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Bures–Wasserstein barycenter is a popular and promising tool in analy-
sis of complex data like graphs, images etc. In many applications the input
data are random with an unknown distribution, and uncertainty quantification
becomes a crucial issue. This paper offers an approach based on multiplier
bootstrap to quantify the error of approximating the true Bures–Wasserstein
barycenter Q∗ by its empirical counterpart Qn. The main results state the
bootstrap validity under general assumptions on the data generating distribu-
tion P and specifies the approximation rates for the case of sub-exponential
P . The performance of the method is illustrated on synthetic data generated
from the weighted stochastic block model.

1. Introduction. Let H+(d) be the space of positive semi-definite d-dimensional Her-
mitian operators, while H++(d) is the space of positive definite Hermitian operators. Bha-
tia et al. [2018] introduced the Bures–Wasserstein distance dB(·, ·) on H+(d) : for any
S,Q ∈H+(d)

(1.1) d2B(Q,S)
def
= trQ+ trS − 2 tr

(
S1/2QS1/2

)1/2
.

This tool appeared to be very useful in many real-world problems with the natural formulation
in terms of graphs, covariance matrices, elliptical distribution, etc. One may also refer to
Muzellec and Cuturi [2018] or Kroshnin et al. [2021], which discuss the relation of the Bures–
Wasserstein distance to optimal transportation metrics.

The current study considers the following statistical setting. Let S1, . . . , Sn be an i.i.d. sam-
ple with values in H+(d) , Si

iid∼ P . We assume P (H++(d))> 0. The population barycenter
Q∗, and its empirical counterpart be Qn are defined as

Q∗
def
= argmin

Q∈H+(d)
Ed2B(Q,S), Qn

def
= argmin

Q∈H+(d)

1

n

n∑
i=1

d2B(Q,Si).

Theorem 2.1 by Kroshnin et al. [2021] ensures the existence and uniqueness of Q∗ and Qn.
We note that unlike the Frobenius mean, the Bures–Wasserstein barycenter is not a linear
function of a sample, instead it is the solution of a fixed-point equation:

(1.2) Q∗ = E
(
Q

1/2
∗ SQ

1/2
∗

)1/2
, Qn =

1

n

n∑
i=1

(
Q1/2
n SiQ

1/2
n

)1/2
.

For a discussion of computational aspects one may refer to Chewi et al. [2020].
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1.1. Motivation and goals. As a possible practical application, we consider analyzing the
brain connectomes. Namely, the connectomes can be described using graphs, where nodes
correspond to particular anatomical regions, and edges denote structural or functional con-
nections Bullmore and Bassett [2011]. Given an i.i.d. set, we are interested in performing
statistical analysis, such as computing the barycenters, testing the hypothesis of homogene-
ity, e.t.c. Section 6 provides more details on using Bures-Wasserstein for the solution of
practical problems.

The present study aims to answer the question concerning the approximation of the dis-
tribution of

√
ndB(Qn,Q∗) by some non-asymptotic data-driven counterpart. In essence, the

idea is to use multiplier bootstrap consisting in the random reweighting of the summands
in (1.2). Namely, the approximation relies on using a new distribution Pu generating the
weights.

In general, since its introduction in the seminal work Efron [1979], the bootstrapping tech-
niques have attracted much attention due to algorithmic simplicity, computational tractability
and nice theoretical properties. For instance, Chazal et al. [2014] suggest using the approach
for statistical analysis of distributions of persistence diagrams. For more examples, we rec-
ommend an excellent survey by Mammen and Nandi [2012], and a brief analysis from the
practical point of view by Efron [2000]. Finally, among the recent works on multiplier boot-
strap, one may mention Spokoiny and Zhilova [2015], which considers likelihood-based con-
fidence sets. The work by Chen and Zhou [2020] investigates the case of heavy-tailed data.
Naumov et al. [2019] validates bootstrap approximation spectral projectors under the as-
sumption of the Gaussianity of the data. We note that the Bures-Wasserstein barycenter is an
M-estimators. In this regard, it is worth noting the work of Cheng and Huang [2010], which
provides approximation rates for multiplier bootstrap for M-estimators in semi-parametric
models. Furthermore, Lee and Yang [2020] propose resampling procedure for M-estimators
for nonstandard cases. Finally, it is worth noting that the current study covers the setting
of Ebert et al. [2019].

1.2. Theoretical contribution of the study. The main result is the validation of construc-
tion of a non-asymptotic approximation of the distribution

√
nρ(Qn,Q∗), where ρ denotes

either the Bures-Wasserstein distance dB, or the Frobenius norm ‖·‖F . We will consider a set

of non-negative i.i.d. weights u1, . . . , un, ui
iid∼ Pu s.t.

Eu ui = 1, Varu ui = 1.

Some specific examples are the exponential distribution ui
iid∼ Exp(1), or the Poisson dis-

tribution, ui
iid∼ Po(1), which roughly corresponds to sampling with replacement from

{S1, . . . , Sn}. Following Agueh and Carlier [2011], we introduce a reweighted barycenter
Qu:

(1.3) Qu
def
= argmin

Q∈H+(d)

∑
i

d2BW (Q,Si)ui.

We refer a reader to the work Kroshnin et al. [2021], which ensures the existence of
Qu, its uniqueness, and measurability. The main theoretical results of the current study
are Theorems 4.1 and 4.2. Theorem 4.1 ensures that L (

√
n‖Qn −Q∗‖F ) is close to

L (
√
n‖Qu −Qn‖F ) in the Kolmogorov distance. Here and in what follows L(X) denotes

the distribution law of the random variableX . Theorem 4.2 deals with the Bures–Wasserstein
case proving that L (

√
ndB(Qn,Q∗)) is close to L (

√
ndB(Qu,Qn)).

Along with the main results, Section 2 establishes a connection between the Bures–
Wasserstein distance and the Frobenius norm. In particular, we show that for any Q1,Q2 ∈
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H++(d) with H++(d) being the set of positive-definite Hermitian operators,∣∣∣∣ dB(Q1,Q2)

‖A(Q1)(Q1 −Q2)‖F
− 1

∣∣∣∣≤ 2
∥∥∥Q−1/21 Q2Q

−1/2
1 − I

∥∥∥, A(Q1) :H(d)→H(d),

where A(Q1) is a linear operator, and ‖·‖ and ‖·‖F stand for the operator norm and the
Frobenius norm, respectively.

1.3. Proofs in a nutshell. Let us briefly recall the concept of optimal transportation maps
(sometimes referred to as optimal push-forwards). Given two points Q,S ∈H+(d) the opti-
mal push-forward from Q to S is written as

TSQ = S1/2
(
S1/2QS1/2

)−1/2
S1/2,

by
(
S1/2QS1/2

)−1/2 we denote the pseudo-inverse matrix
((
S1/2QS1/2

)1/2)+. To know

more on TSQ we recommend Kroshnin et al. [2021], Agueh and Carlier [2011], Brenier
[1991]. In particular, Lemma A.2 by Kroshnin et al. [2021] asserts that optimal push-forwards
are differentiable in the Fréchet sense, i.e.

(1.4) TSQ+X = TSQ + dT SQ(X) + o(‖X‖), X ∈H(d),

where X is an infinitesimal element of H(d) with H(d) being the space of all d-dimensional
Hermitian operators. We also note that the linear operator dT SQ(X) is self-adjoint and nega-
tive definite. Lemma A.3 by Kroshnin et al. [2021] proves the above facts and validates some
other properties of dT SQ that we will widely use in what follows.

Given a random sample, S1, . . . , Sn, we look more closely at a random set of optimal
push-forwards TSiQ∗ and TSiQn . Theorem 2.1 by Kroshnin et al. [2021] claims that ETSiQ∗ = I

and 1
n

∑
i T

Si
Qn

= I , where I denotes the identity matrix. From now on, we primarily consider
the centred counterparts of TSiQ∗ and TSiQn ,

(1.5) Ti
def
= TSiQ∗ − I, T̂i

def
= TSiQn − I.

The covariance of Ti and its empirical counterpart are written as

(1.6) Σ
def
= ETi ⊗ Ti, Σn

def
=

1

n

∑
i

Ti ⊗ Ti,

where ⊗ stands for the tensor product in H(d). We also introduce the empirical covariance
of T̂i,

(1.7) Σ̂
def
=

1

n

∑
i

T̂i ⊗ T̂i,

For Ti and T̂i (1.4) yields

T̂i ≈ Ti + dT SiQ∗(Qn −Q∗).

For the sake of simplicity, we denote

dT SiQ∗
def
= dTi, dT SiQn

def
= dT̂i.

A connection between the real and the bootstrap worlds is established by means of “gluing”
operators:

F
def
= −EdTi, Fn

def
= − 1

n

∑
i

dTi,(1.8)
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F̂
def
= − 1

n

∑
i

dT̂i, F̂u
def
= − 1

n

∑
i

uidT̂i.(1.9)

REMARK 1.1 (Accepted notations). In the rest of the text, we will often mention the
objects coming from “the real world” and the ones coming from “the bootstrap world”.
The latter is always conditioned on the observed sample and are ticked with a hat sign, e.g.
F̂ , or F̂u. In addition, the subscript “u” of a “hat” object emphasizes its dependency on the
random weights u1, . . . , un, e.g. F̂u. Consequently, this object is random in both the bootstrap
and the real worlds.

Finally, we define two centred Gaussian vectors Z and Ẑ ,

Z ∼N(0,Ξ), Ξ
def
= F−1ΣF−1,(1.10)

Ẑ ∼N(0, Ξ̂), Ξ̂
def
= F̂−1Σ̂F̂−1.(1.11)

The proof of the bootstrap validity is based on a chain of approximations presented in Ta-
ble 1. Each approximation holds under some assumptions on the data generating distribution
P and the weight generating distribution Pu. First, we introduce a very general setting in
Sections 3 and 4. Then, we discuss how they can be derived from a direct specifications of
the data-generating model P , and the weight-generating distribution Pu. Namely, Section 5
illustrates this with an example of P coming from some sub-exponential family, and Pu being
sub-Gaussian. For this case we also obtain explicit approximation rates.

√
nρ(Q∗,Qn) ≈

byA.(T ),A.(F )

∥∥∥LρF−1 1√
n

∑
i Ti

∥∥∥
F

d
≈

byA.(Z)
‖LρZ‖F

d ≈
by
A
.(
Σ

)

√
nρ(Qn,Qu) ≈

byA.(T̂ ),A.(F̂ )

∥∥∥L̂ρF̂−1 1√
n

∑
i(ui − 1)T̂i

∥∥∥
F

d
≈

byA.(Ẑ)

∥∥∥L̂ρẐ∥∥∥
F

TABLE 1
Schematic diagram of the proof of the bootstrap validity. The terms Lρ, L̂ρ are some linear operators depending

on choice of the distance ρ.

2. On geometry of Bures–Wasserstein barycenters. This section establishes a connec-
tion between the Bures–Wasserstein distance and the Frobenius norm, and sets deterministic
bounds on the deviation of an empirical weighted barycenter from its population counterpart.

Connection between ‖·‖F and dB. The first lemma quantifies the relation between the
Bures–Wasserstein distance and the Frobenius norm. The result is “gluing”, as it plays a
crucial part in the transition from the case ρ= ‖·‖F to the case ρ= dB. The proof is technical
and is postponed to Appendix.

LEMMA 2.1. Let Q0,Q1,Q2 ∈H++(d). We set

Q′1 =Q
−1/2
0 Q1Q

−1/2
0 , Q′2 =Q

−1/2
0 Q2Q

−1/2
0 ,

and assume ‖Q′1 − I‖ ≤ 1/2 and ‖Q′2 − I‖ ≤ 1/2. Then∣∣∣∣ dB(Q1,Q2)

‖A0(Q1 −Q2)‖F
− 1

∣∣∣∣≤ 4
∥∥Q′1 − I∥∥+ 2

∥∥Q′2 − I∥∥,
with A0 =

(
−1

2dT
Q0

Q0

)1/2
and dTQ0

Q0
coming from (1.4).
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Concentration of barycenters. Let S1, . . . , Sn ∈ H+(d) be a fixed set of observations and
w1, . . . ,wn be a deterministic non-degenerate set of non-negative weights: wi ≥ 0 and∑

iwi > 0. Let

Qw
def
= argmin

Q∈H+(d)

∑
i

wid
2
B(Q,Si).

