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Reconstruction of flow domain boundaries from velocity data via 

multi-step optimization of distributed resistance
Ondrej Partl, Ulrich Wilbrandt, Joaquín Mura, Alfonso Caiazzo

1 Abstract

We reconstruct the unknown shape of a flow domain using partially available internal velocity mea-
surements. This inverse problem is motivated by applications in cardiovascular imaging where motion-
sensitive protocols, such as phase-contrast MRI, can be used to recover three-dimensional velocity
fields inside blood vessels. In this context, the information about the domain shape serves to quantify
the severity of pathological conditions, such as vessel obstructions. We consider a flow modeled by a
linear Brinkman problem with a fictitious resistance accounting for the presence of additional bound-
aries. To reconstruct these boundaries, we employ a multi-step gradient-based variational method
to compute a resistance that minimizes the difference between the computed flow velocity and the
available data. Afterward, we apply different post-processing steps to reconstruct the shape of the
internal boundaries. To limit the overall computational cost, we use a stabilized equal-order finite ele-
ment method. We prove the stability and the well-posedness of the considered optimization problem.
We validate our method on three-dimensional examples based on synthetic velocity data and using
realistic geometries obtained from cardiovascular imaging.
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2 Introduction

The purpose of this paper is to propose, analyze, and validate a framework for the reconstruction of the
shape of a fluid domain using internal velocity measurements, assuming that these data are available
only in a subset of the computational domain.

Let Ω ⊂ R3 be a given bounded, connected domain whose boundary ∂Ω can be decomposed as

∂Ω = Γin ∪ Γwall ∪ Γout,

into an inlet Γin, outlet Γout, and a wall Γwall. We assume that each boundary part has a positive
two-dimensional Hausdorff measure, and that Γin and Γout are not adjacent, i.e., Γin ∩ Γout = ∅.
Our aim is to reconstruct a fluid domain Ωfluid ⊂ Ω, whose boundary is partially unknown. However,
we assume that the inlet and outlet boundaries are known, and they correspond to Γin and Γout,
respectively, i.e., Γin ∪ Γout ⊂ ∂Ωfluid.

The considered problem is inspired by applications in cardiovascular imaging, where motion-sensitive
techniques such as phase-contrast MRI can be used to obtain three-dimensional time dependent
images of the internal blood velocity field. In this case, Ωfluid represents the lumen of the blood vessel,
while Ω \ Ωfluid is an obstruction inside the blood vessel.

An important aspect of this work is that we assume that the velocity measurements are not available
— or not usable, e.g., due to low resolution — on the whole computational domain: We assume that
the velocity data are given on a subset Ωmeas ⊂ Ω. Notice that, in general, it holds Ωmeas 6⊂ Ωfluid

(see Figure 1), i.e., the measurements are available outside the physical fluid domain as well. In the
context of medical imaging, this might be the case when cardiovascular devices implanted in the
imaged vessels excessively disturb the MRI signal. Also notice that we do not consider any further
assumptions on Ωmeas. In particular, we do not exclude the possibility that the sought boundary (or
the region of interest) intersects the region where the data are missing.

Γwall

Γin

Γout

ΓoutΩfluid

Ω \ Ωfluid

Ω \ Ωmeas

Figure 1: Sketch of the computational domain Ω: Ωfluid (the white region) is the partially unknown fluid
domain, which should be reconstructed. Γin and Γout denote the known inlet and outlet boundaries.
Γwall stands for the impermeable boundaries of Ω, which are known as well. The region Ω \ Ωmeas

(the green region) models a subdomain where the measurements are not accessible, or their quality
is too poor.

To identify the two subsets Ωfluid and Ω \ Ωfluid, we consider the following optimization framework.
Firstly, we describe the flow in Ω via the Brinkman problem

−µeff∆u + σu +∇p = f in Ω,

∇ · u = g in Ω,

u = uD on Γin,

u = 0 on Γwall,

−µeff∂nu + pn = gn on Γout,

(2.1)
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Reconstruction of flow boundaries from velocity data 3

where u : Ω→ R3 [m/s] represents the fluid velocity, p : Ω→ R [Pa] is the fluid pressure, f : Ω→
R3 [Pa/m] and g : Ω → R [1/s] are source terms, uD : Γin → R3 [m/s] and gn : Γout → R3 [Pa]
stand for given data on the boundary, and µeff > 0 [Pa · s] denotes the effective viscosity.

The parameter σ : Ω → [0,+∞) [Pa · s/m2] introduces a fictitious resistance to the flow: It is
negligible in the fluid domain Ωfluid and very high in the solid domain Ω \Ωfluid. We use it to indirectly
describe these domains as follows:

σ =

{
� 0 in Ω \ Ωfluid,
≈ 0 in Ωfluid.

(2.2)

For more details on the fictitious domain approach in the context of the Brinkman problem, we refer,
e.g., to Takhirov [18], Angot [4, 3], or to the recent results of Aguayo & Carrillo [1] (for a detailed
convergence analysis in the case of mixed boundary conditions).

We define the resistance σ as a piecewise binary function, i.e., as a piecewise constant function with
only two possible values (one for Ωfluid and one for Ω \ Ωfluid), and seek a suitable σ using the
following two-step approach:

(i) We compute the first approximation of σ by minimizing a quadratic tracking-type cost func-
tional over piecewise constants with positive values. We solve this minimization problem using
a gradient-based method. The cost functional is defined as the difference between the simulated
and the observed velocity fields combined with an additional L2-regularization term.

(ii) We apply different post-processing steps to map the first approximation onto a binary function.
We formalize these steps from the point of view of the dimension reduction of the control space.

To validate our method, we consider several scenarios based on synthetic velocity data and on a
domain modeling the ascending aorta, whose three-dimensional geometry was obtained from medical
images, into which we artificially included an internal boundary. We check the accuracy of the shape
estimation by comparing the outcome of the algorithm against the generated reference solution.

Our main contribution lies in

(i) the formalization and application of a gradient-based optimization method that accounts for the
stabilization of an equal order linear finite element formulation,

(ii) the classification of the cells that enables us to adapt the control space to the available data,

(iii) the introduction of robust post-processing steps that enhance the overall stability of the method
and yield satisfactory results in complex three-dimensional settings,

(iv) the validation of the approach also in the case where the data are only partially available, in-
cluding the situation where the boundary intersects the region of the missing data.

An optimization framework based on an immersed resistance approach has recently been used by
Aguayo et al. [2] to reconstruct aortic valve shapes (in 2D) from velocity MRI data. The authors
considered the more general case of Hs-regularization together with the Navier–Stokes equations.
Numerical validation was presented in 2D using the (inf-sup stable) Taylor–Hood finite elements. In
contrast, we utilize equal-order stabilized finite elements (see, e.g., Blank et al. [5]), both for the for-
ward and adjoint problems, which allows us to considerably reduce the complexity of the simulations,
especially in 3D.
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Our optimization framework can also be viewed as a phase-field approach in which the goal is to deter-
mine the optimal distribution of two different phases, parametrized using a space-dependent function.
Phase-field approaches for shape optimization in the context of the Navier–Stokes equations have
been proposed and analyzed by Garcke and his co-workers, considering integral state constraints [11]
and surface functionals [10].

From a more general perspective, optimal control problems using fictitious domains have been de-
scribed, e.g., in Kogut and Leugering [16, 15] and Haslinger et al. [13]. Moreover, one can also com-
bine our approach with sparsity-inducing approaches involving L1- or TV-regularization terms, which
may improve the results further.

The paper is organized as follows: Section 3 introduces the flow problem in the continuous setting.
The continuous optimization problem is presented and analyzed in Section 4. In Section 5, we discuss
the discrete forward problem, the stabilized finite element method used for its numerical solution, and
the corresponding discrete optimization problem. The complete optimization algorithm, including pre-
and post-processing, is described in detail in Section 6, while the numerical results are shown in
Sections 7–9. Finally, Section 10 draws conclusions from this study.

Notation: Throughout the paper, we will use standard notations for the Lebesgue and Sobolev spaces.
A bold-faced letter will indicate the d-th Cartesian power, e.g.,H1(Ω) = [H1(Ω)]

d
or v = (v1, . . . , vd).

We also denote with (·, ·)O the L2-scalar product on an open, bounded set O ⊆ Ω, while 〈·, ·〉E will
be used for integrals evaluated on the boundary or on boundary elementsE ⊆ ∂Ω. Moreover, ‖·‖0,O,
‖·‖1,O, and ‖·‖∞,O will denote the L2(O)-, H1(O)-, and L∞(O)-norm, respectively. To simplify the
notation, we omit the subscript O in the above notations if O = Ω and write (·, ·), ‖·‖0, ‖·‖1, and
‖·‖∞. Finally, n stands for the outer unit normal vector on ∂Ω.

3 The Brinkman system

In this section, we discuss the existence and uniqueness of weak solutions for the Brinkman prob-
lem (2.1). Let H1

Γwall
(Ω) be the subspace of H1(Ω) whose elements have a vanishing trace on Γwall.

The traces of this space onto Γin lie in the space H1/2
00 (Γin). In other words, a function in H1/2

00 (Γin)
is characterized by the fact that its extension by zero onto all of ∂Ω is in H1/2(∂Ω). Moreover, we will

use the same symbol for the Dirichlet data on the inlet Γin, uD ∈ H
1/2
00 (Γin), and for its extension1

into the domain Ω, uD ∈H1
Γwall

(Ω). The velocity and pressure test spaces are denoted by

V = H1
Γin∪Γwall

(Ω) and Q = L2(Ω),

respectively. Finally, the space of admissible functions σ (resistance) is denoted by

Σ := {σ ∈ L∞(Ω) | 0 ≤ σ(x) ≤ CΣ a.e.} (3.1)

for a constant CΣ � 0.

