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An Accelerated Second-Order Method for Distributed Stochastic

Optimization

Artem Agafonov, Pavel Dvurechensky, Gesualdo Scutari, Alexander Gasnikov,

Dmitry Kamzolov, Aleksandr Lukashevich, and Amir Daneshmand

Abstract— We consider distributed stochastic optimization
problems that are solved with master/workers computation
architecture. Statistical arguments allow to exploit statisti-
cal similarity and approximate this problem by a finite-sum
problem, for which we propose an inexact accelerated cubic-
regularized Newton’s method that achieves lower communica-
tion complexity bound for this setting and improves upon ex-
isting upper bound. We further exploit this algorithm to obtain
convergence rate bounds for the original stochastic optimization
problem and compare our bounds with the existing bounds
in several regimes when the goal is to minimize the number
of communication rounds and increase the parallelization by

increasing the number of workers.

Index Terms— tochastic optimization, statistical similarity,
distributed optimizationtochastic optimization, statistical sim-
ilarity, distributed optimizations

I. INTRODUCTION

Distributed optimization lies on the interface between

control and optimization with the goal being to find a

minimum of some global objective by a network of agents,

each of which has access to a local part of the objective and

can interact with only neighbouring agents. Many algorithms

for this setting under different assumptions were proposed

as early as in 1970s [1], [2], [3]. Moreover this setting has

many applications including robotics, resource allocation,

power system control, control of drone or satellite networks,

distributed statistical inference and multiagent reinforcement

learning [4], [5], [6], [7], [8]. An important recent application

is training large-scale machine learning models, which in

the language of optimization requires to solve distributed

stochastic optimization problems.

This paper focuses on distributed stochastic optimization

problems using master/workers architectures. These compu-

tational architectures are common, e.g., in the context of

federated learning [9], [10], where for privacy-preserving

purposes the dataset is split across multiple workers and

computations are coordinated by the master node. To be

more precise, we consider the following general stochastic
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optimization problem:

min
x∈Rd

F (x) := Eξf(x, ξ), (1)

where ξ is a random variable, e.g. random data, f is convex

and sufficiently smooth, which implies that F is convex.

We assume that we have access to m workers, T rounds of

communications (all to all or to the master node), and a total

fixed budget of N realizations of ξ. Under this assumption

the main question is how small we can make the error

EF (xT )−F (x∗) by different algorithms returning a random

point xT . Here x∗ denotes a solution to (1).

To solve (1) on master/workers architectures, two main

approaches are used [11], [12], [13], namely Stochastic

Approximation (SA) and Sample Average Approximation

(SAA), a.k.a. Monte-Carlo. The division between SA and

SAA approaches is made for simplicity and there are algo-

rithms (see [14] and Appendix A) which are based on the

SAA idea, but, in fact, use a small number of stochastic

gradient for each realization of ξ, which makes them quite

close to SA algorithms. Moreover, in most cases, we are

given a dataset and it is our choice whether we see each

example once as in the SA approach or multiple times as

in the SAA approach. In this paper, we make an attempt to

look at SA and SAA approaches from a unified perspective

of the actual goal being to solve the stochastic optimization

problem (1) with some fixed budget N of realizations of

random variable ξ.

1) Stochastic Approximation: In the SA approach a typ-

ical situation is that the total budget of N realizations of

ξ is distributed between T communication rounds and m
workers. This leads to so-called intermittent communica-

tions with n = N/(mT ) local stochastic gradient steps by

each worker in between communication rounds, meaning

that between two consecutive communication rounds each

worker has access to n iid stochastic gradients∇f(x, ξ). The

authors of [15] recently obtained for the setting of smooth

optimization the following lower bound:*†

EF (xT )−F (x∗) &
1

(N/m)
2+

1√
N

+min

{
1

T 2
,

1√
N/m

}
.

(2)

*If f is a quadratic the last term can be eliminated [16] and such bound
is tight.

†Here and below we use & and ≃ for simplicity to highlight the
dependence on our main parameters m,N, T and omit numerical multi-
plicative constants, logarithmic factors, and other parameters characterizing
the problem, e.g. Lipschitz constants of the objective, its gradient, and
Hessian, as well as estimates for the norm of the solution.
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They show also that this bound is tight by showing that a

special combination of Minibatched Accelerated SGD and

Single-Machine Accelerated SGD achieve the bound (2).

Under more restrictive assumptions on the smoothness of

f they obtain a lower bound which gives some room for

improvement in the last term of (2):

min

{
1

T 2
,

1√
N/m

,
1

(N/m)
1/4

T 7/4

}

if Hessian is Lipschitz,

(3)

min

{
1

T 2
,

1√
N/m

,
1

TN/m

}

if f is self-concordant.