We fix someQ∗ ∈H++(d), which does not necessarily coincide with the population barycen-
ter Q∗ (1.2). This trick will allow us to use all the notations from Section 1.3 throughout this
section without redefining them. Let

(2.1) Tw
def
=

1

n

n∑
i=1

wiTi,

with Ti coming from (1.5). Generalizing the result by Kroshnin et al. [2021] (see the proof of
Theorem 2.2), we write the Taylor expansion in integral form for Qw in the neighbourhood
of Q∗. Let Qt

def
= tQw + (1− t)Q∗, t ∈ [0,1], then

(2.2) Qw −Q∗ =D−1w Tw, Dw
def
= − 1

n

n∑
i=1

wi

∫ 1

0
dT SiQt dt,

From now on, we will denote

(2.3) Fw
def
= − 1

n

∑
i

widT
Si
Q∗
, F̂w

def
= − 1

n

∑
i

widT
Si
Qw
,

where dT SQ∗ and dT SQw come from (1.4). Lemma A.3 presents technical bounds on Dw and
Fw. The first result in this section ensures the concentration of Qw in the vicinity of Q∗.
Note that from now on we will denote as λmin(X) and λmax(X) the smallest and the largest
eigenvalues of X , respectively.

LEMMA 2.2 (Concentration of Qw). Denote

ξ(X)
def
= Q

1/2
∗ F

(
Q

1/2
∗ XQ

1/2
∗

)
Q

1/2
∗ , X ∈H(d).

Let
∥∥F−1/2FwF−1/2 − I∥∥≤ 1

2 and
∥∥Tw∥∥F ≤ λmin(ξ)

3‖Q∗‖ . Then∥∥∥Q−1/2∗ QwQ
−1/2
∗ − I

∥∥∥
F
≤ 4‖Q∗‖
λmin(ξ)

∥∥Tw∥∥F .
PROOF. Lemma B.1 by Kroshnin et al. [2021] ensures∥∥∥Q−1/2∗ QwQ

−1/2
∗ − I

∥∥∥
F
≤ ζw

1− 3
4ζw

,

with

ζw
def
=

1

λmin(ξw)

∥∥∥Q1/2
∗ TwQ

1/2
∗

∥∥∥
F
, ξw(X)

def
= Q

1/2
∗ Fw

(
Q

1/2
∗ XQ

1/2
∗

)
Q

1/2
∗ ,

provided that ζw < 4
3 . It is easy to see that

∥∥F−1/2FwF−1/2 − I∥∥ ≤ 1
2 implies the same

bound for rescaled operators:
∥∥ξ−1/2ξwξ−1/2 − I∥∥≤ 1

2 , thus λmin(ξw)≥ λmin(ξ)
2 . Therefore,

the assumptions of the lemma ensure

ζw ≤
2‖Q∗‖
λmin(ξ)

∥∥Tw∥∥F ≤ 2

3
,

and hence ∥∥∥Q−1/2∗ QwQ
−1/2
∗ − I

∥∥∥
F
≤ 2ζw ≤

4‖Q∗‖
λmin(ξ)

∥∥Tw∥∥F .
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Relation between OT maps and barycenters. Now we are ready to draw a connection be-
tween barycenters and OT maps. Let

qw
def
=
∥∥∥Q−1/2∗ QwQ

−1/2
∗ − I

∥∥∥, fw
def
=
∥∥∥F−1/2FwF−1/2 − I∥∥∥.(2.4)

The quantities qw and fw are auxiliary and will appear in the rest of the text as bounding
terms. Given an operator or a matrix X , its condition number is defined as

κ(X)
def
= ‖X‖ · ‖X−1‖.

We combine these notations and introduce another bounding term

(2.5) ηw
def
= 2

√
κ(F )(qw + fw).

LEMMA 2.3 (Barycenters vs. OT maps: Frobenius norm). Let qw + fw ≤ 1
2 . Then∥∥Qw −Q∗ −F−1Tw∥∥F∥∥F−1Tw∥∥F ≤ ηw.

PROOF. We note that the expansion (2.4) yields the following equality

Qw −Q∗ −F−1Tw =
(
D−1w F − I

)
F−1Tw,

therefore, we obtain ∥∥Qw −Q∗ −F−1Tw∥∥F∥∥F−1Tw∥∥F ≤
∥∥D−1w F − I∥∥.

We use the bound on Dw from Lemma A.3 and get

(1− qw − fw)F−1 4D−1w 4 (1 + 2qw + 2fw)F
−1.

Therefore, ∥∥D−1w F − I∥∥≤√κ(F )
∥∥∥F 1/2D−1w F

1/2 − I
∥∥∥≤ ηw,

thus the claim follows.

A similar result holds for the Bures–Wasserstein distance.

LEMMA 2.4 (Barycenters vs. OT maps: BW-distance). Let qw + fw ≤ 1
2 . Then∣∣∣∣∣ dB(Qw,Q∗)∥∥AF−1Tw∥∥F − 1

∣∣∣∣∣≤ 3
√
κ(Q∗)ηw,

with

(2.6) A
def
=

(
−1

2
dTQ∗Q∗

)1/2

.

PROOF. We use the result (2.1) from Lemma 2.1 and set Q0 =Q1 =Q∗, Q2 =Qw. This
ensures ∣∣∣∣ dB(Qw,Q∗)

‖A(Qw −Q∗)‖F
− 1

∣∣∣∣≤ 2qw.
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It is easy to see that using the triangle inequality and the same line of reasoning as in
Lemma 2.3, we get∣∣∣∣∣‖A (Qw −Q∗)‖F∥∥AF−1Tw∥∥F − 1

∣∣∣∣∣≤
∥∥A (Qw −Q∗ −F−1Tw)∥∥F∥∥AF−1Tw∥∥F

≤ κ(A)

∥∥Qw −Q∗ −F−1Tw∥∥F∥∥F−1Tw∥∥F
by L.2.3
≤

√
κ(Q∗)ηw.

Here we use the fact that κ(A) =
√
κ(Q∗) by Lemma A.1. Combining the above inequalities,

one obtains the final bound:∣∣∣∣∣ dB(Qw,Q∗)∥∥AF−1Tw∥∥F − 1

∣∣∣∣∣≤ 2qw + (1+ 2qw)

∣∣∣∣∣‖A (Qw −Q∗)‖F∥∥AF−1Tw∥∥F − 1

∣∣∣∣∣
≤ 2qw + 2

∣∣∣∣∣‖A (Qw −Q∗)‖F∥∥AF−1Tw∥∥F − 1

∣∣∣∣∣≤ 3
√
κ(Q∗)ηw,

where the second and third inequality rely on the assumption qw + fw ≤ 1
2 and the bound

2qw ≤ ηw.

3. Gaussian approximation. This section aims to show that the Gaussian approxima-
tions presented in Table 1 holds. Namely,

(3.1)
√
nρ(Q∗,Qn)

d
≈ ‖LρZ‖F ,

√
nρ(Qn,Qu)

d
≈ ‖L̂ρẐ‖F .

We begin with the key ingredient used in the proofs.

3.1. Key lemma for Gaussian approximation. Following Götze et al. [2019], we define
κ(Ψ). Let {λk}k be the eigenvalues of an Hermitian operator Ψ arranged in non-increasing
order. We set

(3.2) κ(Ψ)
def
= (Λ1Λ2)

−1/2 with Λ2
r
def
=
∑
k≥r

λ2k, where r = 1,2.

Its properties are investigated in Lemma B.1. We also need

(3.3) γ(Ψ)
def
= κ(Ψ) tr(Ψ)≥ 1, γκ(Ψ)

def
=
√
κ(Q∗)κ(Ψ) tr(Ψ)≥ 1.

The lower bound on γ(Ψ) is trivial. It follows from the fact that for any r ≥ 1

Λ2
r ≤

∑
k≥r

λk

2

≤ (tr(Ψ))2 .

LEMMA 3.1 (GAR). Let X,Y ∈ R+ be random variables s.t. there exist constants
m,δ > 0, and η ∈

[
0, 12
]
, s.t.

(GAR-I) P (|X − Y | ≤ ηY +m)≥ 1− δ.

Assume that for Y the Gaussian approximation holds, i.e. there exists a centred Gaussian
vector G∼N(0,K) taking values in a Hilbert space H , and a constant ∆ ∈ (0,1), s.t.

(GAR-II) sup
z>0
|P{Y ≤ z} − P{‖G‖H ≤ z}| ≤∆,
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with ‖·‖H denoting the norm induced by the scalar product in H . Then

sup
z>0
|P{X ≤ z} − P{‖G‖H ≤ z}| ≤∆+ δ+ Cγ(K)

(
m√
tr(K)

+ η

)
,

where γ(K) comes from (3.3).

PROOF. Union bound ensures that

P{X ≤ z} ≤ P
{
Y ≤ z+m

1−η

}
+ P{|X − Y |> ηY +m} ≤ P

{
Y ≤ z+m

1−η

}
+ δ,

P
{
Y ≤ z−m

1+η

}
≤ P{X ≤ z}+ P{|X − Y |> ηY +m} ≤ P{X ≤ z}+ δ.

Thus

P
{
Y ≤ z−m

1+η

}
− δ ≤ P{X ≤ z} ≤ P

{
Y ≤ z+m

1−η

}
+ δ.

Assumption (GAR-II) yields

P
{
‖G‖H ≤ z−m

1+η

}
− δ−∆≤ P{X ≤ z} ≤ P

{
‖G‖H ≤ z+m

1−η

}
+ δ+∆.

Now one has to bound P
{
‖G‖H ≤ z−m

1+η

}
and P

{
‖G‖H ≤ z+m

1−η

}
. Since for any x,h > 0 it

holds (x+ ε)2 ≤ x2 + xε
h + hε+ ε2 , Theorem 2.7 by Götze et al. [2019] yields

P{x≤ ‖G‖H ≤ x+ ε} ≤P
{
x2 ≤ ‖G‖2H ≤ x2 + 2hε+ 2ε2

}
+ P

{
x≤ ‖G‖H ≤ x

(
1 +

ε

h

)}
≤Cκ(K)

(
hε+ ε2 +

ε

h
tr(K)

)
≤ Cκ(K)

(
ε
√

tr(K) + ε2
)
,

where the last inequality is ensured by h=
√
trK . The above inequality can be rewritten as

P{x≤ ‖G‖H ≤ x+ ε} ≤ Cγ(K)

(
ε√

tr(K)
+

ε2

tr(K)

)
,

and since γ(K)≥ 1 and the probability on the l.h.s. is bounded by 1, it is enough to consider
the case ε≤

√
tr(K). Thus, we obtain

P{x≤ ‖G‖H ≤ x+ ε} ≤ Cγ(K)
ε√

tr(K)
.

Taking into account that η ∈
[
0, 12
]
, we get

P
{
‖G‖H ≤ z−m

1+η

}
≥ P

{
‖G‖H ≤ z

1+η

}
− Cγ(K)

m√
tr(K)

,

P
{
‖G‖H ≤ z+m

1−η

}
≤ P

{
‖G‖H ≤ z

1−η

}
+ Cγ(K)

m√
tr(K)

.

Now we consider a Gaussian r.v. αG with some α > 0. Note that by definition κ(α2K) =
1
α2κ(K) . To compare G and αG we use Corollary 2.3 by Götze et al. [2019]. This ensures
for any z > 0∣∣P{‖G‖H ≤ z

α

}
− P{‖G‖H ≤ z}

∣∣≤ C
(
κ(K) +κ(α2K)

)∥∥K − α2K
∥∥
1

= C
(
1 + 1

α2

)
|1− α2|κ(K) tr(K).
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Setting α= 1+ η and taking into account that η ∈ [0, 12 ], we obtain

P
{
‖G‖H ≤ z

1+η

}
≥ P{‖G‖H ≤ z} − Cγ(K)η.

In a similar way

P
{
‖G‖H ≤ z

1−η

}
≤ P{‖G‖H ≤ z}+ Cγ(K)η.

Collecting all the bounds, we get the result.

To get the Gaussian approximations (3.1), we combine this lemma with the results of
Section 2.

3.2. Gaussian approximation in the real world. From now on we assume that Q∗ comes
from (1.2), and adapt the notations from Section 2. The counterpart of Tw (2.1) in the real
world is

(3.4) Tn
def
=

1

n

n∑
i=1

Ti,

with Ti coming from (1.5), and wi = 1/n for all i. The counterparts of qw and fw (2.4) are

(3.5) qn
def
=
∥∥∥Q−1/2∗ QnQ

−1/2
∗ − I

∥∥∥, fn
def
=
∥∥∥F−1/2FnF−1/2 − I∥∥∥.