For a given σ ∈ Σ, the weak formulation of the Brinkman problem (2.1) reads: Find (u, p) ∈
H1(Ω)×Q, where u− uD ∈ V , such that for all (v, q) ∈ V ×Q, we have{

a(σ;u,v)− b(v, p) = `f (v),

b(u, q) = `g(q),
(3.2)

1The H1(Ω)-norm of this extension is bounded by its H1/2(Γin)-norm, see, for example, [19, Theorem 4.3.4].
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Reconstruction of flow boundaries from velocity data 5

where the linear forms a : Σ ×H1(Ω) × V → R, b : H1(Ω) × Q → R, `f : V → R, and
`g : Q→ R are defined as

a(σ;u,v) = µeff(∇u,∇v) + (σu,v),

b(v, p) = (∇ · v, p),
`f (v) = (f ,v) + 〈gn,v〉Γout

,

`g(q) = (g, q).

For these forms to be well defined, we consider the following regularity assumptions:

f ∈ L2(Ω), g ∈ L2(Ω), and gn ∈ L2(Γout). (3.3)

The existence and uniqueness of the solution of (3.2) can be proven by applying standard saddle
point theory (see, e.g., [19, Chapter 5.5] or the classical textbooks [7, 12] for this theory): The inf-sup
condition

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖1‖q‖0

≥ β > 0 (3.4)

can be shown analogously as in the Stokes case, see [17, Proposition 5.3.2]. We will show continuity
and coercivity of a(σ; ·, ·): Let u ∈H1(Ω) and v ∈ V be given. Then the Hölder inequality yields

a(σ;u,v) ≤ µeff‖∇u‖0‖∇v‖0 + ‖σ‖∞‖u‖0‖v‖0

≤ 2 max{µeff , ‖σ‖∞}‖u‖1‖v‖1

≤ cu‖u‖1‖v‖1,

(3.5)

where cu = 2 max{µeff , CΣ}. Furthermore, since σ is allowed to vanish on a set of nonzero measure,
we have

a(σ;v,v) ≥ µeff‖∇v‖2
0 ≥

µeff

1 + c2
P

‖v‖2
1 = cl‖v‖2

1, (3.6)

where cP is the Poincaré constant of Ω, ‖v‖0 ≤ cP‖∇v‖0, and cl = µeff/(1 + c2
P ).

The inf-sup condition (3.4), the continuity, and the coercivity of a(σ; ·, ·) allow us to prove the following
result.

Theorem 3.1 (Existence and uniqueness of weak solution). Let µeff > 0, σ ∈ Σ, f ∈ L2(Ω),
g ∈ L2(Ω), gn ∈ L2(Γout), and uD ∈ H1

Γwall
(Ω) be the given data in (3.2). Then there exists a

unique weak solution (u, p) ∈H1(Ω)×Q of (3.2). Moreover, the following a priori bound holds:

‖u‖1 + ‖p‖0 ≤ c
[
‖f‖0 + ‖gn‖0,Γout

+ ‖g‖0 + ‖uD‖H1/2
00 (Γin)

]
, (3.7)

where the constant c depends only on the shape of the domain Ω and on the constants β, cu, and cl
defined in equations (3.4)–(3.6).

Proof. Using u0 = u− uD ∈ V , the weak form (3.2) can be reformulated as{
a(σ;u0,v)− b(v, p) = `f (v)− a(σ;uD,v),

b(u0, q) = `g(q)− b(uD, q).
(3.8)
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The inf-sup condition (3.4), the coercivity of a(σ; ·, ·), (3.6), together with standard results of saddle-
point problems theory (e. g., [14, Theorem 3.18], [12, Theorem 4.1], or [19, Theorem 5.2.2]), imply the
existence and uniqueness of the solution (u0, p) to system (3.8), and hence of (u, p).

Using the Hölder inequality, we can bound the above right-hand sides by

|`f (v)− a(σ;uD,v)| ≤ c
(
‖f‖0 + ‖gn‖0,Γout

+ cu‖uD‖H1/2
00 (Γin)

)
‖v‖1,

|`g(q)− b(uD, q)| ≤ c
(
‖g‖0 + ‖uD‖H1/2

00 (Γin)

)
‖q‖0,

where c > 0 stands for a generic domain-dependent constant. These inequalities, together with [19,
equations (5.23) and (5.24)], yield the estimates

‖u0‖1 ≤ c

[
1

cl

(
‖f‖0 + ‖gn‖0,Γout

+ cu‖uD‖H1/2
00 (Γin)

)
+

(
cu
cl

+ 1

)
1

β

(
‖g‖0 + ‖uD‖H1/2

00 (Γin)

)]
,

‖p‖0 ≤ c

[
1

β

(
cu
cl

+ 1

)(
‖f‖0 + ‖gn‖0,Γout

+ cu‖uD‖H1/2
00 (Γin)

)
+
cu
β2

(
cu
cl

+ 1

)(
‖g‖0 + ‖uD‖H1/2

00 (Γin)

)]
.

Finally, the estimate (3.7) follows from ‖u‖1 ≤ ‖u0‖1 + ‖uD‖1.

Next, we define an operator that maps a given resistance σ ∈ Σ to a weak solution (u, p), which will
be used in the definition of the optimization problem and its analysis.

Definition 3.2 (Control-to-state-operator). The control-to-state operator τ : Σ → H1(Ω) × Q is
defined as the map σ 7→ τ(σ) = (u, p) ∈ H1(Ω) × Q such that the state (u, p) solves the weak
Brinkman problem (3.2) for the control σ.

According to Theorem 3.1, τ is well defined. Due to (3.7), it is also uniformly bounded, i.e.,

‖τ(σ)‖H1(Ω)×L2(Ω) ≤ C, (3.9)

where the constant C does not depend on σ.

4 Optimization problem

We formalize and analyze the problem of searching for a resistance σ ∈ Σ that corresponds to a
solution of the Brinkman problem (3.2) close to available velocity measurements.

4.1 Formulation

For given measurements û ∈ L2(Ωmeas) [m/s], a positive constant α [m6 · s−4 · Pa−2], and σ ∈ Σ,
we define the cost function J : V ×Q× Σ→ R as

J((u, p), σ) :=
1

2
‖u− û‖2

0,Ωmeas
+
α

2
‖σ‖2

0. (4.1)
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Using the control-to-state operator τ , we define the cost functional F (σ) := J(τ(σ), σ) and consider
the problem

min
σ∈Σ

F (σ). (4.2)

Due to the coupling of control and state in the underlying equation, problem (4.2) is a bilinear opti-
mization problem.

Theorem 4.1 (Existence of optimal solutions). The bilinear optimization problem (4.2) has a solu-
tion σ ∈ Σ.

Proof. SinceF is bounded from below, and Σ is non-empty, there exists an infimum F̂ := infσ∈Σ F (σ)
and an infimizing sequence of controls σn ∈ Σ such that F (σn)→ F̂ .

By (3.1), (σn) can be regarded as a sequence in [L1(Ω)]
∗

= L∞(Ω) enclosed in a ball of radius CΣ,
and by the theorem of Banach–Alaoglu, this ball is compact, which guarantees that there is a subse-
quence of (σn) converging in the weak-∗ topology to some σ ∈ Σ, i.e.,

σn
∗
⇀ σ in Σ ⊂ L∞(Ω). (4.3)

This subsequence defines a sequence of solutions (τ(σn)), τ(σn) = (un, pn), that is bounded (by
(3.9)), and thus contains a subsequence converging weakly to some (u, p), i.e.,

τ(σn) = (un, pn) ⇀ (u, p). (4.4)

We will show that (u, p) = τ(σ): We will do it by using the weak formulation (3.2) and proving that
the sequences of zeros (a(σn;un,v) − b(v, pn) − `f (v)) and (b(un, q) − `g(q), q) converge to
(a(σ;u,v)− b(v, p)− `f (v)) and (b(u, q)− `g(q), q), respectively.

For suitable subsequences, it holds:

� b(un, q)→ b(u, q) because∇ · un ⇀ ∇ · u in L2(Ω) and q ∈ L2(Ω).

� b(v, pn)→ b(v, p) because pn ⇀ p in L2(Ω) and∇ · v ∈ L2(Ω).

� (µeff∇un,∇v)→ (µeff∇u,∇v) because∇un ⇀ ∇u in L2(Ω) and∇v ∈ L2(Ω).

Finally, the difference of the remaining resistance terms can be bounded as follows:

|(σnun,v)− (σu,v)| ≤ |((σn − σ)u,v)|+ |(σn(un − u),v)|
≤ |(σn − σ,u · v)|+ CΣ‖un − u‖0‖v‖0.

The first term converges to zero because σn
∗
⇀ σ in L∞(Ω) = [L1(Ω)]

∗
and u · v ∈ L1(Ω); the

second because (un) converges strongly in L2(Ω) due to its weak convergence in H1(Ω) and the
compact embedding of H1(Ω) into L2(Ω). Therefore, (u, p) = τ(σ).

To conclude the proof, note that the objective J is convex and continuous, hence weakly lower semi-
continuous. This means that

J((u, p), σ) ≤ lim inf
n→∞

J((un, pn), σn),

and therefore J((u, p), σ) = F (σ) = F̂ .
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4.2 Derivative

Since we want to solve the optimization problem (4.2) via a gradient-based scheme, we need the
derivative of F . We compute it using the adjoint problem and the subsequent lemma.

