer the inconvenience that the accuracy at the upper
part of the spectrum decreases. A well-known method
that does incorporate full-wave behavior is the finite-
difference time-domain (FDTD) method. There are
two drawbacks to be considered though. In order to
correctly model the geometrical details of typical in-
terconnection structures, rather small Yee cells are
required. The Courant limit [2] then imposes a very
small time step and hence very long CPU-times are
needed. A second disadvantage for the designer is the
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postprocessing of the time signals that is necessary in
order to obtain a frequency-domain transfer function
from which a lumped-element network or a pole/zero
model can be constructed, in particular when passivity
must remain guaranteed. More powerful techniques
capable of handling complex geometries and a large
number of unknowns have been developed in recent
years. We would in particular like to mention the
finite-integration technique (FIT) [3] and the MAFIA
(4] code built on this technique. In this article, we will
restrict ourselves to a space discretisation using tra-
ditional Yee cells, but attention will be focused on the
advantages offered by the application of a specific
reduced-order modeling [5, 6] technique, the
Laguerre-SVD algorithm [7, §8].

The combination of the Yee-cell-based discretisa-
tion of Maxwell’s equations and reduced-order mod-
eling is a recent research topic [9-13]. Before dis-
cussing the theoretical framework, we would like to
remark that a combination of classical FDTD and
Laguerre-SVD ROM has already been explored re-
cently in the context of a subcell approach, but re-
stricted to the 2D case [14, 15]. The method uses
reduced-order modeling as a means to generate sub-
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cell equations for a portion of space only. This subcell
model can then be incorporated in an overall FDTD
algorithm [16, 17]. This technique has proven to be
able to simulate large 2D structures with a repetitive
geometry [18], for example, photonic crystals [19].
However, the 3D combination of FDTD and ROM
makes a subcell approach [9] computationally unat-
tractive because of the much-too-large dimensions of
input and output vectors of the subcell model. In 2D,
a 20 X 20 subgridding domain requires about 20 X
4 = 80 independent input and output variables,
whereas a comparably complex 3D example would
demand about 6 X 207 = 2400 independent variables.
Too much input/output variables substantially reduce
the efficiency of the subcell technique. A more con-
venient way of simulating 3D examples, is treating
the simulation examples as simple single input/single
output systems (SISO), with a current source as the
input and a voltage recorder as the output. This is
exactly what will be presented in this contribution.

The rationale behind the choice of the Laguerre-
SVD (LSVD) technique for model-order reduction is
related to its frequency properties. It has been shown
that with LSVD a broadband robust model-order re-
duction is possible, due to the excellent properties of
the LSVD model-order reduction algorithm. In [8], a
numerically very challenging benchmark {20] was
reduced, clearly supporting the above statement. The
advantageous properties of the Laguerre-SVD algo-
rithm with respect to reciprocity were discussed in
[21} and compared with balanced realisations in [22].
The combination of the Yee-cell-based discretisation
and LSVD allows us to circumvent the small time-
step problems of classical FDTD. The final output of
the algorithm is a matrix function of the Laplace
variable s describing the impedance relationship be-
tween the input current and the output voltage.

This article is further organised as follows. Section
II discusses the formulation of the problem in terms of
a state-space description. In section III, Krylov-based
ROM methods are briefly introduced, followed by a
general, as yet unpublished, proof of the preservation
of the moment matching when expanding the transfer
function as a function of ¢, whereby o is a particular
Mobius transform of the original Laplace variable s.
In section IV, some important issues on the iterative
calculation of the Krylov matrix are discussed. Sec-
tion V presents three numerical examples of increas-
ing complexity, showing that the new method pro-
posed here is capable of handling both low and high
frequencies, even for structures that are several wave-
lengths long. Specific attention is devoted to the com-
parison of the simulation results with classical FDTD
solver and with results obtained using the Padé via

Lanczos (PVL) reduced-order modeling algorithm
[20]. However, we restrict ourselves to lossless struc-
tures. Future research will focus on including the skin
effect.

