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Abstract

Collective decision-making is a process that allows a group of au-
tonomous agents to make a decision in a way that once the decision is
made it cannot be attributed to any agent in the group. In the swarm
robotics literature, collective decision-making mechanisms have generally
been designed using behaviour-based control structures. That is, the in-
dividual decision-making mechanisms are integrated into modular control
systems, in which each module concerns a specific behavioural response
required by the robots to respond to physical and social stimuli. Recently,
an alternative solution has been proposed which is based on the use of dy-
namical neural networks as individual decision-making mechanisms. This
alternative solution proved effective in a perceptual discrimination task
under various operating conditions and for swarms that differ in size. In
this paper, we further investigate the characteristics of this neural model
for opinion selection using three different tests. The first test examines the
ability of the neural model to underpin consensus among the swarm mem-
bers in an environment where all available options have the same quality
and cost (i.e., a symmetrical environment). The second test evaluates the
neural model with respect to a type of environmental variability related
to the spatial distribution of the options. The third test examines the
extent to which the neural model is tolerant to the failure of individual
components. The results of our simulations show that the neural model
allows the swarm to reach consensus in a symmetrical environment, and
that it makes the swarm relatively resilient to major sensor failure. We
also show that the swarm performance drops in accuracy in those cases
in which the perceptual cues are patchily distributed.
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1 Introduction

Swarm robotics is a particular type of multi-robot system in which each robot
has its own controller, perception is local, and communication is based on spa-
tial proximity [10]. Among the most studied mechanisms in swarm robotics,
there are those that allow the swarm to make a decision collectively. Collective
decision making refers to a situation in which robots collectively make a choice
among two or more alternative options in a way that, when the decision is made,
it is no longer attributable to any single individual robot [28]. According to [8],
collective decision-making is considered one of the key behaviours in swarm
robotics and can be classified into: task allocation and consensus achievement.
Task allocation refers to a process by which the group’s performance is increased
by splitting the swarm members into multiple subgroups, each of which is ded-
icated to solving a particular task. Consensus achievement refers to a process
which allows all the swarm members to share the same opinion with respect to
alternative options. When the number of available options is finite, the consen-
sus problem, referred to as the “best-of-n” problem [28], requires the swarm to
reach a consensus on the best among the available option, when options differ
in qualities, or on any option, when options have equal quality or the same
utility for the swarm members [19]. In other words, when confronted with the
“best-of-n” type of problems, the swarm must avoid separating into two or more
distinct subgroups in which robots of a group share an opinion different from
the robots of another group.

In the swarm robotics literature, the mechanisms underpinning collective
decision-making have been generally designed using behaviour-based type of
control structures. That is, the individual decision-making mechanisms are
integrated into modular control systems, in which each module takes care of
developing a specific behavioural response required by the robots to respond to
physical and social stimuli. Control structures developed with these principles
have been demonstrated to be effective in supporting the collective decision-
making process in a variety of scenarios [27, 26, 23]. However, the capability of
these swarms to adapt to different sources of variability tend to be limited to
those circumstances that have been clearly predicted by the designer, leaving
the robots potentially unprepared to overcome unexpected and unpredictable
events that may occur in any complex natural settings. As stated in [17], further
research is needed to design opinion selection mechanisms that fit the needs of
swarm robotics systems to allow them to mimic natural swarms in terms of
robustness, scalability, and flexibility.

In [1], the authors proposed an alternative approach to the classic hand-
designed controller, based on the use of artificial neural networks synthesised
using evolutionary computation techniques as individual opinion selection mech-
anisms [25]. They have tested this design method on a type of best-of-n problem
originally described in [26]. This problem is characterised by two or more options
whose quality concerns the relative proportions with which they are distributed
in the environment. The swarm’s task is to reach a consensus on which option
is the most represented in the environment. Given that every single robot can
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only explore a small portion of the environment, only the swarm, by relying on
collective intelligence, can correctly evaluate the options’ quality and eventu-
ally choose the best one. By investigating the behaviour of a swarm engaged
in this collective perceptual discrimination task, they have shown that artificial
neural networks synthesised using evolutionary computation techniques can be
an effective design method to allow the robots to reach a consensus on the best
available options in the environment.