Finally, the counterpart of A (2.6) has the same form:

(3.6) A
def
=

(
−1

2
dTQ∗Q∗

)1/2

.

To validate the Gaussian approximation, we assume the data distribution P to be s.t. for any
x≥ 0

P
{∥∥Tn∥∥F > εT (x)

}
≤ δT (x).(T )

Furthermore, for any x≥ 0

(F ) P
{∥∥∥F−1/2FnF−1/2 − I∥∥∥> εF (x)

}
≤ δF (x),

where I denotes the identity operator acting on the same space as F . These assumptions
combined together ensure the concentration of Qn in the vicinity of Q∗. This fact follows
from Lemma 2.2 and is validated by Corollary B.2.

Our third assumption ensures that the Frobenius norm of the sum of rescaled optimal
push-forwards is close in distribution to the Frobenius norm of the Gaussian vector Z . For
all z ≥ 0

(Z)
∣∣P{∥∥√nF−1Tn∥∥F ≤ z}− P{‖Z‖F ≤ z}∣∣≤∆Z .

Combined together, the assumptions ensure GAR in the real world. The proof is technical
and is postponed to Appendix.

LEMMA 3.2 (GAR in the real world). Let Assumptions (T ), (F ), (Z) be fulfilled. We
choose x ∈R2

+ and denote

δη(x)
def
= δη(x1,x2) = δF (x1) + δT (x2),(3.7)

εη(x)
def
= εη(x1,x2) = 2

√
κ(F ) (εF (x1) + εQ(x2)) ,(3.8)

with εQ(x2) ∝ εT (x2) coming from Corollary B.2. Take Z ∼ N(0,Ξ). Then the following
Gaussian approximations hold.
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Frobenius norm. For all z ≥ 0∣∣P{√n‖Qn −Q∗‖F ≤ z}− P{‖Z‖F ≤ z}∣∣≤ΩF(n),

ΩF(n)
def
= ∆Z + inf

x
{δη(x) + Cγ(Ξ)εη(x)} ,(3.9)

where the infimum is taken over all x, s.t. εη(x)≤ 1
2 .

Bures–Wasserstein distance. For all z ≥ 0∣∣P{√ndB(Qn,Q∗)≤ z}− P{‖AZ‖F ≤ z}∣∣≤ΩB(n),

ΩB(n)
def
= ∆Z + inf

x
{δη(x) + Cγκ(Ξ)εη(x)} ,(3.10)

where the infimum is taken over all x, s.t. εη(x)≤ 1

6
√
κ(Q∗)

.

3.3. Gaussian approximation in the bootstrap world. The similar results hold in the
bootstrap world. The counterpart of Tw (2.1) is

(3.11) T u
def
=

1

n

n∑
i=1

uiT̂i,

with T̂i coming from (1.5), and wi = ui for all i. The counterparts of qw and fw (2.4) are

(3.12) qu
def
=
∥∥∥Q−1/2n QuQ

−1/2
n − I

∥∥∥, fu
def
=
∥∥∥F̂−1/2F̂uF̂−1/2 − I∥∥∥.

The counterpart of A is

(3.13) Â
def
=

(
−1

2
dTQnQn

)1/2

.

We are now ready to introduce the assumptions about the concentration of quantities con-
ditioned on the observed sample. Thus, all of them hold with some P -probability. First, we
assume that for any x, s≥ 0, with P -probability at least 1− αT̂ (s),

(T̂ ) Pu
{∥∥T u∥∥F > εT̂ (x; s)

}
≤ δT̂ (x; s).

For any x, s≥ 0, with P -probability at least 1− αF̂ (s),

(F̂ ) Pu
{∥∥∥F̂−1/2F̂uF̂−1/2 − I∥∥∥> εF̂ (x; s)

}
≤ δF̂ (x; s).

Assumptions (T̂ ) and (F̂ ) ensure the concentration of Qu in the vicinity of Qn, see Corol-
lary B.2. Finally, we require that with P -probability at least 1− αẐ(s), s≥ 0, for all z ≥ 0

(Ẑ)
∣∣∣Pu{∥∥∥√nF̂−1T u∥∥∥

F
≤ z
}
− P

{∥∥∥Ẑ∥∥∥
F
≤ z
}∣∣∣≤∆Ẑ(s),

LEMMA 3.3. Let Assumptions (T̂ ), (F̂ ) and (Ẑ) be fulfilled. Let s ∈R3
+. We denote

(3.14) α̂(s) = αT̂ (s1) + αF̂ (s2) + αẐ(s3).

Take x ∈R2
+ and define

δη̂(x; s)
def
= δF̂ (x1; s1) + δT̂ (x2; s2),(3.15)

εη̂(x; s)
def
= 6

√
κ(F )

(
εF̂ (x1; s1) + εQ̂(x2; s2)

)
,(3.16)

with εQ̂(x2; s2) ∝ εT̂ (x2; s2) coming from Corollary B.2. Let Ẑ ∼ N
(
0, Ξ̂
)

. Then the fol-

lowing approximations hold with P -probability at least 1− α̂(s), provided that fn, qn ≤ 1
2 ,

γ(Ξ̂)≤ 2γ(Ξ).
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Frobenius norm. For all z > 0∣∣∣Pu {√n‖Qu −Qn‖F ≤ z}− P{‖Ẑ‖F ≤ z}∣∣∣≤ Ω̂F(n; s),

Ω̂F(n; s)
def
= ∆Ẑ(s) + inf

x
{δη̂(x; s) + Cγ(Ξ)εη̂(x; s)} ,(3.17)

where the infimum is taken over all x s.t. εη̂(x; s)≤ 1
2 ;

Bures–Wasserstein distance. For all z ≥ 0∣∣∣Pu {√ndB(Qu,Qn)≤ z}− P{‖ÂẐ‖F ≤ z}∣∣∣≤ Ω̂B(n; s),

Ω̂B(n; s)
def
= ∆Ẑ(s) + inf

x
{δη̂(x; s) + Cγκ(Ξ)εη̂(x; s)} ,(3.18)

where the infimum is taken over all x s.t. εη̂(x; s)≤ 1

6
√

3κ(Q∗)
.

The proof is technical and is postponed to the Appendix.

REMARK 3.4. We note that the assumptions fn, qn ≤ 1
2 and γ(Ξ̂) ≤ 2γ(Ξ) can be re-

placed with some suitable concentration bounds. This will yield an additional term to P -
probability, which controls the approximation. The replacement is done in Section 4 and is
discussed in more detail in Remark C.3.

4. Non-asymptotic approximation based on multiplier bootstrap. This section intro-
duces the last assumption, which ensures the approximation

(4.1) ‖LρZ‖F
d
≈
∥∥∥L̂ρẐ∥∥∥

F
.

Let for any x≥ 0

(Σ) P{‖Σn −Σ‖> εΣ(x)} ≤ δΣ(x).

This guarantees that with high P -probability for any x ∈R3
+

‖Ξ̂−Ξ‖1 . εΞ(x),

εΞ(x)
def
= d2εΣ(x) + εη(x) (trΣ + d) ,(4.2)

with ‖·‖1 being the 1-Schatten (nuclear) norm. This fact is crucial for the Gaussian compar-
ison (4.1) and is validated by Lemma C.2. The proof of (4.1) is contained within the proofs
of the main results. We postpone it to the Appendix.

Now we are ready to present the main results in a rigorous way. We begin with the Frobe-
nius norm. Let y ∈R3

+, and denote

δ(y)
def
= δT (y) + δF (y) + δΣ(y).

From now on we will denote generic absolute constants as C.

THEOREM 4.1 (Bootstrap validity for Frobenius norm). Let all Assumptions (T ) – (Σ)
be fulfilled. Take s ∈R3

+ and y ∈R3
+ s.t.

εη(y)≤ 1, εΞ(y)≤ Cλ2min(F )
Λ2
2 (Ξ)

‖Ξ‖
.
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Then with P -probability at least 1− δ(y)− α̂(s), with α̂(s) coming from (3.14), for all z ≥ 0

|Pu {‖Qu −Qn‖F ≤ z} − P{‖Qn −Q∗‖F ≤ z}| ≤ ΓF (n; y, s),

ΓF (n; y, s)
def
= C

κ(Ξ)
λ2
min(F )εΞ(y) +ΩF(n) + Ω̂F(n; s),

where ΩF(n) comes from (3.9) and Ω̂F(n; s) comes from (3.17).

THEOREM 4.2 (Bootstrap validity for BW distance). Let all Assumptions (T ) – (Σ) be
fulfilled. Take s ∈R3

+ and y ∈R3
+ s.t.

εη(y)≤ 1, εΞ(y)≤ Cλmin(Q∗)λ
2
min(F )Λ

2
2(AΞA)
‖AΞA‖ .

Then with P -probability at least 1− δ(y)− α̂(s), with α̂(s) coming from (3.14), for all z ≥ 0

|Pu {dB(Qu,Qn)≤ z} − P{dB(Qn,Q∗)≤ z}| ≤ ΓB(n; y, s),

ΓB(n; y, s)
def
= C

κ(AΞA)
λ2
min(F )λmin(Q∗)

εΞ(y) +ΩB(n) + Ω̂B(n; s),

where ΩB(n) comes from (3.10) and Ω̂B(n; s) comes from (3.18).

5. Sub-Gaussian case. To illustrate the approximation rates we consider a particular
choice of the model: the distribution P is sub-exponential and Pu is sub-Gaussian.

ASSUMPTION 1. Let ‖·‖ψ be the Orlicz ψ-norm. We assume that:

◦ P is s.t. ‖trS‖ψ1
= νS <∞ ,

◦ Pu is s.t. ‖u− 1‖ψ2
= νu <∞ .

This assumption immediately ensures the sub-Gaussianity of the following terms.

LEMMA 5.1 (Sub-Gaussianity of other quantities). Assumption 1 ensures that

1. ‖Si‖1/2 is sub-Gaussian with some parameter ν‖S‖,
2. ‖Ti‖ is a sub-Gaussian r.v. with some parameter ν‖T‖,
3. Ti is sub-Gaussian with some parameter νT ,
4. ‖dTi‖ sub-Gaussian with

∥∥‖dTi‖∥∥ψ2
= ν‖dT ‖.

In order to specify the results of Theorem 4.1 and Theorem 4.2 we have to show that
all the Assumptions (T )–(Σ) hold. Validation of Assumptions (T ) and (T̂ ) is technical. The
key ingredient for verification of Assumptions (F ), (F̂ ), and (Σ) is Lemma D.6. It slightly
extends Proposition 2 by Koltchinskii et al. [2011]: we obtain a similar concentration result
for the case of independent but not identically distributed observations. Finally, to check
Assumptions (Z) and (Ẑ), we use the result by Bentkus [2003], and Theorem 3.5 by Chen
and Fang [2011], respectively. We specify the rates coming from the assumptions and the
auxiliary bounds in the tables below. Namely, Table 2 deals with Gaussian approximation,
while Table 3 presents the results on Gaussian comparison.

Of note, the largest input in terms of dimension d comes from Assumptions (Ẑ): it yields
an approximation error of order at least d2√

n
. An additional multiplier

√
s + lnn comes from

controlling the concentration of maxima of i.i.d. sub-Gaussian random variables maxi‖Ti‖F
while estimating ∆Ẑ(s).
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Real world Bootstrap world
Assumption (T ) holds due to Lemma D.1

δT (x) = e−x,

εT (x).

√
x+ d2

n
.

Assumption (T̂ ) holds due to Lemma D.3

δ
T̂
(x; s) = e−x, α

T̂
(s) = e−s

ε
T̂
(x; s).

√
x+ d2

n

(
1 +

√
s

n

)
.

A
ss

um
pt

io
ns

va
lid

at
in

g
G

A
R Assumption (F ) holds due to Lemma D.7

δF (x) = e−x,

εF (x).

√
x+ lnd

n
.

Assumption (F̂ ) holds due to Lemma D.9

δ
F̂
(x; s) = e−x, α

F̂
(s) = 3e−s,

ε
F̂
(x; s).

√
x+ lnd

n

(
1 +

√
s

n

)
.

Assumption (Z) holds due Lemma D.4

∆Z .
d2√
n
.

Assumption (Ẑ) holds due to Lemma D.5

α
Ẑ
(s) = 2e−s,

∆
Ẑ
(s). d2

√
s + lnn

n
.

G
A

R
bo

un
ds

Lemma 3.2 holds due to Lemma D.9: for suffi-
ciently large n

Ωρ(n).

√
lnn

n
.

Lemma 3.3 holds due to Lemma D.11 and The-
orem D.12: for sufficiently large n

Ω̂ρ(n; s).