Il. STATE SPACE DESCRIPTION

In order to obtain a state-space description, the spatial
derivatives of the 3D Maxwell’s equations for a
charge-free region are discretised, with the fields sam-
pled at the coordinates (iA, jA, kA), subsequently
written as. (i, j, k). The E- and H-fields are inter-
twined according to the standard Yee-type [2] ar-
rangement of fields. This automatically implements
the two divergence equations and implies 2" order
accuracy in the space discretisation, whereas the time
derivative remains untouched. The equations for the
time derivatives, for example, of the x-components of
the electric and magnetic fields for a source free
region are given by

x o A—1 -1
MobbreH G = A Ez}'}'k+(l/2) —A Ez'k—(l/2)
-1 -1
+A Exz'j—(lll)k —A Efj+(1/2)k’

b A -1 -1
Sr,ijksoEZk—‘ A Hfj+(1/z)k_ A Hfj—(n/z)k

1 _
+A H‘y'jk—(uz) —A 1H.leﬁc(uz) - O'zjkEZ'k- 1)

The equations for the y and z directions are cyclic
permutations hereof. The simulation domain () is a
region of dimensions (N,A, N A, N A). The bound-
ary surfaces of this region are terminated with 1°-
order Mur [23] absorbing boundary conditions
(ABCs). Although general excitation conditions can
be taken into account, we will from now on assume
that the region Q will be excited by soft electrical-
current density sources J, [2] defined along a source
line AB between two conductors, as depicted in Fig-
ure 1. The imposed current is u; = J,A% On this
same figure, the recording of electric fields along the
line CD between two other conductors, is also de-
picted. These fields determine the recorded voltage,
defined by y, = 3,E,A, with the index r running
over the recorder-line electric fields (r = 3 in Fig. 1).
We now write the field equations (1), together with
the current excitation and the recording of the voltage,
in terms of a state-space description as follows:

C.x = _Gx + Bu,,

Yv= L'x. (2



Source Recorder

Figure 1. Construction of a current-density source input
and a voltage recorder along two lines, each positioned
between two conductors.

The vector x contains all the E-field and H-field
variables, the scalar u; is the imposed current and the
scalar yy is the recorded voltage. The C-matrix con-
tains the permittivities of the media and the G-matrix
stores the conductivities and the topological connec-
tivity information. The C- and G-matrices are large
but sparse. Their dimensions are N,,. X N,  with
N, = dim(x) being the system dimension. B and L
are selection matrices. B represents the distribution of
the source current u; over the source geometry. L
sums (discretised integration) the electric fields, lead-
ing to the output voltage y,. The application of the
1*-order Mur ABC also leads to a 1%-order time-
domain differential equation, which can easily be
incorporated into the state-space description of eq.
(2). We Laplace transform the system and, because
iterative methods will be used in a following step, we
further rescale the system according to § = (A/cg)s
and # = R H, with R, being the free space imped-
ance and ¢, the light speed in vacuum. For notational
simplicity, we drop the tildes on all variables and
matrices. The system is consequently rewritten as

sCx = —Gx + Bu,,
yy= Lx, 3)

The transfer function H(s) = L7(sC + G)™'B is
then a scalar impedance function of s with y(s)/
u,(s) = H(s). With a proper choice of sources and
recorders, any component of the Z-matrix of a system
can be modeled.

The main challenge that remains is that of reducing
the very large number of internal variables N, to a
much smaller amount while preserving the response
of the system, including guaranteed passivity, and this
at least in the frequency region of interest. The re-
duced system that we are looking for is similar to eq.
(3), that is,
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sCz=—Gpz + BR“;’:
yy = Ljz, )

where Cy, Gy, Ly, and By are the reduced counter-
parts of C, G, L, and B, respectively, and z is the
internal-variable vector of the reduced system, with
g = dim(z) < dim(x) and with H, = L}(sCp +
Gr) ™' B the transfer function of the reduced system.

lll. LOW- AND HIGH-FREQUENCY
ROBUST MODEL ORDER REDUCTION

The next step in the simulation is to select a ROM
method which guarantees a correct representation of
the low-frequency response. To this end, we will first
discuss the frequency properties of a certain class of
Krylov subspace methods. These methods are related
by a M&bius transform, because their transfer function
H(s) can be written [24] as a function of the M&bius
transformed variable o = M(s) = —[(b — sd)/(a —
sc)] with ad — bc # 0 and a, b, ¢, d € R.
Substituting for o, H(o) becomes:

