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Abstract 
 
Multi-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that 
enables estimation of four physical parameters (longitudinal and effective transverse 
relaxation rates �� and ��

�, proton density ��, and magnetization transfer saturation �����) 
that are sensitive to microstructural tissue properties such as iron and myelin content. Their 
capability to reveal microstructural brain differences, however, is tightly bound to controlling 
random noise and artefacts (e.g. caused by head motion) in the signal. Here, we introduced a 
method to estimate the local error of ��, ��, and ����� maps that captures both noise and 
artefacts on a routine basis without requiring additional data. To investigate the method’s 
sensitivity to random noise, we calculated the model-based signal-to-noise ratio (mSNR) and 
showed in measurements and simulations that it correlated linearly with an experimental raw-
image-based SNR map. We found that the mSNR varied with MPM protocols, magnetic field 
strength (3T vs. 7T) and MPM parameters: it halved from �� to �� and decreased from �� to ����� by a factor of 3-4. Exploring the artefact-sensitivity of the error maps, we generated 
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robust MPM parameters using two successive acquisitions of each contrast and the 
acquisition-specific errors to down-weight erroneous regions. The resulting robust MPM 
parameters showed reduced variability at the group level as compared to their single-repeat or 
averaged counterparts. The error and mSNR maps may better inform power-calculations by 
accounting for local data quality variations across measurements. Code to compute the mSNR 
maps and robustly combined MPM maps is available in the open-source hMRI toolbox. 
 
 
Keywords: multi-parameter mapping, quantitative MRI, error propagation, signal-to-noise 
ratio, robust estimate 
 
List of Symbols and Acronyms.   
Symbols Description 
General 
hMRI In vivo histology using MRI. 
MPM Multi-parameter mapping. 
SPGR SPoiled Gradient Recalled echoes. 
qMRI Quantitative MRI. 
VBM Voxel-based morphometry. 
WM White matter. 
GM Grey matter. 
MPM derivatives 
SNR  Signal-to-noise ratio. 
mSNR Model-based signal-to-noise ratio. ������

	
�  Raw image-based SNR, see Eq. (1). 
PD Proton density �� (��) Longitudinal relaxation rate (time). ��

�  Effective transverse relation rate. �����  Magnetisation transfer saturation rate. 	��  Error of ��. 	�1  Error of ��. 	��  Error of �����. ��
�� (����, �����

��) Robustly combined ��  (PD and MTsat) values from two-repeat 
acquisition, see Eq. (7). ��

� (���, �����
�) Arithmetic-mean combined ��  (PD and MTsat) values from two-

repeat acquisition. 
SEM Standard-error-of-the-mean.  
rSEM Relative SEM. 
Measurement and simulations �	
�

�  (����
� , ��;��

� ) PD-weighted SPGR signal fitted at zero echo time. In brackets: the 
same for the T1- and MT-weighted SPGR signal.  ��

�  Transmit field. �	

��� (���

���) Nominal flip angle for PD (T1)-weighted signal-   Standard deviation of noise. ��0, ��  Zero-mean, additive Gaussian noise with variance �. 
TE Echo time. 
TR Repetition time. 
TA Total acquisition time. 
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Introduction  
 
Quantitative magnetic resonance imaging (qMRI) is more reproducible than conventional 
MRI (e.g. T1-weighted MRI typically used for morphometric analysis (Paus et al., 1999)) 
(Weiskopf et al., 2013; Cercignani and Bouyagoub, 2018). Quantification is typically 
achieved by acquiring multiple MRI contrasts to disentangle the mixture of different physical 
MR parameters present in conventional MRI, and correcting for instrumental variation 
through the acquisition of additional calibration measurements (Weiskopf et al., 2021). Multi-
parameter mapping (MPM) provides a comprehensive approach to quantify multiple markers 
(such as longitudinal relaxation rate ��, proton density ��, effective transverse relaxation rate ��

�, and magnetization transfer saturation �����) in a time-efficient MRI protocol composed 
of three multi-echo SPoiled Gradient Recalled echoes (SPGR) with PD-, T1-, and MT-
weighting and additional calibration measurements (Helms et al., 2008a; Weiskopf et al., 
2013) (Fig. 1).  
 