(4)

min

{
1

T 2
,

1√
N/m

,
1

(N/m)1/2 T 3/2

}

if f is quasi-self-concordant.

(5)

The authors of [17], under an additional assumption of

stronger local smoothness of f around x∗, propose an

algorithm with only one round of communication (T = 1)

with the following guarantee

EF (xT )− F (x∗) .
1

N/m
+

1√
N
, (6)

which, as we will see below, is similar to the SAA-based

approach.

2) Sample Average Approximation: The alternative SAA

approach [18], [19] is based on sampling in advance N
realizations of random function f(x, ξ) and approximating

the expectation in (1) by a regularized finite-sum

min
x∈Rd

F (x) =
1

N

N∑

k=1

f(x, ξk) +
µ

2
‖x− x0‖2, (7)

where ‖ · ‖ is the Euclidean norm. If the regularization

parameter µ ≃ 1/
√
N , solving the problem (7) with suf-

ficient accuracy, we obtain the solution of (1) (see Sec. II

for details). This motivates developing fast algorithms for

problem (7) with the ultimate goal being to obtain solution

to the original stochastic optimization problem (1).

For the SAA approach we assume that we have in total N
realizations {ξk}Nk=1 of the random variable ξ, T commu-

nication rounds, and m workers. Each worker can perform

n local steps between two communication rounds with each

step using one gradient f(x, ξk) for a particular realization

ξk. The difference with the SA approach is that it is possible

to use the same realization ξk in different local steps and also

that, in general, n 6= N/(mT ).
Although the SAA approach allows using each observation

multiple times, there are Variance Reduced (VR) methods,

which applied to the problem (7), typically use only a

logarithmic number of gradients for each observation ξt.
The following convergence rate for the original problem

(1) was obtained in [9] by using SVRG algorithm

EF (xT )− F (x∗) . exp

(
−min

{
nT√
N
,
mnT

N

})
+

1√
N
.

(8)

Note, that parameters n and T appear in the inequality (8)

only as a combination nT . Therefore, the minimum number

of communication rounds T is achieved when T = 1.

Further, from the bound (8) we see that when the number

of workers m increases, there is a limit for possible im-

provement in the bound. Indeed, if m &
√
N the minimum

in the exponent in (8) is achieved on the first term, and

no improvement in the bound is guaranteed. Moreover, the

similar limit m ≃
√
N can be obtained via SA-based method

from [17] with the guarantee (6).

Accelerated (non distributed) Variance Reduced schemes

[20] can not improve the above bound (8). Non-accelerated

distributed Variance Reduced method from [21] applied to

the special type of the problem (7)

min
x∈Rd

F (x) =
1

m

m∑

i=1

1

K

K∑

j=1

f(x, ξi,j) +
µ

2
‖x− x0‖2, (9)

where K = N/m, gives only the following bound for an

approximate solution to problem (1) (see Appendix A for

details):

EF (xT )− F (x∗) .

exp

(
−min

{
T√
N
,
mnT

N

})
+

1√
N
.

(10)

The RHS of the above inequality consists of two terms.

The first one (optimization error) corresponds to the inex-

act solution of the approximation (9) and the second one

(statistical error) comes from statistical reasoning of how

well (9) approximates (1). Ideally, optimization error and

statistical error should be of the same order. Indeed, if,

due to a small budget of communications, the optimization

error dominates, the sample size N should have been chosen

smaller. On the other hand, there is no much sense in

optimizing below the statistical error. Thus, to minimize

T , we are interested in the regime when optimization and

statistical errors are of the same order. This is achieved when

T ≃ max{N1/2, N/(mn)} (recall that ≃ hides also logarith-

mic factors). At the same time, we would like to maximize

the number of workers to scale up the computations. If m
is too large, i.e. m & N1/2, the minimum in the exponent

is achieved at the first term and there is no improvement

in convergence rate with the increase of m. Therefore, the

best possible choice is m ≃
√
N (where we set n = 1 to

maximize m) and T ≃
√
N . In the rest of the paper, we

follow the same scheme to estimate a sufficient number of

communication rounds and the possible numbers of workers.

Optimal (accelerated) distributed Variance Reduced

method from [14] gives

EF (xT )− F (x∗) .

exp

(
−min

{
T

N1/4
,
mnT

N
,

√
mnT

N3/4

})
+

1√
N
.