H(o) = (co + d)LT(I — gA) 'R, (5)

where A = —(dG + bC) *(¢G + aC) and R = (dG
+ bC)"'B. We now Taylor expand [24, 25] (I —
oA)™! in eq. (5), which is allowed, provided the
spectral radius (the norm of the largest eigenvalue)
p(oA) of the matrix oA is smaller than unity:

H(o) = (co+d) D, L'ARG = (co + d) >, Mo’

i=0 i=0

(6)

It is clear that the choice of o = JA(s) will
determine the convergence radius of the Taylor ex-
pansion and thus determine the performance of the
chosen ROM method as a function of frequency. The
transfer function Hy(s) of the reduced system can
similarly be written as

Hy(o) = (ca +d) X (Mpa. -~ (D

i=0

The matching of M, with (My), for the first ¢
moments, thatis,i = 1, ..., ¢ — 1, was first proven
[6] for M(s) = s, but will be generalised here for any
Mbbius transform. The matching remains possible if
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we can find an orthogonal matrix V of size N, X
Npg,,s whose columns form a basis for the Krylov
space H(A, R, g) = colspanK = colspan([R, AR,
AR, ...A?"'R)). Ng,,, = q is the dimension of the
reduced system. The matrices of the reduced system
then are Cx = VICV, Gy = VIGV, By = V'B, and
Ly = V'L. The moments of the reduced system are
given by

(Mp); = L;[—(bCR + dGg) ™' (aCr + cGR) IRy
= L[-V(bCi + dGg)" 'V (aC + cG)VR;. (8)
Fori=0,1,..., g — 1, these moments need to

be equal to the corresponding moments of the original
system:

M, = LTA'R = L'[-(bC + dG)~'(aC + cG)IR. (9)

As V is a basis for the right Krylov subspace X,
each column of the defining Krylov matrix K is a

linear combination of the basis vectors: A'R = VE,.
Here, the values of E; are a set of basis vectors
of the subspace. For the first moment i = 0, this
means that ()C + dG)™'B = VE,. Multiplying this
expression with V(bCp + dGR)_lVT(bC + dG), we
obtain
Lh.s. = V(bCy + dGg) 'V'B = VR,
r.his. = V(bCy + dGg) '(bCy + dGR) E,
=VE, =R, (10)
which proves VR, = R and shows the matching of
the first moment My, = (Mpy),. Then, we need to
prove by induction that for i > 0, [~V(bCp +
dGR)—lVT(aC + ¢G)J'R = A'R. We multiply this
expression by V(bCr + dGg)~'VI(bC + dG)A,
which results in
Lh.s. = V(bCg + dGg)™'VI(bC + dG)(—1)(bC
+dG)™'(aC + cG)[—V(bCy + dGg)~'VT(aC
+ cG)] = =V(bCy + dGg) 'V'(aC + cG)[—V(bCy
+ dGg) 'V (aC + ¢G)} = [-V(bCy
+ dGg)~'VT(aC + cG)}*,

r.h.s. = V(bCy + dGg)~'VI(bC + dG)AA'R = V(bCy
+ dGy)"'V(bC + dG)VE,, = VE;., =A™, (1)
thus concluding the proof.

In the Padé via Lanczos (PVL) technique [20], a
method where stability cannot always be guaran-

teed, the choice for ois ¢ = s — 5p. As a conse-
quence, for the PVL method, the series of eq. (6) is
only valid for expansion points |s — So| < 1/p(A).
Choosing o = s, as in [13], has the advantage that
the matrices A and R are very easy to calculate for
systems where C is diagonal, but the resultant ex-
pansion is only valid for |s~!| < 1/p(A), that is, for
high frequencies. Because of the disadvantages of
each of the above choices for o, an in-between
approach is adopted here, defined by o = M(s) =
[(s — a)/(s + @)]. This particular choice for o is the
choice that leads to the Laguerre-SVD (LSVD)
method. The mathematical and numerical proper-
ties of this method are discussed in {7]. The M&bius
transform corresponding to the LSVD techniques is
determined by a = b = a, ¢ = —1,d = 1 and thus
the matrices defining the Krylov space ¥ are given
by

A = —(aC + G) Y (aC - G),

R =(aC + G)'B. (12)

