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Small area estimation for unemployment using latent 
Markov models 

Gaia Bertarelli, M. Giovanna Ranalli, Francesco Bartolucci,  
Michele D’Alò and Fabrizio Solari1 

Abstract 

In Italy, the Labor Force Survey (LFS) is conducted quarterly by the National Statistical Institute (ISTAT) to 
produce estimates of the labor force status of the population at different geographical levels. In particular, ISTAT 
provides LFS estimates of employed and unemployed counts for local Labor Market Areas (LMAs). LMAs are 
611 sub-regional clusters of municipalities and are unplanned domains for which direct estimates have overly 
large sampling errors. This implies the need of Small Area Estimation (SAE) methods. In this paper we develop 
a new area level SAE method that uses a Latent Markov Model (LMM) as linking model. In LMMs, the 
characteristic of interest, and its evolution in time, is represented by a latent process that follows a Markov chain, 
usually of first order. Therefore, areas are allowed to change their latent state across time. The proposed model 
is applied to quarterly data from the LFS for the period 2004 to 2014 and fitted within a hierarchical Bayesian 
framework using a data augmentation Gibbs sampler. Estimates are compared with those obtained by the classical 
Fay-Herriot model, by a time-series area level SAE model, and on the basis of data coming from the 2011 
Population Census. 

 
Key Words: Area level model; Hierarchical Bayes; Time-series data; Labor Force Survey; Augmented data. 

 
 

1  Introduction 
 

In Italy, the Labor Force Survey (LFS) is conducted quarterly by ISTAT, the National Statistical 

Institute, to produce estimates of the labor force status of the population at a national, regional (NUTS2), 

and provincial (LAU1) level, with monthly, quarterly, and yearly frequency, respectively. Since 1996, 

ISTAT also disseminates yearly LFS estimates of employed and unemployed counts for local Labor Market 

Areas (LMAs). LMAs are sub-regional geographical areas where the bulk of the labor force lives and works, 

and where establishments can find the largest amount of the labor force necessary to occupy the offered 

jobs. These are 611 distinct and functional areas defined as clusters of municipalities through an allocation 

process based on commuting patterns collected by the 2011 Population Census (Istat, 2014). Unlike NUTS2 

and LAU1 areas, LMAs are unplanned domains that cut across sampling strata and LAU1 areas. In addition, 

direct estimators have overly large sampling errors particularly for areas with small sample sizes. This 

makes it necessary to borrow strength from data on auxiliary variables from other areas through appropriate 

models, leading to indirect or model-based estimates. 

Small Area Estimation (SAE) methods are used in inference for finite populations to obtain estimates of 

parameters of interest when domain sample sizes are too small to provide adequate precision for direct 

domain estimators. Statistical models for SAE can be formulated at the individual or area (i.e., aggregate) 

levels. In this paper we focus on the latter. The Fay-Herriot model (Fay and Herriot, 1979, FH) is the basic 

area level SAE model: it uses cross-sectional information for predicting small area parameters of interest by 

combining direct estimates and population level auxiliary information with a linear mixed model. When 
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longitudinal data are also available, it is possible to borrow strength over time. Among others, Rao and Yu 

(1994) propose a model involving autocorrelated random effects and use both time-series and cross-

sectional data, while Marhuenda, Molina and Morales (2013) develop a spatio-temporal FH model using an 

autoregressive model in space together with a first-order autoregressive covariance structure in time. 

Several papers deal with SAE using time-series models and the Kalman filter after expressing them in a 

state-space form. Pfeffermann and Burck (1990) introduce state-space models to estimate the Canadian 

unemployment rates and Pfeffermann and Rubin-Bleuer (1993) use this approach to model the correlation 

between the trends of domain series in a multivariate structural time-series model. Pfeffermann and Tiller 

(2006) add monthly benchmark constraints to the time-series state-space model, while Harvey and Chung 

(2000) consider a bivariate state-space model to obtain more stable and precise estimates of change in 

unemployment. Krieg and Van der Brakel (2012) model domain series in a multivariate time-series model 

and apply the cointegration idea to construct more parsimonious common trend models. Level break 

estimation within the structural time-series framework is illustrated in Van den Brakel and Krieg (2015). 

More recently, Van der Brakel and Krieg (2016) and Boonstra and Van den Brakel (2016) apply these 

models to data from the Dutch LFS. 

Proposals for area level time-series data have also been developed following a Hierarchical Bayesian (HB) 

approach. In particular, Ghosh, Nangia and Kim (1996) apply a fully HB analysis using a time-series model 

to the estimation of median income of four-person families. Datta, Lahiri, Maiti and Lu (1999) apply this 

approach to a longer time-series from the U.S. Current Population Survey and use a random walk model for 

the area random effects. You, Rao and Gambino (2003) apply the same model to unemployment rate 

estimation for the Canadian LFS. Recently, Boonstra (2014) uses a time-series HB multilevel model to 

estimate unemployment at the municipality level using data from the Dutch LFS. In particular, estimates are 

obtained for each quarter and include random municipality effects and random municipality by quarter effects. 

In this work we develop a new area level SAE method based on Latent Markov Models (LMMs, see 

Bartolucci, Farcomeni and Pennoni, 2013, for a thorough description) to estimate unemployment incidences 

in LMAs using quarterly data from 2004 to 2014 within an HB framework. Area level SAE models consist 

of two parts, a sampling model formalizing the assumptions on direct estimators and their relationship with 

underlying area parameters, and a linking model that relates these parameters to area specific auxiliary 

information. In this work, an LMM is used as linking model and the sampling model is introduced as the 

highest level of the hierarchy. The resulting model is fitted within a Bayesian framework using a Gibbs 

sampler with augmented data (corresponding to the latent variables) that allows for a more efficient 

sampling of the model parameters (Tanner and Wong, 1987). 