(11)



From (11) following the same reasoning as before we

derive that to minimize T and m, we should choose T ≃
N1/4 and m ≃ N . Interestingly, the same result is achieved

by the standard accelerated gradient method [22] applied to

the finite-sum problem with N terms in the sum.

3) Exploiting statistical similarity: Recent advances in

distributed optimization for solving problem (7) are achieved

by distributing N realizations of f(x, ξ) between m workers

each having n = N/m realizations. Then problem (7) takes

the form

min
x∈Rd

F (x) =
1

m

m∑

k=1

fk(x) +
µ

2
‖x− x0‖2, (12)

where µ ≃ 1/
√
N = 1/

√
mn, fk(x) =

1
n

∑n
j=1 f(x, ξ

k,j).
Using probabilistic arguments statistical similarity is shown

between fk and the whole sum. More formally, ‖∇2fk(x)−
1
m

∑m
i=1∇2fi(x)‖ ≤ β, where β ≃ 1/

√
n. This idea

have been recently extensively exploited for optimization

problems (mainly) over master/workers architectures, under

the name of statistical preconditioning [23], [24], [25], [26],

[27], [28], [29], [30]. These papers focus on solving the

finite-sum problem (7) and most of them do not achieve

the lower communication complexity bound for this setting

obtained in [31]:‡

Ω

(√

1 +
β

µ
ln

(
∆F (x0)

ε′

))
(13)

to solve problem (7) with accuracy ε′, where ∆F (x0) :=
F (x0)−F (x∗F ) and x∗F is the solution to this problem. The

authors of [32] propose a distributed implementation of the

damped Newton Method called DISCO in the master/workers

architecture for minimizing M -self-concordant functions and

achieve the complexity bound

O

((
M2∆F (x0) + ln

1

ε′

)√
1 +

β

µ

)
. (14)

Unlike [32], we propose to reach (13) by using cubic-

regularized Newton’s method at the central node. Moreover,

most of the above statistical preconditioning papers focus

on (7) and do not account for the actual goal of solving

the original stochastic optimization problem (1). Under an

appropriate choice of the parameter β ≃ 1/
√
n = 1/

√
N/m,

when combined with statistical reasoning, the best result in

the literature for (1) corresponds to the guarantee

EF (xT )− F (x∗) . exp

(
− T

m1/(2κ(F ))

)
+

1√
N
, (15)

where κ(F ) ∈ [1, 2] and, in general [27], κ(F ) ≃ 1.

Moreover, the methods achieving this bound [28], [29], [30]

require to solve rather difficult auxiliary problems at each

node.

‡Here and below we use O(), Ω() notation to denote bounds which

hold up to constant factors, and Õ(), Ω̃() notation to denote bounds which
hold up to constant and polylogarithmic factors.

In [19] the latter drawback is overcome by applying non-

accelerated cubic regularized Newton step [33] at each node

in order to solve (7), which results in the bound

EF (xT )− F (x∗) .

exp

(
−min

{
T

N1/4
,
T

m1/2

})
+

1√
N

(16)

for the problem (1).

A. Our contribution

The main contribution of this paper is two-fold. First,

we focus on finite-sum problems under statistical similarity

and propose a master/workers distributed algorithm for such

problems. The main idea is to implement inexact accelerated

cubic regularized Newton’s method [34], [35], [36] at the

master node for functions with L-Lipschitz Hessian, which

allows to obtain communication complexity bound

O

(√
β

µ
ln

1

ε′
+

(
L2∆F (x0)

µ3

)1/6
)

(17)

that is better than the bound (14) in [32] since M = L/µ3/2,

and matches the dependence on β and µ in the lower bound

(13). Since the size of the message between nodes remains

O(d) as for first-order methods, our approach allows to

reduce communication complexity without additional com-

munication overhead compared to first-order methods.

Second, we apply this method in order to solve the original

stochastic optimization problem (1) and obtain an algorithm

that converges according to the following bound

EF (xT )− F (x∗) .

exp

(
−min

{
T

N1/6
,
T

m1/4

})
+

1√
N
.

(18)

Under additional assumption of µ-strong convexity of the

original problem (1), the proposed algorithm provides the

bound

EF (xT )− F (x∗) .

exp

(
−min

{
Tµ1/3, T

µ1/2N1/4

m1/4

})
+

1

µN
.

In Table I we summarize a comparison with the related

works described above. Note, that in our work we are moti-

vated by two goals: minimize the number of communications

T and maximize the number of workers m to achieve better

parallelization possibilities.