For a given σ ∈ Σ, the adjoint problem reads as follows: Find (w, t) ∈ V ×Q such that{
a(σ;w,v) + b(v, t) = −(uσ − û,v)L2(Ωmeas)

,

−b(w, q) = 0
(4.5)

for all (v, q) ∈ V × Q. In (4.5), û denotes the given measurements, and uσ stands for the first
component of τ(σ).

Lemma 4.2. The control-to-state operator τ is continuously differentiable with respect to the L∞–
topology, and we have, for a given σ ∈ Σ,

τ ′(σ)δ = (z, r) ∀δ ∈ Σ, (4.6)

where the pair (z, r) ∈ V ×Q satisfies{
a(σ; z,v)− b(v, r) = −(δuσ,v),

b(z, q) = 0
(4.7)

for all (v, q) ∈ V ×Q. Here uσ denotes the first component of τ(σ).

Remark 4.1. The pair (z, r) in Lemma 4.2 is the weak solution to
−µeff∆z + σz +∇r = −δuσ in Ω,

∇ · z = 0 in Ω,

z = 0 on Γin ∪ Γwall,

−µeff∂nz + rn = 0 on Γout.

(4.8)

Proof of Lemma 4.2. We start by deriving two auxiliary estimates: For given σ, δ ∈ Σ such that σ +
δ ∈ Σ, denote (uσ, pσ) = τ(σ) and (uσ+δ, pσ+δ) = τ(σ + δ). Then, their difference (ū, p̄) =
τ(σ + δ)− τ(σ) ∈ V ×Q solves the following weak equations for all (v, q) ∈ V ×Q:{

a(σ; ū,v)− b(v, p̄) = −(δuσ+δ,v),

b(ū, q) = 0,
(4.9)

where the right-hand side can be bounded by

‖δuσ+δ‖0 ≤ ‖δ‖∞‖uσ+δ‖0 ≤ ‖δ‖∞‖uσ+δ‖1

(3.9)
≤ C‖δ‖∞.

Applying Theorem 3.1 to (4.9) leads to the estimate

‖ū‖1 ≤ c‖δuσ+δ‖0 ≤ cC‖δ‖L∞(Ω). (4.10)

Now, we can prove the assertion of the lemma by considering the pair

(U , P ) := τ(σ + δ)− τ(σ)− τ ′(σ)δ = (ū, p̄)− (z, r) ∈ V ×Q,

DOI 10.20347/WIAS.PREPRINT.2929 Berlin 2022



Reconstruction of flow boundaries from velocity data 9

which solves, for all (v, q) ∈ V ×Q, the system{
a(σ;U ,v)− b(v, P ) = −(δū,v),

b(U , q) = 0.
(4.11)

Applying Theorem 3.1 to (4.11) yields the estimates

‖U‖1 + ‖P‖0 ≤ c‖δū‖0 ≤ c‖δ‖∞‖ū‖1

(4.10)
≤ Cc2‖δ‖2

∞.

This means that ‖(U , P )‖V ×Q = O(‖δ‖2
∞), which proves (4.6). The continuity of the derivative τ ′

can be shown in a similar way.

Using the chain rule, we can now compute the derivative F ′(σ) in the direction of a given incre-
ment δ ∈ Σ. Denoting the partial derivatives of J by Ju, Jp, and Jσ and using equations (4.5)–(4.7),
we obtain:

F ′(σ)δ = (Ju(τ(σ), σ), Jp(τ(σ), σ))τ ′(σ)δ + Jσ(τ(σ), σ)δ
(4.6)
= (uσ − û, z)Ωmeas

+ α(σ, δ)
(4.5)
= −a(σ;w, z)− b(z, t) + b(w, r) + α(σ, δ)

(4.7)
= (δuσ,w) + α(σ, δ)

= (uσ ·w + ασ, δ).

(4.12)

5 Discrete system

5.1 Discrete stabilized formulation of forward problem

We carry out the spatial discretization via the so-called non-symmetric Galerkin least-squares (GLS)
stabilized finite element method (see, e.g., [9] or, for the analysis in the case of a generalized Brinkman
system, [5]).

To do this, we first introduce a boundary conforming (fitted) and shape-regular triangulation Th of Ω
(see, e.g., Ciarlet [8, p. 124]), where the characteristic size h is defined as h = maxT∈Th hT , hT
being the diameter of the cell T ∈ Th.

With the help of the mesh Th, we define the piecewise linear and piecewise constant finite element
spaces for the velocity and pressure as well as the control space:

W h =
{
vh ∈H1(Ω) ∩C0(Ω)

∣∣vh|T ∈ P1(T ) ∀T ∈ Th
}
,

V h = W h ∩ V = W h ∩H1
Γin∪Γwall

(Ω),

Qh =
{
qh ∈ L2(Ω) ∩ C0(Ω)

∣∣ qh|T ∈ P1(T ) ∀T ∈ Th
}
,

Σh =
{
σh ∈ Σ

∣∣σh|T ∈ P0(T ) ∀T ∈ Th
}
.

We also assume that the Dirichlet data belong to the velocity finite element space, i.e., uD ∈W h.

Remark 5.1. In practice, the control space Σh can also be based on a mesh different from the one
used for the numerical solution of the flow problem. This decouples the resolution of the flow field
from that of σh, which is useful if the former has strict numerical stability requirements, but a crude
approximation suffices for σh. Analogously, the data û can be defined on a different mesh, e.g., a
voxel-based one, as in the case of imaging data.
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Given a piecewise constant resistance σh ∈ Σh, the discretized version of the flow problem (3.2)
reads: Find (uh, ph) ∈W h ×Qh such that for all (vh, qh) ∈ V h ×Qh, it holds{

ah(σh;uh,vh)−b(vh, ph) + dh(σh;vh, ph) = `f ,h(σh;vh),

b(uh, qh) + dh(σh;uh, qh) + ch(ph, qh) = `g,h(qh)
(5.1)

with

ah(σh;uh,vh) = a(σh;uh,vh) + αGLS

∑
T∈Th

h2
T

µeff

(σhuh, σhvh)T , (5.2a)

dh(σh;uh, qh) = αGLS

∑
T∈Th

h2
T

µeff

(σhuh,∇qh)T , (5.2b)

ch(ph, qh) = αGLS

∑
T∈Th

h2
T

µeff

(∇ph,∇qh)T , (5.2c)

`f ,h(σh;vh) = `f (vh) + αGLS

∑
T∈Th

h2
T

µeff

(f , σhvh)T , (5.2d)

`g,h(qh) = `g(qh) + αGLS

∑
T∈Th

h2
T

µeff

(f ,∇qh)T , (5.2e)

where αGLS > 0 is a dimensionless stabilization parameter. We assume that αGLS is independent of
the mesh size h and constant in space.

In what follows, we also write (5.1) as

Ah(σh;uh, ph,vh, qh) = `f ,h(σh;vh) + `g,h(qh),

where Ah : Σh ×W h ×Qh × V h ×Qh is defined by

Ah(σh;uh, ph,vh, qh) = a(σh;uh,vh)− b(vh, ph) + b(uh, qh)

+ αGLS

∑
T∈Th

h2
T

µeff

(σhuh +∇ph, σhvh +∇qh)T .
(5.3)

Definition 5.1. The discrete control-to-state operator τh : Σh →W h×Qh is defined as the map σh 7→
τh(σh) = (uh, ph) such that the state (uh, ph) solves the discrete weak Brinkman problem (5.1) for
the control σh.

The following theorem guarantees the well-posedness and uniform boundedness of τh in the case of
pure Dirichlet boundary conditions.

Theorem 5.2 (Existence and uniqueness of discrete weak solution). Let µeff > 0, σh ∈ Σh, f ∈
L2(Ω), g ∈ L2(Ω). Let Γout = ∅ (pure Dirichlet data), and uD ∈ W h ∩H1

Γwall
(Ω) be the given

data in (5.1). Then there exists a unique weak solution (uh, ph) ∈W h ×Qh of (5.1). Moreover, the
following a priori bound holds:

‖uh‖1 + ‖ph‖0 ≤ c(‖f‖0 + ‖g‖0 + ‖uD‖1) =: C, (5.4)

where the constants c and C are independent of σh.

For the proof, we refer the reader, e.g., to [5] or, for the particular case σ = 0, to [6, Section 6.4.4]. An
extension of this result to the case of general boundary conditions is beyond the scope of this paper.

DOI 10.20347/WIAS.PREPRINT.2929 Berlin 2022



Reconstruction of flow boundaries from velocity data 11

5.2 Discrete optimization problem

The discrete counterpart of the cost functional F is Fh : Σh → R, Fh(σh) := J(τh(σh), σh), and
the optimization problem to be solved is

min
σh∈Σh

Fh(σh). (5.5)

This problem has a solution because Σh is compact, and Fh is continuous on Σh.

5.3 Derivative

In order to define a gradient-based optimization algorithm, we need to compute the gradient F ′h(σh) ∈
Σh (where we identified Σh with its dual). We proceed analogously as in the continuous case, showing
the differentiability of the discrete control-to-state operator τh, the adjoint equation, and the required
expression for the gradient F ′h(σh).

Lemma 5.3. The discrete control-to-state operator τh is continuously differentiable with respect to the
L∞-topology, and we have for σh ∈ Σh

τ ′h(σh)δh = (zh, rh) ∀δh ∈ Σh, (5.6)

where (zh, rh) ∈ V h ×Qh satisfies
ah(σh; zh,vh)− b(vh, rh) + dh(σh;vh, rh) = −(δhuh,vh)

+ αGLS

∑
T∈Th

h2
T

µeff

(f − 2σhuh −∇ph, δhvh)T ,

b(zh, qh) + dh(σh; zh, qh) + ch(rh, qh) = −dh(δh;uh, qh)
(5.7)

for all (vh, qh) ∈ V h ×Qh. In (5.7), we have (uh, ph) = τh(σh).