With extensive comparative experimental work, the authors in [2] have
shown that the neural network based opinion selection mechanisms (also re-
ferred to, in this paper, as the neural model) is more effective than the classic
hand-designed Voter model (see [26]) in a set of environmental conditions gen-
erated by varying the level of difficulty of the perceptual discrimination task,
by varying the maximum distance for robot-robot communication, and also by
dynamically varying the option quality when the swarm has already reached a
consensus. The study also showed that the performances of a swarm controlled
by the neural model are less touched by variations in the swarm size than those
of a swarm controlled by the hand-coded Voter model. The neural model is
more effective than alternative hand-designed solutions because it allows each
robot to integrate physical and social evidence in a more adaptive and effective
way than classic hand-designed approaches in which these different sources of
information are treated following some designer “imposed” principles (see [2]).

In this paper, we further explore the characteristics of the neural model
with respect to its effectiveness in underpinning opinion selection in a swarm
of robots engaged in the above mentioned collective perceptual discrimination
task. In particular, we describe the results of three different evaluation tests on
the best evolved neural model, designed as illustrated in the previous research
work (see [2, 1], for details). The first test is related to the ability of the swarm
to reach a consensus in a perfectly symmetrical environment where options have
the same quality [28]. The capability to break environmental symmetries is an
important feature of opinion selection mechanisms because it allows the swarm
to keep on operating as a coherent unit and to overcome the individual limita-
tions with the group responses even when feedback modulation based decision
processes are not triggered by environmental structures [3, 4]. This is the rea-
son why the symmetry-breaking process has been studied in a different types
of best-of-n scenarios, such as the prey-hunting scenario [29], the double-bridge
scenario [16], and the aggregation scenario [9, 15, 12, 24, 14, 13]. The second
test evaluates the neural model with respect to a type of environmental vari-
ability related to the spatial distribution of the options. In particular, we use
the benchmarks proposed in [5] to evaluate the neural model in eight different
environments in which the options are more patchily distributed than the en-
vironment experienced by the swarm during the control system design phase.
These different spatial distributions of the perceptual cues have also been used
in [6] to test the robustness of decision making mechanisms for a swarm of robots
controlled by a statistically grounded algorithm against spatial correlations in
an unknown environment. The third set of tests examines the extent to which
the neural model is tolerant to the failure of individual components. In par-
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Figure 1: (a) The simulated arena with the robots engaged on the perceptual
discrimination task. (b) The dynamic neural network that underpins the opinion
selection in each simulated robot.

ticular, we investigate the robustness of the neural model against failure of the
floor sensor in a progressively higher number of robots within the swarm. The
floor sensor is of fundamental importance in this task since it allows the robots
to evaluate the quality of available options individually.

The results of these tests contribute to generating a more informative es-
timation of the effectiveness of the neural model within the swarm robotics
community. Although our tests are limited to the collective perceptual dis-
crimination task, we show that swarms in which robots are controlled by the
neural model can converge to consensus in spite of environmental symmetries.
Moreover, they can keep on operating effectively even when more than 40%
of the robots suffer from a major sensor failure. As in other opinion selec-
tion models, we show that a swarm controlled by the neural model undergoes
a significant performance drop in most environments in which the perceptual
cues are patchily distributed. The significance of these findings will be further
elaborated in the Section 4.

2 Methods

This study is run in a simulation environment which models the wheeled mobile
robot e-puck2, a robotic platform commonly used in swarm robotics experi-
ments [22]. The robot sensory apparatus used in this experiment includes eight
infra-red sensors to measure the proximity of obstacles, a floor sensor to perceive
the colour of the floor in binary format (i.e., the sensor reads 0 if the robot is
on a black tile and 1 if on a white tile), and the range&bearing board for local
communication. In particular, each robot emits a binary signal which refers to

4



its opinion about which colour covers the majority of the arena floor (i.e., 1 for
white and 0 for black). The maximum robot-robot communication distance is
set to 50 cm. This communication system can be reliably implemented on the
physical e-puck2 robot with the range&bearing board. The robot movements
are computed with a differential drive kinematic model [11]. To compensate for
the simulation-reality gap, 10% uniform noise is added to all sensor readings,
the motor outputs and the position of the robot.

