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On the gradient dynamics associated with wetting models

Jean-Dominique Deuschel∗, Henri Elad Altman†and Tal Orenshtein‡

Abstract

We prove a tightness result for the reversible gradient dynamics associated with critical
wetting models with a shrinking strip, thus answering a conjecture of [DO19]. We also
introduce a continuous critical wetting model defined by the law of a Brownian meander
tilted by its local time near the origin, and prove its convergence to the law of a reflecting
Brownian motion. We further provide a description of the associated gradient dynamics
in terms of an SPDE with reflection and attraction, which we conjecture to converge to a
Bessel SPDE as introduced in [EAZ19].

Keywords: wetting models, δ-pinning, strip wetting, gradient dynamics, scaling limit, local
times, Brownian meander, Bessel processes, Bessel SPDEs.

1 Introduction

Spectacular progress has been achieved in the past few years on scaling limits of randomly
evolving discrete (1 + 1) interface models, one celebrated example being growth models and
the KPZ universality class. For interfaces evolving in the presence of a boundary (or a wall),
recent development has concerned the study of the wetting models as considered in [IY01,
DGZ05, CGZ06] and the corresponding gradient dynamics, see [Fun05, Chapter 15.2] and
[FGV16, GV18], as well as [DO19] where a wetting model with a shrinking strip was introduced.
A different approach based on integration by parts formuale was adopted in [EAZ19] and
[EA19], which proposed a family of equations, called Bessel SPDEs, which should describe the
universality classes associated with dynamical interfaces evolving over a wall. These SPDEs,
which extend to parameters δ < 3 the family of SPDEs considered and solved in [Zam03], can
be seen as the gradient dynamics associated with the laws of Bessel processes, which they leave
invariant. In particular, the Bessel SPDE of parameter δ = 1 admits the law of a reflecting
Brownian motion as invariant measure, and can be reasonably conjectured to describe the
scaling limit of dynamical critical wetting models. However, for that equation, only weak
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existence at equilibrium could be achieved using Dirichlet form techniques. Moreover, the
associated Markov semigroup is not known to be strong Feller, so the methodology proposed in
[Zam04] to prove scaling limits using integration by parts formulae is not effective in that case.

In this article, we pursue a route based on approximation, by studying limits of the gradient
dynamics of several wetting models. We thus consider the gradient dynamics of the wetting
model with a shrinking strip of [DO19], for which we obtain a tightness result, but we also
introduce a continuous variant of this model for which we prove a static approximation result,
and consider the associated gradient SPDE. In that respect, this work is meant as a further
step to make the bridge between discrete and continuous interfaces constrained by a wall.

1.1 Wetting model with δ-pinning

We recall the definition of the wetting models we shall consider. Let us emphasise that numerous
versions of these models exist: while [IY01] considered a specific, discrete-in-space wetting
model, given by a random walk with discrete steps, [DGZ05] studied a continuous variant of
it, and later the article [CGZ06] addressed a general setting encompassing both the discrete
and the continuous cases. Here, we restrict ourselves to the continuous-in-space case studied in
[DGZ05], which we shall refer to as the wetting model with δ-pinning. Namely, for all N ≥ 1
and β ∈ R, we consider the measure P

f
β,N on R

N
+ defined by

P
f
β,N(dφ) =

1

Zf
β,N

ρ (φ)

N
∏

i=1

(

dφi1[0,∞) + eβδ0(dφi)
)

,

where

ρ(φ) = exp

(

−
N−1
∑

i=0

V (φi+1 − φi)

)

.

with φ(0) := 0, and where V : R → R ∪ {∞} is such that exp(−V ) is continuous, V (0) < ∞,
and

∫

R

e−V <∞.

In this article, for simplicity, we shall consider V (x) = x2

2
for all x ∈ R. Above, the superscript

f stands for “free”, meaning that we do not constrain the value of φN .
We also recall the main theorem in [DGZ05] (re-derived later in [CGZ06] with a simplified

proof). Let H = L2(0, 1). For all N ≥ 1, we let ΦN : RN → H denote the rescaling and
interpolation map defined by

ΦN (φ)(y) =
1√
N
φ⌊Ny⌋ +

1√
N
(Ny − ⌊Ny⌋)

(

φ⌊Ny⌋+1 − φ⌊Ny⌋
)

, y ∈ [0, 1], (1.1)

where we use the convention that φ0 := 0 in the right-hand side above. We will denote by HN

the vector space ΦN(R
N ) ⊂ H , which coincides with the space of continuous piecewise affine
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functions adapted to the partition [ i−1
N
, i
N
), 1 ≤ i ≤ N . We finally denote by P

f
β,N the image of

the measure P
f
β,N under ΦN .

Theorem 1.1 ([DGZ05]). There exists βc ∈ (0,∞) such that:

• if β < βc (subcritical case), then P
f
β,N −→

N→∞
m in law, where m is the law of a Brownian

meander on [0, 1]

• if β = βc (critical case), then P
f
β,N −→

N→∞
P 1
0 in law, where P 1

0 is the law of a reflecting

Brownian motion started from 0 on [0, 1]

• if β > βc (supercritical case), then P
f
β,N converges in law, as N → ∞, to the measure

concentrated on the function identically equal to 0 on [0, 1].

One can ask whether it is possible to build a Markov process on R
N
+ admitting the measure

P
f
β,N as a reversible measure. Due to the presence of Dirac masses in the definition of Pfβ,N , this

problem is highly non-trivial. For instance, in the particular case N = 1 and ρ ≡ 1, a natural
candidate is given by a sticky reflecting Brownian motion, which is a solution to











dXt =
1

2
dℓ0t + 1{Xs>0} dBs

1{Xt=0} dt =
eβ

2
dℓ0t .

This stochastic equation is known to possess a weak solution, but no strong solutions (see e.g.
[EP14]). In [FGV16] and [GV18] some diffusions having P

f
β,N as a reversible measure were

constructed and studied using sophisticated Dirichlet form methods.