Remark 5.2. The terms proportional to αGLS on the right-hand side of the system (5.7) are due to the
stabilization used in the finite element method. If αGLS = 0, equation (5.7) reduces to the discretized
version of its continuous counterpart (4.7).

Proof. For given σh, δh ∈ Σh such that σh+δh ∈ Σh, denote (uσ, pσ) = τh(σh) and (uσ+δ, pσ+δ) =
τh(σh + δh). Then, their difference (ū, p̄) = τh(σh + δh)− τh(σh) ∈ V h×Qh solves the following
weak equations for all (vh, qh) ∈ V h ×Qh:{

ah(σh; ū,vh)− bh(vh, p̄) + dh(σh;vh, p̄) = −(δhuσ+δ,vh) + eh(δh;vh,uσ+δ, pσ+δ),

bh(ū, qh) + dh(σh; ū, qh) + ch(p̄, qh) = −dh(δh,uσ+δ, qh),
(5.8)

with

eh(δh;vh,uσ+δ, pσ+δ) := αGLS

∑
T∈Th

h2
T

µeff

(f − (2σh + δh)uσ+δ −∇pσ+δ, δhvh)T .

The terms in the right-hand side can be bounded by

| − (δhuσ+δ,vh) + eh(δh;vh,uσ+δ, pσ+δ)| ≤ C‖δh‖∞‖vh‖0,

|dh(δh,uσ+δ, qh)| ≤ C̃‖δh‖∞
∑
T∈Th

‖∇qh‖T ≤ C‖δh‖∞‖qh‖0,
(5.9)
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where the generic constants C and C̃ depend on the involved functions but not on σh. Moreover, both
C and C̃ depend on a constant from an inverse estimate of the form ‖∇qh‖T ≤ cinvh

−1
T ‖qh‖0 (see,

for example, [14, Theorem C.30]).

Applying Theorem 5.2 to the system (5.8) leads to the estimate

‖ū‖1 + ‖p̄‖0 ≤ C‖δh‖∞. (5.10)

To show that the derivative of τh is as claimed, consider (U , P ) = τh(σh+δh)−τh(σh)−τ ′h(σh)δh =
(ū, p̄)− (zh, rh) that solves for all (vh, qh) ∈ V h ×Qh
ah(σh;U,vh)− bh(vh, P ) + dh(σh;vh, P ) = −(δhū,vh)

− αGLS

∑
T∈Th

h2
T

µeff

(2σhū +∇p̄+ δhuσ+δ, δhvh)T ,

bh(U, qh) + dh(σh;U, qh) + ch(P, qh) = −dh(δh; ū, qh).

Estimating the right-hand side of this system analogously as in (5.9), applying Theorem 5.2, and using
the estimate (5.10) gives (for a generic positive constant C)

‖U‖1 + ‖P‖0 ≤ C(‖ū‖1 + ‖p̄‖0 + ‖δh‖∞‖uσ+δ‖0)‖δh‖∞ ≤ C‖δh‖2
∞.

This shows that ‖(U , P )‖V h×Qh
= O(‖δh‖2

∞) and therefore the Lemma.

The adjoint problem, for a given σh ∈ Σh, reads: Find (wh, th) ∈ V h × Qh such that for all
(vh, qh) ∈ V h ×Qh, it holds{

ah(σh;wh,vh) + b(vh, th) + dh(σh;vh, th) = −(uh − û,vh)L2(Ωmeas)
,

−b(wh, qh) + dh(σh;wh, qh) + ch(th, qh) = 0.
(5.11)

The system (5.11) can be rewritten as

A∗h(σh;wh, th,vh, qh) = −(uh − û,vh)L2(Ωmeas)
, (5.12)

where A∗h(σh;wh, th,vh, qh) denotes the adjoint of Ah defined in (5.3).

Let (wh, th) ∈ V h × Qh be the solution of (5.11). The derivative F ′h(σh) in the direction of a given
increment δh ∈ Σh is then determined by the chain rule:

F ′h(σh)δh = (Ju(τh(σh), σh), Jp(τh(σh), σh))τ
′
h(σh)δh + Jσ(τh(σh), σh)δh

(5.6)
= (uh − û, zh)Ωmeas

+ α(σh, δh)
(5.12)
= −A∗h(σh;wh, th, zh, rh) + α(σh, δh)

= −Ah(σh; zh, rh,wh, th) + α(σh, δh).

(5.13)

Using (5.7), we obtain

F ′h(σh)δh = (δhuh,wh)− αGLS

∑
T∈Th

h2
T

µeff

(f − 2σhuh −∇ph, δhwh)T

+ dh(δh;uh, th) + α(σh, δh)

= (uh ·wh + ασh + αGLS ηh, δh) ,

(5.14)
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where for each cell T ∈ Th, the term

ηh
∣∣
T

= ηh(σh;uh, ph,wh, th)
∣∣
T

:=
h2
T

µeff

[(−f + 2σhuh +∇ph) ·wh + uh · ∇th] (5.15)

represents the contribution due to the stabilization.

Remark 5.3 (Discrete optimality). Notice that when deriving a numerical scheme for the optimization
problem (4.2), the order of the steps matters: The order optimize-then-discretize (and stabilize) yields
the derivative F ′h(σh)δh corresponding to the discretized version of (4.12), whereas discretize (and
stabilize)-then-optimize gives us (5.14). The latter option includes the additional terms defined by
(5.15), which scale with the square of the characteristic mesh size used for the finite element method.

5.4 Pre-processing

We introduce a pre-processing the goal of which is to exploit the information available in the measure-
ments û to reduce the dimension of the control space.

We define the set of all cells that are surely fluid, Thf , and we set σh := 0 in these cells and keep this
during the optimization. These cells are those in which we have the measurements available, and the
measured velocity is high enough:

Thf :=
{
T ∈ Th | T ∈ Ωmeas and

∥∥ũ (xB(T ))

)∥∥ ≥ εf
}
, (5.16)

where xB(T ) is the barycenter of T , and ‖·‖ denotes the Euclidean norm. As for the parameter εf > 0
[m/s], we want it to be as small as the expected amount of noise in the data allows: If εf is too small,
solid cells with highly noisy data may be wrongly classified as fluid.

The corresponding reduced control space is

Σ̃h :=
{
σh ∈ P0(Th) | 0 ≤ σh ≤ σmax, and σh|T = 0 if T ∈ Thf

}
. (5.17)

Remark 5.4. As previously observed (Remark 5.1), it is possible to have two different meshes: one for
the finite element solution and one for the shape optimization (for σh). In this case, the pre-processing
uses the mesh for σh.

Remark 5.5. In [2], the authors reduced the control space by considering only the part of their (two-
dimensional) domain where they expected the boundary to be. Moreover, their data were available in
the whole of this part.

On the contrary, our approach is more general: We reduce the control space solely based on the
data and do not assume any a priory information on the sought boundary or the domain geometry. In
particular, we do not need to assume that the data are available in the parts of the domain where the
boundary is located (see, e.g., Figure 5, page 21). As shown in the numerical tests in Sections 7–9,
our algorithm produces a satisfactory solution also in this situation.

Remark 5.6. The concept of pre-processing can be easily extended by replacing the pointwise evalu-
ation

∥∥ũ(xB(T ))
∥∥ in the definition (5.16) with, e.g., the Lp norm on the cell or by taking into account

the values in neighboring cells.

Remark 5.7. The pre-processing could also be formally included in the derivation of the adjoint prob-
lem and the optimality condition. One would then use arguments analogous to those described in
Section 5.3 and multiply the resistance in the Brinkman problem by the characteristic function of the
mesh Th\Thf .
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6 Optimization algorithm

6.1 Gradient-based optimization

For given measurements û ∈ L2(Ωmeas), the goal is to minimize the cost functional

Fh(σh) = J(uh, σh) =
1

2
‖uh − û‖2

0,Ωmeas
+
α

2
‖σh‖2

0, (6.1)

where (uh, ph) = τh(σh) is the finite element solution of the system (5.1) for a given σh.

We solve this problem iteratively using a gradient descent scheme. The update of the control σh has
the form

σn+1
h = PΣ̃h

(σnh − γδ(σnh)) , n = 1, 2, . . . , (6.2)

where γ > 0 [Pa2 · s4/m6] is the step size, −δ(σnh) is a descent direction, and PΣ̃ denotes the

projection onto the reduced set of admissible controls Σ̃h. This PΣ̃ can be realized as the pointwise
projection onto the interval [0, σmax].

The descent direction follows from (5.14):

−δ(σnh) := unh ·wn
h + ασnh + αGLS η

n
h , (6.3)

where ηnh is defined in (5.15). It depends on the forward solution (unh, p
n
h) of (5.1) and on (wn

h, t
n
h),

the solution to the adjoint problem (5.12). Using equation (5.14), the definition (6.3) guarantees that

−F ′h(σnh)δ(σnh) ≤ 0 ,

i.e., −δ(σnh) is really a descent direction.

Since σnh ∈ Σ̃h ⊂ P0(Th), the update (6.2) requires the projection of (6.3) onto P0(Th). We carry out
this projection as follows:

Let {φj}N0

j=1 be an orthogonal basis of P0(Th) such that φj = 1
|Tj | for each Tj ∈ Th. We then define

σnh,j := (σnh , φj) and compute the finite element projection of the update as

−δ(σnh)j := −(δ(σnh), φj) = (unh ·wn
h, φj) + ασnh,j + αGLS(ηnh , φj), (6.4)

where the additional contribution due to the stabilization reads

(ηnh , φj) =
h2
Tj

µeff |Tj|

∫
Tj

((−f + 2σnhu
n
h +∇pnh) ·wn

h + unh · ∇tnh) .