LMMs, introduced by Wiggins (1973), allow for the analysis of longitudinal data when the response 

variables measure common characteristics of interest that are not directly observable. The basic LMM 

formulation is similar to that of hidden Markov models for time-series data (MacDonald and Zucchini, 

1997). In these models, the characteristics of interest and their evolution in time are represented by a latent 

process that follows a Markov chain, typically of first order, so that single areas are allowed to move 

between latent states across time. LMMs may be seen as an extension of Markov chain models to control 

for measurement errors. Moreover, LMMs can be seen as an extension of latent class models (Lazarsfeld, 
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Henry and Anderson, 1968) to longitudinal data. Latent class models have been considered in a SAE 

framework in Fabrizi, Montanari and Ranalli (2016), where a latent class unit level model for predicting 

disability small area counts from survey data is introduced for cross sectional data. 

The remainder of this paper is organized as follows. Section 2 provides a more detailed description of 

the available LFS data, while Section 3 introduces notation and reviews some relevant time-series area level 

SAE methods available in the literature. In Section 4, the model and the procedure for its estimation are 

presented in detail. Section 5 is devoted to the discussion of the results of the application to the LFS data. 

Conclusions and possible future developments are outlined in Section 6.  

 

2  Data and preliminary analysis  
 

As already mentioned, LMAs are unplanned domains for the LFS. In fact, the sampling design is as 

follows. Within a given LAU1, municipalities are classified as Self-Representing Areas (larger 

municipalities) and Non-Self-Representing Areas (smaller municipalities). In Self-Representing Areas, a 

stratified cluster sampling design is applied: each municipality is a single stratum and households are 

selected by means of systematic sampling. In Non-Self-Representing Areas, the sample is based on a 

stratified two stage sampling design: municipalities are Primary Sampling Units, while households are 

Secondary Sampling Units. Primary Sampling Units are divided into strata of the same dimension in terms 

of population size. One Primary Sampling Unit is drawn from each stratum without replacement and with 

probability proportional to the Primary Sampling Unit population size. Secondary Sampling Units are 

selected by means of systematic sampling in each Primary Sampling Unit. All members of each sample 

household, both in Self-Representing Areas and in Non-Self-Representing Areas are interviewed. In each 

quarter, about 70,000 households and 1,350 municipalities are included in the sample. Note that some LMAs 

(usually the smallest ones) have a very small sample size. Furthermore, usually about one third of the LMAs 

is not included in the sample at all (i.e., they have a zero sample size). 

The LFS follows a rotating panel sampling design, according to a 2-(2)-2 scheme: households are 

interviewed in two consecutive quarters and, after a two-quarter break, they are interviewed for two 

additional consecutive quarters. Although the LFS panel design induces correlation among quarterly 

estimates, due to partial overlap of the sample units, we do not account for it in our model specification in 

the application illustrated in Section 5. In any case, we expect that this does not affect the comparison among 

different methods. 

In this work we model quarterly unemployment incidences for 611 LMAs for the period 2004-Q1 to 

2014-Q4 (44 quarters). Figure 2.1 shows the map of direct estimates in the first and in the last time occasion 

of the observation time span. Figure 2.2, on the other hand, shows all the direct estimates for each small 

area in two NUTS2 areas: Lombardy (left panel) is a rich region in the North of Italy, while Sicily (right 

panel) is the southern Island and is much less wealthy. We observe, in general, that direct estimates are 

extremely variable and that unemployment has decreased over the first three years, and then started to 

increase considerably.  

Direct estimates in unplanned domains are characterized by a high Coefficient of Variation (CV), which is 

used as a measure of uncertainty associated with the estimates. In addition, 6,762 out of 26,884 direct estimates 
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cannot be computed because the sample dimension is zero. Usually, in Official Statistics, an estimate for a 

Labor Force parameter with a CV greater than 33.3% is considered too unreliable and is not recommended for 

release. Estimates with a CV between 16.6% and 33.3% must be released with caveats because their sampling 

variability is quite high, while estimates with a CV smaller than 16.6% are of sufficient accuracy and have no 

release restrictions; see Statistics Canada (2016, page 35). In our data, the vast majority of direct estimates has 

a very large CV and cannot be considered reliable, as it is shown in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1 Direct estimates of unemployment incidences (%) for the first and the last time occasion: first 
quarter of 2004 (a) and the last quarter of 2014 (b). 
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 < 1.71 
 NA 
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Figure 2.2 Quarterly direct estimates of unemployment incidences in two NUTS2 Regions: Lombardy (a) and 
Sicily (b), from 2004-Q1 to 2014-Q4.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 For each quarter, distribution of the sampled small areas according to classes of values of the CV 
of the direct estimates.  

 
The basic idea of SAE is to introduce a statistical model to exploit the relationship between the variable 

of interest and some covariates for which population information is available. Auxiliary variables available 

for these data are the population rates in 7 sex age  classes (15-19, 20-24, 25-29, 30-39, 40-49, 50-59, 60-

74). Since LFS estimates are not seasonally adjusted, we take seasonality into account using year and quarter 

effects through 10 and 3 dummy variables, respectively. 
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The CVs of direct estimates are estimates themselves and their precision is a function of the sample size. 

Therefore, they are subject to a relevant sampling error that can affect small area modeling in different ways 

(Rao and Yu, 1994) and smoothing estimated Mean Squared Errors (MSEs) is necessary (see Rao, 2003, 

Chapter 5). In this work, we propose to use a regression model with a logarithmic transformation of the CV 

and of the MSE (see Wolter, 2007, Chapter 7). In particular, our approach is based on two steps: the first 

step consists in modeling the CV and then computing the smoothed MSE from this model. At the second 

step, we model the MSE directly for those small areas for which we do not have a valid CV (i.e., for those 

LMAs with a zero estimate). 