1.2 Wetting model with a shrinking strip

A variant of the above wetting model was introduced in [DO19]. Namely, for all N ≥ 1, and
a > 0, one considers the measure P

f
ϕa,N

on R
N
+ defined by

P
f
ϕa,N

(dφ) =
1

Zf
ϕa,N

ρ(φ)

N
∏

i=1

eϕa(φi) dφi ,

where ρ is as before, and where, for all a > 0, ϕa : R+ → R+ is a smooth function supported in
[0, a]. Thus, the measure P

f
β,N above, which had some atoms, has been replaced by a measure

which is absolutely continuous w.r.t. the Lebesgue measure on R
N
+ . With this new version with

a “strip”, one can however recover a scaling limit result as in the critical regime above.
Let us denote by P

f
ϕa,N

the image of Pfϕa,N
under the map ΦN . Then, P

f
ϕaN

,N converges in

law, as N → ∞, to the law of a reflecting Brownian motion on [0, 1], whenever the pinning
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functions (ϕa)a>0 satisfy Condition (A) in [DO19] and aN = o(N−1/2) [DO19, Theorem 1.5].
Here and in the sequel, we fix such (ϕa)a>0 and a sequence (aN )N≥1. Our aim is to show a
tightness result for the dynamics associated with P

f
ϕaN

,N , N ≥ 1.

The advantage of this new model with respect to the δ-pinning measure is the fact that Pfϕa,N

is absolutely continuous w.r.t. the Lebesgue measure on R
N
+ , so it is straightforward to con-

struct an associated reversible Markov process. It suffices indeed to consider the corresponding
gradient SDE















Xi(t) = −
∫ t

0

∂iHN(X(s)) ds+ ℓit +
√
2W i

t , i = 1, . . . , N

Xi(t) ≥ 0, dℓit ≥ 0,
∫∞
0
Xi(t) dℓ

i
t = 0,

(1.2)

where W 1, . . . ,WN are independent Brownian motions, and with a random initial condition
X0 distributed as Pfϕa,N

. Above, we have denoted by HN : RN
+ → R the potential defined by:

e−HN (φ) = ρ(φ)

N
∏

i=1

eϕaN
(φi), φ ∈ R

N
+ .

It was conjectured in [DO19] that properly rescaled, the sequence of processes (Xi(t))1≤i≤N,t≥0

given by (1.2) is tight. In this article, we prove this claim using the Lyons-Zheng decomposition.
After proving tightness and hence achieving a limiting dynamics, a natural step forward might
be the following. Since the discrete wetting model of [DO19] is specific while the conjectured
dynamics is independent of the pinning mechanism details, one should expect a more robust
construction of the static model to which more tools could apply. Having that in mind, we
introduce in Chapter 4.2 a continuous version of the strip wetting model. This new model
is given by a path measure which is absolutely continuous with respect to the law of a 3-
dimensional Bessel process, with an explicit Radon-Nikodym derivative involving the local
times of the latter at a level η > 0. More precisely, we consider the measure

P 1,η
a (dX) =

X1 ∧ η
X1

a

a ∧ η exp
(

1

2η
Lη1

)

P 3
a (dX),

where P 3
a denotes the law of a 3-dimensional Bessel process started from a on [0, 1], and Lη1

denotes the value, at time 1, of its local time at the level η. This measure, as it turns out,
corresponds to the law of the unique strong solution on [0, 1] to the SDE

Xt = a +

∫ t

0

1{Xs≤η}
Xs

ds+Bt,

which corresponds to the SDE of a 3-Bessel process, but with a truncation at η in the drift.
We show convergence of this measure to the law P 1

a of a 1-dimensional Bessel process started
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from a, as η → 0. This result is a continuum version of the static scaling limit theorem of
[DGZ05], [CGZ06], and [DO19]. The advantage of considering such a model is that the asso-
ciated convergence result is much easier to prove than for its discrete counterparts. Moreover,
the measures P 1,η

a provide a monotonously continuous interpolation between the probability
measures P 3

a (which corresponds formally to P 1,∞
a ) and P 1

a (corresponding formally to P 1,0
a ), a

result interesting in its own respect. Finally, the gradient dynamics associated with a mollified
version of P 1,η

a posess an interesting interpretation in terms of an SPDE with reflection com-
bined with an attractive mechanism, which we conjecture to converge to the same limit as the
discrete dynamical model.

1.3 Structure of this paper

In Section 2 of this paper we prove tightness for the sequence of processes (Xi(t))1≤i≤N,t≥0 given
by (1.2). In Section 3 we write the associated integration by parts formula, which motivates a
conjecture on the corresponding limit in law. In Section 4 we introduce a continuous version of
the wetting model and prove that it converges towards the law of the modulus of a Brownian
motion. We also write the associated gradient dynamics in terms of an SPDE with reflection
combined with an attractive mechanism, and formulate a conjecture for the corresponding limit
in law.

2 A tightness result

In Section 1.5 of [DO19], the first and third author considered the processes (Y N
t )t≥0, N ≥ 1,

where Y N
t = ΦN (X(N2t)), (X(t))t≥0 is the reversible evolution in R

N
+ for the pinning measure

P
f
ϕa,N

as given by (1.2), and ΦN as in (1.1) above. Here and below we shall denote the inner
product on H = L2(0, 1) by 〈·, ·〉, and set

K := {h ∈ H, h ≥ 0 a.e.}.

For all γ > 0, we introduce the space H−γ(0, 1), completion of H = L2(0, 1) w.r.t. the norm
‖ · ‖−γ defined by

‖f‖2−γ :=
∞
∑

n=1

n−2γ|〈f, en〉|2, f ∈ H,

where
en(θ) :=

√
2 sin(nπθ), θ ∈ [0, 1] (2.1)

Theorem 2.1. For all T > 0, the family of processes (Y N
· )N≥1 is tight in C([0, T ], H−1(0, 1)).

Proof. Recall that ΦN : RN → H is the function defined by (1.1), and HN = ΦN (H). Let us
denote by (xiN)1≤i≤N the image of the canonical basis of RN under ΦN . It then follows that, for
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all N ≥ 1, the process
(

Y N
t

)

t≥0
coincides in law with the reversible Markov process associated

with the Dirichlet form (Dom(EfϕaN
,N), EfϕaN

,N) which is the closure of the form

EfϕaN
,N(u, v) = N2

∫

KN

N
∑

i=1

〈∇u(x), xiN〉〈∇v(x), xiN〉 dPf
ϕaN

,N(x), u, v ∈ C1
b (HN),

where KN := {x ∈ HN , x ≥ 0} and P
f
ϕaN

,N is the image of the measure P
f
ϕaN

,N under ΦN .