II. FINITE-SUM APPROXIMATION FOR STOCHASTIC

OPTIMIZATION PROBLEM

In this section, we state the main assumptions about

stochastic optimization problem (1), discuss its finite-sum

approximation obtained via the SAA approach, as well as

introduce and motivate the concept of statistical similarity

for finite-sum optimization problems.

We consider stochastic minimization problem

min
x∈Rd

F (x) := Eξf(x, ξ), (19)



TABLE I

COMPARISON BETWEEN DIFFERENT METHODS AND BOUNDS FOR

PROBLEM (1)

Bound T m

SA lower bound [15] (2) N1/4 N3/4

SGD [17] (6) 1 N1/2

SVRG [9] (8) 1 N1/2

Non-accelerated VR [21] (10) N1/2 N1/2

Accelerated VR [14] (11) N1/4 N

Cubic Newton [19] (16) N1/4 N1/2

Accelerated Cubic Newton
[this paper]

(18) N1/6 N2/3

where ξ is a random variable, f(x, ξ) is convex function

w.r.t. x ∈ R
d for all ξ. We assume that, for all ξ, f(x, ξ) is

L0-Lipschitz continuous, i.e.,

‖f(x, ξ)− f(y, ξ)‖ ≤ L0‖x− y‖ ∀x, y ∈ R
d

and has L-Lipschitz Hessian, i.e.

‖∇2f(x, ξ)−∇2f(y, ξ)‖ ≤ L‖x− y‖ ∀x, y ∈ R
d.

Note that the first of these assumptions implies that F is L0-

Lipschitz continuous. We will also consider the case when

f(x, ξ) is µ-strongly convex for all ξ as functions of x.

A. Finite-sum approximation

To solve problem (19) we apply the SAA approach, i.e.

sample N iid realizations ξk,j from an unknown distribution

of ξ, for each worker node k = 1, ...,m define local

objective fk(x) = 1
n

∑n
j=1 f(x, ξ

k,j), where n = N/m,

and approximate the original stochastic optimization problem

(19) by the finite-sum problem

min
x∈Rd

F (x) :=
1

m

m∑

k=1

fk(x) +
µ

2
‖x− x0‖2. (20)

We use x∗, x∗F to denote the solutions of problems (19) and

(20) respectively. We assume that x∗ and x∗F lie inside the

Euclidean ball with center at x0 and radius R.

Corollary 1.2 from [37] claims that under the assumption

of L0-Lipschitz continuity of f(x, ξ) w.r.t x and with µ =
L0 logN

RN the following bound holds with probability at least

1− δ:

F (x∗F )− F (x∗) ≤ O
(
L0R√
N

log (N/δ)

)
.

Using L0-Lipschitz continuity of F (x), we obtain that

F (x)− F (x∗F ) ≤ L0‖x− x∗F ‖, ∀x.

Combining the above two inequalities and plugging x = xT ,

where xT is an output of some optimization algorithm after

T communication rounds, we obtain

F (xT )− F (x∗) ≤ L0‖xT − x∗F ‖+O

(
L0R√
N

log (N/δ)

)
.

(21)

Thus, if we find a good approximation xT to the solution

x∗F of the finite-sum problem (20), we automatically obtain

an approximate solution to problem (19).

If we additionally assume that f(x, ξ) is µ-strongly convex

for all ξ, there is no need in additional regularization and the

original stochastic problem (19) can be approximated by

min
x

1

m

m∑

k=1

fk(x).

In that case the bound (21) can be improved [18] to:

EF (xT )− F (x∗) ≤ L0‖xT − x∗F ‖+O

(
L2
0

µN

)
. (22)

B. Statistical similarity

Since problem (20) originates from problem (19), we can

state and utilize one more important property of the objective

function in (20), namely, statistical similarity. Under assump-

tion that the observations ξk,j are iid, the following bound

holds [38] for all k = 1, ...,m with probability at least 1−δ:

sup
w

∥∥∥∥∥∥
1

m

m∑

j=1

∇2fj(w) −∇2fk(w)

∥∥∥∥∥∥
≤ Õ

(√
32L2d

n

)
.

(23)

In the next section we utilize statistical similarity to propose

an efficient distributed algorithm for problem (20).

III. ACHIEVING THE LOWER BOUND FOR FINITE-SUM

OPTIMIZATION UNDER STATISTICAL SIMILARITY

Motivated by the connection between the finite sum prob-

lem (20) and the original stochastic optimization problem

(19) stated in the previous section, we propose in this section

a distributed minimization algorithm with master/workers

architecture for general finite-sum problems, in particular,

problem (20). We also show that this algorithm achieves the

lower communication complexity bound in [31] specialized

for our setting of master/workers architecture. Moreover, our

algorithm achieves communication complexity bound that is

better than the one in [32].

