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Abstract—In this study, a new Anomaly Detection (AD) ap-
proach for real-world images is proposed. This method leverages
the theoretical strengths of unsupervised learning and the data
availability of both normal and abnormal classes. The AD is often
formulated as an unsupervised task motivated by the frequent
imbalanced nature of the datasets, as well as the challenge of
capturing the entirety of the abnormal class. Such methods only
rely on normal images during training, which are devoted to be
reconstructed through an autoencoder architecture for instance.
However, the information contained in the abnormal data is also
valuable for this reconstruction. Indeed, the model would be able
to identify its weaknesses by better learning how to transform an
abnormal (or normal) image into a normal (or abnormal) image.
Each of these tasks could help the entire model to learn with
higher precision than a single normal to normal reconstruction.
To address this challenge, the proposed method utilizes Cycle-
Generative Adversarial Networks (Cycle-GANs) for abnormal-to-
normal translation. To the best of our knowledge, this is the first
time that Cycle-GANs have been studied for this purpose. After
an input image has been reconstructed by the normal generator,
an anomaly score describes the differences between the input and
reconstructed images. Based on a threshold set with a business
quality constraint, the input image is then flagged as normal or
not. The proposed method is evaluated on industrial and medical
images, including cases with balanced datasets and others with
as few as 30 abnormal images. The results demonstrate accurate
performance and good generalization for all kinds of anomalies,
specifically for texture-shaped images where the method reaches
an average accuracy of 97.2% (85.4% with an additional zero
false negative constraint).

Index Terms—Cycle-GANs, Industry 4.0, Industrial Images,
Medical Images, Anomaly Detection, Zero False Negative

I. INTRODUCTION

This work proposes a new approach with a Generative
Adversarial Networks (GAN) architecture for the task of
Anomaly Detection (AD), which aims to combine the advan-
tages of both unsupervised learning and the data availability
of the normal and abnormal classes. Indeed, AD is often
formulated as an unsupervised task due to the frequent high
imbalance between normal and abnormal data, and the need
for generalization across a wide range of anomalies. Therefore,
in an autoencoder architecture for instance, the AD method
is trained by reconstructing normal data only. Nevertheless,

* The first two authors contributed equally.

valuable information is missing during the training step. Only
the normal class is taken into account, and the reconstruction
from the abnormal to the normal class is not included in
this learning process. Yet, this is precisely the task we are
expecting from an AD method during the inference step. The
proposed method seeks to overcome this limitation by learning
how to transform an abnormal image into a normal image
by exploiting samples from both classes. The objective is
to generate a reconstructed image where any abnormal pixel
is replaced by a normal one in a visually-coherent manner.
During the training step, the “normal generator” is constrained
by another “abnormal generator” in an adversarial frame-
work, using Cycle-Generative Adversarial Networks (Cycle-
GANs) [1]. Also, reconstructing the abnormal data during
the learning step yields to a better normal generator than
the classical methods using only the normal class. Even if
the abnormal datasets can be small (as it is usually the case
in the AD context), the normal generator performs better,
because its performance is also constrained by the abnormal
generator, resulting in a good reconstruction. We still consider
this as an unsupervised learning task because the abnormal
data used during training is not necessarily representative of
all anomalies that could occur. Abnormal data are just given to
help during the training phase by giving more feedback to the
generators. Therefore, the generalization is guaranteed as it is
the case in a classical GAN context, except that the normal
reconstruction is much less noisy.

Cycle-GAN is a well-known architecture proposed a few
years ago. It constitutes an elegant way to learn conditional
mappings from two different domains X and Y (for image-to-
image translation) by applying a cycle-consistent constraint
on the transformations. The popularity of cycle-GANs lies
in the fact that they only need a dataset of unpaired images
to learn the mappings. In other words, they do not need the
one-to-one correspondence between data from X and Y , but
only two independent sets of data {xi ∈ X} and {yi ∈ Y}.
As an example, one can consider two unpaired datasets {xi}
and {yi} made of unrelated aerial images and Google maps,
respectively. A cycle-GAN can be trained to learn meaningful
mappings from X to Y and Y to X . Fig. 1 presents an example
generated with this cycle-GAN.
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Fig. 1: Example generated from a cycle-GAN (see Section V
for training details) that learns mappings between aerial photos
X and Google maps Y (dataset from [2]). The initial image
x ∈ X can be mapped to ỹ ∈ Y thanks to a first generator G.
The second one F can then go back from ỹ ∈ Y to x̃ ∈ X .
A cycle-consistent constraint enforces x̃ to be close to x.