IV. CALCULATION OF THE LSVD
MOMENTS WITH LSQR

From eq. (12), it can be seen that the construction
of the Krylov space X involves several inversions
of large, unsymmetrical, and sparse matrices. We
have chosen to apply the LSQR [26] algorithm
because it is an iterative inversion method designed
for solving matrix systems with these particular
properties. A number of other iterative inversion
methods have been extensively tested, but none of
them gave better results. BICG [27] showed to be
about four times slower for most examples, and
BICGSTAB [28] sometimes stopped. In the LSQR
method, the first inversion involves calculating R.
Choosing B as a starting vector only speeds up the
inversion with a negligible amount (about 1%). The
calculation of the other moments M; for ¢ > 0
requires the same matrix inversion for a different
right-hand side and can also be implemented itera-
tively. In typical cases, the matrices («C * G) are
well conditioned, even for structures with several
different dielectrics. Moreover, these matrices are
very sparse due to the large dimension of the typ-
ical 3D simulations considered here: the number of
nonzero entries per matrix row never exceeds six.
As such, it can be expected (but not proven) that the
inversion will converge quickly. The more than 50
examples that were run proved this expectation to



be real. Moreover, the number of iterations for the
first two inversion was always about 25% less than
for the third and next inversions. From then on, the
number of iterations does not change significantly
for subsequent inversions. The convergence of eq.
(6) becomes accelerated [7] for well chosen o, with
the optimal choice a = 27f,,, with f ., the band-
width of the system. This is in accordance with the
observation that the o-domain expansion boils
down to the multiplication of a sum of allpass filters
with a bandpass filter with cut-off frequency f,,,.
~ The LSVD algorithm is summarised below.

LSVD-LSQR ROM Aligorithm

1. Write down the voltage/current system of state-
space equations, as defined in eq. (3);

2. Solve (G + aO)R, = B with LSQR;

3.Fork=1,...,q9 — 1solve (G + aC)R, =
(G — aO)R,_, with LSQR;

4. Calculate USV™ = SVD([RR,-- ‘R,_]);
5. Calculate the following:

Crx=U"CU,

Gr = U'GU,

By =U'B,

L,=UL;

6. thus, the reduced order model is Hg(s) = L,Q
(sCgr + Gg)™'Bg with s being the rescaled
Laplace variable associated with eq. (3).
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Figure 2. A u-shaped PEC interconnect structure.
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Figure 3. Comparison of the responses of standard FDTD
and time-stepped LSVD for a u-shaped perfectly conducting
interconnect.

V. NUMERICAL EXAMPLES

A. Simple U-Shaped Structure:
Comparison with Standard FDTD

The simplest structure we will consider here is a
u-shaped perfectly conducting interconnect. In Figure
2, this u-shaped structure is depicted together with its
excitation. The simulation box with six ABC planes is
also shown. The complete simulation volume mea-
sures 33 X 18 X 45 = 26730 elementary cubic cells
of side A = 1 mm. The excitation is a current density
source defined as J, = sin(27fyr)e “'/P?A/m® with
ts = 30 ps and T = 1 ps. The voltage is also recorded
at the input location, so as to extract the input imped-
ance. The central frequency f, = 5 GHz.
Comparison with direct FDTD results provides an
indication on whether or not the inversions in the
LSVD algorithm suffer numerical problems. Also,
possible problems with the implementation of the
boundary conditions can be detected. None of these
problems were found, which is clearly shown in Fig-
ure 3. We have calculated the input voltage as a
function of time. Figure 3 shows the absolute value of
the relative difference in dB between the output volt-
age directly obtained with FDTD (V*), as shown in
the insert of Figure 3, and the value obtained with the
approach presented in this paper (V°). The time step-
ping of the ROM model can easily be performed by
discretising the time variable of the reduced system
and by executing the leapfrog algorithm with the
internal variables vector z as the to be updated quan-
tity. The time step is chosen according to the Courant
criterium. The five curves of Figure 3 correspond to
an increasing amount (up to five) of matching mo-
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22

Figure 4. A transmission-line example which extends at
four sides into the ABC planes.

ments M,. Already from the second moment on (cor-
responding to the curve labeled g = 1) the agreement
is excellent. The result may look promising, but we
must not forget that the modeled structure is simple
and small, and does not contain dielectrics nor losses.

