
ar
X

iv
:2

10
2.

08
24

6v
2

 [
m

at
h.

O
C

]
 3

 O
ct

 2
02

2

Hyperfast Second-Order Local Solvers for Efficient Statistically

Preconditioned Distributed Optimization

Pavel Dvurechensky1 , Dmitry Kamzolov2,8, Aleksandr Lukashevich3, Soomin Lee4, Erik

Ordentlich4, César A. Uribe5, and Alexander Gasnikov2,6,7

1Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
2Moscow Institute of Physics and Technology, Dolgoprudny, Russia

3Center for Energy Science and Technology, Skolkovo Institute of Science and Technology,

Moscow, Russia
4Yahoo! Research, Sunnyvale, CA

5Rice University, Houston, TX
6Institute for Information Transmission Problems RAS, Moscow, Russia

7National Research University Higher School of Economics, Moscow, Russian Federation
8Mohamed bin Zayed University of Artificial Intelligence, Masdar City, Abu Dhabi, UAE

October 5, 2022

Abstract

Statistical preconditioning enables fast methods for distributed large-scale empirical risk
minimization problems. In this approach, multiple worker nodes compute gradients in paral-
lel, which are then used by the central node to update the parameter by solving an auxiliary
(preconditioned) smaller-scale optimization problem. The recently proposed Statistically Pre-
conditioned Accelerated Gradient (SPAG) method [29] has complexity bounds superior to other
such algorithms but requires an exact solution for computationally intensive auxiliary optimiza-
tion problems at every iteration. In this paper, we propose an Inexact SPAG (InSPAG) and
explicitly characterize the accuracy by which the corresponding auxiliary subproblem needs to
be solved to guarantee the same convergence rate as the exact method. We build our results by
first developing an inexact adaptive accelerated Bregman proximal gradient method for general
optimization problems under relative smoothness and strong convexity assumptions, which may
be of independent interest. Moreover, we explore the properties of the auxiliary problem in the
InSPAG algorithm assuming Lipschitz third-order derivatives and strong convexity. For such
problem class, we develop a linearly convergent Hyperfast second-order method and estimate
the total complexity of the InSPAG method with hyperfast auxiliary problem solver. Finally, we
illustrate the proposed method’s practical efficiency by performing large-scale numerical exper-
iments on logistic regression models. To the best of our knowledge, these are the first empirical
results on implementing high-order methods on large-scale problems, we work with data where
the dimension is of the order of 3 million, and the number of samples is 700 million.

1

http://arxiv.org/abs/2102.08246v2

1 Introduction

The efficient parallelization of large-scale learning is one of the most challenging problems in modern
machine learning. Among several approaches, distributed computation and preconditioning have
been shown effective in accelerating optimization algorithms, especially with increasing amounts
of data [55, 29, 61]. In this paper, we propose an efficient distributed optimization algorithm for
solving the empirical risk minimization (ERM) problem:

min
x∈Rd

{
f(x) , F (x) + h(x)

}
, (1)

where h(x) is a convex regularizer and F (x) is the empirical loss

F (x) ,
1

N

N∑

i=1

ℓ(x; ζi). (2)

Here D , {ζi = (ξi, ηi)}Ni=1 is a set of N training data samples, and ℓ is a convex loss function with
respect to x. We assume that F is LF -smooth and µF -strongly convex, i.e.,

µF Id � ∇2F (x) � LF Id, (3)

where Id is the d-dimensional identity matrix. The condition number of F is denoted as κF = LF /µF ,
and the solution to (1) is denoted as x∗.

Sum-type optimization problems of the form (1) are used to model various statistical learning
problems, including least squares regression, logistic regression, and support vector machines. One
characteristic of modern uses of models like (1) is the so-called large-scale regime, i.e., when N
is very large. Large N poses additional challenges related to the storage and processing of data,
which in turn drives the need for modern distributed/federated architectures [59] that take ad-
vantage of parallel processing capabilities [28], e.g., Apache Spark [60], Parameter Server [38] and
MapReduce [14].

In practice, when N is very large, the complete set of data points D cannot be stored or is not
accessible at a single machine. Instead, data is distributed among m computing units/nodes/agents
such that D = {D1, . . . ,Dm}. Moreover, the distributed setup assumes there is a central node, that is
able to communicate with all the worker nodes. Without loss of generality we assume that N = mn,

i.e., machine j ∈ {1, . . . ,m} locally stores n samples Dj = {ξ(j)i , η
(j)
i }ni=1. Specifically, each agent j

has a local empirical risk, denoted as Fj(x) , (1/n)
∑n

i=1 ℓ(x; ξ
(j)
i , η

(j)
i). Thus,

F (x)=
1

m

m∑

j=1

Fj(x)=
1

nm

m∑

j=1

n∑

i=1

ℓ(x; ξ
(j)
i , η

(j)
i). (4)

The centralized distributed optimization architecture described above, with a central node and
a number of workers, typically involves of two resources: communication and computation. Commu-
nication is usually regarded as the most valuable resource [36]. Thus, recent efforts [55, 29, 61] have
been focused on the efficiency of communications, where one seeks to minimize (4) with a minimal
number of communication rounds between the workers and the central node.

Recent Distributed Optimization Approaches: The distributed approximate Newton-type method
(DANE) [55] has been one of the most popular second-order methods for communication-efficient dis-
tributed machine learning. DANE improves the polynomial dependency of the iteration complexity

2

on the condition number κF of first-order methods for distributed empirical risk minimization prob-
lems, compared to the geometric rates available for centralized, i.e., non-distributed, methods [50].
Particularly, DANE has an iteration (communication) complexity of Õ(κ2F /n)

1 for quadratic func-

tions, and Õ(κF) for convex non-quadratic functions. However, DANE requires the exact solu-
tion of a carefully constructed subproblem, which can be impractical [55]. An inexact version of
DANE, termed InexactDANE [52], and its accelerated variant, termed AIDE [52], achieve an it-
eration complexity of Õ(κF), and Õ(

√
κF) respectively, without requiring exact solutions of the

auxiliary subproblem. For quadratic functions InexactDANE and AIDE have an iteration com-
plexity of Õ(κ2F /n) and Õ(

√
κF /n

1/4) respectively. Nevertheless, the advantage of preconditioning,
where the condition number is effectively reduced as n increases, was only shown for quadratic
problems. Recently, in [61], the authors showed that the preconditioning effect holds locally for
a variation of DANE termed DANE-HB with inexact solutions to the local subproblem. Specifi-
cally, an iteration complexity of Õ(d1/4

√
κF /n

1/4) was shown to hold in a neighborhood around
the optimal point for non-quadratic convex functions. Additionally, for linear prediction models, an
improved global bound of Õ(

√
κF /n

1/4) was shown [61] to be achieved by the D2ANE Algorithm.

In [62] the authors propose the DiSCO algorithm with global bounds Õ(
√
κF /n

1/4) for quadratic

functions and Õ(d1/4
√
κF /n

1/4) for self-concordant functions which are a different class than func-
tions satisfying (3). One of the main observations in [61] is that the looseness in the bounds of
DANE and AIDE came from the reduce (model aggregation) step done by the central node. Thus,
DANE-HB and D2ANE build their results from a modified structure. The worker nodes compute
gradients and communicate them back to the central node, which solves the preconditioned auxiliary
subproblem. Such algorithmic structure was used in [29] recently, where the authors proposed the
Statistically Preconditioned Accelerated Gradient (SPAG) method. SPAG has an iteration complex-
ity of Õ(

√
κF /n

1/4) for quadratic functions with direct acceleration, instead of using the Catalyst

framework [39]. SPAG was also shown to have an asymptotic iteration complexity of Õ(
√
κF /n

1/4),
with empirical evidence that such rate behavior holds non-asymptotically in practice. However,
exact solvers for the auxiliary subproblem on the central node are required. Such convergence rates
match complexity lower bounds [18, 3]. In a more challenging setup (which we do not consider
in this paper) of decentralized distributed optimization [58] propose an algorithm with iteration
complexity Õ(κF /

√
n) and similar up to a network-dependent factor communication complexity.

Although SPAG obtains the near-optimal iteration complexity for distributed algorithms applied
to (1), and (4), it strongly depends on the ability to exactly solve an intermediate auxiliary optimiza-
tion subproblem (usually in the form of a non-Euclidean Bregman projection), whose complexity
was not explicitly taken into account in [29]. More importantly, as pointed out in [29], such an
intermediate problem is computationally hard, and the accuracy of its solution dramatically affects
the performance of the whole method. We solve this issue in this paper.

Our solution’s key innovation is explicitly considering the auxiliary subproblem’s inexactness
and quantifying how it affects the convergence rate of the whole algorithm. Moreover, for the case
of functions with high-order bounded derivatives (e.g., logistic regression or softmax problems [10]),
we provide a Hyperfast second-order method that efficiently computes the approximate solution
of the subproblem. This approach builds upon the line of works on implementable tensor meth-
ods for convex problems recently initiated2 by Yu. Nesterov [46], where it was shown that the

1The Õ-notation means non-asymptotic inequality up to constant and poly-logarithmic factors. More pre-
cisely, A = Õ(B) if there exist constants C, a > 0 such that A ≤ CB lna 1

ε
.

2We underline that the main words here are implementable and convex. Adaptive tensor methods with optimal

3

third-order method for convex problems with Lipschitz third-order derivative could have a convex
subproblem and its solution can be efficiently implemented. Later, [25] proposed near-optimal ten-
sor methods with complexity bounds which match up to a logarithmic factor the lower bounds
for highly-smooth convex optimization. [49] proposes a third-order tensor method with third-order
derivative approximated by finite-difference of gradients, which leads to a Superfast second-order
method with convergence rate O(1/k4) for convex functions with Lipschitz third-order derivative.
As a next step, [48] proposes an inexact accelerated high-order proximal point method which al-
lows improving, compared to Superfast second-order method, the convergence rate to O(1/k5) up
to logarithmic factors. In parallel to the previous work and inspired by [49], the authors of [32]
proposed a Hyperfast second-order method with the same convergence rate, but based on another
accelerated high-order method developed in [25]. In this paper, we extend both methods to the set-
ting of strongly convex minimization problems and apply them to solve the intermediate auxiliary
optimization subproblem in each iteration of our inexact version of SPAG.

Contributions SPAG is one of the fastest distributed methods (in terms of communication steps
number) for the minimization of (1), and (4) with i.i.d. samples [29]. Moreover, the Hyperfast
second-order method is the best known (near-optimal) second-order method to minimize convex
functions with Lipschitz third-order derivatives. We argue that the extended combination of the
proposed inexact SPAG and the new Hyperfast second-order method provides a useful approach
to construct new efficient distributed algorithms. Specifically, in SPAG, the central node solves
a problem with a similar structure as (1), but with a smaller number n of data samples. There-
fore, with a reduced number of samples, the complexity of calculating the Hessian is comparable
(due to the sum-type structure of F) with its inversion by the matrix inversion lemma [13] and
modern practical versions of Strassen-type algorithm [30]. In this regime, at the central node, Hy-
perfast second-order methods outperform existing variance-reduced stochastic first-order schemes.
We extend the theoretical analysis of inexact statistical preconditioning methods alongside high-order
methods and show that they jointly provide an efficient second-order method that outperforms (from
theoretical and practical points of view) well-known (stochastic) first-order schemes.