The simulation environment is characterised by a close arena of 2x2 m with
the floor covered with black and white tiles, 10x10 cm each, distributed randomly
on the floor (see Figure 1a). 20 robots are randomly initialised within the
arena. During the evaluation, they move randomly, while avoiding obstacles
(i.e., the arena walls and other robots) for 400 s, corresponding to the length of
an evaluation trial. As in [26], the task of the 20 robots swarm is to reach a
consensus (i.e., all robots sharing the same opinion) about which colour (black
or white) covers the largest portion of the arena floor. At each simulation
update cycle, the robots sample the arena floor underneath their body and
listen to the closest neighbour’s opinion. After that, they disseminate their
current opinion and update their positions. Given the robots’ pseudo-random
walk and the random distribution of black and white tiles on the arena floor, we
estimated, by simulating multiple times the task, that each robot explores, on
average, only about 18% of the arena floor during each evaluation period. Thus,
a consensus has to be reached by exploiting collective intelligence through local
communication for opinion exchanges.

A hand-coded algorithm makes the robots moving within the arena accord-
ing to an isotropic random walk, with a fixed step length (5 s., at 20 cm/s), and
turning angles chosen from a wrapped Cauchy probability distribution charac-
terised by the following PDF:

f(θ, µ, ρ) =
1

2π

1 − ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, 0 < ρ < 1, (1)

where µ = 0 is the average value of the distribution, and ρ determines the
distribution skewness (see [20]). For ρ = 0, the distribution becomes uniform
and provides no correlation between consecutive movements, while for ρ = 1,
a Dirac distribution is obtained, corresponding to straight-line motion. In this
study ρ = 0.5. While moving around, the robots continuously perform an obsta-
cle avoidance behaviour. To perform obstacle avoidance, first a robot detects an
obstacle with its infra-red sensors, then stops and keeps on changing its head-
ings of a randomly chosen angle uniformly drawn in [0, π] until no obstacles are
perceived from the front four sensors.

The process underpinning the development of the individual opinion is regu-
lated by a continuous time recurrent neural network (CTRNN) [7], synthesised
using evolutionary computation techniques. The neural network has a multi-
layer topology, as shown in Figure 1b: neurons NI,1 and NI,2 take input from
the robot’s floor sensor and the eventual communication signal (1 for white-
dominant, 0 for black-dominant, and 0.5 whenever there is no other robots at
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less than 50 cm from the receiver), neuron NO,1 is used to set the robot opinion,
and neurons NH,1 and NH,2 form a fully recurrent continuous time hidden layer.
The input neurons are simple relay units, while the output neuron is governed
by the following equations:

o = σ(O + βO), (2)

O =

2∑
i=1

WO
i σ(Hi + βH

i ), (3)

σ(z) = (1 + e−z)−1, (4)

where, using terms derived from an analogy with real neurons, O and Hi are
the cell potentials of respectively output neuron and hidden neuron i, βO and
βH are bias terms, WO

i is the strength of the synaptic connection from hidden
neuron i to output neuron, and σ (Hi + βi) are the firing rates. The hidden
units are governed by the following equation:

τjḢj = −Hj +

2∑
i=1

WH
ij σ(Hi + βH

i ) +

2∑
i=1

W I
ijIi, (5)

where τj is the decay constant, WH
ij is the strength of the synaptic connection

from hidden neuron i to hidden neuron j, W I
ij is the strength of the connection

from input neuron i to hidden neuron j, and Ii is the intensity of the sensory
perturbation on neuron i. Cell potentials are set to 0 each time a network is ini-
tialised or reset. State equations are integrated using the forward Euler method
with an integration step-size of 0.1 seconds. Neuron NO,1 is used to set the
robot opinion, which corresponds to 1 (i.e., white-dominant) when the neuron
firing rate is above the threshold 0.5, and 0 (i.e., black-dominant) otherwise.

The network parameters, that is, the weights of the connections between
neurons, the bias terms, and the decay constants, are genetically encoded pa-
rameters, set using simple tournament-based selection evolutionary algorithms
as illustrated as illustrated in [2, 1]. The swarm is homogeneous; that is, the
neural network in charge of the individual opinion selection process is cloned in
each of the 20 robots of the swarm.

3 Results

In this section, we illustrate the performances of a swarm of simulated robots
engaged in three different tests related to the robustness of collective decision
making strategies in a collective perceptual discrimination task. In all these
tests, the robots’ individual decisions are underpinned by neural network-based
mechanisms synthesised using evolutionary computation techniques as described
in Section 2.

In all tests, the swarm is evaluated in condition A (the hard scenario), in
which the most represented colour covers 55% of the floor, and in condition B
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(the simple scenario), in which the most represented colour covers 66% of the
arena floor. In test I, the swarm is also evaluated in condition S (the symmetry
case), in which each colour covers exactly 50% the arena floor.