To that end we consider a network with m agents and the

following general finite-sum optimization problem

min
x∈Rd

F (x) :=
1

m

m∑

k=1

fk(x), (24)

where each worker node k has access only to its local

part fk of the objective. Note that this problem statement

covers problem (20) as a special case since the regularizer

can be equally distributed among the agents. We assume

that F is µ-strongly convex and has L-Lispschitz Hessian.

Motivated by subsection II-B, we make in this section the

following assumption that each local objective fk is a good

approximation to the global objective F .

Assumption 1: (statistical similarity) Each local function

fk is β related to the global objective F :

‖∇2F (x) −∇2fk(x)‖ ≤ β, (25)

for all x ∈ R
d and some β > 0. In particular, for problem

(20) we have that β = Õ(
√
d/n) with high probability.



To solve problem (24) we propose Restarted Distributed

Accelerated Cubic Regularized Newton’s Method by extend-

ing the methods of [34], [35], [36]. First, we describe Dis-

tributed Accelerated Cubic Regularized Newton’s Method for

minimizing convex functions (Algorithm 1). Then we apply

restart technique to obtain linearly convergent Algorithm 2

for minimizing µ-strongly convex function in (24).

We choose one of the agents (w.l.o.g. the agent with

number 1) to be the central node (server), and all the others

are m − 1 to be workers (machines) that are assumed to

be connected with the central node. Each one of these nodes

stores the part fk of the global objective, computes gradients,

and passes them to the central node. Then, the server forms

the gradient of the global objective ∇F (x), computes the

Hessian of its local loss f1(x), constructs the following

model of the global objective F :

F̃M (x, z) = F (z) + 〈∇F (z) , x− z〉 (26)

+
1

2

〈
(∇2f1(z) + 3βI) (x− z) , x− z

〉
+
M

6
‖x− z‖3 ,

(27)

updates variable x by minimizing this model and broadcasts

it to the workers.

Algorithm 1 is a master/workers generalization of the

Accelerated Cubic Newton method under inexact second-

order information [36]. We use local objective f1(x) on

the server as an approximation to the global objective F .

Note, that we need to compute ∇2f1(x) only once per

iteration, at the point wt, but at the same time we need two

communication rounds per one iteration. Importantly, each

communication round requires sending only vectors. Also,

our approach allows to vary sample size on the central node.

This can lead to the better performance, since it improves

the constant β obtained from statistical similarity.

The next Theorem gives convergence rate of Algorithm 1.

Theorem 1: Let Assumption 1 hold and F be convex

function with L-Lipschitz Hessian and defined in (24). Then

after t iterations of Algorithm 1 we have

F (xt)− F (x∗F ) ≤
98L‖x0 − x∗F ‖3

t3
+

48β‖x0 − x∗F ‖2
t2

(29)

where x∗F is a solution to (24).

Note that T iterations correspond to 2T communication

rounds since each iteration requires two communication

rounds.

Proof: To prove the theorem we would like to apply

Theorem 11 of [36], which analyzes an accelerated cubic-

regularized Newton’s method with inexact Hessian. Thus,

first we show that in our algorithm the central node indeed

runs accelerated cubic-regularized Newton’s method with

inexact Hessian (Algorithm 2 of [36]). Their algorithm uses

an approximation Ht for the Hessian that satisfies (in their

notation µu instead of λ)

λ

2
I 4 Ht −∇2F (w) 4 λI. (30)

Algorithm 1 Accelerated Cubic Newton

Input: x0 ∈ R
d, α0 = 1, A0 = 1, L, β.

Step 0:

Master node computes ∇F (x0) by collecting ∇fk(x0) from

workers.

x1 = argmin
x∈Rd

F̃4L(x, x0),

y1 = argmin
x∈Rd

{ψ1(x) := F (x1) + 8β‖x− x0‖2 + 16L‖x− x0‖3}.

Set w0 = x0 and t = 1.

Step 1:

Master node computes ∇F (wt) by collecting ∇fk(wt) from

workers.

Set

wt =

(
1− 3

t+ 3

)
xt +

3

t+ 3
yt

xt+1 = arg min
x∈Rn

F̃4L (x,wt) .

Step 2:

Master node computes ∇F (xt+1) by collecting ∇fk(xt+1)
from workers.