Let ît  be the direct survey estimate for small area = 1, , ,i m  with = 611,m  at time = 1, , ,t T  

with = 44.T  Let CVit  denote the corresponding estimate of the CV. Note that Italy is divided into four 

geographic areas, namely broad-areas (e.g., North-West, North-East, Center, South and Islands), and that 

each LMA belongs to only one of these broad-areas. In order to smooth estimates of MSEs, we have the 

following auxiliary information:  

• itM  is the population size at time t  of the broad-area to which LMA i  belongs;  

• itN  is the population size of LMA i  at time ;t  

• itr  is a 14-dimensional column-vector that contains population rates in 7sex age  classes, for 

LMA i  at time .t  
 

At the first step of the proposed procedure, we fit the following regression model for each broad-area:  

        0 1 2 3 14 4
ˆlog CV = log log log log ,

it
it it it it

it

N

M
          

 
r β 1 r β  (2.1) 

where 141  is a 14-dimensional column vector of ones. The use of the log-transformation and the choice of 

the covariates has been assessed using standard model selection techniques, such as AIC and adjusted 2.R  

Using predictions denoted by CV it  from this model, smoothed MSEs are obtained as  

   ˆMSE = CV .it it it   

In the second step of the proposed procedure, for all ˆ = 0,it  CVs cannot be computed while MSEs are 

available since direct estimates are based on calibrated weights and MSE estimates are based on the residuals 

of a generalized regression that accounts for the auxiliary variables used in the calibration constraints. Then, 

MSEs are modeled directly and separately for each broad-area using the following model:  

      0 1 2 14 3log MSE = log log log .
it

it it it
it

N

M
       

 
r β 1 r β   

Smoothed MSEs are obtained as predictions from this model. Note that, we have resorted to this two-step 

procedure because the former model, the one for CVs, fitted better than the latter for MSEs in our 

application. Figure 2.4 reports the final output of this two-step procedure and displays the original and the 

smoothed MSEs versus unemployment incidence for all sampled areas. 
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Figure 2.4 Original (black) and smoothed (red) MSEs vs unemployment incidence for all sampled areas. 

 
3  Time series area level SAE models 
 

Rao and Yu (1994) propose an area level model involving autocorrelated random effects and sampling 

errors using both time-series and cross sectional data. It consists of a sampling model  

 ˆ = , = 1, , , = 1, , ,it it ite i m t T       

and an area-linking model  

 = , = 1, , , = 1, , ,it it i itv u i m t T   x β     

where it  is the true value corresponding to the estimate ît  for the small area mean, itx  is a p 

dimensional column vector of fixed covariates, and ite  are normal sampling errors. Given the true value 

,it  each vector  1= , ,i i iTe e e   has multivariate normal distribution with zero mean and with known 

variance-covariance matrix .iΨ  Moreover,  20,i vv N   is the area effect and , 1= ,it i t itu u     with 

< 1  and  20,it N    is the area-by-time effect. In this model, ,ie ,iv  and it  are assumed 

independent of each other. In our application iΨ  is diagonal, with elements ,it  for = 1, , .t T  

In the previous formulation, the area-linking model is basically a linear model with mixed coefficients. 

You et al. (2003, YRG) translate this model into an HB framework as follows. Let  1= , ,i i iT  θ   and 

 1
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N

u N u

u u N u

  

   

 

θ θ θ Ψ

β x β





 

 (3.1) 

where ,β 2 ,v  and 2   are mutually independent. The model is fully specified once priors are chosen for ,β
2 ,v  and 2 ,   namely as   1,f β  2

1 1IG , ,v a b   and  2
2 2IG , ,a b   where 1 ,a 2 ,a 1b  and 2b  

are known positive hyperparameters and, usually, set to be small and to reflect a vague knowledge about 
2
v  and 2 .   

Datta et al. (1999) follow this approach, but introduce a richer structure for the fixed part of the linking 

model by assuming  

 = ,it it i i itv u   x β  (3.2) 

where iv  and iβ  are area-specific intercepts and regression coefficients, respectively, and itu  is an area-

specific error term that follows the random-walk model  

  2 2
, 1 , 1, , .it i t i tu u N u      

The column vector of auxiliary variables itx  may also include dummy variables for year and/or seasonality 

adjustments. Note that area-specific regression coefficients considerably increase the estimation complexity 

and the computational burden. For this reason, the hyperparameters are assumed to be m  independent 

realizations from a common probability distribution specified by  20,i vv N   and  1, ,i N 
β β W  

which, in turn, depend on appropriate parameters. See Datta et al. (1999) for further details. 

 
4  The proposed model 
 

In this section, the proposed SAE model based on LMMs is illustrated. It can be considered as a 

compromise between the YRG model based on (3.1), which leads to possible oversmoothing, and the 

computationally demanding alternative proposed in Datta et al. (1999), based on (3.2). We first outline a 

general description on LMMs and then move to the specification of the area level model and to its 

estimation. 
 

4.1  Preliminaries 
 

In LMMs, the existence of two types of process is assumed: an unobservable finite-state first-order 

Markov chain itU  with state space  1, , k  and an observed process, which in our case corresponds to 

,it  with = 1, ,i m  and = 1, , .t T  It is assumed that the distribution of it  depends only on ;itU  

specifically, the it  are conditionally independent given the .itU  In addition, the latent state to which a 

small area belongs at a certain time point only depends on the latent state at the previous occasion. 