Then, for all T > 0 and h ∈ H , by the Lyons-Zheng decomposition , see e.g. Thm 5.7.1 in
[FOT10], we have

〈Y N
t , h〉 − 〈Y N

0 , h〉 = 1

2
M1

t −
1

2

(

M2
T −M2

T−t
)

,

where M i is an HN -valued (F i
t )t≥0 martingale, F1

t = σ(Y N
s , s ≤ t) and F2

t = σ(Y N
T−s, s ≤ t).

More precisely, defining ψ ∈ C1
b (HN) by ψ := 〈h, ·〉, by Theorem 5.7.1 in [FOT10], we have the

above decomposition with

M1
t :=M

[ψ]
t , M2

t (ω) :=M
[ψ]
t (rTω),

where rT is the time-reversing operator on the canonical space Ω := C([0, T ], KN):

(rTω)t = ωT−t, ω ∈ Ω, t ∈ [0, T ].

Moreover, M [ψ] denotes the martingale additive functional appearing in the Fukushima decom-
position of the continuous additive functional (CAF) given by

A
[ψ]
t := ψ(Y N

t )− ψ(Y N
0 ) = 〈Y N

t , h〉 − 〈Y N
0 , h〉, t ≥ 0,

see Theorem 5.2.2. Hence, the quadratic variation of the martingales M1 and M2 is given by
the sharp bracket 〈M [ψ]〉t of the martingale additive functional M [ψ]. The latter is a positive
continuous additive functional with Revuz measure µψ satisfying

∫

KN

f(x) dµψ(x) = 2EfϕaN
,N(ψf, ψ)− EfϕaN

,N(ψ
2, f),

for all f ∈ Dom(Efϕa,N
), see Theorem 5.2.3 in [FOT10]. But, for all f ∈ C1

b (HN), by the Leibniz
rule, and recalling that ∇ψ = h, we have

2EfϕaN
,N(ψf, ψ)− EfϕaN

,N(ψ
2, f) = 2N2

∫

K

f(x)
N
∑

k=1

〈h, xNi 〉2Pf
ϕaN

,N(dx).

Therefore, for all f ∈ C1
b (HN), it holds

∫

K

f(x)µψ(dx) =

∫

K

f(x)

(

2N2
N
∑

k=1

〈h, xNi 〉2
)

P
f
ϕaN

,N(dx).
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Therefore, we deduce that

µψ(dx) =

(

2N2
N
∑

k=1

〈h, xNi 〉2
)

P
f
ϕaN

,N(dx).

Hence, by the Revuz correspondence, we deduce the equality

〈M [ψ]〉t =
(

2N2

N
∑

k=1

〈h, xNi 〉2
)

t, t ≥ 0

in the sense of additive functionals, which implies that, for all i = 1, 2

〈M i〉t = 2N2

N
∑

k=1

〈h, xNi 〉2 t, t ≥ 0. (2.2)

But recall that, for all k = 1, . . . , N , xNk = ΦN (ek), where (e1, . . . , eN) is the canonical basis of
R
N . In words, xNk is the function in HN which takes the value 1√

N
at the point k/N , and the

value 0 at the points j/N , j 6= k. Note in particular that

0 ≤ xNk ≤ 1√
N
1[ k−1

N
, k+1

N
],

so that we have the bound ‖xNk ‖2 ≤ 2N−2. Using the Cauchy-Schwarz inequality followed by
the latter bound, we deduce from (2.2) that

〈M i〉t ≤ 4||h||2 t.

Hence, by the BDG inequality, for all p ≥ 1, there exists a constant Cp > 0 (depending only on
p) such that, for all t ≥ s ≥ 0

(

E
[

〈Y N
t − Y N

s , h〉p
])1/p ≤ Cp(t− s)1/2 ||h||

The above being true for any h ∈ H , we deduce that, for all p ≥ 2

(

E

[

‖Y N
t − Y N

s ‖pH−1(0,1)

])1/p

=



E





( ∞
∑

k=1

〈Y N
t − Y N

s , ek〉2k−2

)p/2








1/p

≤ ζ(2)
1

2
− 1

p

(

E

[ ∞
∑

k=1

〈Y N
t − Y N

s , ek〉pk−2

])1/p

≤ ζ(2)1/2Cp(t− s)1/2

≤ C ′
p(t− s)1/2,
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where we applied Jensen’s inequality to obtain the second line, and C ′
p = ζ(2)1/2Cp, with

ζ(2) =
∑∞

k=1 k
−2. We have thus obtained, for all p ≥ 2, the following bound holding uniformly

in t, s ∈ [0, T ]
(

E

[

‖Y N
t − Y N

s ‖pH−1(0,1)

])1/p

≤ C ′
p|t− s|1/2.

Moroever, for all t ≥ 0, Y N
t

(d)
= P

f
ϕaN

,N and, by Theorem 1.5 in [DO19], Pf
ϕaN

,N −→
N→∞

P 1
0 in

law, where P 1
0 is the law of a reflecting Brownian bridge started from 0 on [0, 1]. Hence, since

H−1(0, 1) is a Polish space, invoking [EK86, Thm 7.2, Chap. 3], we deduce that the sequence
of processes (Y N

t )t∈[0,T ], N ≥ 1 is tight in C([0, T ], H−1(0, 1)).

3 An integration by parts formula and conjecture for the

scaling limit

Let C1
b (R

N) be the set of continuously differentiable functions on R
N with bounded derivatives.

For any f ∈ C1
b (R

N) and h ∈ R
N , we denote by ∂hf the derivative of f in the direction h

∂hf(φ) := lim
ǫ→0

f(φ+ ǫh)− f(φ)

ǫ
, φ ∈ R

N .

We then have the following integration by parts formula (IbPF) for the measure P
f
ϕa,N

on R
N :

Proposition 3.1. For all f ∈ C1
b (R

N) and h ∈ R
N , we have

∫

RN
+

∂hf(φ)P
f
ϕa,N

(dφ) =
N
∑

i=1

hi

(
∫ a

0

eϕa(b)
d

db
σNi (f |b) db− σNi (f |a)

)

−
∫

RN
+

f(φ)

N
∑

i=1

φi (hi+1 + hi−1 − 2hi) P
f
ϕa,N

(dφ).