The iterative optimization algorithm is summarized in Algorithm 1.
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Algorithm 1: Optimization algorithm

Data: Set n = 0 and choose initial control σ0
h ∈ Σh, α in (4.1), the step size γ, the parameter εf

in (5.16), and a stopping tolerance εstop > 0.
begin

0 Determine Thf and Σ̃h defined by (5.16) and (5.17) and modify σ0
h accordingly.

repeat

1 Increase n by one and solve equation (5.1) to get (unh, p
n
h).

2 Calculate F n
h := Fh(σ

n
h) = J((unh, p

n
h), σnh) = 1

2
‖unh − û‖2

0 + α
2
‖σnh‖2

0.

3 Solve the adjoint problem (5.11) to compute (wn
h, t

n
h).

4 Calculate the descent direction −δ(σnh) using formula (6.4).

5 Calculate the new control σn+1
h via (6.2).

until

∣∣∣∣‖un+1
h − û‖2

0 − ‖unh − û‖2
0

‖un+1
h − û‖2

0

∣∣∣∣ < εstop;

end

6.2 Post-processing

As a next step, we further restrict the space of admissible controls by allowing σh to have only two
possible values and classifying the cells as fluid (σh = 0) or solid (σh = σmax). This is then followed
by two more steps. Hence, we carry out these three post-processing steps:

(i) thresholding, i.e., setting

σh(T ) :=

{
0, σh(T ) < σth,

σmax, otherwise
(6.5)

for a given threshold σth > 0 [Pa · s/m2];

(ii) gap filling (Section 6.2.1);

(iii) cluster filtering (Section 6.2.2).

6.2.1 Gap filling

The purpose of this step is to correct the classification of a) isolated fluid cells that are enclosed in
solid regions and b) thin layers of fluid cells between the wall Γwall and solid regions. We call these
cells gaps. Since the obstruction Ω \Ωfluid stands for accumulated material attached to Γwall, ideally,
none of the above cells should exist.

However, it can happen in the computations that the magnitude of the velocity data in these locations
is very small, e.g., due to noise or numerical artifacts. Consequently, these cells remain invisible to
Algorithm 1 and end up wrongly marked as fluid.
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We consider two types of gaps:

� Type 1: A cell T ∈ Th is called a gap of type 1 if σh(T ) = 0 and σh(T̃ ) = σmax for all cells T̃
sharing an edge (in 2D) / a face (in 3D) with T , see Figure 2a, page 17.

� Type 2: The following description is illustrated in Figure 2b, page 17. Let T be an internal cell
with the diameter hT such that σh(T ) = 0, and let Lg be a given positive constant.

We consider (in 2D) a square with the same centroid as T and its edges aligned with the coor-
dinate axes. Further, we consider the lines going through the opposite vertices or the midpoints
of the opposite edges of this square. Finally, we consider the line segments that lie in these
lines and are of the length LghT , and have the above centroid as its midpoint.

Then we say that T is a gap of type 2 if at least one of these line segments has both end points
in solid cells.

For a boundary cell T , we choose a positive constant Lg,∂Ω and call T a gap of type 2 if at
least one line segment starting from the centroid of T and directed as the inward normal of a
boundary face of T ends in a solid cell.

The extension of this concept to 3D is straightforward: The above auxiliary square is replaced
by a cube, and the above auxiliary lines go through the midpoints of the opposite faces as well.

We use several values of Lg and Lg,∂Ω when checking whether a given cell is a gap. These values
are the same for each cell. The gap filling can be written as Algorithm 2.

The result of this algorithm is very sensitive to the choice of Lg and Lg,∂Ω: Too large values may
yield the (erroneous) filling of large fluid areas, especially in the thinnest parts of the fluid domain.
We choose these values experimentally as Lg = 1

8
, 1

4
and Lg,∂Ω = 1

4
, 1

2
, 3

4
. These choices should

assure that when checking whether a cell is a fluid gap, we consider only the two closest layers of
cells.

Algorithm 2: Gap filling algorithm

Data: σh that takes only two values (0 or σmax), and sets of values for the parameters Lg and
Lg,∂Ω.

repeat
for all T ∈ Th such that σh(T ) = 0 do

for all values of Lg and Lg,∂Ω do
if T is a gap then

σh(T ) := σmax

end
end

end
until no changes in σh have been made;

6.2.2 Cluster filtering

Algorithm 1 gives a function σh that gradually varies from 0 to a positive value that is typically far below
the value of an almost impermeable region. Therefore, we modify this σh by the thresholding (6.5), i.e.,
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∂Ω

σh = σmax σh = σmax

σh=σmax

σh = σmax

σh = σmax

σh = 0

σh = 0

(a) Gaps of type 1 indicated by gray color.

∂Ω

σh = σmax

σh = σmax

σh = 0

σh = 0

(b) Gaps of type 2 indicated by gray color.

Figure 2: Two types of gaps. In 2b, we also indicate the auxiliary square (dotted blue line), auxiliary
lines (dashed olive lines) and auxiliary line segments (green) corresponding to the lower gray cell.

we remove the intermediate values of σh by classifying the cells into two categories. Afterward, we
employ the gap filling to correct the marks of isolated fluid cells or thin clusters of fluid cells enclosed
in solid regions.

However, there may still remain some isolated cells or tiny isolated clusters of cells wrongly identified
as solid or fluid. To remove these clusters, we introduce the cluster filtering:

(i) We group all solid and fluid cells into disjoint clusters of the maximal size possible, where two
cells belong to the same cluster if they are both fluid or both solid and have a common face (in
3D) or edge (in 2D).

(ii) We remove all clusters with a volume smaller than a given threshold by marking them as fluid
(in the case of a solid cluster) or solid (in the case of a fluid cluster).

For the numerical examples shown in this paper, we considered a threshold equal to 1% of the volume
of the largest solid cluster.

One may think that in practice, the gap filling affects mostly the cells that the cluster filtering affects as
well, thus rendering the gap filling unnecessary. However, as explained at the end of Section 8.1, this
is not the case.

6.3 Complete algorithm for shape estimation

The algorithm for the estimation of Ωfluid can be summarized as follows:

1 Compute the resistance σh that minimizes the functional (6.1) using the gradient-based iterative
optimization algorithm, Algorithm 1.

2 Carry out the post-processing steps i–iii from Section 6.2 (in this order).
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Γin

Γout,1

Γout,2
Γout,3

Γout,4

Γwall |û|

|û|

Figure 3: Left: View of the surface mesh of the considered aortic geometry with the corresponding
decomposition of the boundary. The diameter of the inlet boundary is around 2.5 cm. The height of
the domain is around 19 cm. Right: Front and bottom views of the artificial obstruction Ω\Ωflow (black
region), together with the corresponding fluid velocity field used as û [m/s] on two slices orthogonal to
the view.

Note that one iteration of Algorithm 1 is several times more expensive than the whole post-processing.
But since Algorithm 1 needs to perform at least hundreds of iterations (see Figure 6, page 22), the
computational costs for step 2 are negligible in comparison with step 1.

7 Numerical simulations

7.1 Model setup

Geometry We consider various scenarios of a flow in an aortic geometry (Figure 3, left) in which a
portion of the original fluid domain was artificially marked as a solid boundary. Hence, the original ge-
ometry stands for Ω, the new domain is Ωflow, and the internal solid domain is Ω\Ωflow (see Figure 3,
center and right).

The computational mesh was segmented from medical imaging, and it was provided by the research
group of Prof. Leonid Goubergrits (Institute of Computer-assisted Cardiovascular Medicine, Charité
University Hospital, Berlin).

Parameters for the forward problem In (2.1), we set µeff = 3.5 ·10−6 Pa · s (equal to the viscosity
of blood), f = 0, and g = 0. The inlet velocity profile uin is defined as the interpolation of MRI
measurements onto the piecewise linear finite element space. The Neumann boundary conditions on
the outlets Γout,1, . . ., Γout,4 are defined as gn,1 = 0.1n Pa and gn,i = 0 for i = 2, 3, 4. Finally, we
always use the value αGLS = 10−2 in (5.2).
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The definitions of Ωfluid and Ωmeas are scenario-dependent: As for the scenarios in Sections 8.1–
8.5 and 9.1, we use Ωfluid defined as in Figure 5, page 21. The region Ωmeas is either equal to
Ω (in Sections 8.1–8.2), or defined as in Figure 5 (in Sections 8.3–8.5 and 9.1). In the scenario in
Section 9.2, Ωfluid and Ωmeas are defined as in Figure 17, page 35.

The domain Ω is discretized using a mesh Th of 106,097 tetrahedra (21,324 DOF for ph and for each
component of uh) in Figure 3 whose cell diameters vary in the range [0.7, 5.0] mm. We use this mesh
for all parts of the complete algorithm in Section 6.3.

Parameters for Algorithm 1 We always set σ0
h = 0, εf = 1 m/s in (5.16), α = 10−5 m6 ·s−4 ·Pa−2

in (4.1), γ = 108 Pa2 · s4/m6 in (6.2), and εstop = 10−4.

Parameters for the post-processing We always set σth = 2 Pa · s/m2 (this choice is explained in
Section 7.6), σmax = 104 Pa · s/m2 in (6.5), Lg = 1

8
, 1

4
, and Lg,∂Ω = 1

4
, 1

2
, 3

4
in Algorithm 2.