The state-dependent distribution, namely the distribution of it  given ,itU  can be a continuous or 

discrete. Such a distribution is typically taken from the exponential family. Thus, the overall vector of 

parameters of LMM, denoted by ,  includes parameters of the Markov chain, denoted by lat,  and the 
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vector of parameters obs  of the state-dependent distribution. In fact, the model consists of two components, 

the measurement model and the latent model, which concern the conditional distribution of the response 

variables given the latent variables and the distribution of the latent variables, respectively. By jointly 

considering these components, the so-called manifest distribution is obtained: it is the marginal distribution 

of the response variables, once the latent variables have been integrated out. 

The measurement model, based on parameters obs,  can be written as  

  obs= , .it it itU u p u     

Moreover, the parameters lat  of the Markov chain are:  

• the vector of initial probabilities  1= , , k  π   where  

  1= = , = 1, , ;u iP U u u k    

• the transition probability matrix  

 

1 1 1

1

= ,

k

k k k

 

 






 

Π



  



  

where  

  , 1= = = , , = 1, , ,u u it i tP U u U u u u k     

is the probability that area i  visits state u  at time t  given that at time 1t   it was in state .u  
 

In this work we consider homogeneous LMMs, namely LMMs where, in agreement with the previous 

definition, the transition probability matrix is constant in time. Generalizations to non-homogeneous hidden 

Markov chains and time-varying transition probabilities could also be considered (Bartolucci and 

Farcomeni, 2009). Individual covariates could be included in the measurement or in the latent model. When 

the covariates are included in the measurement model (Bartolucci and Farcomeni, 2009), they affect the 

response variables directly and the latent process is conceived as a way to account for the unobserved 

heterogeneity between areas. Differently, when the covariates are in the latent model (Vermunt and 

Magidson, 2002; Bartolucci, Pennoni and Francis, 2007) they influence initial and transition probabilities 

of the latent process. In a SAE context, we will consider the former approach, so that auxiliary information 

can be used to improve predictions. Bayesian inference approaches to LMMs are already available in the 

literature (e.g., in Marin, Mengersen and Robert, 2005; Spezia, 2010). In the following section we illustrate 

how to incorporate an LMM into an area level SAE model.  

 

4.2  Proposed approach to area level SAE 
 

The proposed model is based on two levels in an HB framework: at the first level, a sampling error model 

is assumed, then an LMM is used as linking model. The latter is based on two equations, corresponding to 

the measurement model and to the latent component. In particular, we adopt the following structure:  
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• Sampling Model:  

  ˆ , , = 1, , ;i i T i iN i mθ θ θ Ψ    

• Linking Model:  

- Measurement Model:  

  2= , , = 1, , ; = 1, , ;it it it it u uU u N i m t T x x β     

- Latent Model, based on the initial probabilities ,u = 1, , ,u k  and on the transition 

probabilities ,u u = 2, , , , = 1, , ,t T u u k   already defined.  

 

Here uβ  is the 1p   vector of the regression coefficients for the latent state to which area i  at time t  

belongs, 2
u  is the corresponding error variance, and iΨ  is the matrix of sampling variances, which is 

assumed to be known. 

It must be noticed that, while in the classical area level SAE models heterogeneity is modeled using 

continuous (usually Normally distributed) random variables, here it is modeled with a discrete dynamic 

variable. As we can deduce from Figure 4.1, our data have a skewed distribution. However, the empirical 

distribution is not far from a Normal distribution. D’Alò, Di Consiglio, Falorsi, Ranalli and Solari (2012) 

show that the differences in estimates between adopting a Normal or a Binomial model are not as relevant 

as expected and Normal models are often used for estimation of unemployment rates (You et al., 2003; 

Boonstra, 2014). Finally adopting the Normal distribution has computational advantages which are clarified 

later in this section.  
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Density kernel plot of the direct estimates of unemployment incidences. 
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The model parameters of interest can be divided into three groups:  

• the matrix of small area parameters:  

 

11 1

1

= ;

T

m mT

 

 






 

Θ



  



 (4.1) 

• the vector of the measurement parameters:  

  2 2
obs 1 1= , , , , , ;k k   β β    

• the set of latent parameters:  

  lat = , .π Π   
 

To complete the Bayesian formulation of the proposed model, it is necessary to choose priors for the 

model parameters. Small area parameters do not need a specific prior because direct estimates based on 

observed data are available; therefore, a set of priors is chosen for the measurement and the latent 

parameters. Regarding obs ,  diffuse normal priors are assumed for the regression coefficients. These priors 

are conjugate and computationally more convenient than the usually flat priors over the real line (see Rao, 

2003, Chapter 10). In particular, we assume  

  0 0, , = 1, , ,u pN u kβ η Σ    

with 2 1
0 0= u Σ Λ  and 0Λ  is a known diagonal matrix. 

Variances 2 ,u = 1, , ,u k  are unknown and, therefore, it is necessary to set a prior also on these 

parameters. The choice of the prior distribution for the variance components is critical as in Bayesian mixed 

models the posterior distributions of these parameters are known to be sensitive to this specification. The 

inverse Gamma distribution is a popular choice, see e.g., You et al. (2003) and Datta, Lahiri, Maiti and Lu 

(1999) among others. Gelman (2006), Gelman, Jakulin, Pittau and Su (2008), and Polson and Scott (2012) 

propose to assume a half-Cauchy distribution for the variance of the random effect. Alternatively, a Uniform 

distribution can also be considered. Fabrizi et al. (2016) conduct an exhaustive sensitivity analysis when 

using a latent class model in a multivariate setting and find no significant difference among these different 

alternatives. For this reason, we choose the same prior distribution considered in You et al. (2003) and use 

an inverse Gamma distribution with shape parameter 0a  and scale parameter 0 ;b  then  2
0 0IG , ,u a b 

= 1, , ,u k  where 0 0, > 0a b  are set to very small values. This choice makes it also easier to derive the 

full conditional distributions for the Gibbs sampler. 