, (3.1)

where h0 = hN+1 = 0 and for all b ≥ 0 and i = 1, . . . , N , σNi (f |b) =
∫

RN
+

f(φ)σNi (dφ|b), where,

σNi (dφ|b) := e−ϕa(b)
P
f
ϕa,N

(φi ∈ db)

db
P
f
ϕa,N

(dφ|φi = b)

=
1

Zf
ϕa,N

ρ(φ)δb(dφi)
∏

n 6=i
eϕa(φn) dφn,

or, formally written
σNi (dφ|b) = e−ϕa(b)1{b}(φi)P

f
ϕa,N

(dφ).
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Above
P
f
ϕa,N

(φi∈ db)

db
denotes the density at b of the law of φi (under the measure P

f
ϕa,N

) with

respect to the Lebesgue measure on R+. Heuristically, the measures σNi (dφ|b) are meant to be
a discrete analog of the measures Σ1

r(dX|b), r ∈ (0, 1), b ≥ 0, introduced in [EAZ19], see Def.
3.4 therein. In particular we remark some resemblance of the above IbPF with formula (4.4) of
[EAZ19]. Indeed, the first term in the right-hand side of (3.1) only involves values of σNi (f |b)
for b close to 0 (namely b ≤ a), and is somewhat reminiscent of the term

∫ 1

0

drhr
d2

da2
Σ1
r(Φ(X)|a)

∣

∣

∣

∣

a=0

in the right-hand side of (4.4) in [EAZ19].

Proof. Recalling the definition of Pfϕa,N
, and integrating by parts with respect to the Lebesgue

measure on R
N
+ , we have

∫

RN
+

∂hf(φ)P
f
ϕa,N

(dφ) =− 1

Zf
ϕa,N

∫

RN
+

f(φ) ∂hρ(φ)
N
∏

n=1

eϕa(φn) dφn

−
N
∑

i=1

hi
1

Zf
ϕa,N

∫

RN
+

f(φ)ρ(φ)eϕa(0)δ0(dφi)

N
∏

n=1
n 6=i

eϕa(φn) dφn

−
N
∑

i=1

hi
1

Zf
ϕa,N

∫

RN
+

f(φ)ρ(φ)ϕ′
a(φi)

N
∏

n=1

eϕa(φn) dxn.

We recognize in the first term of the right-hand side above the quantity

−
∫

RN
+

f(φ)
N
∑

i=1

(hi+1 + hi−1 − 2hi)φi P
f
ϕa,N

(dφ)

On the other hand, the second term can be rewritten

−
N
∑

i=1

hi e
ϕa(0) σNi (f |0).

Finally, the third term can be rewritten

−
N
∑

i=1

hi

∫ a

0

d

db

(

eϕa(b)
)

σNi (f |b) db,

or, after an integration by parts:

−
N
∑

i=1

hi

{

σNi (f |a)− eϕa(0) σNi (f |0)−
∫ a

0

eϕa(b)
d

db

(

σNi (f |b)
)

db

}

.
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Adding up all three quantities, and noting the cancellation of
∑N

i=1 hi e
ϕa(0) σNi (f |0), we obtain

the claim.

Thanks to the above discrete IbPF, we obtain an IbPF for the rescaled wetting dynamics
on the space of paths H . For convenience of the presentation, and with abuse of notation, we
assume here that Pf

ϕa,N
is the image of the measure P

f
ϕa,N

under Φ̃N , the left-continuous with

right-hand limits (or càglàd) piecewise constant interpolation modification of ΦN : Φ̃N (φ)(y) :=
1√
N
φ⌈Ny⌉. We denote by ΠN : H → H̃N the orthogonal projection of H onto the space H̃N =

Φ̃N (R
N), and by C1

b (H) be the set of continuously Fréchet differentiable functions on H with
bounded Fréchet differential.

Proposition 3.2. For all Ψ ∈ C1
b (H) and h ∈ C2

c (0, 1), we have

∫

H

∂ΠNhΨ(ζ)Pf
ϕa,N

(dζ) =

∫ 1

0

(ΠNh)yD
N
Ψ (y) dy −

∫

H

ΘN
h (ζ) Ψ(ζ)Pf

ϕa,N
(dζ), (3.2)

where

DN
Ψ (y) = N3/2

(
∫ a

0

eϕa(b)
d

db
σN⌈yN⌉(Ψ ◦ Φ̃N |b) db− σN⌈yN⌉(Ψ ◦ Φ̃N |a)

)

and for all ζ ∈ H

ΘN
h (ζ) = N2

∫ 1

0

ζy∆
N
h (y) dy

for
∆N
h (y) = hy+ 1

N
1{y≤1− 1

N
} + hy− 1

N
1{y≥ 1

N
} − 2hy.

Proof. First note that

(ΠNh)y = N

∫
⌈yN⌉
N

⌈yN⌉−1

N

h(u) du, y ∈ [0, 1].

In particular ΠNh = Φ̃N (h̄), where h̄ ∈ R
N is given by

h̄i = N3/2

∫ i
N

i−1

N

h(u) du, i = 1, . . . , N.

Now, by the IbPF (3.1) applied to the functional Ψ ◦ Φ̃N and the vector h̄, we have

∫

RN
+

∂h̄(Ψ ◦ Φ̃N)(φ)Pfϕa,N
(dφ) =

N
∑

i=1

h̄i

(∫ a

0

eϕa(b)
d

db
σNi (Ψ ◦ Φ̃N |b) db− σNi (Ψ ◦ Φ̃N |a)

)

−
∫

RN
+

Ψ(Φ̃N (φ))
N
∑

i=1

φi
(

h̄i+1 + h̄i−1 − 2h̄i
)

P
f
ϕa,N

(dφ).

,

10



with the convention h̄0 = h̄N+1 = 0. Since Φ̃N (h̄) = ΠNh, ∂h̄(Ψ ◦ Φ̃N ) = ∂ΠNhΨ. Therefore

∫

RN
+

∂h̄(Ψ ◦ Φ̃N)(φ)Pfϕa,N
(dφ) =

∫

H

∂ΠNhΨ(ζ)Pf
ϕa,N

(dζ).

On the other hand, by the definition of h̄,

N
∑

i=1

h̄i

(
∫ a

0

eϕa(b)
d

db
σNi (Ψ ◦ ΦN |b) db− σNi (Ψ ◦ ΦN |a)

)

=

∫ 1

0

(ΠNh)yD
N
Ψ (y) dy.