√
s + lnn

n
.

TABLE 2
GAR bounds; ρ stands either for ‖·‖F or dB.

C
ov

.c
om

p.

Assumption (Σ) holds due Lemma D.8

δΣ(x) = e−x, εΣ(x).

√
x+ lnd

n
.

G
au

ss
.c

om
p. For all z > 0 with P -probability at least 1− 3e−x∣∣∣P{‖LρZ‖F ≤ z}− P{∥∥∥L̂ρẐ∥∥∥F ≤ z}∣∣∣. d2

√
x+ lnd

n
+ (trΣ + d)

√
x+ d2

n

TABLE 3
Comparison of covariances and Gaussian comparison; ρ stands either for ‖·‖F or dB.

Finally, the bounds ΓF(n; s) and ΓB(n; s) are given by Theorem D.12. For sufficiently
large sample size n they are written as

ΓF(n; s).

√
s + lnn

n
and ΓB(n; s).

√
s + lnn

n
.

Note that the notation . suppresses multiplicative constants depending on the distribution.

6. Experiments. This section presents application of bootstrap approach for study of
the data represented by graphs. For instance, such models are used for description of 3D
genome folding via Hi-C matrices [Van Berkum et al., 2010, Yaffe and Tanay, 2011], or for
the analysis of the structure and functions of the brain networks represented by connectomes
[Bullmore and Sporns, 2009, Fornito et al., 2016].
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It is well-known that the specific structures of a graph can be revealed through analysis of
its Laplacian matrix. Let G be an undirected graph without self loops. We denote as AG its
adjacency matrix and as DG its degree matrix:

AG =

(
0 a12 . . . a1d
ad1 ad2 . . . 0

)
, DG =

(∑
i a1i 0 . . . 0
0 0 . . .

∑
i adi

)
,

where aij ∈ {0,1} if G is an unweighted graph, and aij ≥ 0 otherwise. The graph Laplacian
is defined as

LG
def
= DG −AG,

by construction LG ∈H+(d). Many clustering methods are based on the analysis of spectral
properties of LG. For instance, its second smallest eigenvector which is also referred to as
Fiedler’s vector [Fiedler, 1989] provides information about the connectivity of the graph [Van
De Ville et al., 2017, Chen et al., 2017]. In general, the spectral clustering methods are often
used in practice, as they works well for the case of non-convex supports [Ng et al., 2002]
because of their close relation to kernel PCA methods, see Bengio et al. [2003]. For further
details on the topic we recommend and excellent tutorial by Von Luxburg [2007].

We use stochastic block model to generate the synthetic data, as it is widely used for
description of natural phenomenon. For instance, Faskowitz et al. [2018] fit it to human con-
nectomes for different age groups and then compare the obtained structures. This approach
opens the door for further statistical analysis using the Bures-Wasserstein barycenters.

As a toy example we consider a set of weighted graphsG1, . . . ,Gn with d= 20 nodes split
into two communities. We write the corresponding adjacency matrix AGi ∈R20×20 as

AG =

(
C11 C12

C21 C22

)
,

where C11 and C22 are the blocks representing intra-community interaction. The correspond-
ing edge probabilities for each block are p11 = 0.8, p22 = 0.5, p12 = p21 = 0.2. The distribu-
tions of the weights are Poisson, with a ∼ Po(12) for a ∈ C11, a ∼ Po(7) for a ∈ C22, and
a∼ Po(2) for a ∈C12,C21. The number of nodes in each community is randomly generated
as size(C11) = 10 + Unif([−2,2]), where Unif([−2,2]) is the uniform distribution on the
discrete set {−2,−1,0,1,2}.

The recent work by Petric Maretic et al. [2019] applied the 2-Wasserstein distance to graph
alignment and indicated, that it accounts well for the global structure of graphs. The authors
suggest using the pseudo-inverse of LG. We follow this framework and consider the inverted
Laplacians

Si = (LGi + rI)−1,

with I being the d×d identity matrix and r = 1 being a regularization parameter. This model
fits to the setting of Section 5.

We used 80000 matrices to estimate the true barycenter Q∗ and n= 800 to compute Qn.
For bootstrapping we use uniform and Poisson weights. The result is illustrated by Fig. 1.
Fig. 2 illustrates the convergence result presented in Section 5 for different sample sizes n ∈
{20,200,800,1000} for u∼ 2Be(1/2). Confidence bands are estimated using 100 bootstrap
CDFs.
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Fig 1: Empirical distribution functions. On both images red is empirical distribution function
of
√
800dB(Q∗,Q800) estimated from 1000 samples. Gray lines are 100 empirical distribu-

tion functions of
√
800dB(Q800,Qu). Each is estimated from 1000 samples. At the left image

we observe u∼ 2Be(1/2). The right image depicts the case of u∼ Po(1).

Fig 2: Confidence bands for the distribution of bootstrap CDFs generated using the Bernoulli
weights, u∼ 2Be(1/2). The blue line is the mean bootstrap CDF. The green line is the true
CDF.
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APPENDIX A: GEOMETRY OF THE BURES-WASSERSTEIN SPACE

This section contains a list of notations and auxiliary bounds used further in the proofs.
A, B Matrices or vectors
A,B Operators
λmax(X), λmin(X) Largest and smallest eigenvalue
‖X‖ Operator norm
‖X‖F Frobenius norm
‖X‖1 1-Schatten (nuclear) norm
‖X‖ψ1

ψ1 Orlicz norm
‖X‖ψ2

ψ2 Orlicz norm
〈X,Y 〉 Inner product associated to the Frobenius norm
κ(X) = ‖X‖ · ‖X−1‖ Condition number of an operator or a matrix
⊗ Tensor product

log(x) log(x)
def
= max{1, ln(x)}

Let Q ∈H++(d), then we define an Hermitian operator on H(d)

(A.1) AQ
def
=

(
−1

2
dTQQ

)1/2

existing due to Lemma A.3 by Kroshnin et al. [2021].

LEMMA A.1 (Properties of of A). Consider AQ from (A.1). It holds

(A.2) ‖AQ‖=
1

2
√
λmin(Q)

,
∥∥∥A−1Q ∥∥∥= 2

√
λmax(Q).

Moreover, there is a unitary operator UQ ∈ U(H(d)), where U(H(d)) is the set of unitary
operators on H(d), s.t. for any X ∈H(d) the following equation holds:

(A.3) (UQAQ)X =Q1/2dTQQ (X).

PROOF. First we prove (A.3). Without loss of generality we set the matrix Q to be diago-
nal, Q= diag(q1, . . . , qd), and write down the explicit form of the operator dTQQ (X) coming
from formula (A.2) by Kroshnin et al. [2021]. In what follows we denote the scalar product
as 〈·, ·〉. Taking into account that X = (Xij) with i, j ∈ {1, . . . , d}, we get

−
〈
dTQQ (X),X

〉
=

d∑
i,j=1

Xij

qi + qj
Xij =

d∑
i,j=1

(qi + qj)

(
Xij

qi + qj

)2

= 2

d∑
i,j=1

(
√
qi

Xij

qi + qj

)2

= 2
∥∥∥Q1/2dTQQ (X)

∥∥∥2
F
,
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thus ‖AQ(X)‖F =
∥∥∥Q1/2dTQQ (X)

∥∥∥
F

, and these operators are unitary equivalent.
Now we prove (A.2). The above chain of equations ensures

‖AQ(X)‖2F =
1

2

d∑
i,j=1

X2
ij

qi + qj
.

This yields

1

4λmax(Q)
‖X‖2F ≤ ‖AQ(X)‖2F ≤

1

4λmin(Q)
‖X‖2F .

One can show in the same way as in the proof of Corollary A.2 by Kroshnin et al. [2021] that
these inequalities are sharp. The result follows immediately.

LEMMA A.2 (Local Lipschitz continuity ofAQ). Let Q0,Q1 ∈H++(d) andAi =AQi ,
i= 1,2. We set Q′1 =Q

−1/2
0 Q1Q

−1/2
0 . If ‖Q′1 − I‖ ≤ 1/2, then

‖A1 −A0‖ ≤ ‖Q′1 − I‖ · ‖A0‖.

PROOF. We recall that by Lemma A.3 by Kroshnin et al. [2021] Q 7→ dTQQ is monotone
and (−1)-homogeneous. Then Q 7→AQ is antimonotone and (−1

2)-homogeneous, thus(
1− 1

2
‖Q′1 − I‖

)
A0 4

1√
λmax(Q′1)

A0 4A1,

A1 4
1√

λmin(Q′1)
A0 4

(
1 + ‖Q′1 − I‖

)
A0.

This yields ‖A1 −A0‖ ≤ ‖Q′1 − I‖ · ‖A0‖.

Now we are ready to prove Lemma 2.1.

PROOF OF LEMMA 2.1. To prove (2.1) we use the quadratic approximation from Lemma
A.6 by Kroshnin et al. [2021]. We set Q0 =Q0, Q1 =Q1, and S =Q1. This yields

− 2(
1 + λ

1/2
max(Q′21)

)2 〈dTQ1

Q1
(Q2 −Q1),Q2 −Q1

〉
≤ d2B(Q2,Q1)

≤− 2(
1 + λ

1/2
min(Q

′
21)
)2 〈dTQ1

Q1
(Q2 −Q1),Q2 −Q1

〉
,

where Q′21 = Q
−1/2
1 Q2Q

−1/2
1 . Due to monotonicity and homogeneity of the operator dT SQ

(see (IV) and (V) in Lemma A.3 by Kroshnin et al. [2021]), it holds that

dTQ1

Q1
4 dT λmax(Q′1)Q0

λmax(Q′1)Q0
=

1

λmax(Q′1)
dTQ0

Q0
,

dTQ1

Q1
< dT λmin(Q′1)Q0

λmin(Q′1)Q0
=

1

λmin(Q′1)
dTQ0

Q0
.
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Combining these inequalities with (A.3) we get

4‖A0(Q2 −Q1)‖2F
λmax(Q′1)

(
1 + λ

1/2
max(Q′21)

)2 ≤ d2B(Q2,Q1)(A.4)

≤
4‖A0(Q2 −Q1)‖2F

λmin(Q′1)
(
1 + λ

1/2
min(Q

′
21)
)2 .

The following bounds on λmin(Q
′
1) and λmax(Q

′
1) hold

1−
∥∥Q′1 − I∥∥≤ λmin(Q

′
1)≤ λmax(Q

′
1)≤ 1 +

∥∥Q′1 − I∥∥.
Assumption ‖Q′1 − I‖ ≤ 1

2 yields

λ−1/2max (Q′1)≥ 1− 1

2

∥∥Q′1 − I∥∥, λ
−1/2
min (Q′1)≤ 1 + 2

∥∥Q′1 − I∥∥.
Further, for Q′21 assumptions ‖Q′1 − I‖ ≤ 1

2 and ‖Q′2 − I‖ ≤ 1
2 yield

λmin(Q
′
21)≥

λmin(Q
′
2)

λmax(Q′1)
≥ 1−

∥∥Q′1 − I∥∥− ∥∥Q′2 − I∥∥,
λmax(Q

′
21)≤

λmax(Q
′
2)

λmin(Q′1)
≤ 1 + 2

∥∥Q′1 − I∥∥+ 2
∥∥Q′2 − I∥∥.

Then

2
(
1 + λ1/2max(Q

′
21)
)−1
≥ 1− 1

2

∥∥Q′1 − I∥∥− 1

2

∥∥Q′2 − I∥∥,
2
(
1 + λ

1/2
min(Q

′
21)
)−1
≤ 1 +

∥∥Q′1 − I∥∥+ ∥∥Q′2 − I∥∥.
Thus we obtain

2λ−1/2max (Q′1)
(
1 + λ1/2max(Q

′
21)
)−1
≥ 1−

∥∥Q′1 − I∥∥− 1

2

∥∥Q′2 − I∥∥,
2λ
−1/2
min (Q′1)

(
1 + λ

1/2
min(Q

′
21)
)−1
≤ 1 + 4

∥∥Q′1 − I∥∥+ 2
∥∥Q′2 − I∥∥.

Combining these inequalities with (A.4) we get the result.

The next lemma is crucial for the proof of Lemma 2.2. We recall Dw and F̂w defined
in (2.2), and (2.3), respectively.

LEMMA A.3 (Bounds on Dw and F̂w). Let qw + fw ≤ 1
2 , then

1

1 + 2(qw + fw)
F 4Dw 4

1

1− (qw + fw)
F ,

1

1 + 5
2(qw + fw)

F 4 F̂w 4
1

1− 3
2(qw + fw)

F .