Hardware and software parameters We carried out the simulations by employing our in-house
code ParMooN [?] on the computer HPE Synergy 660 Gen10 with 2 Xeon eighteen-core processors,
3000 MHz, and 768 GB RAM. We used 32 MPI processes, and one step of Algorithm 1 took approxi-
mately 6 s.

7.2 Synthetic velocity measurements

We applied our optimization framework to synthetic velocity data û, i.e., to data based on results of
numerical simulations. We generated these data as follows:

1 (Reference solution) Define a binary function σtrue equal to 0 in the fluid region Ωflow and equal
to σmax in the solid region Ω\Ωflow, see Figure 3, right.

2 (Perfect measurements) Solve the flow problem (5.1) with σh = σtrue.

And only for the noisy measurements:

3 (Noisy measurements) Interpolate the numerical solution onto P0(Th) and then to each compo-
nent, add a Gaussian noise field with the mean 0 and the standard deviation 1/3. This deviation
is about 8% of the maximum magnitude of the initial velocity, which is approximately 4 m/s.

4 (Interpolation) Interpolate the resulting (piecewise-constant) velocity field onto W h (the velocity
finite element space). Figure 4 shows this field.

Remark 7.1. The reference solution used for the numerical study was generated with σmax = 104.
We also performed a set of experiments using σmax = 108, which yielded negligible differences.

DOI 10.20347/WIAS.PREPRINT.2929 Berlin 2022



O. Partl, U. Wilbrandt, J. Mura, A. Caiazzo 20

noisy |û| noisy |û|

Figure 4: Left: Magnitude of the synthetic velocity data affected by noise [m/s] on the domain boundary.
Notice that the color range is rescaled between 0 and 1 m/s, while the actual maximum magnitude
of the noisy data over the whole domain is about 4.4 m/s. Center: Cross-sectional view of the noisy
velocity data. Right: Cells identified as fluid and excluded from the optimization (in green) starting from
noisy synthetic data.

7.3 Estimation of boundary shape

Notice that the goal of the post-processing is no longer to reduce the cost functional Fh. Its purpose
is to classify the cells into two subdomains — solid and fluid — and, at the same time, to reduce the
effect of numerical artifacts. Therefore, to evaluate the performance of the whole algorithm in terms of
the shape approximation, we consider two regions:

ΩF := {T ∈ Th |σh(T ) = 0} and ΩS := {T ∈ Th |σh(T ) > 0}.

If the exact shape of Ωflow is known (as in our examples with synthetic data), we can define a shape
approximation error as

E := |Ωflow ∩ ΩS|︸ ︷︷ ︸
=:ES

+ |(Ω \ Ωflow) ∩ ΩF|︸ ︷︷ ︸
=:EF

, (7.1)

i.e, ES denotes the volume of the cells that are wrongly identified as solid (but should be fluid), and EF
stands for the volume of the cells that belong to the solid domain but were marked as fluid.

Observe that the error (7.1) can be evaluated only in a controlled setting where the reference solution
is known, as in the cases considered in this paper. A possible alternative is to use, as a posteriori
criteria, the error with respect to the available velocity data (see also Section 7.6).

7.4 Overview of scenarios

We test the complete algorithm for the shape estimation described in Section 6 on several scenarios
that differ in the availability and quality of the measurements û. We consider the following cases that
are based on the geometry in Figure 3, page 18:
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Figure 5: Our scenarios with partial measurements. Left: Case (partial-inside). Center: Case (partial-
outside). Right: Case (partial-large). The red area stands for the obstruction Ω\Ωflow (which is the
same in all scenarios). The velocity data û are unavailable in the green regions. The regions in the left
and center cases have similar volumes.

� full + noise-free (Section 8.1): Noise-free measurements available on the whole domain.

� full + noise (Section 8.2): Noisy measurements available on the whole domain.

� partial-inside + noise (Sections 8.3 and 9.1): Noisy measurements that are not available in a
region containing a part of the internal boundary. In Section 9.1 a finer mesh is used for the
velocity and the pressure.

� partial-outside + noise (Section 8.4): Noisy measurements that are not available in a region that
does not intersect the internal boundary.

� partial-large + noise (Section 8.5): Noisy measurements that are not available in a large down-
stream region covering a part of the internal solid boundary.

Figure 5 shows the above regions where data are not available, together with the location of the
internal boundary that we estimate.

7.5 Summary of main results

In this section, we summarize the overall qualitative and quantitative results of Algorithm 1 and the
post-processing in the above cases. Further aspects of the respective scenarios are discussed in the
subsequent sections.

7.5.1 Algorithm 1

First, Figure 4 (right), page 20, shows the results of the pre-processing in the scenario full + noise:
Almost half of the cells were identified as fluid and excluded from the optimization. In the other sce-
narios, the results were similar, except that no cells were identified as fluid in the regions of missing
data.
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Figure 6: Left. Reduction of the cost functional value (computed as F n
h /F

0
h ) as a function of

the iteration number n. Right: Reduction of the L2-error with respect to the data, computed as
‖unh − û‖2

0,Ωmeas

‖u0
h − û‖2

0,Ωmeas

, as a function of the iteration number n.

The main results are depicted in Figure 6 (the reduction of the cost functional over the optimization
loop):

Figure 6 (left) shows that the algorithm considerably reduced the cost functional in the noise-free setup
when the measurements were available over the whole domain: The final value of the cost functional
was about 1% of the initial value. Adding noise to the measurements lowered the performance, the
final value being about 8% of the initial value. The scenarios with partially available measurements
yielded similar overall performances.

Figure 6 (right) shows the difference between the measurements and the simulated velocity at each
optimization iteration. In the noise-free scenario, with the data available on the whole domain, the
error was reduced by about 80% in less than 500 iterations. Afterward, the decrease continued, and
the algorithm stopped after about 2,500 iterations. Although this scenario is unrealistic in practice, we
used it to validate the algorithm in the most favorable situation and to obtain reference results for more
realistic cases. Considering noisy data available over the whole domain resulted in an error reduction
of around 70%. When the data were also only partially available, the results worsened slightly if Ω \
Ωmeas contained the internal boundary (the cases partial-inside + noise and partial-large + noise).

Although this work focuses on boundary reconstruction based on velocity measurements, the pressure
field is also a quantity of interest in several applications (e.g., medical diagnosis). Therefore, Figure 7
provides an overview of the pressure fields corresponding to the optimal resistance σh, together with
the true pressure field p̂ corresponding to the noise-free data û. In particular, it shows the average
pressures on selected planes orthogonal to the centerline of the domain Ω.

Outside the obstructed region, which is located between planes 4 and 6, the pressure drop behaves
similarly in all scenarios, and we obtained a good agreement with the reference pressure. This is
because we imposed the same Neumann boundary conditions on the outlet boundaries. The main
differences can be observed on plane 5 for the scenario partial-inside + noise (the average pressure
is lower than p̂) and on plane 6 for the scenarios partial-outside + noise and partial-large + noise (the
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Figure 7: Left. Pressure field p̂ corresponding to the noise-free data û on the domain boundary to-
gether with the positions of the reference planes. Right. Average pressures over the reference planes
after the optimization loop and p̂. The obstruction is located approximately between planes 4 and 6.

average pressure is higher than p̂).

This indicates that the mismatch in the pressure is due to the unavailability of the data û. In fact,
Algorithm 1 tends to incorrectly increase σh in the flow regions where the data are not available. This
led to an increase in the pressure ph on plane 6 in the last two scenarios. However, it did not lead to
an increase in ph on plane 5 in the scenario partial-inside + noise because the algorithm produced a
lower σh in the obstructed area lying in the region of the missing data. This yielded a lower average
pressure in this part of Ω.

7.5.2 Post-processing

Table 1 overviews the results of the post-processing applied to the results of Algorithm 1: In the noise-
free situation, the algorithm correctly recognized 99% of the solid cells (the fourth column of Table 1).
At the same time, a volume of about 2.4 cm3 (circa 35% of the obstruction volume) was erroneously
marked as solid.

Considering the noisy measurements, we still observe good accuracy in the marking of solid cells
(more than 90%). The volume of the fluid cells wrongly marked as solid also remains comparable with
the scenario without noise.

Note that the fluid cells wrongly marked as solid always correspond to up to one layer of cells along
∂Ωfluid (see, e.g., Figure 12, page 29). This also explains the fact that this error is similar in all scenar-
ios. In the situation with a large portion of missing measurements, the accuracy in the marking of solid
cells decreased (to merely 79%). But at the same time, the volume of the cells erroneously marked as
solid reduced.