Finally, for the last term, noting that

N
∑

i=1

φi
(

h̄i+1 + h̄i−1 − 2h̄i
)

= N2

∫ 1

0

Φ̃N (φ)y∆
N
h (y) dy,

we obtain

∫

RN
+

Ψ(Φ̃N (φ))
N
∑

i=1

φi
(

h̄i+1 + h̄i−1 − 2h̄i
)

P
f
ϕa,N

(dφ) =

∫

RN
+

Ψ(Φ̃N (φ))N
2

∫ 1

0

Φ̃N (φ)y∆
N
h (y) dy

=

∫

H

Ψ(ζ)ΘN
h (ζ)P

f
ϕa,N

(dζ).

The formula follows.

Remark 3.3. Note that, if we choose ϕa and a = aN as before so that Pf
ϕa,N

−→
N→∞

P 1
0 , then,

resaoning as in [Zam17, Chap. 6.6], we deduce that

∫

H

∂ΠNhΨ(ζ)Pf
ϕa,N

(dζ) −→
N→∞

∫

H

∂hΨ(ζ)P 1
0 (dζ)

and
∫

H

ΘN
h (ζ) Ψ(ζ)Pf

ϕa,N
(dζ) −→

N→∞

∫

H

∫ 1

0

ζr h
′′
r drΨ(ζ)P 1

0 (dζ).

Therefore, in view of equality (4.4) of Theorem 4.1 in [EAZ19], it would be tempting to con-
jecture that the first term in the right-hand side of (3.2) converges as N → ∞ to

1

4

∫ 1

0

hr
d2

da2
Σ1
r(Φ(X) | a)

∣

∣

∣

∣

a=0

dr, (3.3)

where, for all a ≥ 0,
Σ1
r(Φ(X) | a) := p1r(a)P

1
0 [dX |Xr = a],

11



with p1r(a) :=
√

2
πr

exp
(

−a2

2r

)

denoting the density of Xr when X is a reflecting Brownian

motion started from 0. Recall that, ifX is a reflecting Brownian, then for all λ > 0,X
(d)
= Rλ(X),

where (Rλ(X))r :=
1√
λ
Xλr, r ≥ 0. Hence, we have the scaling property

d2

da2
Σ1
r(Φ(X) | a)

∣

∣

∣

∣

a=0

= λ3/2
d2

da2
Σ1
λr(Φ ◦Rλ(X)) | a)

∣

∣

∣

∣

a=0

.

This scaling property is compatible with the scaling factor N3/2 appearing in the definition of
DN

Ψ .

3.1 Conjecture for the scaling limit

Above we have shown the tightness of the family of processes (Y N
t )t∈[0,T ], N ≥ 1. We make the

following conjecture for the corresponding, expected, limit in law. Let us denote by (ut)t≥0 the
reversible Markov process associated with the Dirichlet form E generated by the bilinear form

E(f, g) := 1

2

∫

〈∇f,∇g〉 dµ, f, g ∈ FC∞
b (K),

where µ denotes the law, on K = {h ∈ H, h ≥ 0 a.e.}, of a reflecting Brownian motion on
[0, 1]. Such a process can be constructed using exactly the same techniques as in Section 5 of
[EAZ19] for the case of the modulus of a Brownian bridge. We consider the process (ut)t≥0

started from equilibrium, i.e. u0
(d)
= µ. Moreover, arguing as in Theorem 5.7 of [EAZ19], one

can show that (ut)t≥0 satisfies an equation of the form:

∂u

∂t
=

1

2

∂2u

∂x2
− 1

4
lim
ǫ→0

ρ′′ǫ (u) + ξ,

where ξ is a space-time white noise on R+ × [0, 1], and (ρǫ)ǫ>0 is an appropriate approximation
of the Dirac measure δ0.

Conjecture 3.4. For all T > 0, as N → ∞, (Y N
t )t∈[0,T ] converges in law in C([0, T ], H−1(0, 1))

to the process (ut)t∈[0,T ].

A natural route to prove the above conjecture would be to show that, after rescaling, the
IbPF of Prop. 3.1 above converges to the IbPF (4.4) of [EAZ19] for the law of the reflecting
Brownian motion, and use the same techniques as in [Zam04] to deduce therefrom the conver-
gence of the associated evolutions. Unfortunately, in spite of some similarities between the two
IbPF, it is not clear at all that the former converges to the latter. Another problem that arises
is related with the distributional nature of the last term appearing in these IbPF. Finally, an
important feature exploited in [Zam04] is the uniform continuity of the Markov semi-groups.
In our case, this feature is non-trivial, and would in particular imply the strong Feller property
for the Markov semigroup associated with (ut)t≥0, which is an open problem.

12



4 A wetting model in the continuum

In this section we introduce an analog of the wetting model in the continuum, which corresponds
to the law of a 3-dimensional Bessel process tilted by a functional of its local times.

4.1 Motivation: wetting model and local times

Recall that, in the discrete setting described above, for the case of a wetting model with a strip,
we have

P
f
ϕa,N

(dφ) =
1

Z+
ϕa,N

exp

(

N
∑

i=1

ϕa(φi)

)

P
+
N(dφ),

where P
+
N is the law of a standard Gaussian walk on R

N conditioned to remain nonnegative,
and Z+

ϕa,N
is a normalisation constant. For all a > 0, ϕa is a smooth function. For the sake of

simplicity, consider however
ϕa = βa1[0,a], (4.1)

where the sequence (βa)a>0 is such that

aeβa −→
a→0

eβc .

Note that this condition ensures that the following convergence of measures holds in the weak
sense on R+:

eϕa(x) dx −→
a→0

eβcδ0(dx) + dx.

With the ansatz (4.1), we can rewrite the wetting measure with strip as

P
f
ϕa,N

(dφ) =
1

Z+
ϕa,N

exp

(

βa

N
∑

i=1

1[0,a](φi)

)

P
+
N(dφ).