The main contributions of this paper are as follows:

• Since SPAG is based on the accelerated Bregman proximal gradient method for relatively smooth
and strongly-convex problems, we first propose an inexact accelerated Bregman proximal gradient
method for general convex optimization problems. Our algorithm is based on an inexact model
for the objective, which subsumes the setting of relatively smooth and (strongly-)convex problems
and the setting of inexact first-order oracles. Our algorithm also allows for approximate Bregman
projections. We estimate the convergence rate and rates of inexactnesses accumulation.

• We propose an Inexact Statistically Preconditioned Accelerated Gradient (InSPAG) method for
distributed optimization problem (1), (4), and explicitly characterize the accuracy by which the
corresponding auxiliary subproblem needs to be solved to guarantee the same convergence rate
as the exact method, i.e., Õ(

√
κF /n

1/4). Our method is not a direct extension and has a slightly
simpler structure than the method in [29].

• We extend and generalize the Hyperfast second-order method [48, 32], recently proposed for
smooth and convex problems, to the class of uniformly, and especially strongly, convex functions.
We show a linear convergence rate for this problem class.

complexity guarantees for non-convex problems were proposed earlier in [9, 11, 12], and previously known tensor
methods for convex problems [4] did not necessarily have convex auxiliary problem in each iteration.

4

• Based on an example of sparse logistic regression, we discuss the distributed optimization problem
regime, for which Hyperfast second-order optimization methods provide a theoretical advantage
over classical first-order methods for the problem size, dimension, and desired accuracy of the
solution.

• We provide experimental results in application to large-scale machine learning problems that show
the efficiency of the use of high-order methods in practice. To the authors’ best knowledge, this
is one of the first attempts to apply near-optimal tensor methods for real data and applications.
Specifically, we test the proposed algorithm on a proprietary data set with 710 million entries
and a dimension of 3.2 million.

Outline In Section 2, we introduce the inexact accelerated Bregman proximal gradient method
for general convex optimization problems. This includes defining the concept of the inexact model
of the objective, illustrating it by examples, presenting the algorithm and its convergence rate
theorem together with its proof. Section 3 presents the setting for statistically preconditioned
distributed algorithms, introduces InSPAG algorithm and its convergence rate theorem. After
that, we present the Hyperfast second-order method for the auxiliary subproblem of the InSPAG,
estimate its complexity and combine the building blocks to obtain the total complexity of the whole
approach. We finish this section by discussing the regime in which our approach is superior to
applying stochastic variance-reduced algorithms. Section 4 presents our experimental results. For
the sake of completeness in Section 5 we present Hyperfast second-order method for uniformly
convex functions. We finalize with conclusions in Section 6.

2 Accelerated Gradient Method under Inexactness and Relative

Smoothness

In this section, we propose a general accelerated first-order algorithm that will be used in the next
section to propose our InSPAG method for distributed optimization. We believe that the results
of this section may be of independent interest. This section is, to an extent, independent of the
others sections and the reader interested in the distributed optimization may skip this section since
in what follows only the main result of this section (Theorem 2.6) will be used. We consider the
following general optimization problem

min
x∈Q

f(x), (5)

where Q is a convex subset of finite-dimensional vector space E. Our goal is to develop a general
accelerated inexact gradient method capable to work under relative smoothness and strong convexity
assumptions [5, 41]. We consider two types of inexactness: inexact information on the objective
function and inexact generalized projection.

Before we give more details, we introduce some general notations. Let E be an d-dimensional
real vector space and E∗ be its dual. We denote the value of a linear function g ∈ E∗ at x ∈ E
by 〈g, x〉. Let ‖ · ‖ be some norm on E, ‖ · ‖∗ be its dual, defined by ‖g‖∗ = max

x

{
〈g, x〉, ‖x‖ ≤ 1

}
.

Let φ be a convex function on Q, which is continuously differentiable on the relative interior riQ of Q.
LetDφ[y](x) = φ(x)−φ(y)−〈∇φ(y), x−y〉, x ∈ Q, y ∈ riQ be the corresponding Bregman divergence.
Based on the Bregman divergence we introduce the following two definitions of inexactness.

5

Defintion 2.1 (Inexact model [57]). Let δ, L, µ,m ≥ 0. We say that (fδ(y), ψδ(x, y)) is a (δ, L, µ,m, φ)-
model of the function f at a given point y iff, for all x ∈ Q,

µDφ[y](x) ≤ f(x)− (fδ(y) + ψδ(x, y)) ≤ LDφ[y](x) + δ, (6)

ψδ(x, y) is convex in x, satisfies ψδ(x, x) = 0 for all x ∈ Q and

ψ(x) > ψ(z) + 〈g, x − z〉+mDφ[z](x), ∀x, z ∈ Q, ∀g ∈ ∂ψ(z), (7)

where for fixed y ∈ Q and any x ∈ Q we denote ψ(x) = ψδ(x, y).

Defintion 2.2 (Inexact generalized projection [8]). For a convex optimization problem minx∈QΨ(x)

and δ̃ ≥ 0, we denote by Argminδ̃x∈QΨ(x) a set of points x̃ such that

∃h ∈ ∂Ψ(x̃) : ∀x ∈ Q → 〈h, x− x̃〉 ≥ −δ̃. (8)

We denote by argminδ̃x∈QΨ(x) some element of Argminδ̃x∈QΨ(x).

Optimization algorithms with inexact model of the objective were extensively studied in [57] and
are generalizations of first-order algorithms with inexact oracle [15, 20]. We now give two particular
examples that are covered by the inexact model framework and refer to [57] for further examples.

Example 2.3. Relative smoothness and relative strong convexity, [5, 41]. Assume that
φ(x) is differentiable, and in (5), the objective f is differentiable, relatively smooth [5, 41] and
strongly convex [41] relative to φ, i.e., for some µ ≥ 0 and L > 0,

µDφ[y](x) ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ LDφ[y](x), ∀x, y ∈ Q.

Then, clearly, Definition 2.1 holds with m = 0, δ = 0, fδ(y) = f(y), ψδ(x, y) = 〈∇f(y), x −
y〉. Importantly, the function φ is not required to be strongly convex. Our InSPAG relies on this
particular example.

Example 2.4. Composite optimization, [7, 44]. Assume that in (5), f(x) = g(x)+h(x) with
convex L-smooth w.r.t. norm ‖ · ‖ term g(x) and simple convex term h(x) which is usually called
composite. In this case we assume that φ(x) is 1-strongly-convex w.r.t ‖ · ‖, and define fδ(y) =
g(y) + h(y) and ψδ(x, y) = 〈∇g(y), x − y〉+ h(x)− h(y). Then, clearly,

f(x)− (fδ(y) + ψδ(x, y)) = g(x) − (g(y) + 〈∇g(y), x − y〉).

By convexity of g, we have 0 ≤ g(x)−(g(y)+〈∇g(y), x−y〉). At the same time, by the L-smoothness
of g and 1-strong-convexity of φ(x),

g(x) − (g(y) + 〈∇g(y), x − y〉) ≤ L

2
‖x− y‖2 ≤ LDφ[y](x).

From the combination of the above two relations, it is clear that (6) holds with δ = 0 and µ = 0 and
we are in the situation of Definition 2.1 with m = 0 since ψδ(x, y) is convex in x.

6

In [57], to develop an accelerated algorithm, the authors use a different assumption where in the
r.h.s. of (6) the Bregman divergence Dφ[y](x) is substituted with 1

2‖x− y‖2, and assume that φ is
1-strongly-convex w.r.t. ‖·‖. This, unfortunately, restricts the range of applications of the algorithm,
and we use a weaker set of assumptions in Definition 2.1. At the same time, [18] showed that it is not
possible to develop an accelerated algorithm in the relative smoothness setting without additional
assumptions. Thus, we introduce the following assumption on the Bregman divergence Dφ[y](x) and
note that the range of applications is still wider than for the approach of [57]. We also note that
this assumption is simpler than the one in [29] and is a version of triangle scaling gain introduced
in [27] and triangle lower bound property of [23].

Assumption 2.5. There exists a constant G ≥ 1 such that for all x, y, u, u+ ∈ ri domφ such
that x− y = τ(u+ − u) for some τ ∈ [0, 1] it holds that

Dφ[y](x) ≤ Gτ2Dφ[u](u+). (9)

This assumption can be seen as a relaxation of homogeneity of degree 2. The simplest example
when this property holds is when Dφ[y](x) = 1

2‖y − x‖2. In this case G = 1. We also note that
our algorithm is adaptive to constant G which means that the property (9) is sufficient to hold only
locally.

The proposed accelerated gradient method with inexact model is listed below as Algorithm 1.
Unlike [29, 27, 23], our algorithm is simultaneously adaptive to the “Lipschitz” constant L (see
Definition 2.1) and constant G in Assumption 2.5, which is expressed in constant M that plays the
role of the product LG. Also, unlike [29, 27, 23], our algorithm allows two types of inexactness
covered by Definitions 2.1 and 2.2. Finally, unlike [27, 23], our algorithm has linear convergence
when µ > 0. We also note that we allow the accuracies δ, δ̃ in Definition 2.1 and 2.2 to depend on
the iteration counter k, which is expressed by the sequences {δk, δ̃k}k≥0.

The following is the convergence rate result for the proposed algorithm.

Theorem 2.6. Assume that (fδ(y), ψδ(x, y)) is a (δ, L, µ,m, φ)-model according to Definition 2.1.
Also assume that Dφ[y](x) satisfies Assumption 2.5. Then, after N iterations of Algorithm 1, we
have

f(xN)− f(x∗) ≤
Dφ[u0](x∗)

AN
+

2
∑N−1

k=0 Ak+1δk
AN

+

∑N−1
k=0 δ̃k
AN

, (15)

Dφ[uN](x∗) ≤
Dφ[u0](x∗)

(1 +ANµ+ANm)
+

2
∑N−1

k=0 Ak+1δk
(1 +ANµ+ANm)

+

∑N−1
k=0 δ̃k

(1 +ANµ+ANm)
. (16)

In order to prove Theorem 2.6 we need the following technical Lemma.

Lemma 2.7 ([57], Lemma 3.5.). Let ψ(x) be a relatively m-strongly convex function relative to φ
with m ≥ 0, i.e. (7) holds, and

y = argmin
x∈Q

δ̃{ψ(x) + βDφ[z](x) + γDφ[u](x)},

where β ≥ 0 and γ ≥ 0. Then, for all x ∈ Q,

ψ(x) + βDφ[z](x) + γDφ[u](x) ≥ ψ(y) + βV [z](y) + γDφ[u](y) + (β + γ +m)Dφ[y](x)− δ̃.