Since the operational principles underpinning the individual opinion selec-
tion process are not functionally symmetric with respect to the dominant colour,
in each test conditions, the swarm undergoes 50 trials in a black-dominant and
50 trials in a white-dominant environment. A trial starts with the 20 robots
randomly positioned in the arena and terminates after 400 seconds. During
this time, each robot performs a random walk while avoiding obstacles, and it
interacts with the other robots using communication signals, as illustrated in
Section 2.

To evaluate the group performance, we employ two metrics. The first metric
is the accuracy of the decision, which corresponds to the proportion of trials
(over 50, for each type of environment) in which the swarm reached consensus
on the opinion corresponding to the currently most represented colour on the
arena floor. In test I, for condition S (the symmetry case), accuracy refers to
the proportion of trials (over 50, for each type of environment) in which the
swarm reached consensus on any opinion. Consensus refers to the circumstance
in which all robots share the same opinion for at least 10 s within a trial. The
second metric is the time, within a trial, required to the swarm to converge to
a consensus state. This metric is calculated on the successful trials only.

3.1 Test I: the symmetry-breaking test

The first test is related to the ability of the swarm to reach a consensus in a per-
fectly symmetrical environment. As we mentioned above, symmetry-breaking
indicates the ability of the swarm to converge on a single shared opinion (in-
stead of multiple opinions) even in those cases in which the alternative options
offered by the environment have equal quality [28]. In our collective perceptual
discrimination task, the symmetry case corresponds to environments in which
the floor is covered by the same proportion of black and white tiles. The results
of the symmetry-breaking tests are illustrated in Figure 2, which depicts the
accuracy of the decision (see Figure 2a) and the distribution of times required
for the swarm to reach a consensus (see Figure 2b) in condition S (i.e., the
symmetrical environment). The graphs in Figure 2 also show the performances
of the swarm in condition A and B, as terms of comparison. In Figure 2a,
for condition S, the black and the white bars refer to the proportion of trials
(over 50 trials) in which the swarm reaches a consensus on the black and on
the white opinion, respectively. In Figure 2b, for condition S, the black and
white boxes refer to the distribution of times to convergence to consensus to
the black opinion and to the white opinion, respectively. For condition A and
B, the black bars/boxes refer to performances (i.e., accuracy in Figure 2a, and
time to convergence in Figure 2b) in black-dominant environments, while the
white bars/boxes to performances in white-dominant environments. These re-
sults show that, in condition S, the swarm always reaches a consensus (i.e., the
black plus the white bar in Figure 2a, condition S, add to accuracy 1). We also
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Figure 2: The symmetry breaking test. In (a), the bars refers to the accuracy of
the collective decision, while in (b) the boxes refers to the distribution of times
to convergence to consensus. In both graphs, the label S refers to evaluation
trials in condition S, that is in symmetrical environments with 50% of black
and 50% of white tiles; the A labels refers to evaluation trials in condition A,
while the B label refers to trials in condition B. In (a), for condition S, the
black and the white bars refer to the proportion of trials (over 50) in which the
swarm reach a consensus on the black and on the white opinion, respectively.
In (b), for condition S, the black and white boxes refer to the distribution of
times to convergence to consensus to the black opinion and to the white opinion,
respectively. For condition A and B, the black bars/boxes refer to performances
(i.e., accuracy in graph a, and time to convergence in graph b) over 50 trials in
black-dominant environments, while the white bars/boxes to performances over
50 trials in white-dominant environments.

note that, due to the stochastic nature of the decision process, the frequency
of convergence to opinion black is only marginally higher than the frequency of
opinion white. The accuracy in perfectly symmetrical environments is higher
than the accuracy in condition A, where the swarm’s performance attains about
90% accuracy in both the black-dominant and the white-dominant environment
(see Figure 2a, condition A, black and white bars). As already discussed in [2],
for progressively simpler perceptual discrimination tasks, the swarm’s perfor-
mance tends to the 100% accuracy (see Figure 2a, condition B, black and white
bars). For what concerns the distribution of times to convergence, symmetrical
environments are those that require longer time to the swarm to reach a con-
sensus (see Figure 2b, condition S). This finding is in line with previous similar
research studies in collective decision making illustrated in [18, 19, 21]. The
results of our symmetry-breaking test also show that the swarm requires longer
time to reach consensus in the white-dominant than in the black-dominant en-
vironment (see Figure 2b, white boxes). As explained in [2], this is due to a
genetic bias, by which each robot starts an evaluation trial with opinion white.
Paradoxically, this bias delays the convergence to consensus to white. This is
due to the fact that the swarm has to go through a series of global states in
which the initial genetically-induced consensus to white is progressively lost, and
subsequently recovered through a genuine collective decision process triggered
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Figure 3: Tiles distribution test. (a) The nine floor patterns. In the first
patterns on the left, black and white tiles are randomly distributed. In all other
patterns, the tiles are distributed as illustrated in [5]. Graphs in (b) and (d)
show the accuracy of the collective decision for each pattern in condition A
and in condition B, respectively. Graphs in (c) and (e) show the distribution
of times to convergence to consensus for each pattern in condition A and in
condition B, respectively. In (b), (c), (d), and (e) the black bars/boxes refers
to the performances in black-dominant environment, while the white bar/boxes
refers to the performances in white-dominant environment.