Thus, the wetting measure corresponds to the measure P
+
N tilted by the local time in the strip

[0, a] of the random walk. We could hope that such a description be stable under taking the
scaling limit: in the continuum, the law P 1

0 of a reflected Brownian motion started from 0 would
correspond to the law m of a Brownian meander tilted by some appropriate functional of its
continuous local time process. As such, this claim is false, since the probability measures P 1

0 is
not absolutely continuous with respect to m. However, me may ask whether

P 1
0 (dX) = lim

η→0
exp(Φη(L(X)))m(dX), (4.2)

where L(X) =
(

Lbt(X)
)

b≥0,t≥0
is the local time process associated with (Xt)0≤t≤1, when X

(d)
= m,

and Φη, η > 0, are appropriate functionals on C([0, 1]×R+,R). Note that we could not hope to
choose Φη to depend solely on L0(X), the local time at 0 of X , since this identically vanishes

when X
(d)
= m: we need instead to make it depend on the process Lη(X) for η close to 0.

13



4.2 Static approximation result

To obtain a representation of the form (4.2), we shall proceed as follows. Let C([0, 1]) be the
space of continuous function on [0, 1] endowed with the topology of supremum norm and the
associated Borel σ-algebra. For all a ≥ 0, we denote by P 3

a (resp. P 1
a ) the law on C([0, 1]) of a

3-dimensional (resp. 1-dimensional) Bessel process started from a, while m denotes the law of
a Brownian meander. Recall that P 3

0 and m are mutually absolutely continuous on C([0, 1]).
Moreover, under P 3

a , the canonical process (Xt)0≤t≤1 satisfies the SDE

Xt = a +

∫ t

0

ds

Xs

+Bt. (4.3)

On the other hand, under P 1
a , the canonical process satisfies the equation

Xt = a+
1

2
L0(X)t +Bt.

Hence, the idea is to approximate the latter equation by an SDE of the form

Xη
t = a+

∫ t

0

fη(Xs) ds+Bt, (4.4)

where fη is a well-chosen function such that (4.4) is obtained from (4.3) through a Girsanov
transform. Then, for any fixed η > 0, one can apply Girsanov’s theorem to obtain

P 1,η
a (dX) = exp(Φη(L(X)))P 3

a (dX),

where P 1,η
a is the law of Xη, and Φη is some functional depending on η. This strategy is

implemented in the next theorem.

Theorem 4.1. The convergence P 1,η
a −→

η→0
P 1
a holds in the sense of weak topology for probability

measures on C([0, 1]), where, for all η > 0

P 1,η
a (dX) =

X1 ∧ η
X1

a

a ∧ η exp
(

1

2η
Lη1

)

P 3
a (dX).

Here, for a 3-Bessel process X, (Lbt)b≥0,t≥0 denotes the semimartingale local time process asso-
ciated with X, and we are using the convention 0

0∧η = 1. In particular P 1,η
0 −→

η→0
P 1
0 , where

P 1,η
0 (dX) =

√

2

π
(X1 ∧ η) exp

(

1

2η
Lη1

)

m(dX),

and where m is the law of a Brownian meander on [0, 1].
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Remark 4.2. As a by-product of the proof of Theorem 4.1, P 1,η
a is actually the law, on C([0, 1]),

of the unique strong solution to the SDE

Xt = a +

∫ t

0

1{Xs≤η}
Xs

ds+Bt,

which corresponds to the SDE of a 3-Bessel process with an additional truncation in the drift.
In particular, if η = +∞, we recover the law P 3

a , so formally P 3
a = P 1,∞

a . Note moreover that, by
comparison (see Theorem (3.7) in [RY13, Chapter IX]) the solution (Xt)t≥0 of the above SDE
is non-decreasing in η, so that the family (P 1,η

a )η>0 is non-decreasing in η for the stochastic
ordering on C([0, 1]) when the latter is endowed with the usual partial ordering: u ≤ v if
u(t) ≤ v(t) for all t ∈ [0, 1]. Finally, Theorem 4.1 states that the limit P 1,0

a := lim
η→0

↓ P 1,η
a is

given by P 1
a . To sum up, denoting by � the stochastic ordering for probability measures on

C([0, 1]), we thus have
P 1
a = P 1,0

a � P 1,η
a � P 1,η′ � P 1,∞

a = P 3
a ,

for all η ≤ η′. Thus, the family of continuous wetting measures (P 1,η
a )η>0 provides a monotonously

continuous interpolation between the laws P 3
a and P 1

a .

Remark 4.3. Theorem 4.1 provides a continuous approximation of the law of a reflecting
Brownian motion on the interval [0, 1]. The proof given below actually works on any finite
interval [0, T ], T > 0, in which case the density in the definition of P 1,η

a (dX) has to be replaced
with

XT ∧ η
XT

a

a ∧ η exp

(

1

2η
LηT

)

,

which (see (4.6) below) is an exponential martingale in T . However, the result does not extend
to T = ∞, because this martingale is not uniformly integrable, and actually converges a.s. to
0 as T → ∞. Indeed, if X is a 3-dimensional Bessel process started e.g. from a = 0, then on
the one hand XT −→

T→∞
+∞ a.s., while on the other hand, by Ex. 2.5.a. in [RY13, Chapter

XI.2], (La∞)a≥0 is distributed as a 2-dimensional squared Bessel process, so is finite. Note in
particular that exp( 1

2η
Lη∞) is not integrable: remarkably, 1

2η
is precisely the smallest coefficient

α such that exp(αLη∞) is not integrable.

Proof of Theorem 4.1. The second claim follows from the first one, since, by Imhof’s relation
(see Exercise 4.18 in [RY13, ChapterXII]), we have

P 3
0 (dX) =

√

2

π
X1m(dX).

So it suffices to prove the first claim. Under P 3
a , the canonical process on C([0, 1]) satisfies the

SDE

Xt = a +

∫ t

0

ds

Xs
+Bt.
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We will first prove that for all η > 0, P 1,η
a is the law, on C([0, 1]), of the unique strong solution

Xη to the SDE

Xt = a +

∫ t

0

1{Xs≤η}
Xs

ds+Bt. (4.5)

and then we will show that Xη converges in law to P 1
a as η → 0. This will yield the claim.

The first point is proven using Girsanov’s Theorem. Indeed, consider the local martingale

Mt = −
∫ t

0

1{Xs>η}
Xs

dBs, t ≥ 0.

The corresponding exponential local martingale is given by

E (M)t = exp

(

Mt −
1

2
〈M,M〉t

)

, t ≥ 0.