Many works have shown that cycle-GANs can be used
in diverse image analysis tasks. Nonetheless, cycle-GANs
remain seldom used in practice to solve problems in the
industrial and medical areas. It is for example the case of
AD where, to the best of our knowledge, no prior work
directly exploits cycle-GANs. Compared to the state-of-the-art
for AD in images, cycle-GANs seem to be more suitable than
concurrent methods that rely on simple GANs. Furthermore,
we show that the formalism of a cycle-GANs makes them
really efficient and well-suited for AD. Moreover, the use
of an identity loss allows the reconstruction of the normal-
to-normal (and abnormal-to-abnormal) generator to be much
less noisy than traditional GANs, making it possible to better
discriminate normal and abnormal images. To illustrate this,
we focus our experiments on several industrial and medical
problems of AD. This is motivated by (i) the abundance of
AD problems in these domains, and (ii) the positive societal
impact of developing efficient AD algorithms for them. From
our results, it clearly appears that cycle-GANs can be very
efficient for specific types of images.

The main contributions of our work are as follow:
• Utilize abnormal data in the learning process to reinforce

the normal generator, by reconstructing from both classes.
• Consider a cycle-GAN architecture, broadly used for

image generation, as a powerful approach for AD.
• Apply an identity loss that allows a better discrimination

between normal and abnormal images.
• Characterize and discuss the performances of the method

for diverse industrial and medical AD problems.
• Give insights on the reasons why cycle-GANs fit well to

the problem of AD for specific natures of images, and
consider further investigations on the use of cycle-GANs
in the industrial and medical domains.

First, we present the theoretical prerequisites to understand
cycle-GANs in Section II. After that, Section III presents the
previous works, and highlights that most of them only use
simple GAN architectures by training with only normal data.
The proposed AD method with cycle-GANs is described in
Section IV. Section V then introduces the considered datasets,
the experimental setup as well as the results. A discussion and

some limitations with the use of cycle-GANs are presented in
Section VI before concluding with Section VII.

II. BACKGROUND ON CYCLE-GANS

This section introduces the formalism for cycle-GANs. The
building blocks and the loss functions are described.

A. Building Blocks

Cycle-Generative Adversarial Networks (Cycle-GANs)
learn image-to-image mappings from an unpaired dataset
constituted of two types of images from domains X and
Y . Cycle-GANs are obtained by tying together two distinct
conditional GANs with a cycle-consistent constraint. The first
GAN is made of a generator

G : X ∪ Y −→ Y : G (z) = ỹ, (1)

and a discriminator DY , and the other is made of a generator

F : X ∪ Y −→ X : F (z) = x̃, (2)

and a discriminator DX . For convenience, let’s already con-
sider an AD task where X are abnormal images, while Y are
normal ones. On the one hand, the aim of G is to generate
from x ∈ X ∪Y an image such that DY cannot distinguish it
from real normal images in Y . On the other hand, F aims to
generate images such that DX is fooled and cannot distinguish
it from real abnormal images in X . To achieve this, cycle-
GANs are trained by optimizing a combination of different
losses that are described in the next section.

B. Objective Function

A cycle-GAN requires to train two GANs, and to tie them
together with a cycle-consistent constraint. The loss can be
broken down into three parts such that

G∗, F ∗ = argmin
F,G

max
DX ,DY

Ladv + λcycLcyc + λideLide, (3)

where λcyc and λide are meta-parameters that constraint the
different parts of the loss.