Define At = At−1(1− 3/(t+ 3)),

ψt+1(x) := ψt(x) + 4β‖x− x0‖2 (28a)

+
3

At(t+ 3)
(F (xt+1) + 〈∇F (xt+1) , x− xt+1〉) . (28b)

yt+1 = arg min
x∈Rn

{ψt+1(x)} .

Step 3: Set t← t+ 1 and go to step 1 .

Our assumption of β-similarity (25) allows to choose Ht =
∇2f1(w) + 3βI to satisfy (30) with λ = 4β. Indeed, the

equation (25) implies

β ≥ ‖(∇
2F (x)−∇2f1(x))x‖‖x‖

‖x‖2 ≥

〈x, (∇2f1(x)−∇2F (x))x〉
‖x‖2 .

Therefore,

−βI 4 ∇2f1(x) −∇2F (x) 4 βI.

Adding 3βI to the inequality above we obtain (30) with

λ = 4β. Thus, we see that the central node using its local

Hessian is equivalent to using inexact Hessian of the global

objective F . Since the central node calculates the gradient

of the global objective F by communicating with the nodes,

the central node indeed implements cubic steps with inexact

Hessian.

Our choice of the algorithm parameters corresponds to the

following choice of the parameters in Algorithm 2 of [36]

stated in their Theorem 11:

αt =
3

t+ 3
, µu = 4β, µ̄t = 8β(t+ 2), γ = L, β = 96L,

η =M = 4L.



Algorithm 2 Restarted Accelerated Cubic Newton

Input: z0 ∈ R
n, strong convexity parameter µ > 0, Lipschitz

constant for Hessian L, and R0 > 0 such that ‖z0 − x∗F ‖ ≤
R0. For s = 1, 2, . . .:

1) Set x0 = zs−1 and Rs =
R0

2s .

2) Run Algorithm 1 for Ts iterations, where

ts = 2max

{(
196LRs−1

µ

) 1

3

, 2

(
24β

µ

) 1

2

}
. (31)

3) Set zs = xts .

Applying Theorem 11 of [36] we obtain the statement of our

theorem.

Our next step is to restart Algorithm 1 in order to exploit

strong convexity of the objective and obtain linear conver-

gence rate. In each step of Algorithm 2 we run Distributed

Accelerated Cubic Regularized Method for the number of

iterations, defined in (31). Then, we use its output as the

initial point for the next run of Algorithm 1 with reset

parameters and so on.

Theorem 2: Let the assumptions of Theorem 1 hold and

additionally F be µ-strongly convex. Let R0 > 0 be such

that ‖z0−x∗‖ ≤ R0 and {zs}s≥0 be generated by Algorithm

2. Then for any s ≥ 0 we have

‖zs − x∗F ‖ ≤ R02
−s, (32)

F (zs)− F (x∗F ) ≤ µR2
0 · 2−2s−1 (33)

Moreover, the total communication and oracle complexities

are

O

(√
β

µ
log

F (x0)− F (x∗F )
ε

+

(
LR0

µ

) 1

3

)
. (34)

Proof: We prove by induction that ‖zs − x∗F ‖ ≤
2−s‖x0 − x∗F ‖ ≤ Rs = 2−sR0. For s = 0 this obviously

holds. By strong convexity and inequality (29), we obtain

that

‖zs+1 − x∗F ‖2 ≤
2

µ
(F (xts+1)− F (x∗F ))

≤ 2

µ

(
98L‖zs − x∗F ‖3

t3s+1

+
48β‖zs − x∗F ‖2

t2s+1

)

≤ 2

µ




98LR3
s(

2
(

196LRs

µ

) 1

3

)3 +
48βR2

s(
4
(
24β
µ

) 1

2

)2


 ≤

R2
s

4
= R2

s+1.

Thus, by induction, we obtain that (32), (33) hold.

Next we provide the corresponding complexity bounds.

From the above induction bounds, we obtain that after S
restarts the total number of iterations of Algorithm 1, each

requiring one call of the second-order oracle, two calls of

the first-order oracle and two communication rounds, is no

greater than

S∑

s=1

ts ≤ 2

(
196LR0

µ

) 1

3
S∑

s=1

2
1−s
3 + 4S

(
24β

µ

) 1

2

≤

8

(
392LR0

µ

) 1

3

+ 4

√
24β

µ
log4

[
F (x0)− F (x∗F )

ε

]
.

Therefore, the total communication and oracle complexities

are given by (34).