7

Algorithm 1 Accelerated gradient method with (δ, L, µ,m, φ)-model

1: Input: x0 is the starting point, µ ≥ 0, m ≥ 0, {δk}k≥0 and
2: Set y0 := x0, u0 := x0, α0 := 0, A0 := α0

3: for k ≥ 0 do
4: Find the smallest integer ik ≥ 0 such that

fδk(xk+1) ≤ fδk(yk+1) + ψδk(xk+1, yk+1) +
Mk+1α

2
k+1

A2
k+1

Dφ[uk](uk+1) + δk, (10)

where Mk+1 = 2ik−1Mk, αk+1 is the largest root of the equation

Ak+1(1 +Akµ+Akm) =Mk+1α
2
k+1, Ak+1 := Ak + αk+1, and (11)

yk+1 :=
αk+1uk +Akxk

Ak+1
, (12)

Φk+1(x) := αk+1ψδk(x, yk+1) + (1 +Ak(µ +m))Dφ[uk](x) + αk+1µDφ[yk+1](x),

uk+1 := argmin
x∈Q

δ̃kΦk+1(x), for some δ̃k ≥ 0 (13)

xk+1 :=
αk+1uk+1 +Akxk

Ak+1
. (14)

5: Set k := k + 1.
6: end for
7: Ouput: xk

Proof of Theorem 2.6. We start by proving the correctness of the algorithm, i.e. that if we fix
iteration k, there exists ik ≥ 0 such that (10) holds. By Definition 2.1 with x = y, we have fδk(y) ≤
f(y). Thus, from (6)

fδk(xk+1) ≤ fδk(yk+1) + ψδk(xk+1, yk+1) + LDφ[yk+1](xk+1) + δk. (17)

Combining this with Assumption 2.5 and using (12), (14), we further obtain

fδk(xk+1) ≤ fδk(yk+1) + ψδk(xk+1, yk+1) +
LGα2

k+1

A2
k+1

Dφ[uk](uk+1) + δk. (18)

Since Mk+1 = 2ik−1Mk, we see that as soon as Mk+1 ≥ LG, (10) holds. Thus, the algorithm is
correctly defined. Note also that by the same reason we have

Mk+1 ≤ 2LG. (19)

Our next goal is to prove that, for all x ∈ Q, we have

Ak+1f(xk+1)−Akf(xk) + (1 +Ak+1µ+Ak+1m)Dφ[uk+1](x)

− (1 +Akµ+Akm)Dφ[uk](x) ≤ αk+1f(x) + 2δkAk+1 + δ̃k. (20)

Since by Definition 2.1 with x = y, we get f(x)− δk ≤ fδk(x) ≤ f(x), and, using (10), we have

f(xk+1)
(6)

≤ fδk(xk+1) + δk
(10)

≤ fδk(yk+1) + ψδk(xk+1, yk+1)

+
Mk+1α

2
k+1

A2
k+1

Dφ[uk](uk+1) + 2δk.

8

Substituting in this expression definition (14) of the point xk+1, using that Ak+1 = Ak + αk+1 and
that, by Definition 2.1, ψδk(·, y) is convex, we have

f(xk+1) ≤
Ak

Ak+1
(fδk(yk+1) + ψδk(xk, yk+1)) +

αk+1

Ak+1
(fδk(yk+1) + ψδk(uk+1, yk+1))

+
Mk+1α

2
k+1

A2
k+1

Dφ[uk](uk+1) + 2δk.

In view of the definition (11) of the sequence αk+1 and left inequality in (6), we obtain

f(xk+1) ≤
Ak

Ak+1
f(xk) +

αk+1

Ak+1

(
fδk(yk+1) + ψδk(uk+1, yk+1)

+
1 +Akµ+Akm

αk+1
Dφ[uk](uk+1)

)
+ 2δk.

(21)

By Lemma 2.7, for the optimization problem in (13) with ψ(x) = αk+1ψδk(x, yk+1), β = 1+Akµ+
Akm, z = uk, γ = αk+1µ, and u = yk+1, it holds that

αk+1ψδk(uk+1, yk+1) + (1 +Akµ+Akm)Dφ[uk](uk+1) + αk+1µDφ[yk+1](uk+1)

+ (1 +Ak+1µ+Ak+1m)Dφ[uk+1](x)− δ̃k

≤ αk+1ψδk(x, yk+1) + (1 +Akµ+Akm)Dφ[uk](x) + αk+1µDφ[yk+1](x).

From the fact that Dφ[yk+1](uk+1) ≥ 0, we have

αk+1ψδk(uk+1, yk+1) + (1 +Akµ+Akm)Dφ[uk](uk+1)

≤ αk+1ψδk(x, yk+1) + (1 +Akµ+Akm)Dφ[uk](x)

− (1 +Ak+1µ+Ak+1m)Dφ[uk+1](x) + αk+1µDφ[yk+1](x) + δ̃k.

(22)

Combining (21) and (22), we obtain

f(xk+1) ≤
Ak

Ak+1
f(xk) +

αk+1

Ak+1

(
fδk(yk+1) + ψδk(x, yk+1) + µDφ[yk+1](x)

+
1 +Akµ+Akm

αk+1
Dφ[uk](x)

− 1 +Ak+1µ+Ak+1m

αk+1
Dφ[uk+1](x) +

δ̃k
αk+1

)
+ 2δk.

We finish the proof of (20) applying the left inequality in (6):

f(xk+1) ≤
Ak

Ak+1
f(xk) +

αk+1

Ak+1
f(x) +

1 +Akµ+Akm

Ak+1
Dφ[uk](x)

− 1 +Ak+1µ+Ak+1m

Ak+1
Dφ[uk+1](x) + 2δk +

δ̃k
Ak+1

.

We now telescope the inequality (20) for k from 0 to N − 1 and take x = x∗:

ANf(xN) ≤ANf(x∗) +Dφ[u0](x∗)− (1 +AN (µ+m))Dφ[uN](x∗)

+ 2

N−1∑

k=0

Ak+1δk +

N−1∑

k=0

δ̃k. (23)

9

Since V [uk+1](x∗) ≥ 0 for all k ≥ 0, we have

ANf(xN)−ANf(x∗) ≤ Dφ[u0](x∗) + 2

N−1∑

k=0

Ak+1δk +

N−1∑

k=0

δ̃k.

The last inequality proves (15). Inequality (16) is a straightforward from (23) since f(x) ≥ f(x∗)
for all x ∈ Q.

To finish the analysis of Algorithm 1 we estimate the growth rate of the sequence AN . The
result is proved in the same way as Lemma 3.7 in [57] with the change Lk →Mk.

Lemma 2.8. For all N ≥ 0, we have

AN ≥ max




1

4

(
N−1∑

k=0

1√
Mk+1

)2

,
1

M1

N−1∏

k=1

(
1 +

√
µ+m

4Mk+1

)2




≥ max

{
N2

4M̃N

,
1

M1
exp

(
N

√
µ+m

4M̃N

)}
,

where M̃
−1/2
N = 1

N

∑N−1
k=0 M

−1/2
k+1 .

Note that from (19) we have that M̃
−1/2
N = 1

N

∑N−1
k=0 M

−1/2
k+1 ≥ 1√

2LG
, which leads to the following

estimate for the convergence rate of Algorithm 1

f(xN)− f(x∗) ≤Dφ[u0](x∗)min

{
8LG

N2
, 2LG exp

(
−N

√
µ+m

8LG

)}

+
2
∑N−1

k=0 Ak+1δk
AN

+

∑N−1
k=0 δ̃k
AN

.

3 Inexact Statistically Preconditioned Accelerated Gradient Method

In this section, we return to the distributed empirical risk minimization problem (1), (4), where
we deal with m machines or worker nodes, with sample size n at each. Moreover, without loss
of generality we index the central node as node 1. Following the same algorithmic structure as
DANE [55] and SPAG [29], we define a reference function

φ(x) =
1

n

n∑

i=1

ℓ(x; ζi) +
σ

2
‖x‖22, (24)

where the samples ζi are taken from the node which is chosen to be central. It is easy to see from (2)
and (3) that φ(x) is Lφ-smooth, and µφ-strongly convex since it has a similar form as F (x). The
value of the parameter σ is set to be an upper bound that quantifies how similar the function F1 is
to F , i.e., we assume that with high probability, it holds that

‖∇2F (x)−∇2F1(x)‖2 ≤ σ, ∀x ∈ domh (25)

10

where the norm is the operator norm for matrices (i.e., the largest singular value). The rationale
behind this statistical similarity assumption are statistical arguments that allow to show [29] that
(25) holds with σ proportional to 1√

n
. Further, it follows that F (x) is LF/φ-relatively smooth

and µF/φ-relatively strongly convex with respect to φ(x) [62, 29], i.e.,

µF/φDφ[x](y) ≤ DF [x](y) ≤ LF/φDφ[x](y), (26)

with LF/φ = 1, µF/φ = µF /(µF + 2σ), and κF/φ = LF/φ/µF/φ = 1 + 2σ/µF .
Once the specific Bregman divergence has been defined based on statistical similarity and using

the reference function (statistical preconditioner) φ(x) as in (24), distributed statistical precon-
ditioning methods rely on Bregman proximal steps, where the algorithm needs to solve at every
iteration the problem of the form (here α > 0)

argmin
x∈Rd

{α(〈∇F (z), x−z〉+ h(x))+Dφ[u](x)} . (27)

Non-accelerated methods based on steps of the form (27) have an iteration complexity of Õ(κF/φ) [6,
41, 57]. Thus, statistical preconditioning allows for the relative condition number κF/φ to deter-
mine the convergence rate instead of κF . The authors in [29] showed that for quadratic func-
tions σ = Õ(LF/

√
n), which implies κF/φ = 1 + Õ(κF /

√
n). Similarly, for non-quadratic func-

tions σ = Õ(κF
√
d/n), thus κF/φ = 1 + Õ(κF

√
d/n). This, in turn, leads to the total number of

communication rounds Õ
(
κF/φ

)
, which is quantitatively better than for methods that do not use

such statistical preconditioning [3, 53, 28]. A similar argument follows for accelerated algorithms,

where the iteration complexity will be Õ
(
κ
1/2
F/φ

)
[29].

Next, we study the building blocks of our approach to advance this line of works. First, we
consider the inexact version of the SPAG algorithm [29] wherein each iteration subproblems of the
form (27) are solved inexactly with such accuracy that the overall performance of the algorithm
is affected only by a logarithmic factor. Notably, the required accuracy decreases as iterations go,
meaning that the approximate solution’s quality may not be high in the first iterations. Next, we
introduce and analyze a Hyperfast second-order method for third-order smooth and uniformly con-
vex functions, which we will apply to solve subproblems (27) in each iteration of our inexact SPAG
(InSPAG) algorithm when h(x) = 0. Finally, we analyze the total complexity for the combination of
InSPAG plus the Hyperfast second-order method to solve our problem of interest. This combination
is advantageous because we only use first-order information on the individual losses from the whole
dataset and obtain a small subproblem on the central node. Then, a fast second-order method is
used to solve this subproblem on the central node.