The first part is made of two classical adversarial losses [3]

Ladv = LGAN (G,DY ) + LGAN (F,DX) , (4)

where,

LGAN (G,D) = Ey [log (D (y))]

+ Ex [log (1−D (G (x)))] . (5)

On the one side, by enforcing G (resp. F ) to minimize Ladv,
the generator will try to generate images that look similar to
images from Y (resp. X ). On the other side, by enforcing
DY (resp. DX ) to maximize Ladv, the discriminator will try
to distinguish between images coming from the generator G
(resp. F ) and real images in Y (resp. X ).

The second part is motivated by the fact that the recon-
structed images F (G (x)) and G (F (y)) should be close to
x and y, respectively (i.e., the pair of GANs should be cycle-
consistent). This is achieved by the cycle-consistent loss

Lcyc = Ex [‖F (G (x))− x‖1] + Ey [‖G (F (y))− y‖1] , (6)



where L1 norm is used like in the original work on cycle-
GANs [1].

In addition to the Ladv and Lcyc, an identity loss is added
to constrain the generators to leave the images unmodified if
they are already in the desired output domain, defined as

Lide = Ex [‖F (x)− x‖1] + Ey [‖G (y)− y‖1] , (7)

so as to enforce F (x) = x and G (y) = y. In other words,
F should not add anomalies if the input image is already
abnormal, and G should not make any modification if it is
already normal. Although the identity loss is present in the
implementation of cycle-GANs from the original paper, it is
not discussed and seldom used in practice. However, in the
context of AD, the use of the identity loss is particularly
relevant. Indeed, it is expected from G that it erases any
abnormal pixel from the image. Nonetheless, in the case the
image does not contain any of them, it should learn to leave
it unmodified. This important property is exactly the one
enforced by the identity loss. At the inference time, it also
allows us to only use one of the two generators (the one
that goes from abnormal to normal data, i.e., G) as potential
abnormal pixels are revealed by comparing the reconstructed
image with the original one.

III. RELATED WORKS

AD has long been an area of great concern in a wide range
of fields such as biomedical [4], industrial [5] and security [6],
[7]. Furthermore, a significant number of works have been
published to characterize the AD approaches in the literature.
The scope of this section is focused on previous works based
on GANs and cycle-GANs, applied to the industrial and
medical domains. GANs are used for many image-related tasks
such as AD [8]–[11], segmentation, data augmentation, etc.
However, to the best of our knowledge, cycle-GANs have
been mostly used for data augmentation [12]–[14]. Since the
purpose of our research is focused on the AD in medical and
industrial applications, in this section, we review the most
relevant researches applied to theses two fields. From an in-
depth analysis of the state-of-the-art methods associated with
our research issue, the recent AD methods are mainly using
only GANs. Yet, cycle-GANs can be highly useful for AD
thanks to the combination of unsupervised learning and the
data availability of the normal and abnormal classes.

Regarding the industrial studies, Bougaham et al. [5] pro-
pose to use intermediate patches for the inference step after a
Wasserstein GAN learning process. The objective is to produce
an efficient approach for AD on real industrial images of elec-
tronic Printed Circuit Board Assembly (PCBA). The technique
can be used to assist current industrial image processing algo-
rithms and to avoid tedious manual processing. Nevertheless,
due to the wide variety of possible anomalies in a PCBA and
the high complexity of autoencoder architecture, a real-world
implementation remains a challenging task, specifically for
small anomalies even if the method evolved to overcome some
limitations in [11]. Rippel et al. [15] and Zhang et al. [16]
suggest to use cycle-GANs to perform data augmentation by

generating synthetic images for industrial inspection. Recently,
J. Liu et al. [17] develop an autoencoder technique of AD
using images of aluminum surfaces. The challenge of this
work is to detect the manufacturing errors using unlabeled
data. They introduced a dual prototype loss approach to
encourage encoder generated feature vectors to match their
own prototype. Therefore, the root mean square error between
feature vectors is used as an indicator of anomalies.