PROOF. Lemma A.4 by Kroshnin et al. [2021] ensures that for Qt = (1− t)Q∗ + tQw,
and Q′ =Q

−1/2
∗ QwQ

−1/2
∗

1

1− qw
dT SQ∗ 4

∫ 1

0
dT SQt dt4

1

1 + 3
4qw

dT SQ∗ .
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This yields

1

1 + 3
4qw

Fw 4Dw 4
1

1− qw
Fw.

Further,

(A.5) (1− fw)F 4 Fw 4 (1 + fw)F .

Combining these bounds, we obtain:

1

1 + 2(qw + fw)
F 4

1− fw
1 + 3

4qw
F 4Dw 4

1 + fw
1− qw

F 4
1

1− (qw + fw)
F .

In a similar way,

1

1 + 2qw
Fw 4 (1 + qw)

−3/2Fw 4 F̂w 4 (1− qw)−3/2Fw 4
1

1− 3
2qw

Fw,

1

1 + 5
2(qw + fw)

F 4
1− fw
1 + 2qw

F 4 F̂w 4
1 + fw

1− 3
2qw

F 4
1

1− 3
2(qw + fw)

F .

APPENDIX B: GAUSSIAN APPROXIMATION

The first result in this section investigates the properties of κ(·) introduced by (3.2).

LEMMA B.1 (Bounds on κ(·)). Let Ψ and Φ be symmetric operators, s.t. ‖Φ−Ψ‖1 ≤
Λ2

2(Ψ)
4‖Ψ‖ . Then the following bounds hold:

κ(Φ)≤ 2κ(Ψ), trΦ≤ 5
4 trΨ .

PROOF. Note, that Λ2
2 (Ψ)≤Λ2

1 (Ψ)≤ ‖Ψ‖ tr(Ψ) and therefore,

tr (Φ)≤ tr(Ψ) + ‖Φ−Ψ‖1 ≤
5

4
tr(Ψ).

By the definition of Λ2
r(·), Λ2

r (Φ)≥ Λ2
r (Ψ)− ‖Ψ‖‖Φ−Ψ‖1 , then

Λ2
1 (Φ)Λ

2
2 (Φ)≥Λ2

1 (Ψ)Λ2
2 (Ψ)−

(
Λ2
1 (Ψ) +Λ2

2 (Ψ)
)
‖Ψ‖‖Φ−Ψ‖1.

Then it follows that

κ(Φ)≤ κ(Ψ)
(
1− Λ2

1(Ψ)+Λ2
2(Ψ)

Λ2
1(Ψ)Λ2

2(Ψ) ‖Ψ‖‖Φ−Ψ‖1
)−1

≤ κ(Ψ)
(
1− 2 ‖Ψ‖Λ2

2(Ψ)‖Φ−Ψ‖1
)−1
≤ 2κ(Ψ).

Now we are ready to prove the concentration results for Qn and Qu. Both facts follow
immediately from Lemma 2.2.

COROLLARY B.2 (Concentration ofQn andQu). Let fn ≤ 1
2 . Under Assumption (T ) for

all x> 0 s.t. εT (x)≤ λmin(ξ)
3‖Q∗‖ , it holds with P -probability at least 1− δT (x) that

(B.1)
∥∥∥Q−1/2∗ QnQ

−1/2
∗ − I

∥∥∥
F
≤ εQ(x)

def
=

4‖Q∗‖
λmin(ξ)

εT (x).
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Let qn+ fn ≤ 1
2 , and fu ≤ 1

2 . Under Assumption (T̂ ) for all x, s> 0 s.t. εT̂ (x; s)≤
λmin(ξ)
81‖Q∗‖ ,

it holds with P -probability at least 1− αT̂ (s) and with Pu-probability at least 1− δT̂ (x; s)
that

(B.2)
∥∥∥Q−1/2n QuQ

−1/2
n − I

∥∥∥
F
≤ εQ̂(x; s)

def
=

108‖Q∗‖
λmin(ξ)

εT̂ (x; s).

PROOF. Bound (B.1) follows immediately from Lemma 2.2 by setting wi = 1 for all i.
Now we consider (B.2). Set wi = ui for all i. Let for any X ∈H(d)

ξ̂(X)
def
= Q1/2

n F̂
(
Q1/2
n XQ1/2

n

)
Q1/2
n , ξu(X)

def
= Q1/2

n Fu

(
Q1/2
n XQ1/2

n

)
Q1/2
n .

We note that conditions qn + fn ≤ 1
2 , and fu ≤ 1

2 yield ‖Qn‖ ≤ 3
2‖Q∗‖ and

〈X,ξu(X)〉 ≥ 1

2
〈X, ξ̂(X)〉

=
1

2
〈Q1/2

n XQ1/2
n , F̂ (Q1/2

n XQ1/2
n )〉

≥ 1

2

1

1 + 5
4

〈Q1/2
n XQ1/2

n ,F (Q1/2
n XQ1/2

n )〉

≥ 2

9
λmin(ξ)

∥∥∥Q−1/2∗ Q1/2
n XQ1/2

n Q
−1/2
∗

∥∥∥2
F

≥ 1

18
λmin(ξ)‖X‖2F .

Thus λmin(ξu)≥ 1
18λmin(ξ) and ‖Qn‖

λmin(ξu)
≤ 27 ‖Q∗‖λmin(ξ)

. Then (B.2) follows from Lemma 2.2.

Next, we define the counterparts of ηw coming from (2.5) in the real world and the boot-
strap one:

(B.3) ηn
def
= 2

√
κ(F )(qn + fn), ηu

def
= 2

√
κ(F̂ )(qu + fu),

with qn, fn coming from (3.5) and qu, fu coming from (3.12). The next lemma is trivial.
It validates the concentrations of ηn and ηu. We provide it only for the completeness of
presentation.

LEMMA B.3 (Concentrations of ηn and ηu). Let Assumptions (T ) and (F ) be fulfilled.
We recall δη(x) defined in (3.7) and εη(x) defined in (3.8). For any x ∈R2

+ s.t. εη(x)≤ 1:

P{ηn > εη(x)} ≤ δη(x).

Let Assumptions (T̂ ) and (F̂ ) be fulfilled, and let fn + qn ≤ 1
2 . We recall δη̂(x; s) defined

in (3.15) and εη̂(x; s) defined in (3.16). Then with P -probability at least 1− αT̂ (s)− αF̂ (s)
for all x, s ∈R2

+ s.t. εη̂(x; s)≤ 1 it holds that

Pu {ηu > εη̂(x; s)} ≤ δη̂(x; s).

PROOF. The proof of the first result follows immediately from the definitions and Corol-
lary B.2. The proof of the second one relies on the fact that

κ(F̂ )≤
1 + 5

4

1− 3
4

κ(F )≤ 9κ(F ),

whenever qn + fn ≤ 1
2 .
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Now we are ready to prove Lemma 3.2 and Lemma 3.3.

PROOF OF LEMMA 3.2. The proof is split into two parts.

Frobenius case. We have to check the conditions of Theorem 3.1. Denote

X =
√
n‖Qn −Q∗‖F , Y =

√
n
∥∥F−1Tn∥∥F , G= Z.

Condition (GAR-I) follows from

|X − Y |
by L.2.3
≤ ηnY

by L.B.3
≤ εη(x)Y.

The last inequality holds with P -probability at least 1− δη(x) for all x s.t. εη(x)≤ 1
2 . Con-

dition (GAR-II) is fulfilled due to Assumption (Z). Using notations accepted in Theorem 3.1
we get

η = εη(x), m= 0, δ = δη(x), ∆=∆Z .

The result of the lemma follows immediately.

Bures–Wasserstein case. We set

X =
√
ndB(Qn,Q∗), Y =

√
n
∥∥AF−1Tn∥∥F , G=AZ.

Condition (GAR-I) holds due to

|X − Y |
by L.2.4
≤ 3

√
κ(Q∗)ηnY

by L.B.3
≤ 3

√
κ(Q∗)εη(x)Y,

where the last inequality holds with P -probability at least 1 − δη(x) for all x, s.t. εη(x) ≤
1

6
√
κ(Q∗)

. Condition (GAR-II) is fulfilled due to Assumption (Z). In terms of notations ac-

cepted in Theorem 3.1 we get

η = 3
√
κ(Q∗)εη(x), m= 0, δ = δη(x), ∆=∆Z .

Then the result follows immediately.

PROOF OF LEMMA 3.3. We have to check the conditions of Theorem 3.1. The proof is
split into three parts. First we investigate Frobenius case, than we consider Bures–Wasserstein
case, and, finally, we obtain the probabilistic bounds.

Frobenius case. We set

X =
√
n‖Qn −Qu‖F , Y =

√
n
∥∥∥F̂−1T u∥∥∥

F
, G= Ẑ.

The proof is exactly the same as in Frobenius case in Lemma 3.2. In terms of notations
accepted in Theorem 3.1 we get

η = εη̂(x; s), m= 0, δ = δη̂(x; s), ∆= δT̂ (s).

The result follows.

Bures–Wasserstein case. Denote

X =
√
ndB(Qu,Qn), Y =

√
n
∥∥∥ÂF̂−1T u∥∥∥

F
, G= ÂẐ.

First we note that κ(Qn)≤ 3κ(Q∗) since qn ≤ 1
2 . The rest of proof is similar to the proof of

Bures–Wasserstein case in Lemma 3.2. This yields

η = 3
√

3κ(Q∗)εη̂(x; s), m= 0, δ = δη̂(x; s), ∆= δT̂ (s).

The result follows from Theorem 3.1.
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APPENDIX C: BOOTSTRAP VALIDITY

In this section we present the proofs and auxiliary results concerning the bootstrap validity.
The first lemma provides a deviation bound on Σ̂.

LEMMA C.1 (Deviations of Σ̂). Let qn ≤ 1
2 . Then∥∥∥Σ̂ −Σn

∥∥∥
1
≤ 2qn

(
2 trΣ + 2d2‖Σn −Σ‖+ d

)
.

PROOF. Recall that TSQ = S1/2
(
S1/2QS1/2

)−1/2
S1/2 is antimonotone and (−1

2)-homogeneous
w.r.t. Q. Thus(

1− 1

2
qn

)
TSQ∗ 4

1√
1 + qn

TSQ∗ 4 TSQn 4
1√

1− qn
TSQ∗ 4 (1 + qn)T

S
Q∗

and

(C.1)
∥∥TSQ∗ − TSQn∥∥F ≤ qn∥∥TSQ∗∥∥F .

Then we obtain∥∥∥Σ̂ −Σn

∥∥∥
1
≤ 1

n

n∑
i=1

∥∥∥T̂i ⊗ T̂i − Ti ⊗ Ti∥∥∥
1

≤ 1

n

n∑
i=1

(
2
∥∥∥T̂i − Ti∥∥∥

F
‖Ti‖F +

∥∥∥T̂i − Ti∥∥∥2
F

)

≤ 1

n

n∑
i=1

(
2qn‖Ti + I‖F ‖Ti‖F + q2n‖Ti + I‖2F

)

≤ qn
n

n∑
i=1

(
4‖Ti‖2F + 2d

)
= 2qn

(
2 tr Σ̂n + d

)
≤ 2qn

(
2 trΣ + 2d2‖Σn −Σ‖+ d

)
.(C.2)

Next, we ensure the concentration of the covariance operator Ξ̂.

LEMMA C.2 (Concentration of Ξ̂). Let qn + fn ≤ 1
2 . Then∥∥∥Ξ̂−Ξ

∥∥∥
1
≤
∥∥F−1∥∥2 (42d2‖Σn −Σ‖+ 71(qn + fn) (trΣ + d)

)
.

PROOF. First we note that the proof of Theorem 2.2 (B) by Kroshnin et al. [2021] (see
paragraph Convergence of F̂ to F therein) being combined with (A.5) ensures

F̂
proof of T.2.2 (B)

4 (1− qn)−3/2Fn
(A.5)
4

1 + fn

(1− qn)3/2
F 4

1

1− 2qn − fn
F ,

F̂
proof of T.2.2 (B)

< (1 + qn)
−3/2Fn

(A.5)
<

1− fn
(1 + qn)3/2

F <
1

1 + 3qn + 3fn
F .
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Now we consider∥∥∥Ξ̂−Ξ
∥∥∥
1
=
∥∥∥F̂−1 (Σ̂ −Σ) F̂−1∥∥∥

1
+
∥∥∥F̂−1ΣF̂−1 −F−1ΣF−1∥∥∥

≤
∥∥∥F̂−1∥∥∥2∥∥∥Σ̂ −Σ∥∥∥

1
+
∥∥∥F̂−1 −F−1∥∥∥(∥∥∥F̂−1∥∥∥+ ∥∥F−1∥∥) trΣ

≤ 14
∥∥F−1∥∥2∥∥∥Σ̂ −Σ∥∥∥

1
+ 15(qn + fn)

∥∥F−1∥∥2 trΣ.
To continue this inequality we first note that due to Lemma C.1∥∥∥Σ̂ −Σ∥∥∥

1
≤
∥∥∥Σ̂ −Σn

∥∥∥
1
+ d2‖Σn −Σ‖

≤ 2qn (2 trΣ + d) + 3d2‖Σn −Σ‖.