Also note that both the gap filling and cluster filtering can systematically reduce the error, regardless
of the considered scenario. They improve the robustness of the procedure regardless of the presence
of noise, and their effect even increases when the quality and availability of data deteriorates. This,
together with the pictures of the estimated Ωfluid in the following sections, means that each post-
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ES EF E
Initial errors (m3) 0 6.895e-6 (100%) 6.895e-6 (100%)

full + noise-free
Thresholding 1.740e-6 1.698e-6 (24.8%) 3.438e-6 (49.9%)
Gap filling 2.393e-6 8.784e-8 (1.3%) 2.481e-6 (36.0%)
Cluster filtering 2.398e-6 1.133e-8 (0.2%) 2.409e-6 (34.9%)

full + noise
Thresholding 1.957e-6 2.462e-6 (35.7%) 4.419e-6 (64.1%)
Gap filling 2.732e-6 4.809e-7 (7.0%) 3.212e-6 (46.6%)
Cluster filtering 2.424e-6 4.177e-7 (6.1%) 2.842e-6 (41.2%)

partial-inside + noise
Thresholding 1.884e-6 3.004e-6 (43.6%) 4.888e-6 (70.9%)
Gap filling 2.591e-6 7.962e-7 (11.5%) 3.387e-6 (49.1%)
Cluster filtering 2.463e-6 6.401e-7 (9.3%) 3.104e-6 (45.0%)

partial-outside + noise
Thresholding 1.620e-6 2.528e-6 (36.7%) 4.148e-6 (60.2%)
Gap filling 2.185e-6 5.413e-7 (7.9%) 2.726e-6 (39.5%)
Cluster filtering 2.156e-6 4.652e-7 (6.7%) 2.621e-6 (38.0%)

partial-large + noise
Thresholding 4.247e-6 3.211e-6 (46.6%) 4.247e-6 (61.6%)
Gap filling 1.410e-6 1.522e-6 (22.1%) 2.931e-6 (42.5%)
Cluster filtering 1.393e-6 1.449e-6 (21.0%) 2.842e-6 (41.2%)

Table 1: Errors EF , ES , E (the total volumes of cells wrongly marked as fluid and solid, respectively,
and E = EF + ES) after each post-processing step. The percentage values indicate how large the
errors are relative to the initial error.

processing step plays an important role in improving the quality of the solution: The thresholding
alone yields, in general, larger errors in the identification of solid cells, especially in the case of noisy
measurements.

7.6 Effect of choice of threshold σth

One of the outcomes of our simulations is that the final result strongly depends on the value of the
threshold σth in the thresholding. The purpose of this section is to shed some light on the problem of
how to choose σth in practice.

7.6.1 Scenario partial-inside + noise

First, we investigate the sensitivity of the algorithm with respect to σth for the scenario partial-inside +
noise: Figure 8 (page 25) shows the estimated obstruction Ω \ Ωfluid for σth = 1, 2, . . . , 5, together
with the true solution.

Note that the above values of σth are far below the values of σh corresponding to a nearly imperme-
able region (σmax = 104) that we used for the generation of the synthetic data û. This is because
Algorithm 1 always produces an optimal σh the maximum of which is far below σmax; the velocity field
is insensitive to any further increase in σh (see Figure 11, page 28). This behavior has been also
reported in recent related problems (see [2]), and it motivates the use of the post-processing.
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true obstruction σth = 1 σth = 2

σth = 3 σth = 4 σth = 5

Figure 8: Scenario partial-inside + noise: Estimated shape of the obstruction Ω \ Ωfluid after the
cluster filtering for various thresholds σth. Small thresholds incorrectly enlarge the obstruction, but this
obstruction resembles the true one more.
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Figure 9: Scenario partial-inside + noise: Errors EF , ES , E (the total volumes of cells wrongly marked
as fluid and solid, respectively, and E = EF + ES) after each post-processing step for the thresh-
olds σth = 0.5, 1.0, 1.5, . . . , 13. These thresholds cover the range of the optimal σh computed by
Algorithm 1. In each curve, the colors refer to the individual errors, while the markers (circles, squares,
and triangles) denote the individual post-processing steps.

Further, Figure 9 shows how both EF and ES (the total volumes of the cells incorrectly marked as fluid
and solid, respectively) depend on σth: As expected, ES is a decreasing function of σth that is zero after
a certain σth (as σth increases, less cells with positive σh values after the optimization are marked as
solid). Vice versa, EF is increasing in σth.

Moreover, the shape approximation error E = EF + ES has a minimum that is close to σth = 2. For
this value, the error E improved in the last two post-processing steps the most (cf. the green lines with
dots and triangles).

7.6.2 Other scenarios

Next, Figure 10 (top) shows the shape approximation error E as a function of σth for all considered
cases. This error is clearly sensitive to σth, and in the considered cases, it always attains its minimum
value for σth approximately in the interval [1.5, 3.0].

Unfortunately, the shape approximation error cannot be computed in general. Thus, it cannot be used
as a criterion for the choice of the threshold σth. In order to have a practical guideline for the thresh-
old selection, we also analyze how the error in the velocity depends on σth, see Figure 10 (bottom).
Namely, for each value of the threshold σth, we compute the flow solution uh based on the corre-
sponding estimated solid and fluid domains, together with the difference between this solution and the
data û. Since the velocity measurements generally contain noise, and they are not available over the
whole domain Ω, one shall not expect the minima of E and the velocity error to be attained at the same
σth. However, in the considered cases, the minima of the velocity errors are attained for σth ∈ [4, 9.5],
which is slightly higher than the optimal σth for E (between 1.5 and 3.0). Hence, we believe that a good
practical choice of σth is a value slightly lower than the optimal σth for the velocity error.
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Figure 10: Errors E (top) and velocity errors (bottom) after the cluster filtering for individual scenarios
and the thresholds σth = 0.5, 1.0, 1.5, . . . covering the ranges of the optimal σh computed by Algo-
rithm 1. The minima of the velocity errors do not correspond to the minima of E . Hence, the problems
of minimizing the velocity error and approximating the obstruction are not completely related to each
other.
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|û| |û| |û|

σh|uh| σh|uh| σh|uh|

Figure 11: Scenarios full + noise-free (left column), partial-inside + noise (center column) and partial-
large + noise (right column). Top row: Velocity data û [m/s] in the above scenarios. The green region
depicts the area where the data û are not available. Bottom row: Velocity field uh [m/s] obtained by
solving the forward problem with the optimal σh and this σh [Pa · s/m2].

8 Detailed results in scenarios

8.1 Scenario full + noise-free

This is the ideal situation: The data û are noise-free and available in the whole domain. Figure 11 (top-
left) shows a selected view of the data û, and Figure 11 (bottom-left) shows the optimal resistance σh
— prior to any post-processing — and the velocity field uh obtained by solving the forward problem
with the optimal resistance.

The maximum of σh in Figure 11 (bottom-left) lies far below the high value (σmax = 104) used for
the generation of the synthetic data; the velocity field is insensitive to any further increase in σh. This
behavior was observed in all cases considered in this work.

The effect of the post-processing steps is summarized in Figure 12: Classifying the cells as solid or
fluid based on a threshold (Figure 12, top-left) located the obstructed area and captured the shape of
the internal boundaries very well. The shape approximation error E reduced by approximately 50% —
see Table 1, page 24.
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Thresholding Gap filling Cluster filtering

Figure 12: Scenario full + noise-free: Results of the post-processing steps. Top row: Ω \Ωfluid (in red)
after each post-processing step. Bottom row: Cells incorrectly marked as fluid (in blue) and solid (in
red) after each post-processing step.

Figure 12 (bottom-left) shows the cells that the thresholding marked incorrectly. These cells are ba-
sically on two types of spots: (i) near ∂Ω, where the cells remain fluid (σh = 0); and (ii) at the
solid-fluid interface, where the algorithm tends to incorrectly extend the solid part. The first type of
cells is corrected using the gap filling; the results are shown in Figure 12 (center column). This step
further decreased E to 36% of the initial error. Note that the cells in question cannot be corrected via
the cluster filtering because they belong to the largest cluster of fluid cells.

Finally, Figure 12 (right column) shows the effect of the cluster filtering that improved the solution
again: Some small isolated fluid clusters disappeared. The final E is about 35% of the initial error, and
there are only several cells incorrectly marked as fluid.

8.2 Scenario full + noise

With the Gaussian noise included in the data û, Algorithm 1 meets the convergence criterion after
about 500 iterations, yielding a higher cost functional and a worse velocity error than in the previous
case without the noise, see Figure 6, page 22. Moreover, the resistance σh is generally lower than that
obtained in the noise-free scenario, while the peak velocity is slightly lower than in the previous case
(the corresponding figure is omitted).
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Thresholding Gap filling Cluster filtering

Figure 13: Scenario full + noise: Results of the post-processing steps. Top row: Ω\Ωfluid (in red) after
each post-processing step. Bottom row: Incorrectly marked fluid (in blue) and solid (in red) cells after
each post-processing step.

As for the approximation of the internal boundary, the thresholding reduced the shape approximation
error E by almost 36% (Table 1, page 24, and Figure 13, left column), producing an approximation
of the obstruction similar to that in the noise-free case. However, the resulting boundary layer of cells
wrongly marked as fluid is thicker in some parts, and there are many small isolated clusters of incor-
rectly identified cells scattered throughout the whole domain Ω.

The gap filling corrected the wrong identification of fluid cells near the boundary along the middle part
of the obstruction (Figure 13, center column); however, it was significantly less successful in the front
and rear parts.

Contrary to the noise-free case, the effect of the cluster filtering is clearly visible now (Figure 13,
right column): Many small isolated fluid and solid clusters have been correctly removed. The complete
algorithm reduced E by about 59%.

8.3 Scenario partial-inside + noise

This scenario tests how our algorithm performs when the noisy data û are unavailable in a small
region covering a part of the internal solid boundary as well (Figures 11, center (page 28), and 5, left,
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Thresholding Gap filling Cluster filtering

Figure 14: Scenario partial-inside + noise: Results of the post-processing steps. Top row: Ω \ Ωfluid

(in red) after each post-processing step. Bottom row: Cells incorrectly marked as fluid (in blue) and
solid (in red) after each post-processing step.

page 21).

The results of Algorithm 1 depicted in Figure 6 (page 22) are slightly worse than in the previous case.
Figure 11 (center), page 28, indicates that this could be a consequence of the missing data: The
values of σh in (Ω \ Ωmeas) ∩ (Ω \ Ωfluid) — i.e., the solid domain without available measurements
— are generally lower then in Ωmeas ∩ (Ω \Ωfluid) — i.e., the solid domain where measurements are
available.