Since

〈M,M〉t =
∫ t

0

1{Xs>η}
X2
s

ds ≤ t η−2,

it follows by Corollary (1.16) in [RY13, Chapter VIII] that (E (M)t)t≥0 is a martingale. Now,
we have

Mt −
1

2
〈M,M〉t = −

∫ t

0

1{Xs>η}
Xs

dBs −
1

2

∫ t

0

1{Xs>η}
X2
s

ds.

We intend to re-express this quantity without stochastic integral. To do so, consider the function
F : R∗

+ → R+ defined by

F (x) := log
(x ∧ η

x

)

, x > 0.

F is the difference of two convex functions on R
∗
+. Therefore, by the Itô-Tanaka formula (cf.

Theorem (1.5) in [RY13, Chap. VI]), we have

F (Xt) = F (a) +

∫ t

0

F ′(Xs) dXs +
1

2

∫

R

F ′′(dx)Lxt .

Since

F ′(x) = −1{x>η}
x

, x > 0,

and

F ′′(dx) =
1{x>η}
x2

dx− 1

η
δη(dx),

under the law P 3
a , the canonical process thus satisfies

log

(

Xt ∧ η
Xt

)

= log
(a ∧ η

a

)

−
∫ t

0

1{Xs>η}
Xs

(

1

Xs
ds+ dBs

)

+
1

2

∫ t

0

1{Xs>η}
X2
s

ds− 1

2η
Lηt ,
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whence we obtain

−
∫ t

0

1{Xs>η}
Xs

dBs −
1

2

∫ t

0

1{Xs>η}
X2
s

ds = log

(

Xt ∧ η
Xt

a

a ∧ η

)

+
1

2η
Lηt .

Therefore

E (M)t =
Xt ∧ η
Xt

a

a ∧ η exp
(

1

2η
Lηt

)

. (4.6)

By Girsanov’s theorem, under the probability law E (M)1 P
3
a = P 1,η

a on C([0, 1]), the canonical
process satisfies (4.5). Moreover, this SDE has pathwise uniqueness since the function x 7→
1{x≤η}

x
is non-increasing on R+. Therefore, by the Yamada-Watanabe Theorem, the SDE (4.5)

admits a unique strong solution (Xη)t≥0, the restriction of which to [0, 1] has law P 1,η
a . There

remains to establish the convergence in law of (Xη)t≥0 to P 1
a . To do so, note that by the

comparison theorem (3.7) in [RY13, Chapter IX], for all η, η̄ > 0 such that η ≤ η̄, we have
Xη ≤ X η̄ a.s. Since moreover Xη ≥ 0 a.s. for all η, we deduce the existence of a process
Xt ≥ 0 such that, for any decreasing sequence of positive real numbers (ηn)n≥1 converging to
0, the sequence (Xηn)n≥1 converges a.s. pointwise on R+ to X from above. Therefore, the only
possible subsequential weak limit of P 1,η

a as η → 0 is given by the law of (Xt)0≤t≤1 on C([0, 1]).
Setting

Zt := X2
t , t ≥ 0

and, for all η > 0
Zη
t := (Xη

t )
2, t ≥ 0,

then, by Itô’s lemma

Zη
t = a2 + 2

∫ t

0

√

Zη
s dBs + 2

∫ t

0

1{Zη
s≤η2} + t. (4.7)

From this equation, we deduce that the sequence of probability measures (P 1,η
a )η>0 is tight on

C([0, 1]). Indeed, by (4.7), for all 0 ≤ s < t ≤ 1

E
[

|Zη
t − Zη

s |4
]

≤ C

(

(
∫ t

s

E(Zη
u) du

)2

+ (t− s)2

)

,

where C > 0 is some universal constant. Since, by comparison, Zη ≤ Z∞, where Z∞ is a
3-dimensional squared Bessel process, we deduce that

E
[

|Zη
t − Zη

s |4
]

≤ C ′(t− s)2,

for some (other) universal constant C ′ > 0, whence

E
[

|Xη
t −Xη

s |8
]

≤ C ′(t− s)2,

17



and the claimed tightness follows by Kolmogorov’s tightness criterion, see Theorem (1.8) in
[RY13, Chapter XIII]. Hence P 1,η

a converges weakly as η → 0 to the law of (Xt)0≤t≤1 on
C([0, 1]). We finally show that the latter is given by P 1

a . By the comparison theorem (3.7) in
[RY13, Chapter IX], we deduce from (4.7) that, a.s., for all n ≥ 1, Z1/n ≥ Z0, where Z0 is the
unique strong solution of

Z0
t = a2 + 2

∫ t

0

√

Z0
s dBs + t.

Sending n → ∞, we deduce that, a.s., Z ≥ Z0. Note that Z0 is a one-dimensional squared
Bessel process. Therefore, almost-surely, Zt ≥ Z0

t > 0 for a.e. t ≥ 0. Hence, a.s., for a.e. t ≥ 0

1{Zη
t ≤η2} −→η→0

0.

Hence, by dominated convergence, letting η → 0 in (4.7), we deduce that Z satisfies the SDE

Zt = a2 + 2

∫ t

0

√

Zs dBs + t.

By strong uniqueness of this SDE, we deduce that Z = Z0. Hence, in particular, the law of
(Xt)0≤t≤1 on C([0, 1]) is given by P 1

a , and the proof is complete.

4.3 The corresponding dynamics

In order to study the gradient dynamics of the measures P 1,η
0 , we introduce a further mollified

version of these. Namely, for all η > 0 and ǫ ∈ (0, η), let

P 1,η,ǫ
0 =

1

Zη,ǫ

X1 ∧ η
X1

a

a ∧ η exp

(

1

2η

∫ 1

0

ρǫ(Xs − η) ds

)

P 3
0 (dX), (4.8)

where Zη,ǫ is a normalization constant, and ρǫ =
1
ǫ
ρ(x

ǫ
), with ρ a smooth, even function sup-

ported in [−1, 1] such that

ρ ≥ 0,

∫

R

ρ = 1, ρ′ ≤ 0 on R+.

Proposition 4.4. For all η > 0, P 1,η,ǫ
0 converges weakly to P 1,η

0 as ǫ→ 0.