Regarding the medical field, Schlegl et al. [8] proposed
an unsupervised AD framework GANs (f-AnoGAN), that
can detect the unseen anomalies of medical subjects after
being trained on healthy tomography images. On the other
side, among the previous studies in medical imaging, authors
of [18], [19] could be cited. These authors use cycle-GANs
to perform the data augmentation task for MRI and CT
scan images, respectively. Again, they show that using cycle-
GANs for data augmentation leads to better segmentation
performances afterwards.

Despite being better than the previous approaches, these
deep AD approach use unsupervised deep learning techniques,
such as autoencoders and GANs, to characterize the normal
class, without using the insights given by the anomalies. In
contrast, in this work, the anomaly images are leveraged im-
mediately in the training phase, using it as prior knowledge to
strengthen the model at recognizing anomalies. Furthermore,
we check our method in both industrial and medical images
while enforcing zero false negative (ZFN).

In a concise way, a thorough analysis of the most important
studies in the literature shows that in the industrial and
medical domains, cycle-GANs have been mainly used for
data augmentation. This paper demonstrates the suitability of
cycle-GANs for AD, in particular, for industrial and medical
images, which, to our knowledge, has never been covered in
the literature.

IV. METHODS

This section introduces the developed approach and shows
its relevance for AD with cycle-GANs. The architecture for
the training and inference steps is illustrated in Fig. 2.

The basic idea behind the use of cycle-GANs for AD is
to exploit the conditional mapping learned by one of the two
generators: the one that goes from abnormal to normal images.
Indeed, by forward-propagating an abnormal image in this
generator, it is expected to obtain a new image where the
anomaly is erased. Nonetheless, and thanks to the identity loss,
if a normal image is forward-propagated in the generator, it
is expected to remain unchanged. Therefore, by comparing
the output of the generator with its input, anomalies in the
input images can be located. The other generator (normal-to-
abnormal) is not really useful from a practical point of view.
It is only useful to jointly train the first one, similarly to the
two discriminators, but not for the AD inference step.

To perform the AD task, the normal and abnormal test
images are given to the learned abnormal-to-normal generator.
Then, an anomaly score is computed to measure the distance
between the original test image and the reconstructed one. In



Fig. 2: Figure inspired from [1] presenting the architecture of the training (left side) and the inference (right side) steps. During
the training step, the first generator G tries to map abnormal to normal images by fooling the discriminator DY that should
not detect fake images. F and DX follow the same idea but for normal images as input. During the inference step, only G is
used even if the input can either be normal or abnormal images. This is possible thanks to the identity loss that enforces G to
only modify abnormal pixels if any, and leaves the image unmodified otherwise.

this paper, two metrics are considered: a per-pixel sum of the
squared differences (SSE), and a Frechet Inception Distance
(FID) [20]. The FID anomaly score is more elaborated and
focuses on perceptual differences thanks to the use of a pre-
trained Inception V3 network [21]. For each anomaly score,
its potential for AD with cycle-GANs is assessed by building
an anomaly detector with two different thresholds. The first
threshold is set by minimizing the number of classification
errors, which yields an anomaly detector with maximum accu-
racy (ACC). The second one is set so that all true positives are
detected, i.e., only false alarms can be raised but no anomaly
can be missed. This setting yields an anomaly detector with
zero false negative (ZFN), which is the most useful in the
business applications of the industrial or medical fields, where
false negatives have large consequences for customers or
patients. In summary, four anomaly detectors are built, i.e.,
one for each pair of metrics and thresholds. Note that the
thresholds are set on the test sets, and make it possible to
assess how much the two distributions (SSE and FID for
normal and abnormal data) are discriminated. The use of an
additional validation set should be preferred, but it would have
been too costly in terms of abnormal data for several datasets
(due to the scarcity of abnormal data available). Therefore,
the accuracy values are an overestimate of the classification
performances, and should be seen as a metric to quantify
how much the method highlights abnormal images compare to
normal images on the test sets. Our goal is indeed to measure
the discriminative power of cycle-GANs for AD, so as to
prospectively validate the practical interest of our idea in the
industrial and medical domains.