3.1 InSPAG and Its Convergence Rate Theorem

This subsection introduces the InSPAG algorithm together with its convergence rate analysis.
The main idea is to implement Algorithm 1 on the central node and use Theorem 2.6. Inexactness
in statistically preconditioned problems has been studied for DANE, resulting in InexactDANE,
AIDE [52], and D2ANE [61]. To propose our InSPAG algorithm we rely on the results of Section
2. From (26) and Examples 2.3 and 2.4 we see that fδ(y) = f(y) and ψδ(x, y) = 〈∇F (y), x − y〉 +
h(x)−h(y) constitute a (0, LF/φ, µF/φ, 0, φ)-model of the function f defined in (1). Thus, the main
idea of InSPAG is to implement Algorithm 1 for problem (1) using distributed computations. We

11

Algorithm 2 InSPAG (LF/φ, µF/φ, x0, R)

1: Input: R s.t. x∗ ∈ B2(0, R), R
2
φ = 2LφR

2, µF/φ, M0.
2: Set y0 = u0 = x0 ∈ B2(0, R), A0 := α0 := 0.
3: for k ≥ 0 do
4: Set ik = 0
5: repeat
6: At the central node set Mk+1 = 2ik−1Mk and find αk+1 from Ak+1(1 +AkµF/φ) =

Mk+1α
2
k+1. Set Ak+1 := Ak + αk+1.

7: At the central node set yk+1 :=
αk+1uk+Akxk

Ak+1
and send to each worker.

8: At every worker node j compute 1
n

∑n
i=1 ∇ℓ

(
yk+1; ζ

(j)
i

)
and send it to the central node.

9: At the central node compute ∇F (yk+1) =
1

nm

∑m
j=1

∑n
i=1 ∇ℓ

(
yk+1; ζ

(j)
i

)
.

10: At the central node solve uk+1 = argmin
R2

φ/k

x∈B2(0,R) Φk+1(x),

where Φk+1(x) = αk+1(〈∇F (yk+1), x− yk+1〉+ h(x))+

+ (1 +AkµF/φ)Dφ[uk](x) + αk+1µF/φDφ[yk+1](x). (28)

11: At the central node set xk+1 :=
αk+1uk+1+Akxk

Ak+1
.

12: Set ik = ik + 1.
13: until

F (xk+1) ≤ F (yk+1) + 〈∇F (yk+1), xk+1 − yk+1〉+
Mk+1α

2
k+1

A2
k+1

Dφ[uk](uk+1). (29)

14: end for
15: Ouput: xk

further assume that the solution x∗ of the problem (1) belongs to some Euclidean ball B2(0, R), and
define R2

φ = 2LφR
2. Using this quantity we set the inexactness of the projection in each iteration

to be δ̃k =
R2

φ

k (cf. (13)).
The pseudocode of the proposed InSPAG algorithm is presented as Algorithm 2. Unlike [29],

our algorithm is inspired by a similar-triangles type of accelerated methods [26, 45, 21, 19, 57, 22],
which leads to a slightly simpler algorithm. Another important difference with [29] is that our
algorithm is adaptive simultaneously to the constants LF/φ and G (see Assumption 2.5), which may
lead to further acceleration in practice since locally, the constant LF/φG can be smaller leading
to larger step-sizes. Note that Line 10 of Algorithm 2 requires approximate minimization of the
auxiliary function (28). First, we present the complexity analysis of Algorithm 2 in Theorem 3.1
assuming the approximate solution to (28). In Subsection 3.2, we show the complexity of obtaining
said approximate solution efficiently when h(x) = 0 using high-order methods.

We are now in a position to state the main result on InSPAG.

Theorem 3.1. Assume that the function F in (1) is µF/φ-strongly convex and LF/φ-smooth with
respect to the function φ, where φ satisfies Assumption 2.5. Moreover, let xk, k ≥ 0 be the sequence

12

generated by Algorithm 2. Then, after K iterations it holds that

f(xK)− f(x∗) ≤
2LφR

2(1 + lnK)

AK
, (30)

Moreover, the value AK grows as follows:

AK ≥ max

{
K2

4M̃K

,
1

M1
exp

(
K

√
µF/φ

4M̃K

)}
, (31)

where M̃
−1/2
K = 1

K

∑K−1
k=0 M

−1/2
k+1 .

Proof. Clearly, Algorithm 2 is a distributed implementation of Algorithm 1 with δk = 0, k ≥ 0. We
only note that for this particular setting with fδ(y) = f(y) and ψδ(x, y) = 〈∇F (y), x− y〉+ h(x)−
h(y), inequality (10) becomes

F (xk+1) + h(xk+1) ≤F (yk+1) + h(yk+1) + 〈∇F (yk+1), xk+1 − yk+1〉

+ h(xk+1)− h(yk+1) +
Mk+1α

2
k+1

A2
k+1

Dφ[uk](uk+1),

which is equivalent to (29). Thus, we can apply Theorem 2.6, which gives the following estimate

f(xK)− f(x∗) ≤
Dφ[u0](x∗)

AK
+

∑K−1
k=0 δ̃k
AK

≤ Lφ(2R)
2

2AK
+

1

AK

K−1∑

k=0

R2
φ

k

≤
R2

φ(1 + lnK)

AK
=

2LφR
2(1 + lnK)

AK

The lower bound for AK follows from Lemma 2.8.

To apply Theorem 3.1 we need to ensure that Assumption 2.5 is satisfied.

Lemma 3.2. Under the assumption that φ is µφ-strongly convex and Lφ-smooth Assumption 2.5 is
satisfied with G = Lφ/µφ = κφ.

Proof. Since φ is µφ-strongly convex and Lφ-smooth, we have that

µφ
2
‖x− y‖2 ≤ Dφ[x](y) ≤

Lφ

2
‖x− y‖2, ∀x, y ∈ dom φ.

Thus, for all x, y, u, u+ such that x− y = τ(u+ − u) for some τ ∈ [0, 1], we have

Dφ[y](x) ≤
Lφ

2
‖x− y‖2 = Lφτ

2

2
‖u+ − u‖2 ≤ Lφτ

2

µφ
Dφ[u](u+).

From Lemma 3.2, we see that if φ is a quadratic function, then, G = κφ and by (19) we have
that Mk+1 ≤ 2LF/φκφ. Then, the number of iterations K to reach accuracy ε, i.e., the number of

communications between the central node and the worker nodes, is bounded as O(
√
κF/φκφ ln

1
ε).

As we see below, for quadratic functions the estimate for G can be improved to G = 1, which gives a
better communication complexity O(

√
κF/φ ln

1
ε). In the general case, where φ is not quadratic, simi-

larly to [29, 40], we next show that Mk+1 → LF/φ linearly with rate Õ(
√
κF/φ). This means that the

convergence rate of InSPAG quickly approaches the convergence rate with condition number
√
κF/φ.

13

Lemma 3.3. Under the assumptions of Theorem 3.1 and Lemma 3.2 assume additionally that the
Hessian of φ is H-Lipschitz-continuous, i.e.

‖∇2φ(x)−∇2φ(y)‖ ≤ H‖x− y‖. (32)

Then the inequality (29) is satisfied with

Mk+1 = LF/φmin

{
κφ, 1 +

Hdk
µφ

}
, (33)

where dk = ‖xk+1 − yk+1‖+ ‖uk − xk‖+ ‖uk − uk+1‖ .

Proof. By the local quadratic representation of the Bregman divergence, we have for any a, b ∈
domφ and for some τ ∈ [0, 1] that Dφ[a](b) = ‖a − b‖2∇2φ(τa+(1−τ)b). We use H(a, b) to denote the

corresponding Hessian ∇2φ(τa+ (1− τ)b). We have

Dφ[xk+1](yk+1) = ‖xk+1 − yk+1‖2H(xk+1,yk+1)

(14),(12)
=

α2
k+1

A2
k+1

‖uk+1 − uk‖2H(xk+1,yk+1)

≤ α2
k+1

A2
k+1

(
‖uk+1 − uk‖2H(uk+1,uk)

+ ‖H(xk+1, yk+1)−H(uk+1, uk)‖‖uk+1 − uk‖2
)

≤ α2
k+1

A2
k+1

(
Dφ[uk](uk+1) + ‖H(xk+1, yk+1)−H(uk+1, uk)‖

Dφ[uk](uk+1)

µφ

)

(32)

≤ α2
k+1

A2
k+1

Dφ[uk](uk+1)

(
1 +

H‖z − z′‖
µφ

)
,

where z ∈ [xk+1, yk+1] and z′ ∈ [uk+1, uk]. Using the latter and (12), (14), we obtain

‖z − z′‖ ≤ ‖z − yk+1‖+ ‖yk+1 − uk‖+ ‖uk − z′‖
≤ ‖xk+1 − yk+1‖+ ‖xk − uk‖+ ‖uk − uk+1‖ , dk.

Combining the above with the relative smoothness property (26), we obtain that (29) holds whenMk+1 =

LF/φ

(
1 + Hdk

µφ

)
. Since (29) holds also when Mk+1 = LF/φκφ (see Lemma 3.2 and (26)), we obtain

the statement of the Lemma.

From (16) and (31) since Mk+1 ≤ LF/φκφ we know that the sequence uk, k ≥ 0 converges
to x∗ linearly with condition number

√
κF/φκφ. From (15) by the strong convexity, we see that the

sequence xk, k ≥ 0 converges to x∗ also linearly with the same condition number. Hence, by (12)
we conclude the same on the sequence yk, k ≥ 0. Thus, dk converges linearly to zero with the same
condition number and Mk+1 approaches LF/φ with the same rate. This, in turn, means that the

convergence rate in Theorem 3.1 quickly approaches O((1 − √
κF/φ)

K) when the Hessian of φ is
Lipschitz-continuous.

Next, we study the properties of the auxiliary problem in step 10 of Algorithm 2 and, under the
additional assumption that the loss function ℓ has bounded fourth-order derivatives, we show the
explicit complexity of computing an approximate solution to this auxiliary problem using Hyperfast
second-order methods.

14

3.2 Hyperfast Second-Order Method for the Auxiliary Problem

In this subsection, we elaborate the properties of the auxiliary problem in step 10 of Algorithm 2
and propose a Hyperfast second-order algorithm to solve it when the function φ is strongly convex
and sufficiently smooth. The main result is a complexity estimate for solving the auxiliary problem
by the Hyperfast algorithm. Recall that, at each iteration of Algorithm 2 we need to find an
approximate minimizer in the sense of Definition 2.2 of the function Φk+1(x) on the Euclidean
ball B2(0, R). Throughout this subsection we assume that the regularizer h(x) ≡ 0.

We first study some properties of the function Φk+1(x) defined in (28) and the minimization
problem solved in step 10 of Algorithm 2. Using our assumption that h(x) = 0, the fact that Ak+1 =
Ak + αk+1, the definition of the Bregman divergence, and ignoring constant terms in that problem,

we see that it is equivalent to the problem uk+1 = argmin
R2

φ/k

x∈B2(0,R) Ψk+1(x), where

Ψk+1(x) , 〈αk+1∇F (yk+1)− (1 +AkµF/φ)∇φ(uk)− αk+1µF/φ∇φ(yk+1), x〉+
+ (1 +Ak+1µF/φ)φ(x). (34)

Lemma 3.4. Assume that φ is µφ-strongly convex and Lφ-smooth w.r.t. the Euclidean norm. Also
assume that for some θ > 0 and all x ∈ B2(0, R), with max{‖∇F (x)‖2/µF/φ, ‖∇φ(x)‖2} ≤ θ. Let
us denote
x∗k+1 = argminx∈B2(0,R) Ψk+1(x) and let the point x̂k+1 satisfy

Ψk+1(x̂k+1)−Ψk+1(x
∗
k+1) ≤ ∆k ,

µφR
4
φ

2k2(2LφR+ 3θ)2(1 +Ak+1µF/φ)
. (35)

Then x̂k+1 = argmin
R2

φ/k

x∈B2(0,R) Ψk+1(x).