For lat,  a system of Dirichlet priors is set on the initial probabilities and on the transition probabilities. 

The Dirichlet distribution is a conjugate prior for the multinomial distribution. This means that if the prior 

distribution of the multinomial parameters is Dirichlet then the posterior distribution belongs to the same 

family. The benefit of this choice is that the posterior distribution is easy to compute and, in some sense, it 

is possible to quantify how much our beliefs have changed after collecting the data. Then, we assume  
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π 1

π 1 




  

 

4.3  Estimation and model selection 
 

In this work we make use of a data augmentation Markov Chain Monte Carlo (MCMC) method (Tanner 

and Wong, 1987; Liu, Wong and Kong, 1994; Van Dyk and Meng, 2001) based on the Gibbs sampler, in 

which the latent variables are treated as missing data (Marin et al., 2005; Germain, 2010). There are two 

main reasons for this choice. First of all, there is evidence that data augmentation has a better performance 

than other methods, as the marginal updating scheme (Boys and Henderson, 2003). Moreover, it simplifies 

the process of sampling from the posterior distribution. Details on this method and the full conditionals 

employed in the Gibbs sampler are given in Appendix A.1. 

The choice of the number of latent states is a crucial step in applications. In the framework of LMMs, 

this requires a model selection procedure. From a Bayesian perspective, a fundamental goal is the 

computation of the marginal likelihood of the data for a given model. In this paper we use a model selection 

method based on the marginal likelihood and to estimate this quantity we use the method proposed by Carlin 

and Chib (1995), applied for each available model on the basis of the output of the MCMC algorithm. 

Technical details are provided in Appendix A.2. 

A well-known problem occurring in Bayesian latent class and LMMs is the label switching. This implies 

that the component parameters are not identifiable as they are exchangeable. In a Bayesian context, if the 

prior distribution does not distinguish the component parameters between each other, then the resulting 

posterior distribution will be invariant with respect to permutations of the labels. Several solutions have 

been proposed; for a general review see Jasra, Holmes and Stephens (2005). The easiest approach is to use 

relabeling techniques retrospectively, by post-processing the MCMC output (Marin et al., 2005). However, 

in our case, we are interested in the prediction of the small area parameters, whose distribution depends on 

the number of areas in each latent state. Therefore, we do not use the post-processing approach and the 

MCMC output is permuted at every iteration according to the ordering of the mean of the response variables 

in each class.  

 
5  Results 
 

In this section we report the results of the application of the LMM area level SAE model to the LFS data 

presented in Section 2. We fit the model with = 2, , 6k   latent states. For each value of ,k  we run one 

Markov chain with 100,000 iterations and then we consider a burn-in period of 50,000 iterations. The 

posterior means are approximated by means of the retained MCMC samples. Similarly, the variance of the 

samples approximates the posterior variance of .it  We select = 4k  using the proposed model selection 

approach. In fact, using expression (A.4), we obtain the following values for the posterior density of the 

data:  ˆ = 2 = 59,152.41,p kΘ  ˆ = 3 = 64,405.11,p kΘ  ˆ = 4 = 68,816.06,p kΘ  and  ˆ = 5 =p kΘ  

68,703.75.  
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We validate our model selection procedure by comparing the final choice with that obtained using the 

Deviance Information Criterion (DIC). In particular, we focus on = 4, 5k  latent states for which the Bayes 

rule provides the largest values. The DIC confirms our results because we obtain 8,334.0 and 8,362.4 for 

= 4k  and = 5,k  respectively. 

Figure 5.1 compares the map of estimates for the first and the last quarter of the whole period. These can 

be compared with the maps of direct estimates reported in Figure 2.1. In particular, estimates on the first 

row of Figure 5.1 are obtained by the proposed LMM area level model. Those on the second row are 

obtained using a cross-sectional Fay-Herriot (FH) model computed with the R package hbsae (Boonstra, 

2012), while those on the last row are obtained using the You et al. (2003, YRG) model, for which we have 

considered three possible choices for ,  0.50, 0.75, and 1.00, as in You et al. (2003). To measure the overall 

fit of the three alternative YRG models we have compared posterior predictive p  values (Meng, 1994). In 

particular, simulated values of a suitable discrepancy measure are generated from the posterior predictive 

distribution and, then, compared to the corresponding measure for the observed data. More specifically, if 

 ˆ ,d Θ Θ  is a discrepancy measure that depends on the observed data, ˆ ,Θ  and the parameter matrix ,Θ  

then the posterior predictive p  value is defined as    *ˆ ˆ ˆ, > , ,P d d  Θ Θ Θ Θ Θ  where *Θ̂  is a sample 

from the posterior predictive distribution. If a model fits the observed data well, then the two values of the 

discrepancy measure are similar and, as a result, the value of the p  value is expected to be close to 0.5. 

On the other hand, p  values near 0 or 1 signal a model that is not well suited to the data. As in Datta et al. 

(1999) and in You et al. (2003), we use the following discrepancy measure  

      1

=1

ˆ ˆ ˆ, =
m

i i i ii
i

d  Θ Θ θ θ Ψ θ θ   

for the overall fit. The posterior predictive measure suggests that the model with = 1  provides a better fit 

to the data, in fact it takes value 0.188 for = 1.00,  0.103 for = 0.75,  and 0.032 for = 0.50.  Note 

that for our model, we obtain a p  value equal to 0.311. We have also implemented the Datta et al. (1999) 

estimation approach. However, the number of areas and the overall number of observations made the 

estimation computationally prohibitive. For this reason, it is not considered further. 