B. A Typical Microstripline

To further check whether the applied ROM method
preserves the performance of the 1%-order Mur ABCs,
the obvious example to consider is a microstrip line.
The actual structure we modeled is depicted in Figure
4. The PEC ground plane and the dielectric terminate
into four ABC planes and the PEC strip itself termi-
nates into two ABC planes, thus simulating an infi-
nitely long microstrip on an infinite substrate. The
clementary space step is 30.48 um. All dimensions
are shown in terms of this elementary space step. To
be able to clearly assess the effect of the contrast at
the dielectric-air interface, we have selected an e,
value of 9.9. The structure is excited with a current
source at the middle of the microstrip line. The re-
sultant voltage is also recorded at the same location.

The effect of the ABC planes is that the equivalent
circuit corresponding to the modeled structure is that
of two paralle] half-infinite transmission lines. Hence,
the input impedance should be half that of the char-
acteristic impedance of the microstrip line. The result
shown in Figure 5 is practically independent of fre-
quency, at least up to 20 GHz. The real part of the

28
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_ Figure 5. Inputimpedance of the microstrip line in Fig. 4.

Figure 6. Parallel-plate transmission-line example.

impedance calculated by the LSVD algorithm was
bounded by 24.30 < Z(s) < 24.8(). Wheeler’s
closed-form formula yielded Z_/2 = 24.58(}, while
the 2D full-wave simulator (ADS from Agilent)
yielded Z./2 = 24.52Q at 1 GHz, Z_/2 = 24.51Q)
at 10 GHz, and Z /2 = 24.51Q) at 20 GHz. The
reduced system has a dimension of ¢ = 75 and no
more than 900 LSQR iterations were needed to cal-
culate each moment.

C. A Terminated Parallel-Plate
Transmission Line

Next we consider a series of parallel-plate transmis-
sion line examples, one of which is depicted in Figure
6. The line is terminated symmetrically by a parallel
network of two lumped resistances of 2407} each. In
this way, the DC input impedance of the line should
be the free-space wave impedance. The elementary
space step is 1 mm. The transmission line length is
L2 = 30 mm. The length of the simulation box is
L1 = 35 mm, with cross-sectional dimensions of 8
mm by 9 mm. The transversal dimensions of the
parallel plates are 2 X 1 mm. The simulation volume
counts 8 X 35 X 9 = 2520 elementary cells and,
hence, about six times more fields variables being
14295 field variables exactly. The transmission line is
embedded in free space and the conductors are per-
fectly conducting.

The real part of the simulated input impedance is
depicted in Figure 7 as a function of frequency and up
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Figure 7. Comparison of the transfer function of the ex-
ample in Fig. 6 with L2 = 30 mm and L1 = 35 mm
obtained with LSVD [¢g = 22, full line] and with PVL [¢ =
25, crosses (+)].

to 10 GHz, together with the result for a reduction of
the state-space description using the PVL method
[20]. The reduced systems have dimensions of g =
22 for the LSVD reduction and ¢ = 25 for the PVL
reduction. PVL matches 2¢ = 50 moments whereas
LSVD only needs g = 22 moments. The correspon-
dence between both results is very good over the
entire range. The number of LSQR iterations per
inversion in the LSVD algorithm roughly remained
constant and was on the order of 240. The LSVD
reduction converges faster than PVL. This can be seen
in Figure 8, which shows the real part of the transfer
functions for reduced systems matching 20, 22, and
24 moments, respectively, as indicated in the figure.
This difference in performance between LSVD and
PVL will be further examined below.

If we take a very similar example, with the length
of the transmission line extended to L2 = 50 mm and
extending the simulation box to L1 = 55 mm, we

Re{H(2nf)} =

f(GHz)

Figure 8. Reduced system response for the example of
Fig. 6 with L2 = 50 mm and L1 = 55 mm for 2¢q = 20,
22, and 24 moments matched with PVL (top) and q = 20,
22, and 24 moments matched with LSVD (bottom).
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Figure 9. The transfer function of the example of Fig. 6
with L2 = 50 mm and L1 = 55 mm, obtained with LSVD
(g = 25, full line, grid step = 1 mm), FDTD (dashed line,
grid step = 0.5 mm), and FDTD (dashed-dotted line, grid
step = 1 mm).

obtain the following. The simulation box then counts
8 X 55 X 9 = 3960 elementary cells, amounting to
24551 field variables.