V. EXPERIMENTS

This section presents the experiments carried out to evaluate
the proposed AD method. First, the datasets and the data pre-
processing steps are introduced. Next, the model architecture
used for all the experiments is detailed. Finally, qualitative and
quantitative results are presented, then discussed in Section VI.

A. Datasets

Eight datasets are used for both the industrial and medical
domains, where several types of anomalies may occur. To
assess the strengths and weaknesses of our method, we defined
four categories of anomalies: small/large object-shaped, or
small/large textured-shaped anomalies. Indeed, the anomaly
can either arise on a specific object characterized by abrupt
changes in pixels intensity (a screw for instance), or where
the pixels intensity changes are more progressive and more
homogeneous (in the structure of wood for instance).

To cover the industrial side, the public MVTEC-AD
dataset [22] is used. It consists of different high resolution
industrial images from 15 different categories of object and
texture-shaped products with and without anomalies. In this
work, 4 datasets were selected from MVTEC-AD to cover the
different natures of images: the Screw (small object-shaped
anomalies), the Hazelnut (large object-shaped anomalies), the
Tile (large texture-shaped anomalies) and the Wood (small
texture-shaped anomalies) dataset, which are made of 480,
501, 347 and 326 images, respectively. All of these datasets
are clearly imbalanced with a minority of abnormal images.

To investigate the medical side, four datasets of object and
texture-shaped images are used, coming from healthy and
unhealthy subjects. First, PCAM (large texture-shaped anoma-
lies) [23] consists in 220, 025 histological images. Second,
Breast Ultrasound (small texture-shaped anomalies) [24] is
made of 789 images. One should mention that for this dataset,
many images were manually labeled by experts by highlighting
the tumor on the images. Therefore, in order to avoid any bias
during training, we removed all those annotated images from
the dataset, resulting in a dataset of 654 images. The third
dataset is made of 253 Brain MRI images (large object-shaped
anomalies) [25]. Finally, the retinal OCT dataset [26] (small
and large texture-shaped anomalies) contains 83, 600 images
of Optical Coherence Tomography. All of these datasets are
imbalanced with a minority of normal images, except for
PCAM where the abnormal images are slightly minority.
Table I provides an overview of the number of images for
each dataset.



TABLE I: Sizes of the training and test sets for each dataset,
regarding the number of normal and abnormal data. A partic-
ular split to guaranty that the test sets are balanced is always
chosen, even if the initial datasets are imbalanced.

Training set Test set

Dataset # Normal # Abnormal # Normal # Abnormal

Wood 236 30 30 30
Tile 222 43 41 41
Hazelnut 396 35 35 35
Screw 301 59 60 60
Breast 67 455 66 66
PCAM 121,998 80,207 8,910 8,910
Retina 13,172 44,084 13,172 13,172
Brain 49 106 49 49

The same data preprocessing steps are performed for the
all the datasets, as the industrial and medical images are
similar in an object-shaped or texture-shaped point of view.
Some of the aforementioned datasets come with different
types of anomalies. In this case, a single abnormal class is
created by aggregating all the abnormal classes together. Also,
the normal and abnormal classes are sometimes imbalanced.
Therefore, in order to avoid the use of an imbalanced metric
to evaluate the results, a specific split of the dataset is applied
to ensure that the test sets are fully balanced. This is obtained
by keeping half of the minority class images for the testing
set, as well as the same number of randomly picked images
from the majority class. All the remaining images are left
to the training set1. Because AD may sometimes be a very
imbalanced predictive problem, the majority class is generally
overpopulated in the training sets. However, the test sets are
perfectly balanced, which allows us to assess the performances
with a simple accuracy metric. Furthermore, even if using
imbalanced training sets may hurt the performances for most
of the supervised machine learning algorithms, the training
process of Cycle-GANs is less sensitive to this. The task
of cycle-GAN differs from a simple label prediction, and
each image gives feedback to the two generators, directly or
indirectly. Images are resized to a resolution of 256 × 256
pixels by using a bicubic interpolation method, except for
PCAM where the images remained in their original lower
resolution of 96 × 96. Data augmentation is also performed
so that objects and textures are rotated and flipped along both
axes (except for retinal OCT where only flipping along the
horizontal axis is pertinent).