Let us now translate the bound (32) to the language of

the number of iterations of Algorithm 1 and the number

of communication rounds. Let T be an even number of

communications, which means that we made t = T/2

iterations of Algorithm 1. Let τ1 = 2
(
196LR0

µ

) 1

3

and τ2 =

4
(

24β
µ

) 1

2

. Then ts in Algorithm 2 satisfies ts ≤ max{τ1, τ2}
and after T communication rounds, this algorithm makes

s ≥ ⌊ T
2max{τ1,τ2}

⌋ restarts and generates a point xT = zs
such that

‖xT − x∗F ‖ ≤ R02
−⌊ T

2 max{τ1,τ2} ⌋ ≤ R02
− T

2max{τ1,τ2} . (35)

At this point it is convenient to compare the complexity

bound (34) with the bounds in the literature. Firstly, in terms

of the dependence on β and µ our algorithm achieves the

lower bound (13) obtained in [31]. Secondly, we compare

our bound with the bound (14) of the DISCO algorithm

[32], which unlike other works [23], [24], [25], [26], [27],

[28], [29], [30] also achieves the lower bound in terms of

the dependence on β and µ. Since the dependence on these

parameters in (14) and in our bound (34) are the same, we

compare the other parts of the complexity bound.

Let us denote ∆F (x0) = F (x0)−F (x∗F ). Using the fact,

that a µ-strongly-convex function with L-Lipschitz Hessian

is self-concordant with constant M =
L

(2µ3/2)
, we can

rewrite our bound as

O

((
LR0

µ

)1/3
)
≤ O



(
L

µ

(
∆F (x0)

µ

)1/2
)1/3




= O

((
L

µ3/2
(∆F (x0))

1/2

)1/3
)

= O
(
(M2∆F (x0))

1/6
)
.

The corresponding part of the bound (14) for the DISCO

algorithm is much worse:

O

(
M2∆F (x0)

√
β

µ

)
.

IV. APPLICATION TO STOCHASTIC OPTIMIZATION

PROBLEM

In this section we return back to the stochastic opti-

mization problem (19). As it was described in subsection

II-A, if the regularization parameter µ in (20) is chosen

as µ = Õ

(√
L2

0

mnR2

)
(Note that in this case N = mn,

then an approximate solution to problem (20) is also an

approximate solution to the stochastic optimization problem



(19). We apply the algorithm from the previous section to

solve problem (20) which satisfies assumptions of Theorem

2. Combining the bound of this theorem with the bound (21),

we obtain that the point xT generated by Algorithm 2 after

T rounds of communications satisfies

F (xT )− F (x∗) ≤ Õ
(
L0R02

− T
2max{τ1,τ2} +

L0R√
N

)

= Õ

(
L0R02

−min{T
(

µ
LR0

) 1

3 ,T(µ
β )

1

2 }
+

√
L2
0R

2

N

)
.

Further, substituting the value of µ, the value of β from

(23) (see also Assumption 1), and omitting all the constants

except N , m, T , n = N/m, we obtain

F (xT )− F (x∗) ≤

exp

(
−min

{
C1T

N1/6
,
C2T

m1/4

})
+

C3√
N

(36)

where constants C1, C2, C3 depend on the parameters

L0, L,R0 and logarithms of other parameters.

From the bound (36) we can obtain the dependence of the

number of communication rounds T and number of workers

m on the total number of observations N . We consider the

case of full parallelization, i.e. when we use as many workers

as possible and perform as less as possible communication

rounds. The RHS of (36) consists of two terms, and only

the first one, that comes from the solution of the finite-sum

approximation (20), depends on T . So we would like to

choose the number of communications such that both terms

have the same order. Otherwise, the first term will either

be larger than the second one, which means, that we have

performed not enough communication rounds, or less, which

implies that we have made too many communication rounds,

and that does not improve the convergence. Therefore, we

get T ≃ max{N1/6,m1/4}. Recall, that we also would like

to maximize m. If we choose m & N2/3, we will have

T ≃ m1/4. Hence, the number of communication rounds

will increase with the number of workers. Therefore, the

best possible choice is m ≃ N2/3 and T ≃ m1/4.

Communication requirements in terms of T and m for

different approaches to solve (1) are presented in Table I.

One can see that our result is better than the lower bound

for stochastic optimization (2) in both T and m. Compared

to other state of the art approaches our method outperforms

them either in number of communications or number of

workers.