Finally,∥∥∥Ξ̂−Ξ
∥∥∥
1
≤
∥∥F−1∥∥2 (28qn (2 trΣ + d) + 42d2‖Σn −Σ‖+ 15(qn + fn) trΣ

)
≤
∥∥F−1∥∥2 (42d2‖Σn −Σ‖+ 71(qn + fn) (trΣ + d)

)
.

Now we are ready to prove the main results of the paper. Before doing that we note the
following fact.

REMARK C.3. Under the assumptions of Theorem 4.1 with P -probability at least
1 − δ(y) it holds that ηn ≤ εη(y) and ‖Σn −Σ‖ ≤ εΣ(y) simultaneously. In particular,
these inequalities imply fn + qn ≤ 1

2 and γ(Ξ̂) ≤ 2γ(Ξ) (due to Lemmas B.1 and C.2), cf.
Remark 3.4.

PROOF OF THEOREM 4.1. To prove the result we use the Gaussian approximations from
Lemma 3.2 and Lemma 3.3. For all z ≥ 0 with P -probability at least 1− δ(y)− α̂(s) it holds∣∣P{√n‖Qn −Q∗‖F ≤ z}− P{‖Z‖F ≤ z}∣∣ by L.3.2 (F)

≤ ΩF(n),∣∣∣Pu {√n‖Qu −Qn‖F ≤ z}− P{‖Ẑ‖F ≤ z}∣∣∣ by L.3.3 (F)
≤ Ω̂F(n; s).

This yields for all z ≥ 0∣∣P{√n‖Qn −Q∗‖F ≤ z}− Pu {√n‖Qu −Qn‖F ≤ z}∣∣(C.3)

≤
∣∣∣P{‖Z‖F ≤ z} − P{‖Ẑ‖F ≤ z}∣∣∣+ΩF(n) + Ω̂F(n; s)

The final step is a Gaussian comparison. We use Corollary 2.3 by Götze et al. [2019]. It
claims that for all z ≥ 0

(C.4)
∣∣∣P{‖Z‖F ≤ z} − P{‖Ẑ‖F ≤ z}∣∣∣≤ C

(
κ (Ξ) +κ(Ξ̂)

)
‖Ξ− Ξ̂‖1.

Lemma C.2 and Remark C.3 yield with P -probability at least 1− δ(y)∥∥∥Ξ− Ξ̂
∥∥∥
1
≤ C
∥∥F−1∥∥2εΞ(y).(C.5)

Furthermore, κ(Ξ̂) ≤ 2κ(Ξ) by Lemma B.1. Combining this fact with (C.3) and (C.4) we
get the result.
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PROOF OF THEOREM 4.2. The proof is similar to the Frobenius-case. For all z ≥ 0 with
P -probability at least 1− δ(y)− α̂(s) it holds

|P{dB(Qn,Q∗)≤ z} − P{‖AZ‖F ≤ z}|
by L.3.2(BW)
≤ ΩB(n),∣∣∣Pu {√ndB(Qu,Qn)≤ z}− P{∥∥∥ÂẐ∥∥∥

F
≤ z
}∣∣∣ by L.3.3(BW)

≤ Ω̂B(n; s).

This yields ∣∣P{dB(Qn,Q∗)≤ z} − Pu {√ndB(Qu,Qn)≤ z}∣∣(C.6)

≤
∣∣∣P{‖AZ‖F ≤ z} − P{∥∥∥ÂẐ∥∥∥

F
≤ z
}∣∣∣+ΩB(n) + Ω̂B(n; s).

Gaussian comparison. To compare AΞA∗ and ÂΞnÂ
∗ we first recall that A and Â are

self-adjoint and then use the same idea as in the proof of Theorem 4.1. First we apply Corol-
lary 2.3 by Götze et al. [2019]: for all z > 0∣∣∣P{‖AZ‖F ≤ z} − P{∥∥∥ÂẐ∥∥∥

F
≤ z
}∣∣∣(C.7)

≤ C
(
κ (AΞA) +κ

(
ÂΞ̂Â

))∥∥∥AΞA− ÂΞ̂Â
∥∥∥
1
.

Consider ∥∥∥AΞA− ÂΞ̂Â
∥∥∥
1
≤ ‖A‖2

∥∥∥Ξ− Ξ̂
∥∥∥
1
+
∥∥∥A− Â∥∥∥(‖A‖+ ∥∥∥Â∥∥∥) tr Ξ̂.

We note that with P -probability at least 1− δT (y)

‖A− Â‖
by L.A.2
≤ εQ(y)‖A‖.

The conditions of the theorem ensure

‖Â‖ ≤ 3

2
‖A‖, tr Ξ̂

by L.B.1
≤ 5

4
trΞ.

Recall that by Lemma A.1 ‖A‖= 1
2λ

1/2
min(Q∗)

. We combine these results with (C.5) and get∥∥∥AΞA− ÂΞ̂Â
∥∥∥
1
≤ 1

4λmin(Q∗)

∥∥∥Ξ− Ξ̂
∥∥∥
1
+
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8
εQ(y)‖A‖2 trΞ

≤ C

λmin(Q∗)

∥∥F−1∥∥2 (εQ(y) trΣ + εΞ(y))

by (4.2)
≤ C

λ2min(F )λmin(Q∗)
εΞ(y).

The last step is to recall that κ
(
ÂΞ̂Â

)
≤ 2κ (AΞA) by Lemma B.1. Combining these

bounds with (C.6) and (C.7) we get the result.

APPENDIX D: SUB-EXPONENTIAL CASE

We begin with the proof of Lemma 5.1.
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PROOF OF LEMMA 5.1. Note that 1) follows from

(D.1)
∥∥∥‖S‖1/2∥∥∥

ψ2

≤
∥∥∥√trS∥∥∥

ψ2

<+∞.

The explicit formula TSQ∗ =Q
−1/2
∗

(
Q

1/2
∗ SQ

1/2
∗

)1/2
Q
−1/2
∗ yields

∥∥TSQ∗∥∥≤ λ
1/2
max(Q∗)

λmin(Q∗)
‖S‖1/2.

Combining these facts with (D.1) we get 2) and 3). Result (III) in Lemma A.3 by Kroshnin
et al. [2021] ensures

(D.2)
∥∥dT SQ∗∥∥≤ λ

1/2
max

(
S1/2Q∗S

1/2
)

2λ2min(Q∗)
≤ λ

1/2
max(Q∗)

2λ2min(Q∗)
‖S‖1/2.

This fact together with (D.1) ensures 4).

Assumption (T ) follows from Lemma 5.1 directly.

LEMMA D.1 (Assumption (T )). Assumption 1 ensures that for all x> 0

δT (x) = e−x, εT (x) = νT
d+
√
x√

n
,

with νT coming from Lemma 5.1, 3).

PROOF. Lemma 5.1 ensures Ti to be sub-Gaussian with parameter νT . Applying Theorem
2.1 by Hsu et al. [2012] with Σ = I , dim(I) = d2 × d2 we get the result.

D.1. Assumptions (T̂ ), (Z) and (Ẑ). The next lemma deals with concentrations of sub-
exponential r.v. The first two results are well-known and we provide them for completeness
of the text.

LEMMA D.2. Let X1, . . . ,Xn, Xi ∈ R+ be i.i.d. sub-exponential r.v. with ‖X‖ψ1
= ν.

Then with probability at least 1− e−x the following bound holds:

(I)
1

n

n∑
i=1

Xi ≤ EX + Cνmax

{
x

n
,

√
x

n

}
.

Further, with probability at least 1− e−x

(II) max
i
Xi ≤ ν

(
x+ ln(2n)

)
.

And finally, for any p≥ 1 there exists a constant C =C(p)> 0 such that

(III) EXp ≤C EX
(
ν log

( ν

EX

))p−1
.

PROOF OF LEMMA D.2. To obtain the first bound we use a Bernstein-type inequality on
the sub-exponential random variables (see e.g. the proof of Proposition 5.16 by Vershynin
[2010]),

P

{
1

n

n∑
i=1

Xi ≥ EX + t

}
≤ exp

(
−Cmin

{
nt2

K2
,
nt

K

})
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where

K = ‖X −EX‖ψ1
≤ 2‖X‖ψ1

= 2ν.

To obtain the second bound we use a well-known line of reasoning:

P
{
max
i
Xi ≥ t

}
= P

{⋃
i

{Xi ≥ t}

}
≤ 2ne−t/ν = eln(2n)−t/ν .

Thus we obtain the result.

For the sake of transparency we further use

(D.3) E(X,ν; x)
def
= EX + νmax

{√
x

n
,
x

n

}
.

LEMMA D.3 (Assumption (T̂ )). Let qn ≤ 1/2. Assumption 1 ensures that for all x, s> 0

δT̂ (x; s) = δT̂ (x) = e−x, αT̂ (s) = e−s,

εT̂ (x; s) = Cνu
d+
√
x√

n
·

√
E
(
Si, ν2S ; s

)
λmin(Q∗)

,

with νu and νS coming from Assumption 1.

PROOF. First we note that T u is centred in the bootstrap world. We note that by definition
of the barycenter 1

n

∑n
i=1 T̂i = 0. Thus

T u =
1

n

n∑
i=1

uiT̂i −
1

n

n∑
i=1

T̂i =
1

n

n∑
i=1

(ui − 1) T̂i.

The sum is sub-Gaussian due to Assumption 1. We apply Theorem 2.2 by Hsu et al. [2012]
and get with P -probability at least 1− e−x

1

n

n∑
i=1

∥∥T u∥∥≤ d+
√
x√

n
·

√√√√ν2u
n

n∑
i=1

∥∥∥T̂i∥∥∥2
F
.

Now we consider

1

n

n∑
i=1

∥∥∥T̂i∥∥∥2
F
≤ 1

nλmin(Qn)

n∑
i=1

tr
(
T̂iQnT̂i

)
=

1

nλmin(Qn)

n∑
i=1

d2B(Qn, Si)

≤ 1

nλmin(Qn)

n∑
i=1

d2B(0, Si) =
1

nλmin(Qn)

n∑
i=1

trSi

by L.D.2(I)
≤ 1

nλmin(Qn)
E(S1, νS , s).

The last inequality holds with P -probability at least 1− e−s. Finally, note that

λmin(Qn)≥ (1− qn)λmin(Q∗)≥
1

2
λmin(Q∗).

Combining all the bounds we get the result.
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LEMMA D.4 (Assumption (Z)). Under Assumption 1 it holds, that

∆Z ≤ Cd2

√√√√‖Σ−1‖ν2‖T‖
n

log

(
‖Σ−1‖ν2‖T‖

d2

)
,

with ν‖T‖ coming from Lemma 5.1, 2).

PROOF. The result follows from Theorem 1.1 by Bentkus [2003]. Using the notations
accepted there we set Xi =Σ

−1/2Ti for all i= 1, . . . , n. Thus

∆Z =
C√
n
E
∥∥∥Σ−1/2Ti∥∥∥3

F
.

Since ‖Ti‖F is sub-Gaussian r.v. with parameter ν‖T‖ by Lemma 5.1, one obtains
∥∥∥∥∥Σ−1/2Ti∥∥2F∥∥∥ψ1

≤

C
∥∥Σ−1∥∥ν2‖T‖ . Since E

∥∥Σ−1/2Ti∥∥2F = dimTi ≤ d2 ,

E
∥∥∥Σ−1/2Ti∥∥∥3

F

by L.D.2(III)
≤ Cd2

√√√√‖Σ−1‖ν2‖T‖ log
(
‖Σ−1‖ν2‖T‖

d2

)
.

The claim follows.

LEMMA D.5 (Assumption (Ẑ)). Let qn + fn ≤ 1/2 and

(D.4) qn (trΣ + d) + 3‖Σn −Σ‖ ≤
1

2
λmin(Σ).