Proof. Since φ is µφ-strongly convex and Lφ-smooth, Ψk+1 in (34) is µΨ-strongly convex with µΨ =
(1+Ak+1µF/φ)µφ and LΨ-smooth with LΨ = (1+Ak+1µF/φ)Lφ. Further, by the assumption of the
lemma, we have, for all x ∈ B2(0, R),

‖∇Ψk+1(x)‖2 = ‖αk+1∇F (yk+1)− (1 +AkµF/φ)∇φ(uk)− αk+1µF/φ∇φ(yk+1)

+ (1 +Ak+1µF/φ)∇φ(x)‖2 ≤ 3(1 +Ak+1µF/φ)θ, (36)

where we used also that αk+1 ≤ Ak+1 and that Ak+1 = Ak + αk+1. By the strong convexity of Ψ,
we have

‖x̂k+1 − x∗k+1‖2 ≤
√

2

µΨ
(Ψk+1(x̂k+1)−Ψk+1(x

∗
k+1)) ≤

√
2∆k/µΨ. (37)

Hence, for any x ∈ B2(0, R),

〈∇Ψk+1(x̂k+1), x− x̂k+1〉 = 〈∇Ψk+1(x̂k+1)−∇Ψk+1(x
∗
k+1), x− x̂k+1〉

+ 〈∇Ψk+1(x
∗
k+1), x− x∗k+1〉+ 〈∇Ψk+1(x

∗
k+1), x

∗
k+1 − x̂k+1〉

≥ −LΨ‖x∗k+1 − x̂k+1‖2‖x− x̂k+1‖2 + 0− ‖∇Ψk+1(x
∗
k+1)‖2‖x∗k+1 − x̂k+1‖2

(36),(37)

≥ −(2LΨR+ 3(1 +Ak+1µF/φ)θ)
√

2∆k/µΨ

= −(1 +Ak+1µF/φ)(2LφR+ 3θ)

√
2∆k

(1 +Ak+1µF/φ)µφ
≥ −R2

φ/k

15

where we used the definitions of LΨ and µΨ and the expression for ∆k. Thus, x̂k+1 satisfies Definition
2.2 with δ̃ = R2

φ/k.

Next, we propose an efficient Hyperfast second-order method to obtain a point x̂k+1 for which (35)
holds. To do this, we make an additional assumption on the function φ.

Assumption 3.5. The function φ has bounded fourth-order derivatives, which is equivalent to
Lipschitz third-order derivative, i.e. there exists 0 ≤ Lφ,3 <∞ s.t.

‖∇3φ(x)−∇3φ(y)‖2 ≤ Lφ,3‖x− y‖2, ∀x, y ∈ B2(0, R),

where the norm of a tensor is induced by the Euclidean norm in a standard way [46].

The idea is to use a second-order implementation of a third-order method, in the sense of Sect.
5.2 from [48] or Algorithm 2 [32], to minimize Ψk+1(x) in each iteration of InSPAG. Such methods
are called Hyperfast second-order methods since, due to the additional assumption of third-order
smoothness, they have faster convergence rates than the optimal second-order method [42]. In
our case, the objective Ψk+1(x) is additionally strongly convex. Thus, we can achieve faster rates
than the basic schemes in [48, 32] that do not use strong convexity. We propose an extension of
Hyperfast second-order methods for minimizing strongly convex functions and show that they have
faster convergence rate.3 Our algorithm is described below as Algorithm 3.

Algorithm 3 Restarted Hyperfast Second-Order Method

Require: z0 ∈ B2(0, R), constant c which defines convergence rate of the basic Hyperfast method,
strong convexity parameter µφ.

1: Set R0 = 2R
2: for t = 0, 1, ... do

3: Set Rt = R0 · 2−k, and Nt = max{⌈
(
8cLφ,3R

2
t /µφ

) 1

5 ⌉, 1},
4: Set zt+1 = yNt as the output of the basic Hyperfast Second-Order Method (either Eq.3.6 [48]

for p = 3 and β = 1/2 and with auxiliary steps described in Sect. 5.2 from [48] or Algorithm
2 from [32]) started from zt and run for Nt steps applied to Ψk+1(x).

5: Set t = t+ 1.
6: end for

Ensure: zt.

As a building block, this method uses basic Hyperfast second-order method which has conver-
gence rate of the form cL3‖x∗ − z0‖42/k5, where k is the iteration counter, c = 48 for Theorem 2
from [48] and c = 35 for Theorem 2 from [32].

Theorem 3.6. Under assumptions of Lemma 3.4 let additionally Assumption 3.5 to hold. Let also
sequence zt, t ≥ 0 be generated by Algorithm 3. Then

µΨ
2
‖zt − x∗k+1‖22 ≤ Ψk+1(zt)−Ψk+1(x

∗
k+1) ≤ 2µΨR

2 · 2−2t, t ≥ 0. (38)

3Section 5 extends Hyperfast second-order methods for a more general setting of minimizing uniformly convex
functions. Here we use a particular case that corresponds to uniform convexity of the order q = 2, equivalent to
strong convexity.

16

Moreover, the total number of steps of the basic Hyperfast second-order method to reach Ψk+1(zt)−
Ψk+1(x

∗
k+1) ≤ ∆k is bounded by

5

(
32cLφ,3R

2

µφ

) 1

5

+ log2
(1 +Ak+1µF/φ)

2k2(2LφR+ 3θ)2

L2
φR

2
.

Proof. Let us denote for shortness x∗ = x∗k+1 and Ψ(x) = Ψk+1(x). For t = 0 we have ‖x∗−z0‖2 ≤
R0. Let us assume that ‖x∗−zt‖2 ≤ Rt and show that ‖x∗−zt+1‖2 ≤ Rt+1. By Assumption 3.5 and
(34) it is clear that Ψ(x) has LΨ,3-Lipschitz third-order derivative with LΨ,3 = (1 +Ak+1µF/φ)Lφ,3.
Recall that µΨ = (1 + Ak+1µF/φ)µφ. From [48][Theorem 2] since Ψ is µΨ-strongly convex and
has LΨ,3-Lipschitz third-order derivative, it holds that

µΨ
2
‖zt+1 − x∗‖22 ≤ Ψ(zt+1)−Ψ(x∗) ≤ cLΨ,3‖zt − x∗‖42

N5
t

≤ µΨ(Rt/2)
2

2
=
µΨR

2
t+1

2

by the choice of Nt and since LΨ,3/µΨ = Lφ,3/µφ. Thus, by induction, we have (38).
It remains to estimate the number of iterations of the basic Hyperfast method. From (38) we

see that to reach the accuracy ∆k it is sufficient to make T = 1
2 log2

2µΨR2

∆k
restarts. Summing up

the number of operations Nt, t = 0, ..., T , we obtain

T∑

t=0

Nt ≤
T∑

t=0

[(
8cLφ,3R

2
t

µφ

)1

5

+ 1

]
=

(
8cLφ,3R

2
0

µφ

) 1

5
T∑

t=0

2−
2t
5 + T

≤ 5

(
32cLφ,3R

2

µφ

) 1

5

+ log2
2µΨR

2

∆k
.

Let us estimate the last term using (35) and that µΨ = (1 +Ak+1µF/φ)µφ, R2
φ = 2LφR

2:

log2
2µΨR

2

∆k
= log2

2(1 +Ak+1µF/φ)µφR
2

µφ(2LφR2)2

2k2(2LφR+3θ)2(1+Ak+1µF/φ)

= log2
(1 +Ak+1µF/φ)

2k2(2LφR+ 3θ)2

L2
φR

2
.

Combining this with the previous chain of inequalities, we obtain the second statement of the
lemma.

3.3 InSPAG plus Hyperfast Method with Application to Logistic Regression

This subsection combines the building blocks introduced in the previous two subsections and con-
siders a particular application to a regularized logistic regression problem, for which we obtain a
total complexity bound in terms of the number of iterations of the Hyperfast second-order method.
We further discuss the arithmetic iteration complexity of our method and compare it to that of
stochastic variance-reduced first-order algorithms and indicate a regime in which our algorithm is
preferable.

Combining Theorems 3.1 and 3.6, we obtain the following result.

17

Theorem 3.7. Assume that in problem (1), h(x) = 0, and that its solution x∗ belongs to the
ball B2(0, R). Assume that the function F in this problem is µF/φ-strongly convex and LF/φ-smooth
with respect to the function φ, where φ satisfies Assumption 2.5, is µφ-strongly convex, Lφ-smooth
and has Lφ,3-Lipschitz third-order derivative. Also assume that for some θ > 0 and all x ∈ B2(0, R),
with max{‖∇F (x)‖2/µF/φ, ‖∇φ(x)‖2} ≤ θ . Let ε > 0 be the target accuracy. Finally, let InSPAG
(Algorithm 2) be applied to problem (1), and in step 10 of this algorithm let Restarted Hyperfast
method (Algorithm 3) be applied to solve the auxiliary problem. Then a sufficient number of iterations
of the basic Hyperfast method to find an ε-solution to (1) is bounded as

O

(
K

(
Lφ,3R

2

µφ

) 1

5

+K log2
µF/φLφR

2(LφR+ θ)K lnK

LφRε

)
, (39)

where K is such that
2LφR

2(1+ln(K+1))
AK+1

≤ ε <
2LφR

2(1+lnK)
AK

.

Proof. From (30) we see that InSPAG can be stopped at iterationK when we have
2LφR

2(1+ln(K+1))
AK+1

≤
ε <

2LφR
2(1+lnK)
AK

. Then, f(xK+1) − f(x∗) ≤ ε. Also, applying Theorem 3.6 we obtain that the
total number of iterations of the basic Hyperfast method, up to numerical constant multipliers, is
bounded by

K∑

k=0

((
Lφ,3R

2

µφ

) 1

5

+ log2
(1 +AkµF/φ)k(LφR+ θ)

LφR

)

≤c K

((
Lφ,3R

2

µφ

)1

5

+ log2
(1 +AKµF/φ)K(LφR+ θ)

LφR

)
= (39),

where in equality ≤c means a usual inequality up to a numerical constant factor.