The real part of the transfer function for a reduc-
tion of g = 25 with LSVD is depicted in Figure 9,
together with the simulation results of a standard
FDTD simulation on an identical grid with space step
A = 1 mm. In the FDTD case, the frequency-domain
transfer function was obtained by using the Fourier
transforms of the current source and voltage time-
domain signals. A third simulation result, also shown
in the same figure, represents the real part of the
transfer function obtained with standard FDTD, but
on a grid which has a discretisation step A = 0.5 mm.
The results obtained with LSVD and FDTD on the
I-mm grid coincide almost completely. The FDTD
results on a 0.5-mm grid differs slightly, the differ-
ence becoming more pronounced at higher frequen-
cies, as can be expected. When we would simply
model the parallel-plate transmission line as a 2D
transmission line, the transfer function should vary
between the load impedance Z, = 1207 and Z%/
Z, = 56.5, with Z, = 146 the characteristic
impedance of the 2D parallel-plate transmission line.
In reality, important frequency-dependent 3D effects
will come into play—in particular, at the beginning
and the end of the line.

Again comparing the performance of the LSVD
technique with that of the PVL technique, we see in
Figure 10 that even for ¢ = 178, PVL still has not
reached convergence. The LSVD reduction needed
about 250 iterations for each moment. The simula-
tions for a transmission line of length 40 mm con-
firmed that PVL ultimately reaches convergence, but
only for a much larger Krylov space than the one
needed by LSVD. For the three different line lengths
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Figure 10. Comparison between LSVD (full line) and

PVL (dashed line) for the example in Fig. 6 with L2 = 50
mm and L1 = 55 mm.

that we considered (30, 40, and 50 mm), the differ-
ence in the number of iterations needed for each
moment matching when using the PVL method or the
LSVD method was insignificant. As a consequence,
the calculation times for systems with equal numbers
of matched moments for both methods is almost
equal. The 50-mm example needs 220, 233, 224, and
214 iterations for the calculations of the four first
respective Krylov vectors (0 < ¢ < 5). For 21 <
g < 25, the number of needed iterations is 179 for
each of the three corresponding Krylov vectors. The
construction of the Krylov matrix of size 24551 X 25
lasted 63.03 s. An additional 12.33 s were needed for
the orthogonalizations with SVD of the Krylov spaces
of size 9 < ¢ < 25 and the calculations of the
respective transfer functions. The amount of memory
needed is 95 MB. If the simulations are run with an
embedding dielectric with £, > 0, the number of
necessary LSQR iterations per moment increases, but
not drastically. For the 50-mm example, an 8% in-
crease for €, = 3 was observed, rising to about 30%
for e, = 10.

The convergence of the LSQR method also de-
pends on the grid step. However, as a consequence of
the rescaling, typical problems converge well. In sit-
uations where the geometries require a finer meshing
than required by the frequency content of the exciting
signal (that is, typically A/20), steps 2 and 3 of the
LSVD-LSQR algorithm (13) will converge worse.
However, this problem can be circumvented by
choosing parameter « in eq. (13) to be much larger
than the *“optimal choice” of 2mf,,, put forward in
{7]. This restores convergence at the cost of obtaining
a larger Krylov space. The example of the 50-mm
transmission line, calculated with & = 30 X 2af, .,
converged at ¢ = 80 instead of at ¢ = 25 for a =
27f 0 With f., = 10 GHz.

VI. CONCLUSIONS

In this article, we have introduced the combination of
a Yee-cell-based discretisation of Maxwell’s equa-
tions and a model-order reduction technique (LSVD)
based on the expansion of the Laplace-domain trans-
fer function in Laguerre polynomials. We have also
proven the preservation of moment matching under a
general Mobius transform of the Laplace variable s,
of which LSVD is a special case. The final result of
the approach presented in this article is a ready-to-use
impedance function of frequency. The presented
method proves to be very robust and guarantees the
correct behavior at both low-frequency and high-fre-
quency parts of the spectrum. The examples show that
the LSVD technique outperforms the often-used PVL
technique. For systems that are not too complex, the
reduction factor (that is, the ratio of the original
number of internal variables and the number of inter-
nal variables of the reduced system) is on the order of
10°. Future efforts will be directed towards the inclu-
sion of losses, a correct modeling of the high fre-
quency skin effect, and an increase in the efficiency of
the method in order to cope with very large state
spaces.
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