Then for any s> 0 it holds under Assumption 1 that

αẐ(s) = e−s, ∆Ẑ(s)≤ Cd2m3(u)

√
‖Σ−1‖ν2‖T‖

n
(s + lnn),

with m3(u) = Eu|u− 1|3 , and ν‖T‖ coming from Lemma 5.1, 2).

PROOF. We use Theorem 3.5 by Chen and Fang [2011] follow their notations:

Xi =
ui − 1√

n
Σ̂−1/2T̂i, Φ∼N (0,I).

Now we show concentration of Eu
∑n

i=1‖Xi‖3F . Let m3(u)
def
= Eu|u− 1|3, thus

Eu
n∑
i=1

‖Xi‖3F =
m3(u)√

n

1

n

n∑
i=1

∥∥∥Σ̂−1/2T̂i∥∥∥3
F
≤ d2m3(u)

√
‖Σ̂−1‖
n

max
i
‖T̂i‖F .

We recall bound (C.1) and combine it with the condition qn ≤ 1/2. This yields ‖T̂i‖F ≤
‖Ti‖F + qn‖Ti − I‖F ≤ 3

2‖Ti‖F + qn‖I‖F . Since ‖Ti‖F are sub-Gaussian with parameter
ν‖T‖, we get

max
i
‖T̂i‖F ≤

3

2
max
i
‖Ti‖F + qn

√
d

by L.D.2(II)
≤ Cν‖T‖

√
s + lnn+ qn

√
d,

where the last inequality holds with P -probability at least 1 − e−s. Note that by assump-
tion (D.4),

q2nd≤
1

4 trΣ
λ2min(Σ)≤ trΣ = E‖Ti‖2 ≤ ν2‖T‖.
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Moreover,

qn ≤
λmin(Σ)

2 trΣ
≤ 1

2dimΣ
≤ 1

d2
.

Then condition qn + fn ≤ 1/2 and bound (C.2) yield∥∥∥Σ̂ −Σ∥∥∥≤ qn (trΣ + d) + ‖Σ −Σn‖
(
1 + 2d2qn

)
≤ 1

2
λmin(Σ).

This fact ensures
∥∥∥Σ−1/2Σ̂Σ−1/2 − I∥∥∥≤ 1

2 . Thus
∥∥∥Σ̂−1∥∥∥≤ 2

∥∥Σ−1∥∥. Now we apply The-
orem 3.5 by Chen and Fang [2011] and get the result.

D.2. Assumptions (F ), (F̂ ), and (Σ). The key ingredient of this section is the follow-
ing lemma.

LEMMA D.6. Let X1, . . . ,Xn be independent Hermitian matrices,Xi ∈H(d), s.t. for all

i, EXi = 0, and σ2i
def
=
∥∥EX2

i

∥∥. Denote for some fixed α≥ 1

U
(α)
i ≥max

{∥∥‖Xi‖
∥∥
ψα
, σi

}
, U

def
= max

i

{
U

(α)
i log

1

α

(
U

(α)
i

σi

)}
,

(recall that log(x) def
= max{1, ln(x)}).

In particular, for α= 1,2 one can take U (α)
i =

∥∥‖Xi‖
∥∥
ψα

. Then for all x> 0 with proba-
bility at least 1− e−x∥∥∥∥∥ 1n

n∑
i=1

Xi

∥∥∥∥∥≤ Cσ

√
x+ lnd

n
max

{
1,
U

σ

√
x+ lnd

n

}
,

where σ2 def
= 1

n

∑n
i=1 σ

2
i .

PROOF. We set Yn =
∑n

i=1Xi and note that ‖Yn‖ < t is if and only if −tI 4 Yn 4 tI .
This implies

(D.5) P{‖Yn‖ ≥ t} ≤ P{Yn ⊀ tI}+ P{Yn �−tI} .

Taking the matrix exponent we obtain

(D.6) P{Yn ⊀ tI}= P
{
eλYn ⊀ eλtI

}
≤ P

{
tr
(
eλYn

)
≥ eλt

}
≤ e−λtE tr

(
eλYn

)
.

Independence of X1, . . . ,Xn and the Golden–Thompson inequality ensure

E tr
(
eλYn

)
≤ E tr

(
eλYn−1

)∥∥∥EeλXn∥∥∥.
By induction we obtain that

(D.7) E tr
(
eλYn

)
≤ E tr

(
eλX1

) n∏
i=2

∥∥∥EeλXi∥∥∥≤ d n∏
i=1

∥∥∥EeλXi∥∥∥,
where the last inequality follows from E tr

(
eλX1

)
= tr

(
EeλX1

)
≤ d
∥∥EeλX1

∥∥ . So as to
bound

∥∥EeλXi∥∥ we use the following fact obtained in the proof of Proposition 2 by Koltchin-
skii et al. [2011] (see p. 2949). There exist constants C,C2 s.t. for all λ satisfying

λU
(α)
i

(
ln
(
U

(α)
i

σi

))1/α
≤C2,
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it holds that ∥∥∥EeλXi∥∥∥≤ exp
{
Cλ2σ2i

}
.

Combining this bound with (D.5), (D.6), and (D.7), we obtain

P{‖Yn‖ ≥ t} ≤ 2d exp
{
−λt+Cnλ2σ2

}
, whenever λU ≤C2.

Minimization over all admissible λ yields the result.
Furthermore, for α= 2 by Jensens’s inequality we have∥∥EX2

∥∥≤ E‖X‖2 ≤ ∥∥‖X‖∥∥2
ψ2

ln 2≤
∥∥‖X‖∥∥2

ψ2
.

Respectively, for α= 1 we have∥∥EX2
∥∥≤ E‖X‖2 ≤ ∥∥‖X‖∥∥2

ψ1

[
E exp

(
‖X‖∥∥‖X‖∥∥

ψ1

)
− 1

]
≤
∥∥‖X‖∥∥2

ψ1

since x2 ≤ ex − 1 for all x≥ 0.

Since the above bound appears often, we introduce the following terms. For σ,U > 0, s.t.
U
σ ≥ 1, we define ϑ def

= U
σ and

M (α)(ϑ; x)
def
= max

{
1, ϑ log

1

α (ϑ)

√
x+ lnd

n

}
,(D.8)

M(ϑ; x)
def
= max

{
1, ϑ

√
x+ lnd

n

}
.(D.9)

LEMMA D.7 (Assumption (F )). Assumption 1 ensures that for all x> 0

δF (x) = e−x, εF (x) = C
∥∥F−1∥∥σF√x+ lnd

n
M (2)(ϑF ; x),

where ϑF
def
=

ν‖dT‖
σF

, σ2F
def
=
∥∥∥E (dTi −EdTi)2∥∥∥ , and ν‖dT ‖ comes from Lemma 5.1, 4).

PROOF. The concentration result follows directly from Lemma D.6. We set Xi = dTi −
EdTi, and choose α= 2. Since all Xi are i.i.d. we get

σ2i = σ2F
def
=
∥∥∥E (dTi −EdTi)2∥∥∥.

Moreover, for all i= 1, . . . , n

U
(2)
i =

∥∥‖dTi −EdTi‖∥∥ψ2

by L.5.1
≤ 2ν‖dT ‖.

Thus with P -probability at least 1− e−x we get

‖Fn −F ‖ ≤ CσF

√
x+ lnd

n
M (2)(ϑF ; x), ϑF

def
=
ν‖dT ‖

σF
.

The claim follows.

LEMMA D.8 (Assumption (Σ)). Assumption 1 ensures that for all x> 0

δΣ(x) = e−x, εΣ(x) = CσΣ

√
x+ lnd

n
M (1)(ϑΣ ; x),

where ϑΣ
def
=

ν‖T‖
σΣ

, σ2Σ
def
=
∥∥∥E (Ti ⊗ Ti −Σ)2

∥∥∥ , and ν‖T‖ comes from Lemma 5.1, 2).
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PROOF. The result follows directly from Lemma D.6. We set Xi = Ti⊗Ti−Σ and select
α= 1. Since all Xi are i.i.d. we get

σ2i = σ2Σ
def
=
∥∥∥E (Ti ⊗ Ti −Σ)2

∥∥∥.
Moreover, for all i= 1, . . . , n

U
(1)
i =

∥∥‖Ti ⊗ Ti −Σ‖∥∥ψ1
≤ 2
∥∥‖Ti ⊗ Ti‖∥∥ψ1

= 2
∥∥‖Ti‖2F∥∥ψ1

by L.5.1
= 2ν2‖T‖.

Then with P -probability at least 1− e−x we get

‖Σn −Σ‖ ≤ CσΣ

√
x+ lnd

n
M (1)(ϑΣ ; x), ϑΣ

def
=
ν‖T‖

σΣ
.

The claim follows.

LEMMA D.9 (Assumption (F̂ )). Let qn+ fn ≤ 1/2. Under Assumption 1 for all x, s> 0

δF̂ (x; s) = δF̂ (x) = e−x, αF̂ (s) = 3e−s,

εF̂ (x; s) = C
∥∥F−1∥∥σF̂ (s)

√
lnd+x

n
M(ϑF̂ (s); x),

where ϑF̂ (s)
def
= UF̂ (s)

σF̂ (s)
, σ2

F̂
(s)

def
= E

(
‖dTi‖2, ν2‖dT ‖; s

)
, with ν‖dT ‖ coming from Lemma 5.1,

4) and UF̂ (s)
def
= Cνu log

1

2 (νu)ν‖dT ‖
√
s + lnn.

PROOF. First we note that∥∥∥F̂−1/2F̂uF̂−1/2 − I∥∥∥≤ ∥∥∥F̂−1∥∥∥ · ∥∥∥F̂u − F̂∥∥∥, and F̂u − F̂ =
1

n

n∑
i=1

(ui − 1)dT̂i.

Now we apply Lemma D.6 with α= 2 and Xi = (ui − 1)dT̂i. This yields

σ2i =

∥∥∥∥Eu [(ui − 1)dT̂i

]2∥∥∥∥= ∥∥∥∥[dT̂i]2∥∥∥∥= ∥∥∥dT̂i∥∥∥2.
The last equality follows from the fact that dT̂i is a Hermitian operator. Thus

σ2 =
1

n

n∑
i=1

∥∥∥dT̂i∥∥∥2 ≤ 8
1

n

n∑
i=1

‖dTi‖2,

since qn ≤ 1
2 and due to monotonicity and homogeneity of dT SQ . Note that∥∥‖Xi‖

∥∥
ψ2

=
∥∥∥|ui − 1| ·

∥∥∥dT̂i∥∥∥∥∥∥
ψ2

=
∥∥∥dT̂i∥∥∥ · ‖ui − 1‖ψ2

by A.1
= νu

∥∥∥dT̂i∥∥∥,
thus we set Ui = νu

∥∥∥dT̂i∥∥∥. This yields

U =max
i

{
Ui log

1

2

(
Ui
σi

)}
= νu log

1

2 (νu)max
i

∥∥∥dT̂i∥∥∥
≤ 23/2νu log

1

2 (νu)max
i
‖dTi‖.

Then we get with Pu-probability at least 1− e−x,∥∥∥F̂ − F̂u∥∥∥≤ Cσ

√
lnd+x

n
M (ϑ; x) , ϑ

def
=
U

σ
.
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Now we have to bound the terms σ2 and U . First we consider σ2 and recall that due to
Lemma 5.1 ‖dTi‖ are sub-Gaussian r.v. We get with P -probability at least 1− e−s

σ2
by L.D.2(I)
≤ 8σ2

F̂
(s), σ2

F̂
(s)

def
= E

(
‖dTi‖2, ν2‖dT ‖; s

)
.

Now we consider term U . With P -probability at least 1− e−s

U
by L.D.2(II)
≤ 23/2UF̂ (s), UF̂ (s)

def
= Cνu log

1

2 (νu)ν‖dT ‖
√
s + lnn.

Finally, Lemma A.3 together with the assumption qn+fn ≤ 1/2 ensures
∥∥∥F̂−1∥∥∥≤ 9

4

∥∥F−1∥∥.
Collecting the above bounds we get the result.

D.3. GAR and bootstrap validity. Now we collect the bounds obtained in the previous
section to get GAR results. First, we introduce the scaling multipliers

CT
def
=
ν2Tκ(F )‖Q∗‖2

λ2min(ξ)
, CF

def
= σ2Fκ(F )

∥∥F−1∥∥2, CZ
def
=
∥∥Σ−1∥∥ν2‖T‖.