From Figure 5.1, we observe that all model-based estimates are smoother than the original direct 

estimates. Maps are color-coded according to the quartiles of the direct estimates for 2004-Q1. In general, 

estimates for 2004-Q1 show a quite distinct division between North, Center, and South of Italy, with 

relatively higher unemployment incidences in the South of the country. For 2014-Q4, unemployment 

incidences are all much higher all over the country, because of the economic crisis that hit the country in 

2008. LMM and FH show similar patterns, and are in line with those of the direct estimator. YRG, on the 

other hand, provides more shrunk estimates and this is particularly evident for 2014-Q4 where a general and 

distinct underestimation is provided. This behavior is displayed for all time points. In fact, Figure 5.2 shows 

the absolute difference between the direct estimates and model-based estimates. Areas are ordered according 

to estimated variance of the direct estimates. All model-based estimators show a common general behavior: 

smaller differences for more precise estimates and increasingly larger differences for more variable direct 
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estimates. However, we can note that YRG provides systematically larger positive differences, by this 

casting some concerns on bias. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Unemployment incidences (%) estimated using LMM, FH and YRG for 2004-Q1 and 2014-Q4. 
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Figure 5.2 Difference between DIR and model-based small area estimates; LMM, FH, YRG, from left to right. 

Areas are arranged according to increasing estimated variance of the direct estimator.  

 
As mentioned earlier, LMM uses a discrete random variable to model unobserved heterogeneity rather 

than the more common continuous (usually Gaussian) assumption. As a consequence, small areas can be 

clustered according to the latent state to which they belong at each time point. In this application, latent 

states are ordered and can be associated to the level of unemployment, conditionally on the covariates. 

Figure 5.3 shows the evolution of the latent states clustering for the small areas over the 44 time points. The 

fourth cluster is very small and comprises areas with a very high unemployment incidence. In addition, the 

pattern seems to be very stable over time, as the probability of changing latent state is very low. Note that, 

although there is a noticeable temporal trend in the data, this is captured by the dummy variables inserted 

to account for trend and seasonality. These finding are supported by the estimated initial and transition 

probabilities:  

 

 ˆ = 0.505, 0.340, 0.144, 0.011 ,

0.967 0.027 0.004 0.002

0.020 0.956 0.020 0.004
ˆ = .

0.007 0.035 0.946 0.012

0.035 0.007 0.030 0.929
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Figure 5.3 Latent states distribution from 2004-Q1 to 2014-Q4. 

 
 

Figure 5.4 shows the time series of direct estimates and the corresponding model-based estimates for a 

selection of small areas. Aosta – panel (a) – is a small LMA in the very North of the country, with a small 

level of unemployment. LMM smooths the direct estimates more than the other methods, while YRG tracks 

the path of the direct estimates, but provides a noticeable negative bias. Milan – panel (b) – is a large city 

in the North of the country and the corresponding LMA has usually a very large sample size. As expected, 

FH and LMM track the values of DIR, while YRG exhibits a clear tendency to underestimation. Perugia 

and Brindisi are two mid-size towns in the Centre and in the South of Italy, respectively. The pattern of the 

model-based estimators is very clear: LMM provides a very good smoothing of the quite erratic trend of the 

direct estimates, better than FH, while YRG again displays a tendency to negative bias, particularly after 

the first few quarters. 

It is expected that model-based estimates, besides providing estimates for the out-of-sample areas, 

provide gains in efficiency over direct estimates. In Figure 5.5 we report the distribution of the CV for 

comparing model-based small areas estimates for each time point, classified as in Figure 2.3 according to 

different relevant values of CV. FH provides estimates for out of sample areas, but it does not seem to 

provide a useful estimation option for these data since only few estimates have CV smaller than 16%. On 

the other hand, YRG provides a very good improvement in terms of estimated efficiency, with almost all 

estimates with a CV smaller than 33.3%. LMM provides a good improvement over FH with only 

approximately 15% of the small area estimates with a CV larger than 33.3%. 
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Figure 5.4 Time series of direct and model-based estimates for a selection of four small areas. 
 

In addition, small area estimates should be close to population level quantities, when available. Here, we 

use data from the 2011 Italian Population Census and consider unemployment incidence for LMAs from 

the Census as a gold standard. In particular, we evaluate the distance between small area estimates for the 

closest time point, namely 2011-Q4, and the Census value, Cens ,i  and compute the Absolute Relative Error 

for each area  ARE i  as  

 
ˆ Cens

ARE =
Cens

i i

i
i

 
 (5.1) 

for each area .i  The ARE i  also provides a sort of measure of relative bias and is important to evaluate and 

compare the performance in terms of overall error of the estimates. Note that the small area parameter of 

interest and the Census quantity do not have exactly the same definition. In fact, the LFS is a continuous 

survey and the corresponding unemployment incidence refers to a quarter, while that from the Census refers 

to a specific calendar day. In addition, order and wording of items in the two questionnaires used to evaluate 
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the unemployment status differ slightly. We compare the distribution of ARE i  for LMM and YRG in 

Figure 5.6. From the empirical distribution of ARE ,i  we observe that LMM systematically provides 

smaller values than YRG. When looking at the subgroup of in-sample areas, we can compare this 

distribution with that of the direct estimator, and we conclude that LMM is in line with DIR for almost one 

half of the small areas, and then LMM provides estimates with a relatively smaller value of ARE .i  In 

conclusion, YRG estimates have a lower estimated variance, but exhibit higher estimated bias, in terms of 

the comparison with the Census and the direct estimates. This puts concern on coverage. On the other hand, 

LMM estimates are not as good as YRG estimates in terms of CV, but when looking at the bias, the overall 

behavior seems to be much more reliable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5  Distribution of the coefficients of variation for DIR, LMM, FH and YRG estimates for each quarter.  
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Figure 5.6 Empirical distribution of ARE ,i  equation (5.1), for in-sample areas (left panel) and for all areas 
(right panel).  