From (31) and Lemma 3.3 we know that when φ has also Lipschitz Hessian, it is sufficient to

take K = O
(√

κF/φκφ ln
1
ε

)
. Lemma 3.3 also implies that for quadratic function φ it is sufficient

to take K = O
(√

κF/φ ln
1
ε

)
and that for non-quadratic function φ the result is the same up to

a fast asymptotic. In the language of the individual loss ℓ and the number of samples n used for
preconditioning, our result is the same Õ(

√
κℓ/n

1/4) as for the exact algorithm [29]. Thus, the total
number of iterations of the basic Hyperfast method to find an ε-solution to (1) can be bounded as

Õ

(
√
κF/φ

(
Lφ,3R

2

µφ

) 1

5

)
. (40)

So far, we have not explicitly used the finite-sum structure of problem (1), (2) and the statistical
similarity (25). In order to do this, we consider the sparse empirical risk minimization problem with
regularized logistic loss, where in (2), for i ∈ {1, . . . , N},

ℓ(x; ζi) = log (1+ exp(−ηi〈x, ξi〉))+λ1
∑

j∈IS
x2j+λ2

∑

j∈ID
x2j , (41)

where ζi = (ξi, ηi), ηi = 1 indicates a positive (clicked) example, and ηi = −1 otherwise. We
assume there are two types of features, namely, sparse and dense features. Let ξi,j be the j-th

18

element of the vector ξi. Then, ξi,j is a sparse feature if ξi,j = 0 for almost all i ∈ {1, . . . , N},
and a dense feature if ξi,j 6= 0 for many i ∈ {1, . . . , N}. We denote by IS (and ID) the set of
sparse (and dense) features with IS ∪ ID = {1, . . . , d} and IS ∩ ID = ∅. Moreover, it follows
from Section 4.4 from [43] that in this case the function F is LF -smooth with LF = max{λ1, λ2}+
1
N

∑N
i=1 ‖ηiξi‖22 = O(s), where s is the average number of nonzero elements in ξi, and µF -strongly

convex with µF = min{λ1, λ2}. For the same reasons, function φ defined in (24) is Lφ-smooth
with Lφ = max{λ1, λ2} + 1

n

∑n
i=1 ‖ηiξi‖22 + σ and µφ-strongly convex with µφ = min{λ1, λ2} + σ.

It also has bounded first-, second, and third-order derivatives [10]. More importantly, the logistic
loss in (41) has bounded fourth-order derivatives [10], which means that Assumption 3.5 holds.
Indeed, let us define matrix A = [η1ξ1, . . . , ηnξn]

⊤. Then, by Theorem 5.4 in [10] with µ = 1
the function 1

n

∑n
i=1 ℓ(x; ζi) has Lipschitz third-order derivative with constant Lℓ,3 = 15‖A⊤A‖22

w.r.t. 2-norm or with constant Lℓ,3 = 15 w.r.t. ‖ · ‖A⊤A-norm. Since adding a quadratic function
does not change the Lipschitz constant for the third-order derivative, φ has Lipschitz third-order
derivative with constant Lφ,3 = Lℓ,3.

Applying [29, Theorem 3], we obtain that in our setting the statistical similarity parameter in

(25) is σ = 1+Õ

(
maxi=1,...,n ‖ηiξi‖3/22

R

min{λ1,λ2}
√
n

)
and a sufficient number of InSPAG iterations is Õ(

√
κℓ/n

1/4),

which is similar to SPAG [29]. Further, the number of the basic Hyperfast iterations is the same up
to a factor (

Lφ,3R
2

µφ

) 1

5

≤c

(‖A⊤A‖22R2

min{λ1, λ2}+ σ

)1

5

≤
(‖A⊤A‖22R2

min{λ1, λ2}

) 1

5

.

Informally speaking, applying statistical preconditioning allows reducing the minimization of
a large sum F of N functions in (2) to the minimization of a moderate sum φ of n functions
when making the step 10 of Algorithm 2. To conclude this subsection we would like to discuss the
complexity of minimizing function Ψ in (34) which is equivalent to step 10 of Algorithm 2. To
that end, we consider the setting of sparse logistic regression with loss (41). Since φ and Ψ have
finite-sum form, a straightforward approach is to apply accelerated variance reduced methods. This
leads to arithmetic operations complexity

Õ
(
s ·
(
n+

√
nκ
))
, (42)

where s comes from the cost of evaluating a sparse stochastic gradient ∇ℓ(x; ζi) for some random i,
and the rest is the optimal bound on the number of stochastic gradient evaluations for such meth-
ods [35]. Note that we have κ = LΨ/µΨ = Lφ/µφ.

We propose an alternative approach by applying Hyperfast second-order methods to minimize
the function Ψ. Since basic Hyperfast second-order methods are a special implementation of third-
order method [46, 25, 16, 49, 48, 32], each their iteration requires to minimize the regularized
third-order Taylor polynomial:

min
y∈Rd

{
〈∇Ψ(x), y−x〉+ 1

2
∇2Ψ(x)[y − x]2 +

1

6
∇3Ψ(x) [y−x]3 + LΨ,3

8
‖y−x‖42

}
. (43)

It is shown in [46] that the objective in (43) is relatively smooth and strongly convex with respect

to the function a(y) = 1
2∇2Ψ(x)[y − x]2 +

LΨ,3

8 ‖y − x‖42 with µΨ/a = 1 − 1/
√
2, LΨ/a = 1 + 1/

√
2.

Since κΨ/a is a constant, the complexity of solving (43) is, up to logarithmic factors, the same as
for minimizing a(y). In turn, the complexity of solving this problem, up to logarithmic factors,

19

is the same as the complexity of a quadratic programming problem and can be estimated by the
complexity of matrix inversion [47]. To sum up, the arithmetic operations complexity of minimizing
the function Ψ by the Restarted Hyperfast second-order method has the form

Õ

((
s2n+ dlog2 7

)
·
(
Lφ,3R

2

µφ

)1/5
)
, (44)

see [25, 48, 32] for more details on arithmetic complexity of each iteration of the basic Hyperfast
method. The first term in (44), i.e., s2n, is due to the complexity of Hessian calculation. The second
term, i.e. dlog2 7, corresponds to the complexity of Hessian inversion, e.g., by the matrix inversion

lemma using Strassen’s algorithm [30]. The term
(
Lφ,3R

2

µφ

)1/5
comes from the estimate for the

number of iterations of the basic Hyperfast second-order method, see Theorem 3.6. Additionally,
we may expect R2 = O(d), since dim x∗ = d and Lφ,3 = O

(
1
n

∑n
i=1 ‖ηiξi‖42

)
= O(s2) since we

consider sparse logistic regression.
Without loss of generality, we can assume that the parameter n can be set such that dlog2 7 =

O
(
s2n
)
. In this case, the Hyperfast second-order method with complexity (44) outperforms accel-

erated variance reduced algorithms with complexity (42) if µφ . s−3n−2 . Where ., and ≃ mean
the same as ≤ and =, but up to dimension-dependent factors of the order O(1). For the particular
case of sparse logistic regression problems, our focused application, we can assume that s = Õ(1).

Therefore, we have that if d . n0.356 and µφ . n−2, or, equivalently, if dlog2 7 . n . µ
−1/2
φ ,

then, the Hyperfast second-order method has smaller arithmetic operations complexity than vari-
ance reduced algorithms. The last inequality is reasonable when the requirement for the accuracy
is high. Indeed, in practice, via regularization [24], it is reasonable to set µφ ≃ µF ≃ ε/R ≃ ε/d,
where ε > 0 is a desired accuracy. Thus, in this case we can rewrite the last inequality as ε . n−1.644

(d2.81 . n . ε−0.61). We can conclude that Hyperfast second-order methods are better when our goal
is to solve sparse logistic regression with loss (41) with high accuracy. This result can be strength-
ened by using parallelization. In the complexity bound (42) for variance reduced algorithms, only
the first term can be improved by applying parallelization on n nodes. On the contrary, in the
bound (44) for Restarted Hyperfast method, the first term can be improved by parallelization on n
nodes, and the second can be improved by parallelization on d nodes.

To conclude, high-order methods are competitive from the theoretical point of view for large-scale
convex problems that require high accuracy of the solution, especially when the problem is sparse.
Further improvements can potentially be achieved by using inexact tensor methods [47, 17, 1, 33]
to save some computational work.

4 Numerical Analysis and Implementation Details

In this section, we present numerical experiments and implementation details of Algorithm 2.
Namely, on the example of regularized logistic regression, we demonstrate the practical performance
of InSPAG method with Hyperfast subsolver (InSPAG+Hyperfast) and compare it with the state-
of-the-art methods such as DANE, DANE-HB and SPAG with SDCA subsolver. For the logistic
regression, we show that InSPAG+Hyperfast outperforms other methods even for huge-dimensional
problems with 710M samples and 3.2M features.

We work with binary classification problems with regularized logistic regression cost function (41)

20

on a public datasets from LibSVM14, namely RCV1 [37], and a proprietary large-scale in-house
dataset that was generated from the click logs of a large-scale commercial system for mobile app
install ads. The main statistics of the datasets are shown in Table 1.

Dataset N d Feat. Size

RCV1 20k 47k 74.05 13.7

In-house 710M 3,246k 109.86 650.8k

Table 1: Statistics of the datasets. N is the number of samples, d is the number of features, Feat.
is the average number of dense features, and Size is the data size in MB.

We obtained an MPI-based distributed implementation of SPAG from the authors of [29] and
modified it to run on an Apache Spark [2] cluster. As shown in Algorithm 2, InSPAG switches
between two phases: a parallel gradient computation phase and a central-node optimization phase
in which we run the Hyperfast second-order method in Algorithm 3. In our implementation, the
driver carries the central-node optimization phase while executors compute the gradient. The code
for the implementations was developed in PyTorch [51]. Algorithm 3, in each iteration of the basic
Hyperfast method, requires a line-search where to calculate a test point the full step (43) is made.
The number of such line-search steps is theoretically bounded above by O(log(ε−1)). However, we
observe that the line-search ends in approximately 5 trials in practice. Therefore, we bound the
number of iterations executed in the line-search procedure. Additionally, our experiments show that
the number of steps required in the line-search procedure decreases as more iterations of Algorithm 2
is executed. In the execution of the third-order step (43) it is sufficient to approximate the product
of the third derivative with two vectors. To do this, we use off-the-shelf automatic differentiation
codes and observe that the resulting computational complexity is equivalent approximately to 4− 6
gradient computations.

As explained in Sect. 5.2 from [48], or Algorithm 2 from [31], the problem (43) is solved by
Bregman proximal gradient method under relative smoothness and strong convexity assumption [41].
Each step of this algorithm applied to (43) requires to solve the problem

min
s∈Rd

{
〈c, s〉+ 1

2
〈∇2Ψ(x)s, s〉+ L

4
‖s‖42

}
, (45)

where the vector c involves ∇Ψ(x) and ∇3Ψ(x)[s]2, L is some regularization parameter. We solve
problem (45) using ADAM [34] since then the gradient c + ∇2Ψ(x)s + L‖s‖22s of the objective
uses the Hessian only through Hessian-vector products which can be calculated using automatic
differentiation. We observed that in practice this takes approximately 2− 3 times the time required
for gradient computation. Thus, on the lowest level, our method is a first-order method with a
Hessian-vector product and a third-order derivative product with two vectors computed by auto-
matic differentiation techniques. The full Hessians or full third-order derivatives are not computed
but are used for the method to exploit the additional curvature of the objective and improve the
practical convergence speed. Moreover, the central node uses GPU to accelerate the various Hessian-
related matrix-vector operations in the algorithm. We believe our implementation5 to be the first
practical implementation of an algorithm from the family of Hyperfast or even a wider family of
higher-order optimizers that can operate on data at the above dimensionality.