B. Network Architecture and Training Procedure

For convenience and practical purposes, the architectures
used in this work as well as the training procedures are similar
for the different applications, and follow the experimental
setup presented in the initial paper on cycle-GANs [1]. The
generators are formed by three convolution layers, several

1An exception is made for the PCAM dataset. Due to its larger size, only
10% of the minority class is taken for testing instead of 50%.

TABLE II: AD accuracy (in %), based on the FID or
SSE anomaly scores, with thresholds set to enforce a zero-
false-negative constraint (ZFN thr.) or to maximize the AD
accuracy (ACC thr.). Best scores are highlighted in bold.

Anomaly Score = FID Anomaly Score = SSE

Dataset Domain Type ZFN thr. ACC thr. ZFN thr. ACC thr.

Wood Indust. Texture 93.33 95.00 73.33 83.33
Tile Indust. Texture 100.00 100.00 89.02 97.56
Hazelnut Indust. Object 100.00 100.00 72.86 94.29
Screw Indust. Object 50.83 57.50 52.50 52.50
Breast Med. Texture 65.15 93.18 87.12 94.70
PCAM Med. Texture 94.41 97.79 82.42 99.89
Retina Med. Texture 52.17 96.54 50.29 95.46
Brain Med. Object 51.02 62.24 62.24 68.37

residual blocks [27], two fractionally-strided convolution lay-
ers and one final convolution layer. We use 9 residual blocks
for images resized at 256 × 256 resolution, and only 6 for
the PCAM (96 × 96 resolution). For the discriminators, we
use 70× 70 PatchGANs [28]–[30]. All the models are trained
through 200 iterations of the Adam optimizer with a learning
rate of 2× 10−4. An exception is made for PCAM, for which
only 40 training iterations are performed due to its large size.
A linear learning decay is introduced at the middle of the
training. The meta-parameters λcyc and λide are fixed to 10
and 5, respectively. To give an idea of the computation time,
training the cycle-GAN on 500 images with a 256 × 256
resolution for 200 iterations roughly takes 24 hours on a single
Nvidia RTX A6000 GPU.

C. Experimental Results

1) Qualitative Assessments: The quality of the reconstruc-
tion, as well as the highlighting of anomalies are presented in
Fig. 3. It shows the original image, the normal (generated)
version and their squared pixel difference image, for the
selected industrial and medical datasets. These images have
been specifically chosen to illustrate different typical cases.
However, the following quantitative assessment evaluates the
global performances on all the test sets, which are in agree-
ment with the qualitative examples presented here.

2) Quantitative Assessments: Table II summarizes the ac-
curacy (for the FID and SSE anomaly scores) under the zero-
false-negative constraint (ZFN thr. columns), and, in a more
standard way, without this constraint (ACC thr. columns) for
all the different datasets. The distributions of the FID anomaly
scores for the normal and abnormal test sets are shown in
Fig. 4, with the accuracy calculated for the threshold set with
the ZFN constraint, or without it.

VI. DISCUSSION AND LIMITATIONS

This section outlines the discussion and the limitations with
the use of cycle-GANs, for industrial and medical images AD.
We observe from the qualitative results presented in Fig. 3 that
the anomaly reconstruction strongly depends on the nature of
the image. Indeed, for the textured appearance images (Wood,
Tile, Breast Ultrasound, PCAM and OCT Retina), small holes,



Fig. 3: Industrial (left set) and medical (right set) image examples. For each set of datasets, the left green-framed block presents
normal images and the right red-framed block shows abnormal images, with the original image (1st column), the normal version
generated (2nd column), and their squared pixel-wise difference image (3rd column). We manually added a small frame around
each defect (abnormal images) for the reader’s convenience.

large cracks, blurred areas or colorization contained in the
abnormal images (left images of the red-framed blocks) are
erased by the estimated normal texture (middle images of the
red-framed blocks) and result in a pixel difference image (right
images of the red-framed blocks) that faithfully highlights the
anomalies. We can note that for complex random textures such
as Tile, the model struggles to perfectly restore the normal
areas, resulting in a noisy difference image. However, the
anomaly can still be localized due to the even greater difficulty
in restoring the abnormal area.