 
 
6  Final remarks 
 

In this paper we develop a new area level SAE method that uses a Latent Markov Model (LMM) as the 

linking model. In LMMs (Bartolucci et al., 2013), the characteristic of interest, and its evolution in time, is 

represented by a latent process that follows a Markov chain, usually of first order. Under the assumption of 

normality for the conditional distribution of the response variables given the latent variables, the model is 

estimated using an augmented data Gibbs sampler. The proposed model has been applied to quarterly data 

from the Italian LFS from 2004 to 2014. The model-based method has been found to be effective for 

developing LMAs level estimates of unemployment incidence and the reduction in the coefficient of 

variation compared to the direct estimator is quite evident. The proposed approach is also more accurate 

than the direct and the time-series model-based estimator proposed by You et al. (2003) in reproducing 

census data. An advantage of this methodology is that it also provides a clustering of the small areas in 

homogeneous groups. 

LMMs can be seen as an extension of latent class models to longitudinal data. In this regard, our approach 

represents an extension of the latent class SAE model proposed by Fabrizi et al. (2016). Moreover, LMMs 

may be seen as an extension of Markov chain models to control for measurement errors and can easily 

handle multivariate data, providing a very flexible modeling framework. The approach could be extended 

using spatial correlation information, and it could consider different distributions for the manifest variables, 

such as Poisson, Binomial, and Multinomial responses. In this scenario, we could fit unmatched sampling 

and linking models and handle departures from the normality assumption, but a Gibbs sampler cannot be 

used any longer, and Metropolis-Hastings sampling is an option. The proposed univariate model can account 

for measurement errors, but the extension to multivariate framework could be also possible, taking into 

account the conditional independence assumption. 
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In this application we have not accounted explicitly for the serial correlation induced by the rotating 

panel design. A natural way to take the different features of this design into account, such as the rotating 

group bias and the autocorrelation of the survey errors, is to use state space-model specifications, as in 

Pfeffermann (1991), Pfeffermann and Rubin-Bleuer (1993) and, more recently, Van den Brakel and Krieg 

(2015) and Boonstra and Van den Brakel (2016). In this context, it would also be interesting to extend to 

SAE the LMM with serial correlation in the measurement model proposed by Bartolucci and Farcomeni 

(2009). State space-model specifications can also be a useful tool to capture and model the strong trend and 

seasonality of this type of data. 
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Appendix A 
  

Model estimation 
 

In the following we first illustrate Bayesian estimation and model selection based on a MCMC algorithm 

which is implemented in a data augmentation framework (Tanner and Wong, 1987). 

 
A.1  Data augmentation method 
 

In order to estimate the small area parameters ,Θ  the measurement parameters obs,  and the latent 

parameters lat,  we follow a data augmentation approach. We recall that the observed data consist of the 

direct estimates ˆ ,it  the corresponding smoothed MSE ,it  and the covariate vectors ,itx  with = 1, ,i m  

and = 1, , .t T  Moreover, the data augmentation approach explicitly introduces the latent variables itU  

treated as missing data, the values of which are updated during the MCMC algorithm that is, therefore, 

based on a complete data likelihood. In this context, the use of conjugate priors to the complete data 

likelihood allows us to sample from the conditional posterior of the latent states in a straightforward way. 

Since the state space is finite, sampling the latent states conditionally given the model parameters is also 

simple. 

To generate samples from the joint posterior distribution of the model parameters and latent states, the 

proposed MCMC algorithm proceeds as follows. Let Θ̂  be the matrix of realizations of the available direct 

estimates that is defined as in (4.1), with each it  replaced by ˆ ,it  and let U  be the matrix of the latent 

variable ,itU  with elements organized as in ˆ .Θ  Then the posterior distribution of all model parameters and 

latent variables, given the observed data, has the following expression:  
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            lat obs lat lat obs obs
ˆ ˆ, , , | , .p p p p U Θ Θ U Θ U Θ Θ        

The MCMC algorithm alternates between sampling the latent variables and the parameters from the 

corresponding full conditional distribution. This scheme is repeated for R  iterations. At the end of each 

iteration ,r = 1, , ,r R  the sampled model parameters and latent variables are obtained and are denoted 

by  ,rU  
lat ,
r  

obs,
r  and  .rΘ  More precisely, each iteration consists in:  

1. drawing  rU  from       1 1 1
lat obs, , ;r r rp   U Θ   

2. drawing  
lat
r  from   lat ;rp U  

3. drawing  
obs
r  from     1

obs , ;r rp U Θ  

4. drawing  rΘ  from     obs
ˆ, , .rrp Θ U Θ  

 

In the following we illustrate in details each of the above steps. In this regard, note that our illustration 

is referred to the case where all elements of Θ̂  are available. However, in our application, some elements 

of this matrix are missing. This requires minor adjustments to the MCMC algorithm, consisting in imputing 

the missing values by a Gibbs sampler and sampling directly from its full conditional distribution. 