by the interactions between the robots (see [2], for details). In summary, the
symmetry-breaking test tells us that the neural network based decision making
mechanisms are extremely effective in underpinning consensus among the mem-
bers of the swarm also in a perfectly symmetrical environments. However, the
symmetry case requires longer times to the swarm to reach consensus than the
non-symmetrical cases. The distribution of times to consensus become progres-
sively shorter in progressively simpler perceptual discrimination tasks (i.e., those
in which the proportion of floor taken by the dominant colour is progressively
larger).

3.2 Test II: the tiles distribution test

The second test is related to the effectiveness of the swarm to reach consensus in
environments in which the perceptual evidence related to the different options
is not randomly distributed. Black and white tiles are arranged in order to
form specific patterns which may influence the capability of the swarm to reach
consensus given the fact that each robot can only explore a limited portion of
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the arena floor. The patters we used for this test are those originally illustrated
in [5] and shown in Figure 3a.

We remind the reader that pattern 1 (Random) is the one used during the
design phase of the neural model. The graphs in Figure 3b, and 3d, show
the accuracy of the collective decision for each pattern in condition A and in
condition B, respectively. In condition A (see Figure 3b), it turns out that
the characteristics of each pattern have a substantial effect on the accuracy
of the swarm’s collection decision. In general, the swarm performance tend
to degrade when the perceptual evidence is spatially arranged in distinctive
clusters or patches (see patterns 2, 3, 4, 5, 7, 8 in Figure 3b). The less patchy
the distribution of perceptual evidence, the higher the swarm accuracy. This
can be accounted for by considering that patchy environments facilitate the
emergence of an alignment of opinion among spatially proximal robots randomly
wandering within specific clusters. The local alignment on different opinions,
supported by the predominant local perceptual evidence hinders the swarm to
reach the consensus state. In condition B (see Figure 3d), where the dominant
colour covers 66% of the arena floor, the influence of the patchy distribution of
the perceptual evidence has smaller impact on the swarm accuracy except for
pattern 7 and 8 where a clear performance drop is observed. Moreover, for both
conditions, there is a substantial similarity between the swarm performances in
the black-dominant and in the white-dominant environment except for pattern
4 in condition A, where the swarm does better in the white-dominant than
in the black-dominant environment. Regarding the distribution of times to
reach consensus (see Figure 3c, and 3e) it is worth noticing that any pattern
requires longer time to the swarm to reach consensus than the times recorded
for patterns 1. This phenomenon is more evident in condition A (see Figure 3c)
than in condition B (see Figure 3e).

3.3 Test III: robots’ floor sensor readings failure

The third test focuses the robustness of the collective decision-making process
under conditions in which a progressively higher number of robots within the
swarm suffers from failures of the floor sensor, which instead of correctly reading
the colour of the floor, it returns randomly generated binary values. The graphs
in Figure 4 show the swarm performances (i.e., accuracy of the group decision,
see Figure 4a, and 4c, and time to convergence to consensus, see Figure 4b,
and 4d) for different numbers of robots (from 0 to 10) suffering from failures
of the floor sensor. Figure 4a, and 4b refer to condition A, while Figure 4c,
and 4d refer to condition B. We recall the reader that the swarm size is 20.
The results of these tests unequivocally indicate that the collective decision-
making progress is relatively robust to this type of disruption. In condition B,
the swarm attains 100% accuracy in both types of environment even when 50%
of the swarm suffers from failure of the floor sensor (see Figure 4c). In condition
A, only when more than 35% of the swarm suffers from floor sensor failure (see
Figure 4a, for 7 robots), the accuracy starts to progressively drop only for the
white-dominant environment. For the black-dominant environment, the swarm
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Figure 4: Floor sensor readings failure test. Graphs in (a) and (c) show the ac-
curacy of the collective decision for each pattern in condition A and in condition
B, respectively. Graphs in (b) and (d) show the distribution of times to conver-
gence to consensus for each pattern in condition A and in condition B, respec-
tively. In all graphs, black bars/boxes refers to performances in black-dominant
environments, while white bars/boxes to performances in white-dominant en-
vironments; the labels on the x-axes indicate the number of robots affected by
the floor sensor failure.