4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
5https://github.com/OPTAMI/OPTAMI/

21

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://github.com/OPTAMI/OPTAMI/

Figure 1: Comparison of the communication rounds number for the dataset RCV1.

We compare Algorithm 2 with the inner solver being Algorithm 3 and Algorithm 2 with the inner
solver being Stochastic Dual Coordinate Ascent (SDCA) [54] used in [29]. For the RCV1 dataset,
we also compare the performance of Algorithm 2 versus DANE [56] with both SDCA and Hyperfast
as the central-node solver. We used n = 104 samples for preconditioning, λ = 10−5, σ = 2× 10−5,
constant LF/φ = 0.01, and a practical approximate 10−2 for R2

φ. We set the precision of the auxiliary

subproblem to 10−4. Other parameters: L3 = 0.005, the learning rate of ADAM is set to 1, and
the number of iterations of ADAM is 2. Figures 1 and 2 show results for the RCV1 dataset. The
point x̂ is set as the point where the minimal cost was achieved overall the iterations and runs of the
algorithm and serves as a proxy point used instead of the minimizer, which is in general unknown.
We see that Algorithm 2 outperforms DANE regardless of the subsolver used. Moreover, InSPAG-
SDCA has better performance during initial iterations. However, InSPAG-Hyperfast outperforms
all other methods by accuracy. Also, we find that Hyperfast iterations are faster than SDCA near
the minimum point. For example, the first five iterations take about 20 seconds each, and the last
five take about 1.5 seconds each. Hence, suggesting that some combination of methods would be
used in practice. However, the Hyperfast approach finds better solutions overall.

Figures 3, 4 show the results of the comparison on the in-house dataset (split over 200 nodes,
i.e., m = 200) with λ = 1 × 10−7, σ = 2 × 10−5. Other parameters are described in Table 2. We
see that InSPAG-Hyperfast outperforms InSPAG-SDCA for this large-scale dataset.

Run L3 ADAM n µ

a) 10 0.01 1× 104 2× 10−5

b) 100 0.1 1× 104 2× 10−5

c) 10 0.1 1× 104 2× 10−5

d) 15 0.01 1× 103 2× 10−5

Table 2: Parameter selection for experiments on in-house data.

22

Figure 2: Wall clock time performance of the InSPAG method for the dataset RCV1. “numba”
indicates implementation using Numba: A High Performance Python Compiler.

Figure 3: Comparison of the communication rounds number for the in house dataset. a) L3 = 10,
ADAM learning rate 0.01, n = 10000; b) L3 = 100, ADAM learning rate 0.1, n = 10000; c) L3 = 10,
ADAM learning rate 0.1, n = 10000; d) L3 = 15, ADAM learning rate 0.01, n = 1000.

Figure 5 shows the times required by the Hyperfast method in Algorithm 3 and the SDCA
Method from [54] to complete their inner iterations at communication rounds 0, 6, and 46. The x-
axis is the iteration number, and the y-axis is the time required by the corresponding algorithm
to complete an inner iteration. We can observe that in the communication round 0, the cost time
required by both methods is approximately the same on average. However, for communication

23

Figure 4: Comparison of the communication rounds number for the in house dataset for different
methods.

Figure 5: The time complexity per iteration for the Hyperfast method in Algorithm 3 and the SDCA
Method from [54] at communication rounds 0, 6, and 46. The x-axis is the iteration number, and
the y-axis is the the time required by the corresponding algorithm to complete its inner iteration.

rounds 6 and 46, the Hyperfast method outperforms SDCA, requiring less time to complete an
iteration.

Figure 6 on the left shows the loss function F (xk) evaluated at the point xk generated by
iteration k as a function of the wall clock time recorded by the InSPAG method in Algorithm 2.

24

Figure 6: A comparison of the wall clock times and communication rounds for the InSPAG method
in Algorithm 2 for different number of data points used for preconditioning. On the left, the x-axis
indicates time in seconds, and on the right the x-axis indicates number of communication rounds.
In both cases the y-axis is the loss function at the current iteration.

Markers identify when an iteration has been completed. In this case we used the Hyperfast method
in Algorithm 3 as the inner solver. Moreover, we show the dependency on the number n of points
used for preconditioning. We observe that for different values of n, the final loss is about the same.
However, as n increases, the wall clock time required increases as well. On the other hand, the right
figure shows the loss function F (xk) evaluated at the point xk generated by iteration k as a function
of the number of communication rounds. As expected, when the number of data points used for
preconditioning increases, the number of required communication rounds decreases. However, this
implies that the central node needs to solve a bigger problem at every iteration and it takes longer
to solve it.

Figure 7 shows the wall clock time required by the central node to solve the auxiliary problem
for every communication round. The x-axis shows the number of communication rounds, and the y-
axis shows the clock time in seconds. Additionally, we show the results for different values of the
preconditioning parameter n. As n increases, the time required for the solution of the auxiliary
problem increases as well. However, the time complexity of the auxiliary subproblem decreases as
the number of communication rounds increases.

5 Hyperfast Second-Order Method for Uniformly Convex Func-

tions

For the sake of completeness, in this section we consider general problem x∗ = argminx∈Q f(x),
where Q is closed convex bounded set, f has L3-Lipschitz third-order derivative. We also assume
that the objective f(x) is uniformly convex of degree 4 ≥ q ≥ 2 on the convex bounded set Q, i.e.,

25

Figure 7: Time complexity for the solution of the auxiliary subproblem for different number of
preconditioning data points. The x-axis shows the number of communication rounds, and the y-
axis shows the clock time in seconds.

there exists σq > 0 s.t.

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ σq
q
‖y − x‖q2, ∀x, y ∈ Q. (46)

As a corollary,

f(y) ≥ f(x∗) +
σq
q
‖y − x∗‖q2,∀y ∈ Q. (47)

Theorem 5.1 ([48][Theorem 2]). Let sequence xk, k ≥ 0 be generated by Hyperfast Second-Order
Method [48][Eq.3.6] for p = 3 and β = 1/2 and with auxiliary steps described in [48][Sect. 5.2].
Then

f(xk)− f∗ ≤ 3 · 43L3R
4
0

1− β

[
1 +

2(k − 1)

4

]−5

≤ 3 · 44L3R
4
0

16k5
=
ĉL3R

4
0

k5
,

where R0 is such that ‖x0 − x∗‖2 ≤ R0, ĉ = 48.

We show how the restart technique can be used to accelerate Hyperfast second-order method
under additional assumption of uniform convexity.

Theorem 5.2. Let sequence zk, k ≥ 0 be generated by Algorithm 4. Then

σq
q
‖zk − x∗‖q2 ≤ f(zk)− f∗ ≤ ∆0 · 2−k,

and the total number of steps of the basic Hyperfast method is bounded by (c is the constant in
Theorem 1.)

(
2ĉq

4

q

) 1

5 L
1

5

3

σ
4

5q
q

(∆0)
4−q
5q ·

k∑

i=0

2
−i 4−q

5q + k.

26

Algorithm 4 Restarted Hyperfast Second-Order Method

Require: q, σq, z0,∆0 s.t. f(z0)− f∗ ≤ ∆0.
1: for k = 0, 1, ... do

2: Set ∆k = ∆0 · 2−k and Nk = max








(
2ĉL3q

4
q

σ
4
q
q

∆
4−q
q

k

) 1

5



, 1



 .

3: Set zk+1 = yNk
as the output of the basic Hyperfast method started from zk and run for Nk

steps.
4: Set k = k + 1.
5: end for

Ensure: zk.

Proof. Let us prove the first statement of the Theorem by induction. For k = 0 it holds. If it holds
for some k ≥ 0, by choice of Nk, we have that

ĉL3

N5
k

(
q∆k

σq

) 4

q

≤ ∆k

2
.

By (47),

‖zk − x∗‖42 ≤
(
q(f(zk)− f∗)

σq

) 4

q

≤
(
q∆k

σq

) 4

q

since, by our assumption, q ≤ 4. Combining the above two inequalities and Theorem 5.1, we obtain

f(zk+1)− f∗ ≤ ĉL3‖zk − x∗‖42
N5

k

≤ ∆k

2
= ∆k+1.

It remains to bound the total number of steps of the basic Hyperfast method. Denote c̃ =
(
2ĉq

4

q

) 1

5

.

k∑

i=0

Ni ≤ c̃
L

1

5

3

σ
4

5q
q

k∑

i=0

(∆0 · 2−i)
4−q
5q + k ≤ c̃

L
1

5

3

σ
4

5q
q

(∆0)
4−q
5q ·

k∑

i=0

2−i 4−q
5q + k.

Let us make a remark on the complexity of the restarted scheme in different settings. It is easy
to see from Theorem 5.2 that, to achieve an accuracy ε, i.e., to find a point x̂ s.t. f(x̂) − f∗ ≤ ε,
the number of tensor steps in Algorithm 4 is

O


 L

1

5

3

σ
4

5q
q

(∆0)
4−q
5q + log2

∆0

ε


 , q < 4, and O

(((
L3

σ4

) 1

5

+ 1

)
log2

∆0

ε

)
, q = 4.

6 Conclusions

We study the distributed optimization problem of minimizing empirical risk with smooth and
(strongly) convex losses and i.i.d. data stored at nodes. Building upon the recent result on sta-
tistical preconditioning, we propose an algorithm that iteratively minimizes the objective function

27

taking advantage of the statistical similarity of the cost functions across the nodes. Such statisti-
cal preconditioning requires solving an auxiliary optimization problem at a designated central node.
Contrary to existing approaches, we analyze the case where this auxiliary problem is solved inexactly.
Moreover, we provide the conditions on the accuracy of the solution that guarantees convergence
at the same rate as the algorithm with access to exact minimizers of the auxiliary problem. Ad-
ditionally, we extend recently proposed Hyperfast second-order methods to the class of uniformly
convex functions with bounded fourth-order derivatives. We show that the auxiliary problem in
the statistically preconditioned distributed algorithm can be solved efficiently at a linear rate via
this Hyperfast second-order method. We analyze the complexity of the proposed combination of
the inexact statistically preconditioned algorithm with the Hyperfast second-order sub-solver and
show that it converges linearly with the improved condition number. Finally, we show the first em-
pirical results on implementing high-order methods on large-scale problems, where the dimension is
of the order of 3 million, and the number of samples is 700 million. As a future research direction
we indicate the application of the proposed algorithm to the regularized Wasserstein barycenter
problem, which can be expressed as the minimization of large sum of higher-order smooth softmax
functions [19].

Funding

The work by D. Kamzolov was supported by a grant for research centers in the field of artifi-
cial intelligence, provided by the Analytical Center for the Government of the Russian Federation
in accordance with the subsidy agreement (agreement identifier 000000D730321P5Q0002) and the
agreement with the Moscow Institute of Physics and Technology dated November 1, 2021 No. 70-
2021-00138. The work by C. Uribe was supported by the Yahoo! Faculty Engagement Program and
by the National Science Foundation under Grants No. 2211815 and No. 2213568. The work by P.
Dvurechensky was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+
(EXC-2046/1, project ID: 390685689).