 
A.1.1  Simulation of  U r  
 

Each latent variable itU  is drawn separately from the corresponding full conditional distribution, which 

is of multinomial type with specific parameters. In particular, we have that  

            1 1 1 1
, 1 , 1 lat obs, , , , Multi , = 1, , , = 1, , ,r r r r r

it k iti t i tU U U t T i m   
  Θ q     (A.1) 

where  
, 1
r

i tU   disappears for = 1t  and  
, 1
r

i tU   disappears for = .t T  Moreover, the probability vector itq  is 

defined as follows: 

• for = 1,t itq  has elements proportional to  

  
 

 
1

2

1 1 , = 1, , ;r
i

r r
u u U

u k  
     

• for = 2, , 1,t T  itq  has elements proportional to  

  
 

 
 

1
, 1 , 1

1 1 , = 1, , ;r r
i t i t

r r

u U U u
u k  

 

     

• for = ,t T itq  has elements proportional to  

  
 

, 1

1 , = 1, , .r
i T

r

u U
u k



    

 
A.1.2  Simulation of  

lat
r  

 

Recalling that  lat = , ,π Π  we first draw  rπ  from the full conditional distribution:  



188 Bertarelli, Ranalli, Bartolucci, D’Alò and Solari: Small area estimation for unemployment using latent Markov models 
 

 
Statistics Canada, Catalogue No. 12-001-X 

    1Dirichlet ,r
k π U 1 n   

where  1 11 1= , , kn n n   and 1un  is the number of areas in state u  at time 1, with = 1, , .u k  Moreover, 

we draw each row of matrix Π  from the distribution  

    ,Dirichlet , = 2, , ,r
u k u t t Tπ U 1 n    

where  1, , ,= , , ku t u t u tn n n   and , uu tn  is the number of areas moving from state u  to state u  at time ,t  

with = 2, ,t T  and , = 1, , .u u k  

 
A.1.3  Simulation of  

obs
r  

 

Considering that  2 2
obs 1 1= , , , , ,k k β β  , we first draw each ,uβ = 1, , ,u k  from the full 

conditional distribution:  

      1, 1,, , ,r r
u p u uNβ U Θ η Σ   

where  

 

 

 

1
1, 1,
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2 1
1, 1,
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m T
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η Λ x

Σ Λ

Λ x x Λ

  

with  I   denoting the indicator function equal to 1 if its argument is true and to 0 otherwise. Then, we 

draw each 2
u  from  

      2
1, 1,, IG , ,r r

u u ua b U Θ    

with  

 

 

.
1, 0

2
1, 0 0 0 0 1, 1, 1,

=1 =1

= ,
2

1
= = ,

2

u
u

m T

u it u u uit
i t

n
a a

b b I U u



     
 
 η Λ η η Λ η

  

where .
=1

=
T

u tu
t

n n  is the number of areas in state u  regardless of the specific time occasion.  

 
A.1.4  Simulation of  Θ r  
 

The goal of SAE is to predict each ,it = 1, , ,i m = 1, , ,t T  based on the model and the observed 

data. This amounts to draw these elements from  

        
obs

ˆ ˆ, , ( , ),r r rr
it it itit itN    U    

where  
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         ˆ ˆ= 1 ,r r r r
it it uit it it     x β  (A.2) 

with       2 2= .r r r
u u itit     

 
A.2  Model selection: The Chib estimator 
 

The method proposed in Chib (1995) can be applied to perform model selection starting from the Gibbs 

sampler output. It is known that the posterior density can be written as the ratio of the product of the 

likelihood function and the priors divided by the marginal likelihood:  

            
 

lat lat obs obs

lat obs

ˆ,
ˆ, , , = .

ˆ

p p p
p

p

 U Θ U Θ Θ
U Θ Θ

Θ

   
   (A.3) 

Therefore, it is possible to write the marginal likelihood of the data Θ̂  as 

            

 
lat lat obs obs

lat obs

ˆ ,
ˆ = ,

ˆ, , ,

p p p
p

p

 Θ Θ U Θ U
Θ

U Θ Θ

   

 
 (A.4) 

for any ,U lat, obs, Θ  and ˆ .Θ  We drop the dependence on k  for ease of notation. This is the model 

selection criterion used in Section 5. Then, choosing specific values of the latent variables and model 

parameters, denoted by ,U lat, obs,  and ,Θ  we can estimate  ˆlog p Θ  through the following 

decomposition:  

 
         

   
lat lat obs

obs lat obs

ˆ ˆlog = log log log log

ˆlog , log , , , .

p p p

p p

   

 

Θ Θ Θ U

Θ U U Θ Θ

  

  
 

(A.5)
 

The use of the log transformation is motivated by numerical stability (Chib, 1995). 

The first five terms at the right hand side of (A.5) can be computed directly from the assumed 

distributions of the parameters and the data. On the other hand obtaining the last component is more 

challanging. By the law of total probability,  lat obs
ˆ, , ,p U Θ Θ   may be decomposed as  

          lat obs lat obs lat obs obs
ˆ ˆ ˆ ˆ ˆ, , , = , , , , , , .p p p p pU Θ Θ U Θ Θ Θ Θ Θ Θ Θ Θ        (A.6) 

Following Chib (1995), we compute the first term of (A.6) following the Gibbs scheme outlined in 

Section A.1, whereas, the other three terms are estimated from the Gibbs output. In particular, we estimate  

      lat obs lat obs obs
ˆ ˆ ˆ, , = , , , , ,p p p dΘ Θ U Θ Θ U Θ Θ U       

as   1
lat obs

=1
, , ,

R
r

r
R p  U Θ   based on R  draws from a reduced Gibbs sampling where U  is not 

updated. In order to estimate  

      obs obs lat lat lat
ˆ ˆ ˆ, = , , , , , ,p p p d dΘ Θ U Θ Θ U Θ Θ U       
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we use     ,1,11
obs lat=1

, , .
R rr
r

R p  U Θ   Finally, to estimate  

      lat obs lat obs lat obs
ˆ ˆ ˆ= , , , , , ,p p p d d dΘ Θ Θ U Θ U Θ U        

we use       , 2 , 2, 21
lat obs=1

, , ,
R r rr
r

R p  Θ U    with R  draws from a third reduced Gibbs sampling. 
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