accuracy tend to remain above 80% even with 10 robots suffering from the floor
sensor failure (see Figure 4a. Regarding time to convergence to consensus, the
results of the test clearly indicate that the higher the number of robots with
floor sensor failure the longer the time to reach consensus in white-dominant
environments. This trend is observed both in condition A and in condition B
(see Figure 4b, and 4c).

4 Conclusion

In this paper, we further investigated the characteristics of the neural model
described in [1, 2] with respect to its effectiveness in underpinning consensus
in a swarm of robots engaged in a collective perceptual discrimination task. In
particular, we run three tests. The first test focused on the swarm’s ability to
establish a consensus in a symmetrical environment where all alternatives are
of equal quality. The findings of this test indicate that the decision-making
processes based on neural networks are exceptionally successful at supporting
consensus among the swarm members, even in situations with perfect sym-
metry. As expected, it takes longer for the swarm to reach consensus in the
symmetrical than in the non-symmetrical environments. The third set of tests
examined the extent to which the neural model is tolerant to the failure of
individual components. More precisely, we investigated the neural model’s ro-
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bustness against floor sensor’s failure in a progressively higher number of robots
within the swarm. The results of this test unequivocally indicated that the col-
lective decision-making process is relatively robust to this type of disruption.
In condition B, the swarm attains 100% accuracy even when 50% of the swarm
suffers from a failure of the floor sensor. In the condition A, where the dominant
colour covers 55% of the arena floor, the accuracy remains over 80% even when
more than 35% of the swarm suffered from a floor sensor failure.

The second test evaluated the neural model with respect to a type of en-
vironmental variability related to the spatial distribution of the options. We
employed the benchmarks proposed in [5] to evaluate the neural model in eight
different environments in which the options are more patchily distributed than
the environment experienced by the swarm during the design phase. This test
showed that the swarm’s performance tends to degrade when the perceptual
evidence is spatially arranged in distinctive clusters or patches. The less patchy
the distribution of perceptual evidence, the higher the swarm accuracy. This can
be accounted for by considering that patchy patterns facilitate the emergence of
an alignment of opinion among spatially proximal robots randomly wandering
within specific clusters. The local alignment on different opinions, supported
by the predominant local perceptual evidence, hinders the swarm from reach-
ing a consensus state. In the condition B, where the dominant colour covers
66% of the arena floor, the influence of the patchy distribution of the percep-
tual evidence has a smaller impact on the swarm’s accuracy in most studied
patterns. There are several elements on which we plan to act in the future, to
try to overcome this limitation. One idea is to develop exploration strategies
that adapt to the characteristics of the environment. For example, instead of
moving with the same pseudo-random walk as in this study, the robots could
adaptively mix Lévy flight type of random walk with Brownian motion to sam-
ple more distant portion of the environment. Alternatively, we are planning to
integrate into the neural model the mechanisms underpinning the robots move-
ments. This would allow us to exploit the adaptivity of the neural model also
with respect to the exploration strategies. More effective swarm decision strate-
gies in patchy environments can also come from an increased flexibility of the
individual mechanisms in charge of mixing perceptual cues and social evidence.

References

[1] A. Almansoori, M. Alkilabi, J-N. Colin, and E. Tuci. On the evo-
lution of mechanisms for collective decision making in a swarm of
robots. In Proc. of the XV International Workshop on Artificial Life and
Evolutionary Computation, Communications in Computer and Informa-
tion Science (CCIS). Springer Verlag, 2021. In Press. Preprints avail-
able at: https://drive.google.com/file/d/168s-I8d4f8x26TnyxwYeLuFSp-
azy8wx/view?usp=sharing.

[2] Ahmed Almansoori, Muhanad Alkilabi, and Elio Tuci. A comparative study

12



on decision making mechanisms in a simulated swarm of robots. In 2022
IEEE Congress on Evolutionary Computation (CEC), pages 1–8. IEEE,
2022.
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