Acknowledgement

The authors are grateful to Hadrien Hendrikx for sharing the code of the SPAG algorithm http://proceedings.mlr.press/v119/hendrikx20a.html.

References

[1] A. Agafonov, D. Kamzolov, P. Dvurechensky, and A. Gasnikov. Inexact tensor methods and
their application to stochastic convex optimization. arXiv:2012.15636, 2020.

[2] Apache. Spark 2.4.5, 2020. https://spark.apache.org/.

[3] Y. Arjevani and O. Shamir. Communication complexity of distributed convex learning and
optimization. In Advances in Neural Information Processing Systems, volume 28, pages 1756–
1764. Curran Associates, Inc., 2015.

[4] M. Baes. Estimate sequence methods: extensions and approximations. Institute for Operations
Research, ETH, Zürich, Switzerland, 2009.

28

http://proceedings.mlr.press/v119/hendrikx20a.html
https://spark.apache.org/

[5] H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond lipschitz gradient con-
tinuity: first-order methods revisited and applications. Mathematics of Operations Research,
42(2):330–348, 2016.

[6] H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond lipschitz gradient con-
tinuity: first-order methods revisited and applications. Mathematics of Operations Research,
42(2):330–348, 2017.

[7] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[8] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization (Lecture Notes).
Personal web-page of A. Nemirovski, 2020.

[9] E. G. Birgin, J. L. Gardenghi, J. M. Martínez, S. A. Santos, and P. L. Toint. Worst-case
evaluation complexity for unconstrained nonlinear optimization using high-order regularized
models. Mathematical Programming, 163(1):359–368, May 2017.

[10] B. Bullins. Highly smooth minimization of non-smooth problems. In Proceedings of Thirty
Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research,
pages 988–1030. PMLR, 09–12 Jul 2020.

[11] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points
i. Mathematical Programming, 184(1):71–120, 2020.

[12] C. Cartis, N. I. Gould, and P. L. Toint. Universal regularization methods: varying the power,
the smoothness and the accuracy. SIAM Journal on Optimization, 29(1):595–615, 2019.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT
press, 2009.

[14] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commu-
nications of the ACM, 51(1):107–113, 2008.

[15] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization
with inexact oracle. Mathematical Programming, 146(1):37–75, 2014.

[16] N. Doikov and Y. Nesterov. Contracting proximal methods for smooth convex optimization.
SIAM Journal on Optimization, 30(4):3146–3169, 2020.

[17] N. Doikov and Y. Nesterov. Inexact tensor methods with dynamic accuracies. In Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 2577–2586. PMLR, 13–18 Jul 2020.

[18] R.-A. Dragomir, A. Taylor, A. d’Aspremont, and J. Bolte. Optimal complexity and certification
of bregman first-order methods. Mathematical Programming, 194(1):41–83, 2022.

[19] P. Dvurechensky, D. Dvinskikh, A. Gasnikov, C. A. Uribe, and A. Nedić. Decentralize and
randomize: Faster algorithm for Wasserstein barycenters. In Advances in Neural Information
Processing Systems 31, NIPS’18, pages 10783–10793. Curran Associates, Inc., 2018.

29

[20] P. Dvurechensky and A. Gasnikov. Stochastic intermediate gradient method for convex
problems with stochastic inexact oracle. Journal of Optimization Theory and Applications,
171(1):121–145, 2016.

[21] P. Dvurechensky, A. Gasnikov, and A. Kroshnin. Computational optimal transport: Complex-
ity by accelerated gradient descent is better than by Sinkhorn’s algorithm. In Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1367–1376, 2018.

[22] P. Dvurechensky, S. Shtern, and M. Staudigl. First-order methods for convex optimization.
EURO Journal on Computational Optimization, 9:100015, 2021.

[23] M. I. Florea. Exact gradient methods with memory. Optimization Methods and Software, pages
1–28, 2022.

[24] A. Gasnikov. Universal gradient descent. arXiv preprint arXiv:1711.00394, 2017.

[25] A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, C. A. Uribe,
B. Jiang, H. Wang, S. Zhang, S. Bubeck, Q. Jiang, Y. T. Lee, Y. Li, and A. Sidford. Near
optimal methods for minimizing convex functions with lipschitz p-th derivatives. In Proceedings
of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine
Learning Research, pages 1392–1393, Phoenix, USA, 25–28 Jun 2019. PMLR.

[26] A. V. Gasnikov and Y. E. Nesterov. Universal method for stochastic composite optimization
problems. Computational Mathematics and Mathematical Physics, 58(1):48–64, 2018.

[27] F. Hanzely, P. Richtárik, and L. Xiao. Accelerated bregman proximal gradient methods for rel-
atively smooth convex optimization. Computational Optimization and Applications, 79(2):405–
440, Jun 2021.

[28] H. Hendrikx, F. Bach, and L. Massoulié. An optimal algorithm for decentralized finite-sum
optimization. SIAM Journal on Optimization, 31(4):2753–2783, 2021.

[29] H. Hendrikx, L. Xiao, S. Bubeck, F. Bach, and L. Massoulie. Statistically preconditioned accel-
erated gradient method for distributed optimization. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 4203–4227. PMLR, 13–18 Jul 2020.

[30] J. Huang, T. M. Smith, G. M. Henry, and R. A. van de Geijn. Strassen’s algorithm reloaded.
In SC’16: Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 690–701. IEEE, 2016.

[31] D. Kamzolov. Near-optimal hyperfast second-order method for convex optimization. In Math-
ematical Optimization Theory and Operations Research, pages 167–178, Cham, 2020. Springer
International Publishing.

[32] D. Kamzolov and A. Gasnikov. Near-optimal hyperfast second-order method for convex opti-
mization and its sliding. arXiv preprint arXiv:2002.09050, 2020.

30

[33] D. Kamzolov, A. Gasnikov, and P. Dvurechensky. Optimal combination of tensor optimization
methods. In Optimization and Applications, pages 166–183, Cham, 2020. Springer International
Publishing.

[34] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[35] G. Lan. First-order and Stochastic Optimization Methods for Machine Learning. Springer,
2020.

[36] G. Lan, S. Lee, and Y. Zhou. Communication-efficient algorithms for decentralized and stochas-
tic optimization. Mathematical Programming, pages 1–48, 2018.

[37] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5(Apr):361–397, 2004.

[38] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J.
Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter server. In 11th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pages
583–598, 2014.

[39] H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In
Proceedings of the 28th International Conference on Neural Information Processing Systems -
Volume 2, NIPS’15, page 3384–3392, Cambridge, MA, USA, 2015. MIT Press.

[40] Q. Lin and L. Xiao. An adaptive accelerated proximal gradient method and its homotopy
continuation for sparse optimization. In Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages 73–81, Bejing,
China, 22–24 Jun 2014. PMLR.

[41] H. Lu, R. M. Freund, and Y. Nesterov. Relatively smooth convex optimization by first-order
methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

[42] R. D. Monteiro and B. F. Svaiter. An accelerated hybrid proximal extragradient method for con-
vex optimization and its implications to second-order methods. SIAM Journal on Optimization,
23(2):1092–1125, 2013.

[43] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005.

[44] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, 140(1):125–161, 2013. First appeared in 2007 as CORE discussion paper 2007/76.

[45] Y. Nesterov. Lectures on Convex Optimization. Springer Optimization and Its Applications
137. Springer International Publishing, 2nd ed. edition, 2018.

[46] Y. Nesterov. Implementable tensor methods in unconstrained convex optimization. Mathemat-
ical Programming, pages 1–27, 2019.

[47] Y. Nesterov. Inexact basic tensor methods for some classes of convex optimization problems.
Optimization Methods and Software, pages 1–29, 2020.

31

[48] Y. Nesterov. Inexact high-order proximal-point methods with auxiliary search procedure. SIAM
Journal on Optimization, 31(4):2807–2828, 2021.

[49] Y. Nesterov. Superfast second-order methods for unconstrained convex optimization. Journal
of Optimization Theory and Applications, (1):1–30, 2021.

[50] Y. Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

[51] Pytorch. 1.5.0, 2020. https://pytorch.org/.

[52] S. J. Reddi, J. Konečnỳ, P. Richtárik, B. Póczós, and A. Smola. Aide: Fast and communication
efficient distributed optimization. arXiv preprint arXiv:1608.06879, 2016.

[53] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié. Optimal algorithms for smooth
and strongly convex distributed optimization in networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Re-
search, pages 3027–3036. PMLR, 06–11 Aug 2017.

[54] S. Shalev-Shwartz. Sdca without duality, regularization, and individual convexity. In Pro-
ceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pages 747–754, New York, New York, USA, 20–22 Jun 2016.
PMLR.

[55] O. Shamir, N. Srebro, and T. Zhang. Communication-efficient distributed optimization using
an approximate newton-type method. In Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages 1000–1008,
Bejing, China, 22–24 Jun 2014. PMLR.

[56] O. Shamir, N. Srebro, and T. Zhang. Communication-efficient distributed optimization using
an approximate newton-type method. In International conference on machine learning, pages
1000–1008, 2014.

[57] F. Stonyakin, A. Tyurin, A. Gasnikov, P. Dvurechensky, A. Agafonov, D. Dvinskikh, M. Alk-
ousa, D. Pasechnyuk, S. Artamonov, and V. Piskunova. Inexact model: a framework for op-
timization and variational inequalities. Optimization Methods and Software, 36(6):1155–1201,
2021.

[58] Y. Sun, G. Scutari, and A. Daneshmand. Distributed optimization based on gradient track-
ing revisited: Enhancing convergence rate via surrogation. SIAM Journal on Optimization,
32(2):354–385, 2022.

[59] S. Wang, F. Roosta, P. Xu, and M. W. Mahoney. Giant: Globally improved approximate
newton method for distributed optimization. In Advances in Neural Information Processing
Systems, pages 2332–2342, 2018.

[60] T. Yang. Trading computation for communication: Distributed stochastic dual coordinate
ascent. In Advances in Neural Information Processing Systems, pages 629–637, 2013.

[61] X.-T. Yuan and P. Li. On convergence of distributed approximate newton methods: Glob-
alization, sharper bounds and beyond. Journal of Machine Learning Research, 21(206):1–51,
2020.

32

https://pytorch.org/

[62] Y. Zhang and X. Lin. Disco: Distributed optimization for self-concordant empirical loss. In Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 362–370, Lille, France, 07–09 Jul 2015. PMLR.

33

	1 Introduction
	2 Accelerated Gradient Method under Inexactness and Relative Smoothness
	3 Inexact Statistically Preconditioned Accelerated Gradient Method
	3.1 InSPAG and Its Convergence Rate Theorem
	3.2 Hyperfast Second-Order Method for the Auxiliary Problem
	3.3 InSPAG plus Hyperfast Method with Application to Logistic Regression

	4 Numerical Analysis and Implementation Details
	5 Hyperfast Second-Order Method for Uniformly Convex Functions
	6 Conclusions