The approximation of the internal boundary (Figure 14) is accordingly worse than in the previous case:
The thresholding marked many cells in the interior of (Ω \ Ωmeas) ∩ (Ω \ Ωfluid) incorrectly as fluid
(cf. the concentration of the blue spots in Figures 14 and 13, left columns), decreasing the shape
approximation error E only by about 29% (Table 1, page 24).

The gap filling corrected many of these marks (Figure 14, center column), resulting in the highest
reduction of E between two consecutive post-processing steps in Table 1 (by almost 22%).

Finally, the cluster filtering removed many tiny isolated clusters of incorrectly marked cells (Figure 14,
right column), yielding the final reduction of E by 55%.

Note that apart from the boundary cells wrongly marked as fluid in Ω \ Ωmeas, the final approximation
of the internal boundary is very similar to the previous case (cf. Figures 14 and 13, right columns).
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8.4 Scenario partial-outside + noise

This scenario is similar to the previous one, but the region of the missing data û does not intersect the
obstruction (Figure 5, center, page 21).

The results of Algorithm 1 and the approximation of the internal boundary (Figure 6, page 22, and
Table 1, page 24) are similar to the case where data are available in the whole domain (Section 8.2).
This indicates that it is not crucial for the performance of the algorithm to have access to the data û
outside the parts of Ω in which the obstruction lies.

Note that the error ES is even lower than the scenario full + noise. This shows that it is not necessarily
advantageous to have more data when these data are corrupted by noise.

8.5 Scenario partial-large + noise

In this scenario, the region of the missing data û is considerably larger than in Sections 8.3 and 8.4
(Figure 5, right, page 21), but the results of Algorithm 1 (Figure 6, page 22) are comparable to those
obtained in the other scenarios.

The volume of the fluid cells wrongly classified as solid, ES , (see Table 1, page 24) is even significantly
better than in all other cases. This is because the algorithm failed to detect a large portion of the
obstruction inside Ω \ Ωmeas, i.e., it did not mark any cells as the solid ones in this region at all (see
Figure 15). Conversely, the volume of the solid cells wrongly classified as fluid, EF , is the highest one
of all the scenarios.

9 Additional tests

9.1 Effect of mesh refinement

In this section, we investigate how the mesh size affects the performance of our algorithm. We consider
the same geometry and data û as in the scenario partial-inside + noise (Section 8.3), but we solve the
flow problem on a finer computational mesh, which we obtained by refining the original mesh uniformly.
This also applies to the noisy data, which we interpolate onto the finer grid. However, the control space
remains the same. In other words, we use the original coarse mesh

(i) to compute the descent direction in Algorithm 1;

(ii) for σh both in Algorithm 1 and in the post-processing.

The finer mesh consists of 848,776 tetrahedra (157,107 DOF for ph and for each component of uh).
The parameter values are the same as in the case partial-inside + noise (Section 8.3), with the excep-
tion of γ = 5 · 108 Pa2 · s4/m6 in (6.2).

The reduction of the cost functional and the L2-error in Figure 16 are slightly better than in the original
scenario, and Table 2 shows that the errors ES are very similar to those in Section 8.3, but the errors EF
are slightly larger. However, the overall results are similar to those in Section 8.3 (the detailed figures
are omitted).
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Thresholding Gap filling Cluster filtering

Figure 15: Scenario partial-large + noise: Results of the post-processing steps. Top row: Ω \Ωfluid (in
red) after each post-processing step. Bottom row: Cells incorrectly marked as fluid (in blue) and solid
(in red) after each post-processing step.

ES EF E
Initial errors (m3) 0 6.895e-6 (100%) 6.895e-6 (100%)

partial-inside + noise

Thresholding 1.884e-6 3.004e-6 (43.6%) 4.888e-6 (70.9%)
Gap filling 2.591e-6 7.962e-7 (11.5%) 3.387e-6 (49.1%)
Cluster filtering 2.463e-6 6.401e-7 (9.3%) 3.104e-6 (45.0%)

partial-inside + noise + ref.

Thresholding 1.851e-6 3.020e-6 (43.8%) 4.871e-6 (70.6%)
Gap filling 2.567e-6 9.377e-7 (13.6%) 3.505e-6 (50.8%)
Cluster filtering 2.491e-6 7.837e-7 (11.4%) 3.275e-6 (47.5%)

Table 2: Errors EF , ES , E (the total volumes of cells wrongly marked as fluid and solid, respectively,
and E = EF + ES) after each post-processing step for the scenario partial-inside + noise considering
two different mesh sizes. The percentage values indicate how large the error E is relative to the initial
error.

DOI 10.20347/WIAS.PREPRINT.2929 Berlin 2022



O. Partl, U. Wilbrandt, J. Mura, A. Caiazzo 34

0 100 200 300 400 500 600

0.2

0.4

0.6

0.8

1

iteration number n

C
os

tf
un

ct
io

na
lr

ed
uc

tio
n partial-inside + noise + ref.

partial-inside + noise

0 100 200 300 400 500 600

0.4

0.6

0.8

1

iteration number n

Ve
lo

ci
ty

er
ro

rr
ed

uc
tio

n

partial-inside + noise + ref.
partial-inside + noise

Figure 16: Performance of Algorithm 1 in the test in Section 9.1. Left. Reduction of the cost functional
value (computed as F n

h /F
0
h ) as a function of the iteration number n. Right: Reduction of the L2-error

with respect to the data, computed as
‖unh − û‖2

L2(Ωmeas)

‖u0
h − û‖2

L2(Ωmeas)

, as a function of the iteration number n.

ES EF E
Initial errors (m3) 0 1.343e-5 1.343e-5 (100%)

several + partial-inside + noise
Thresholding 5.166e-6 5.332e-6 (39.7%) 1.050e-5 (78.2%)
Gap filling 7.770e-6 1.411e-6 (10.5%) 9.181e-6 (68.4%)
Cluster filtering 7.064e-6 9.412e-7 (7.0%) 8.005e-6 (59.6%)

Table 3: Errors EF , ES , E (the total volumes of cells wrongly marked as fluid and solid, respectively,
and E = EF + ES) after each post-processing step for the scenario with several obstructions. The
percentage values indicate how large the error E is relative to the initial error.

9.2 Effect of several solid subdomains

Additionally, we tested the algorithm in a case with several obstructions inside Ω, using partially un-
available noisy measurements (Figure 17, left). The other parameters were the same as in Section 7.1.

As for the velocity error and the functional reduction, the algorithm performed similarly as in the pre-
vious scenarios (the graph is omitted): Both quantities monotonically decreased, fulfilling the stopping
criterion in about 1,300 iterations; the error in the velocity decreased by about 96%.

Further, Table 3 shows the errors in the approximation of the solid and fluid domains: The whole
algorithm reduced the shape approximation error E by roughly 40%.

Finally, Figure 17 shows two typical tendencies of the algorithm that we did not see in the previous
scenarios:

(i) The algorithm tends to incorrectly locate low permeability regions between the outlet and solid
regions close to this outlet. This issue is clearly visible after the thresholding (Figure 17, center-
left), and it is corrected by the cluster filtering (Figure 17, right).
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True solution Thresholding Gap filling Cluster filtering

Figure 17: Left: The obstruction Ω \Ωflow (in red) and the region of the unavailable velocity data û (in
green). The other pictures: The solid cells wrongly marked as fluid (in blue) and the fluid cells wrongly
marked as solid (in red) after the thresholding (center-left), after the gap filling (center-right) and after
the cluster filtering (right).

(ii) The algorithm tends to incorrectly join near solid regions. In Figure 17, we can see that it wrongly
partially joined the two lowermost obstructions but extended the gap between the two upper-
most obstructions.

Also note that the middle obstruction is the same as that in the previous scenarios, and accordingly, it
is approximated similarly as in Figure 14, page 31.

10 Conclusions

We presented, analyzed, and numerically validated a framework for the reconstruction of internal
boundaries of a fluid flow domain using partial internal velocity measurements. This type of problem is
motivated by applications in imaging sciences in which information about the internal velocity field can
be recovered (by, e.g., phase-contrast MRI), but the data may be highly inaccurate in certain regions
(for instance, due to interference with other devices, noise, or limited resolution).

Our framework was based on a Brinkman model with a distributed resistance that modeled the pres-
ence of the internal solid boundaries without resolving them explicitly in the computational mesh. We
solved the Brinkman problem using a stabilized equal-order finite element method, which allowed us
to reduce the computational complexity. The extension of the proposed method to the Navier–Stokes–
Brinkman case, including different turbulence models, is the subject of ongoing research.

The proposed estimation algorithm combines (i) a gradient-based optimization of the distributed re-
sistance (a piecewise constant function) done by minimizing a cost functional based on the avail-
able velocity data and a L2-regularization, and (ii) several heuristic post-processing steps. The post-
processing depends on several parameters. Our results show that it can considerably improve the
robustness and the accuracy of the method, especially when the quality and the availability of the data
deteriorate.

In the first part of the paper, we analyzed the existence of the optimal resistance in both the continuous
and discrete settings, considering explicitly the case of a stabilized finite element method. As next, we
validated the approach on several scenarios with a realistic three-dimensional mesh and synthetic
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data of different quality and availability. In each case, the algorithm correctly identified the majority
of solid cells (more than 90% in most settings, reduced to 80% when the region of unavailable data
covered roughly one-fourth of the whole domain).

We also observed that the algorithm tends to erroneously mark the fluid cells adjacent to the solid
boundary (up to one layer of cells). This suggested that the performance could be improved by consid-
ering a cost functional based on total variation (TV) regularization, which allows the presence of jumps
in the resistance, and hence, may yield sharper interfaces. The usage of different regularizations is
beyond the scope of this paper and will be considered in future work.
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