Good reconstruction is also observed for the Hazelnut and
Brain MRI datasets, where these object-shaped images have
large anomalies such as scratches or spots shown at the red-
framed block of each set. They are not well erased but atten-
uated, which provides enough information in the difference
image to detect and localize the anomaly. However, for an
object-shaped dataset with small defects such as the Screw
dataset (red-framed block), the anomaly does not disappear
after reconstruction, making it impossible to highlight in the
difference image.

We can also observe in the green-framed block (normal
images) of each set that the reconstructions (middle images)
are more or less identical to the original input (left images), re-
sulting in an almost zero difference image (right images). The
model has extracted the features of the normal distributions,
and is able to restore normal images without changing the
pixels value, thanks to the identity loss. Pixel areas with high
discontinuity, as shown in the Brain MRI or Screw images, do
not fully follow this observation, resulting in slight differences
in the generated image that disturb the anomaly score, and
make it difficult to obtain good separable thresholds, in the
quantitative step.

For the quantitative assessment, we conclude from Table II
that the Tile and the Hazelnut datasets achieve perfect clas-
sification on the test set under the FID anomaly score, and
with or without the zero false negative constraint (ZFN).
Nevertheless, this result could be overestimated due to the
absence of many challenging examples that might occur in the
real world. As expected from the qualitative assessment, the
Wood and the PCAM datasets also perform well, with 93.33%
and 94.41% accuracy with the FID anomaly score under the
ZFN constraint, better than the 65.15% accuracy for the Breast
Ultrasound dataset (even if the standard accuracy is 93.18%)
or the 52.17% accuracy for the OCT Retina dataset (even if the
standard accuracy is 96.54%). Indeed, the Breast and the OCT
Retina datasets contain challenging abnormal images, resulting
in a lower anomaly score that explains this high impact of
the ZFN constraint on the accuracy. Despite the fact that the
method achieves pretty good anomaly localization with the
Brain MRI dataset, it has trouble to correctly discriminate the
two classes, with an accuracy of 51.02%, due to its noisy
normal reconstruction. Finally, the Screw dataset performs also
poorly, with a near-random classification accuracy of about
50%, which was expected from the qualitative assessment.
Fig. 4 states how normal and abnormal FID anomaly scores
distributions overlap for the Screw, the Breast, the OCT Retina
and the Brain MRI test sets, resulting in a relative poor
accuracy compared to the other datasets. Regarding these
results, the method reaches an average accuracy of 97.2%
(85.4% with the additional ZFN constraint).

Overall, we can also conclude that the FID anomaly score
improves the accuracy for the industrial images, by getting
rid of the noisy pixel-by-pixel reconstruction described above.
However, this score cannot avoid poor accuracy with an object-



Fig. 4: FID anomaly score distributions of normal (solid-green line and bars) and abnormal (dashed-red line and bars) images
for the test datasets, with the threshold value in the ZFN setting (vertical dashed line in grey) or in the ACC setting (vertical
dashed line in black).

shaped dataset like Screw, where small anomalies are not well
captured by the model and the generated images still show the
anomalies. For the Breast Ultrasound and Brain MRI datasets,
it appears that for the ZFN constraint, the anomaly score based
on SSE leads to better results. This could come from the
fact that the Inception V3 model is not pre-trained on many
medical-like images, leading in a poor feature extraction. We
can also state that the ZFN constraint reduces the accuracy,
due to a non-optimal classification threshold, except for the
perfect classification of the Hazelnut or Tile datasets. In a
way, this is the price to pay for adapting to a real case such
as we may encounter in the industrial or medical domain.