In the case when the original stochastic problem (19) is

µ-strongly convex, we no longer need to add regularization

to have convergence. From (22) and (35) we have

EF (xT )− F (x∗) ≤

exp
(
−min

{
C1Tµ

1/3, C2Tµ
1/2n1/4

})
+

(
C3

µN

)
,

where constants C1, C2, C3 depend on the parameters

L0, L,R0 and logarithms of other parameters.
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APPENDIX

A. SOTA approaches for distributed stochastic optimization

In the recent paper [15] a novel lower bound for the SA

approach was obtained:

EF (xT )−F (x∗) ≥ LR2

(N/m)2
+
σR√
N

+min

{
LR2

T 2
,

σR√
N/m

}
,

(37)

where N = nmT , since in the SA approach we see each

observation once. That bound is matched by a combination

of two versions of Accelerated Gradient Descent [15]. Recall

that the convergence rate of batched accelerated SGD is

O

(
LR2

t2
+
σR√
tr

)
,

where t is the number of iterations and r is batch size.

To obtain (2) one can consider two cases of the distributed

setting:

• single-machine m = 1, t = N
m , r = 1:

O

(
LR2

(N/m)2
+

σR√
N/m

)
;

• full batch r = N
T , t = T :

O

(
LR2

T 2
+
σR√
N

)
.

The lower bound (37) is matched up to a logarithmic factor

with the combination of these two regimes.

There is also a lower bound for functions with Lipschitz

Hessian , obtained by [15]

1

(N/m)2
+

1√
N

+min

{
1

T 2
,

1√
N/m

,
1

(N/m)1/4 T 7/4

}

But it is not known whether it is accurate or not, since there

is no method on which it reached.

In the paper [17] authors get a better convergence rate

considering non-accelerated parallelized SGD with specific

step size and only one communication at the end, assuming

stronger local smoothness of objective near the solution

O

(
1

(N/m)
+

1√
N

)
.

Considering the SAA approach, one should note that

optimization methods for original stochastic problem can

also be applied. The most common example is stochastic

gradient descent. Papers [39], [40] show that SGD, used to

minimize the empirical risk of the model, also reduces the

generalization error, if the number of iterations is not very

large (linear in sample size N [39]).

For the SAA approach Variance Reduction schemes can

also be used. In the paper [9] authors propose VR scheme

that converges as follows

exp

(
−min

{
C1mnT

N
,
C2L0R

L1

nT√
N

})
+
C3L0R√

N
, (38)

where C1, C2, C3 depends on logarithms of parameters

N,m, T .

Accelerated VR algorithm from [14] can be applied to the

problem of the form (9). In this case we have N = nK total

observations of stochastic gradient. For the convergence of

that variance reduced method parameters n,m, T must be

selected in such a way that after s iterations the following

two conditions are satisfied

•

√
L

µ
s ≤ C1T (stochastic updates);

http://jmlr.org/papers/v21/19-764.html
http://proceedings.mlr.press/v119/hendrikx20a.html
https://doi.org/10.1007/978-3-319-97478-1_11
http://dx.doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.1007/s10107-006-0089-x
http://www.optimization-online.org/DB_FILE/2009/08/2372.pdf


•

(
K +

√
K
L

µ

)
s ≤ C2nT (full gradient computation)

to solve (9), where C1, C2 may depend on K,n,m, T only

logarithmically. Therefore, we get

s ≤ min

{
C1T√
L/µ

,
C2nT

K +
√
KL/µ

}
.

Using that we have fixed size number of observations N =

mK and µ = Õ
(

L2

0

NR2

)
, we obtain

s ≤ min

{
C1

√
L0R

L

T

N1/4
, C2

mnT

N
,C2

√
L0R

L

√
mnT

N3/4

}
.

From (21), using the fact that convergence of this algorithm

is linear, we have

EF (xT )− F (x∗) ≤
(
1

2

)s

+ Õ

(
L0R√
N

)
≤

exp

(
−min

{√
C1
L0R

L

T

N1/4
, C2

mnT

N
,C2

√
L0R

L

√
mnT

N3/4

})

+Õ

(
L0R√
N

)
.

(39)

To compare these methods with the proposed one (Al-

gorithms 1-2) and with the lower bound (37) we derive

dependence of parameters T and m on N , as we did before.

Results are listed in the Table I.

In the case of µ-strong convexity of f(x, ξ) w.r.t. x
for all ξ offline bounds change since we don not need

to regularize finite-sum approximation (see Section II for

details). Therefore, convergence rate of Variance Reduction

scheme (38) from [9] changes to

exp

(
−min

{
C1

nT

L/µ
,C2

mnT

N

})
+O

(
L2
0

µN

)

And convergence rate (39) of accelerated VR method [14]

in the strongly convex case is

exp

(
−min

{
C1T√
L/µ

,
C2T

N/m
,

C2T√
(NL)/(mµ)

})
+O

(
L2
0

µN

)
.
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