Proof. It suffices to show that, for all bounded, continuous function F on C([0, 1]), we have

E3
0

[

X1 ∧ η
X1

exp

(

1

2η

∫ 1

0

ρǫ(Xs − η) ds

)

F (X)

]

−→
ǫ→0

E3
0

[

X1 ∧ η
X1

exp

(

1

2η
Lη1

)

F (X)

]

, (4.9)

where we have denoted by E3
0 the expectation operator associated with P 3

0 . By the occupation
times formula,

∫ 1

0

ρǫ(Xs − η) ds =

∫ ∞

0

ρǫ(a− η)La1 da,
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and, by continuity of the process (La1)a≥0, this converges a.s. to L
η
1 as ǫ→ 0. Moreover, defining

for all ǫ > 0

Rǫ(x) =

∫ x

0

∫ y

−∞
ρǫ(z − η) dz dy,

since R′′
ǫ (x) = ρǫ(x− η) and Rǫ(0) = 0, we have by Itô’s lemma

1

2

∫ 1

0

ρǫ(Xs − η) ds = Rǫ(X1)−
∫ 1

0

R′
ǫ(Xs)( dBs +

1

Xs
ds) ≤ X1 −

∫ 1

0

R′
ǫ(Xs) dBs,

where we used the fact that Rǫ(x) ≤ x and R′
ǫ(x) ≥ 0 for all x in the last inequality. We thus

obtain
X1 ∧ η
X1

exp

(

1

2η

∫ 1

0

ρǫ(Xs − η) ds

)

F (X) ≤ ‖F‖∞ exp

(

X1

η
−M ǫ

1

)

,

where M ǫ
t = 1

η

∫ t

0
R′
ǫ(Xs) dBs is a local martingale. To obtain the requested convergence, it

therefore suffices to show that the random variables

exp

(

X1

η
−M ǫ

1

)

are uniformly integrable in ǫ. By the Cauchy-Schwarz inequality, this will follow upon showing
that a) exp(2X1/η) is integrable and b) exp(−2M ǫ

1) is uniformly integrable. The claim a) follows

by noting (see [RY13, Chapter XI]) that under P 3
0 , X

(d)
=
√

B2
1 +B2

2 +B2
3 , where (B1, B2, B3)

is a standard Brownian motion in R
3, so that

E3
0 exp(2X1/η) = E exp

(

2η−1
√

B2
1 +B2

2 +B2
3

)

≤ E exp(2η−1(|B1|+ |B2|+ |B3|))

=
(

E exp(2η−1|B1|)
)3
<∞.

On the other hand, the claim b) follows by Novikov’s criterion upon noting that

〈2M ǫ〉1 =
4

η2

∫ 1

0

R′
ǫ(Xs)

2 ds ≤ 4

η2
,

where the last quantity depends on η but not on ǫ. The requested convergence follows.

Henceforth, we fix η, ǫ > 0. We recall the definition H := L2([0, 1]), and

K = {h ∈ L2([0, 1]), h ≥ 0}.

Let FC∞
b (H) denote the space of functionals F : H → R of the form

F (z) = ψ(〈l1, z〉, . . . , 〈lm, z〉), z ∈ H, (4.10)
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with m ∈ N, ψ ∈ C∞
b (Rm), and l1, . . . , lm ∈ Span{ek, k ≥ 1}, where, for all n ≥ 1, en is defined

by (2.1). We also define:

FC∞
b (K) :=

{

F
∣

∣

K
, F ∈ FC∞

b (H)
}

.

Moreover, for f ∈ FC∞
b (K) of the form f = F

∣

∣

K
, with F ∈ FC∞

b (H), we define ∇f : K → H
by

∇f(z) = ∇F (z), z ∈ K,

where this definition does not depend on the choice of F ∈ FC∞
b (H) such that f = F

∣

∣

K
. With

these definitions at hand, we consider the form E1,η,ǫ defined on FC∞
b (K) as follows:

E1,η,ǫ(u, v) =
1

2

∫

K

∇u(x).∇v(x) dP 1,η,ǫ
0 (x), u, v ∈ FC∞

b (K).

By Theorems 5 and 6 in [Zam02], the form (FC∞
b (K), E1,η,ǫ) is closable, and it holds that its

closure (Dom(E1,η,ǫ), E1,η,ǫ) is a quasi-regular Dirichlet form. Moreover, in view of the rela-
tion (4.8), the K-valued Markov process (uη,ǫt )t≥0 associated with E1,η,ǫ satisfies the following
Nualart-Pardoux type equation:















∂uη,ǫ

∂t
=

1

2

∂2uη,ǫ

∂x2
+ ξ + ζ +

1

4η
ρ′ǫ(u

η,ǫ − η),

uη,ǫ ≥ 0, dζ ≥ 0,
∫

R+×[0,1]
uη,ǫ dζ = 0,

(4.11)

where ρǫ is as in (4.8) above. Note that, for all ǫ ∈ (0, η), the term ρ′ǫ(u
η,ǫ − η) is zero, except

when |uη,ǫ − η| ≤ ǫ. Moreover, it is positive when η − ǫ ≤ uη,ǫ ≤ η, and negative when
η ≤ uη,ǫ ≤ η + ǫ. Thus, equation (4.11) can be interpreted as an SPDE with reflection at
0 and an attractive mechanism at η which encourages the solution to remain in the interval
(η − ǫ, η + ǫ). We now formulate a conjecture for the limit in law as ǫ, η → 0 of the above
processes.

For all η, ǫ > 0, we consider the K-valued stationary Markov process (uη,ǫt )t≥0 associated

with the Dirichlet form E1,η,ǫ, and started from equilibrium: uη,ǫ0

(d)
= P 1,η,ǫ

0 . Recall that H−1(0, 1)
denotes the completion of H = L2(0, 1) w.r.t. the norm

‖f‖2−1 :=

∞
∑

n=1

n−2 |〈f, en〉|2,

where en(θ) :=
√
2 sin(nπθ), θ ∈ [0, 1].

Conjecture 4.5. For all T > 0, (uη,ǫt )t∈[0,T ] converges weakly to (ut)t∈[0,T ] in C([0, T ], H
−1(0, 1))

as we send ǫ, then η to 0, where u is the Markov process considered in Section 3.1 above.
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Note that, since P 1,η,ǫ
0 converges to P 1

0 as we send ǫ, then η to 0, one can obtain the tightness
of the whole process using the Lyons-Zheng argument, as in the proof of Theorem 2.1 above.
To obtain the conjecture 4.5, the main problem is therefore to identify the limit in probability
of uη,ǫ as ǫ, η → 0. For the same reasons as mentioned in Section 3.1 above this question is, for
now, open.
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