Let N(n,d) be the “threshold” sample-size

N(n,d)
def
= max

{
ϑ2F log (ϑF ) log

(
nd

CF

)
, CF lnd, CTd

2

}
,

These bound on the sample size are crucial for asymptotic results.

LEMMA D.10 (Lemma 3.2). Let x ∈R2
+. Under Assumption 1:

Asymptotic for Frobenius case: bound (3.9). Let the sample size n & N(n,d). Then the
following bound holds

ΩF(n).d
2

√
CZ
n

log
CZ
d

+ γ(Ξ)

√
CT
n

(
d2 + log

n

CT

)
(D.10)

+ γ(Ξ)

√
CF
n

log
nd

CF
.

√
lnn

n
.

Asymptotic for Bures–Wasserstein case: bound (3.10). Let the sample size n& κ(Q∗)N(n,d).
Then the following bound holds

ΩB(n).d
2

√
CZ
n

log
CZ
d

+ γκ(Ξ)

√
CT
n

(
d2 + log

n

CT

)
(D.11)

+ γκ(Ξ)

√
CF
n

log
nd

CF
.

√
lnn

n
.

PROOF. First we obtain bounds on δη(x) from (3.7), and εη(x) from (3.8).

◦ Term (3.7). To get it we use (3.7), and combine it with Lemma D.1, and Lemma D.7. This
yields δη(x) = e−x1 + e−x2 .
◦ Term (3.8). To get it we note that the term εQ(x1) coming from (B.1) is written as

εQ(x1)
by L.D.1
=

4‖Q∗‖νT
λmin(ξ)

d+
√
x1√

n
≤ C√

κ(F )

√
CT
n

(d2 +x1).

We combine this fact with the definition (3.8), Lemma D.1, and Lemma D.7:

εη(x) = C

√
CT
n

(d2 +x1) + C

√
CF
n

(lnd+x2)M
(2)(ϑF ; x2)
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Asymptotic bound: Frobenius case. We set

x∗1 =
1

2
ln

(
n

CT

)
, x∗2 =

1

2
ln

(
n

CF

)
,x∗ = (x∗1,x

∗
2).

We note that x∗1,x
∗
2 > 0 due to n&N(d, s).

◦ Term δη(x
∗) turns into

δη(x
∗) = e−x

∗
1 + e−x

∗
2 =

√
CF
n

+

√
CT
n
.

◦ Now we show that εη(x∗). 1. Note that condition n&N(n, s) ensures three following
facts:
· n&CF , this ensures n

CF
& log

(
n
CF

)
,

· n&CT , this ensures n
CT

& log
(
n
CT

)
,

· M (2)(ϑF ; x
∗
2) = 1.

For simplicity we denote for any t > 0

f1(t)
def
=

√
t

n

(
lnd+ log

n

t

)
, f2(t)

def
=

√
t

n

(
d2 + log

n

t

)
.(D.12)

Thus we get

εη(x
∗). f1(CF ) + f2(CT ). 1.

Since γ(Ξ)≥ 1, we derive (D.10):

ΩF(n).∆Z + γ(Ξ)

(√
CF
n

+

√
CT
n

+ f1(CF ) + f2(CT )

)
.∆Z + γ(Ξ)

(
f1(CF ) + f2(CT )

)
.

Asymptotic bound: Bures–Wasserstein case. We set

x∗1 =
1

2
ln

(
n

κ(Q∗)CT

)
, x∗2 =

1

2
ln

(
n

κ(Q∗)CF

)
, x∗ = (x∗1,x

∗
2).

We note that x∗1,x
∗
2 > 0 due to n& κ(Q∗)N(n,d).

◦ Term δη(x
∗) is written as

δη(x
∗) = e−x

∗
1 + e−x

∗
2 =

√
κ(Q∗)CT

n
+

√
κ(Q∗)CF

n
.

◦ Now we have to show that
√
κ(Q∗)εη(x

∗). 1. Condition n& κ(Q∗)N(n,d) yields:

· n& κ(Q∗)CF , this ensures n
κ(Q∗)CF

& log
(

n
κ(Q∗)CF

)
,

· n& κ(Q∗)CT , this ensures n
κ(Q∗)CT

& log
(

n
κ(Q∗)CT

)
,

· M (2)(ϑF ; x
∗
2) = 1.

Therefore, √
κ(Q∗)εη(x

∗). f1(κ(Q∗)CF ) + f2(κ(Q∗)CT ). 1.
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Now by Lemma 3.3 we obtain (D.11):

ΩB(n).∆Z + γ(Ξ)

(√
κ(Q∗)CF

n +

√
κ(Q∗)CT

n + f1(κ(Q∗)CF ) + f2(κ(Q∗)CT )

)
.∆Z + γ(Ξ)

(
f1(κ(Q∗)CF ) + f2(κ(Q∗)CT )

)
.∆Z + γκ(Ξ)

(
f1(CF ) + f2(CT )

)
.

To validate GAR in the bootstrap world we proceed in the same way as before and define
some auxiliary multipliers. Let

CT̂ (n; s)
def
=
ν2uE

(
S1, ν

2
S ; s
)

ν2Tλmin(Q∗)
CT , CF̂ (n; s)

def
=
E
(
‖dTi‖2, ν2‖dT ‖; s

)
σ2F

CF ,

CẐ(n; s)
def
= m2

3(u)(s + lnn)CZ .

For the sake of transparency we further refer to CT̂ (n; s), CF̂ (n; s), and CẐ(n; s) as CT̂ , CF̂ ,
and CẐ . Let us also define the effective sample size

N̂(n,d; s)
def
= max

{
ϑ2
F̂
(s) log

(
nd
CF̂

)
, CT̂d

2, CF̂ lnd, s
}
.

LEMMA D.11 (Lemma 3.3). Let qn + fn ≤ 1/2 and let condition (D.4) be fulfilled.
Choose x ∈R2

+). Under Assumption 1 it holds with P -probability at least 1− 7e−s:

Asymptotic for Frobenius case. Let the sample size n& N̂(n,d; s). Then with P -probability
at least 1− 7e−s

Ω̂F(n; s). d2
√
CẐ
n

+ γ(Ξ)

√
CF̂
n

log
nd

CF̂
+ γ(Ξ)

√
CT̂
n

(
d2 + log

n

CT̂

)
(D.13)

.

√
s + lnn

n
.

Asymptotic for Bures–Wasserstein case. Let n& κ(Q∗)N̂(n,d; s). Then with P -probability
at least 1− 7e−s it holds

Ω̂B(n; s). d2
√
CẐ
n

+ γκ(Ξ)

√
CF̂
n

log
nd

CF̂
+ γκ(Ξ)

√
CT̂
n

(
d2 + log

n

CT̂

)
(D.14)

.

√
s + lnn

n
.

PROOF. As before, we split proof into several parts.

◦ Term (3.15). It comes from Lemma D.3 and Lemma D.9: δη̂(x; s) = δη̂(x) = e−x1 +e−x2 .
◦ Term (3.16) First we note that the term εQ̂(x; s) introduced by (B.2) is written as

εQ̂(x; s)
by L.D.3
= C

‖Q∗‖νuE1/2
(
S1, ν

2
S ; s
)

λmin(ξ)λ
1/2
min(Q∗)

·
d+
√
x1√

n
≤ C

κ(F )

√
CT̂
n

(d2 +x1).

To get the result we combine this fact with the results of Lemma D.3 and D.9. The equality
holds with αT̂ (s) + αF̂ (s) = 4e−s:

εη̂(x; s) = C

√
CT̂
n

(d2 +x1) + C

√
CF̂
n

(lnd+x2)M(ϑF̂ (s); x2),
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Asymptotic for Frobenius case. We choose

x∗1 =
1

2
ln

(
n

CT̂

)
, x∗2 =

1

2
ln

(
n

CF̂

)
, x∗ = (x∗1,x

∗
2).

Condition n& N̂(n,d; s) ensures x∗ ∈R2
+.

◦ Term δη̂(x
∗) turns into

δη̂(x
∗) = e−x

∗
1 + e−x

∗
2 =

√
CF̂
n +

√
CT̂
n .

◦ Now we have to show that εη̂ . 1. Condition n& N̂(n,d, s) ensures

· n&CF̂ , this yields n
CF̂

& log
(
n
CF̂

)
,

· n&CT̂ , this yields n
CT̂

& log
(
n
CT̂

)
,

· E1/2
(
S1, ν

2
S ; s1

)
. (E trS1 + νS)

1/2 . 1,
· M(ϑF̂ (s); x

∗
2) = 1.

Now use the notations accepted in (D.12) and get

εη̂(x
∗; s). f1

(
CF̂
)
+ f2

(
CT̂
)
. 1.

Thus (D.13) follows from

Ω̂F(n; s).∆Ẑ(s) +

√
CF̂
n

+

√
CT̂
n

+ γ(Ξ)
(
f1
(
CF̂
)
+ f2

(
CT̂
))

.∆Ẑ(s) + γ(Ξ)
(
f1
(
CF̂
)
+ f2

(
CT̂
))
.

Asymptotic result for Bures–Wasserstein case. We set

x∗1 =
1

2
ln

(
n

κ(Q∗)CT̂

)
, x∗2 =

1

2
ln

(
n

κ(Q∗)CF̂

)
, x∗ = (x∗1,x

∗
2).

Condition n& κ(Q∗)N̂(n,d; s) ensures x∗ ∈R2
+.

◦ Term δη̂(x
∗) turns into

δη̂(x
∗) = e−x

∗
1 + e−x

∗
2 =

√
κ(Q∗)CF̂

n +

√
κ(Q∗)CT̂

n .

◦ Now we have to show that
√
κ(Q∗)εη̂(x

∗; s) . 1. Condition n & κ(Q∗)N̂(n,d; s) en-
sures
· n& κ(Q∗)CF̂ , this yields n

κ(Q∗)CF̂
& log

(
n

κ(Q∗)CF̂

)
,

· n& κ(Q∗)CT̂ , this yields n
κ(Q∗)CT̂

& log
(

n
κ(Q∗)CT̂

)
,

· E1/2
(
S1, ν

2
S ; s
)
. (E trS + νS)

1/2 . 1,
· M(ϑF̂ (s); x

∗
2) = 1.

Taking into account the above facts and using notations accepted in (D.12), we get√
κ(Q∗)εη̂(x

∗; s). f1(κ(Q∗)CF̂ ) + f2(κ(Q∗)CT̂ ). 1.

Combining the above facts we get (D.14)

Ω̂B(n; s).∆Ẑ(s) +

√
κ(Q∗)CF̂

n +

√
κ(Q∗)CT̂

n + γ(Ξ)
(
f1(κ(Q∗)CF̂ ) + f2(κ(Q∗)CT̂ )

)
.∆Ẑ(s) + γ(Ξ)

√
κ(Q∗)

(
f1(CF̂ ) + f2(CT̂ )

)
.
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Now we are ready to write down the main results. In what follows we use notations ac-
cepted in Lemma D.10 and D.11. Further we assume y = s ∈R3

+, s.t. s1 = s2 = s3
def
= s.

THEOREM D.12. Let s ∈R+ be s.t.

εη(s)≤ 1, εΞ(s)≤ Cmin

{
1

2
λmin(Σ), λ2min(F )

Λ2
2 (Ξ)

‖Ξ‖

}
.

Then the following bounds hold with P -probability at least 1− 7e−s.

Asymptotic for Frobenius case. Let

n&max
{
ϑ2Σ ln2(ϑΣ)(s + lnd), N(n,d), N̂(n,d; s)

}
,

then

ΓF(n).

√
s + lnn

n
.

Asymptotic for Bures–Wasserstein case. Let

n&max
{
ϑ2Σ ln2(ϑΣ)(s + lnd), κ(Q∗)N(n,d), κ(Q∗)N̂(n,d; s)

}
,

then

ΓB(n).

√
s + lnn

n
.

PROOF. First we obtain an asymptotic bound on term εΞ(s) defined in (4.2). Let the sam-
ple size be n≥ ϑ2Σ ln2(ϑΣ)(s + lnd), then

εΣ(s).

√
s + lnd

n
.

√
s + lnn

n
.

If at the same time n&max
{
N(n,d), N̂(n,d; s),

}
, we recall (D.10), (D.13) and combine

it with Theorem 4.1. This ensures

ΓF(n; s).

√
s + lnn

n
.

In a similar way, if n& κ(Q∗)max
{
N(n,d), N̂(n,d; s),

}
, we use (D.11), (D.14). Together

with Theorem (4.2) it yields

ΓB(n; s).

√
s + lnn

n
.
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