To conclude this section, one would like to highlight the
advantage of our method compared to state-of-the-art methods.
To do so, Table III shows a comparison between a non-
exhaustive list of them regarding several criteria. Among those
criteria, we checked if other methods use a ZFN constraint, as
it can be of fundamental importance in business and medical
applications. We also compared the types of data, the different
loss functions and whether they use abnormal data during the
training phase. It clearly appears that our work covers a wider
spectrum of criteria, while being the first GAN-based approach
to reintroduce abnormal data during the training loop. As
already presented in Section III, GAN is today the most widely
used deep learning architecture for AD. Given a large set of
normal images, GANs are able to learn a correct representation
of them, and generate new samples from it. Afterwards, when
feeding the model with abnormal images, differences between
the input and reconstructed images may highlight anomalies.
However, with such frameworks, the abnormal images are
generally not used during the training while they are sometime
be easily available (although often in small amount). In such

situations, a cycle-GAN based method can benefit from the
use of abnormal data during training in order to refine its
representation of normal data.

VII. CONCLUSION

In this work, we propose and characterize for the first time
an approach using Cycle-Generative Adversarial Networks
(cycle-GANs) for Anomaly Detection (AD) on industrial and
medical images. This method allows us to also exploit the
abnormal images when at our disposal to refine its represen-
tation of normal data, by giving more insights on what is
normal or abnormal. Furthermore, thanks to the use of the
identity loss, we show that the formalism of cycle-GAN is
naturally well-adapted to perform AD. Particular attention has
been given to industrial and medical applications, due to the
societal impact it may offer, and motivated by the lack of
studies for such kind of work in these areas to date. The
proposed method differs from previous work by exploiting
both normal and abnormal images to learn mappings that
can generate new matched data from one domain to another,
under a cycle consistency constraint. The mapping of interest
for our AD method is the one that can generate normal
images. From this perspective, any differences between the
test image and its normal (generated) version can be easily
identified. Qualitatively, the pixel squared difference image
is used to locate abnormal areas, and then quantitatively,
an anomaly score is created to indicate whether the image
contains abnormal areas, based on a preselected threshold.
Ultimately, the method identifies anomalies at the pixel level
while the labels are initially at the image level, i.e., without
the requirement for tedious annotation at the pixel level.

The achieved results demonstrate that, independent of the
application, images with a texture appearance (with continuous



TABLE III: Comparison between a non-exhaustive list of other recent works for AD in images. This table highlights the fact
that our cycle-consistent method is complementary to what is proposed in other works. In Cycle-GANs, the reconstruction loss
is obtained by the combination of the cycle-consistent loss and the identity loss.

Criteria Autoencoder
[17]

f-AnoGAN
[8]

GANomaly
[9]

EGBAD
[10]

VQGanoDIP
[11]

Cycle-GANs
Our work

Apply a ZFN constraint 7 7 7 7 3 3
Tested on industrial data 3 7 7 7 3 3
Tested on medical data 7 3 7 7 7 3
Tested on texture-shaped anomalies 3 3 7 7 3 3
Tested on large object-shaped anomalies 7 7 3 3 3 3
Tested on small object-shaped anomalies 7 7 7 7 3 3
Use image with resolution > 64× 64 3 7 7 7 3 3
Use the GAN loss 7 3 3 3 3 3
Use the reconstruction loss 3 3 3 7 3 3
Use abnormal data for training 7 7 7 7 7 3

pixel value variability, such as colorization or progressive
blurred areas) tend to benefit from higher domain change
mapping than those with an object appearance (with drastic
pixel value changes, such as strong contours or structural
shapes). An exception is observed for images of objects with
coarse defects where the localization and detection of anoma-
lies always meet expectations. We argue in this work that when
both normal and abnormal data are available for training, the
use of cycle-GAN architectures should be considered as an
approach by the community, mainly when the anomalies are
known to be in the form of textures or coarse objects.

New applications may also be explored for future work,
such as object segmentation or object counting for industrial
and medical fields using the same type of cycle-consistent
models. This work is a first step and a proof-of-concept for
cycle-GANs in AD for industrial and medical domains.
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