 
Figure 1: From raw data to parameter maps. Bottom row: the multi-parameter mapping (MPM) raw data 
as well as the receive (���) and transmit (���) field maps acquired via dedicated calibration measurements. 
Middle row: the spoiled gradient-recall echo (SPGR) images with different contrasts at echo time (TE) zero 
(������� � 0� 	  ����� , ������� � 0� 	 ����� , �	����� � 0� 	 �	��� , middle row) as well as the three 
contrast-specific uncertainties (����, ����, �	��, red box, bottom right), each of which summarizes the root-
mean-square difference between modelled and measured signal per contrast (Background, section 2). Top 
row: proton density (�), longitudinal relaxation rate (��), magnetization transfer saturation (��
��), and 
apparent transverse relaxation rate (��), which is not considered here and thus greyed out. In the MPM 
framework (Tabelow et al., 2019), the three quantitative parameters �, ��, and ��
�� are calculated from 
 ����� , ����� , �	���  after correction for ��� and ��� fields.  
 
MPM parameters are sensitive to key biological microstructure features, e.g., myelin density 
and iron content (Kirilina et al., 2020), as well as volumetric changes. For example, the MPM 
parameters ��, ��, and ����� have demonstrated utility in revealing aging processes 
(Callaghan et al., 2014), assessing clinical pathology (Freund et al., 2013; David et al., 2019) 
and illuminating behaviourally-relevant brain microstructure (Whitaker et al., 2016; Ziegler et 
al., 2019), and are known to be sensitive to macromolecular content and thus correlate with 
myelin density (West et al., 2018; Mohammadi and Callaghan, 2021). This sensitivity to 
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microstructural tissue properties can be expected to vary between quantitative metrics 
depending on the underlying MR contrast mechanisms (Edwards et al., 2018; Weiskopf et al., 
2021).   
 
The comprehensive acquisition providing the four aforementioned quantitative parameters 
makes the MPM protocol particularly attractive for large-scale neuroimaging studies 
(Whitaker et al., 2016; Taubert et al., 2020; Clark et al., 2021) and clinical trials (Leutritz et 
al., 2020). When planning these kind of studies, a key question is whether we can objectively 
determine which metric will have the greater statistical sensitivity to the effect of interest 
under the influence of noise and artefacts (e.g. due to subject movement). In particular, 
clinical studies or those recruiting special populations depend on reliable power estimates to 
assess feasibility and efficiency. Power estimates and heuristics from traditional structural 
MRI techniques such as voxel-based morphometry (VBM) or other anatomical shape analyses 
cannot be translated to the analysis of quantitative MPMs, since they target largely different 
mechanisms (cluster of neighbouring voxels via the Jacobi-determinant modulation in VBM 
vs. single-voxel quantification in MPMs) and result in different characteristics for metrics 
such as scan-rescan reproducibility (Schnack et al., 2010). The sensitivity of the MPM 
parameters under the influence of random noise is often determined by the signal-to-noise 
ratio (SNR) of the underlying weighted volumes. Since we combine multiple weighted 
volumes with different SNRs to compute MPM parameters, the noise propagation into the 
MPM parameter estimates plays an important role for power estimation in MPM-based 
studies. 
 
While sensitivity to microstructural brain differences promises the detection of more subtle 
anatomical effects than accessible by VBM, quantitative MRI maps are expected to be more 
susceptible to image artefacts than the constituent images. Moderate artefacts in the 
constituent images of quantitative MRI parameters can be amplified after nonlinear 
combination, e.g. when calculating the quantitative ��, �� and ����� maps from the MPM 
raw data (Fig. 1). As a consequence, the variability of quantitative MRI parameters across a 
cohort is usually a composition of the true anatomical variability and variability due to biases 
caused by instrumental, physiological, and movement related outliers and noise (Weiskopf et 
al., 2014; Castella et al., 2018; Lutti et al., 2021). The outliers can significantly reduce the 
effective SNR of the data at the group level and thereby the sensitivity to microstructural 
changes. Thus, the MPM approach would greatly benefit from the quantification of 
parameter-specific errors that can routinely identify outliers on a voxel-wise basis.  
 

In this study, we introduce a new method to estimate error maps for each of the three 
quantitative MPM parameters ��, ��, and �T��� on a routine basis without the acquisition of 
any additional data (the error in R2* has been investigated elsewhere (Weiskopf et al., 2014)). 
The error maps are sensitive to two different types of variation: random noise, on the one side, 
and artefactual variation (e.g. due to imaging or subject motion), on the other. As a measure 
of the influence of random noise, we introduce the so-called model-based signal-to-noise ratio 
(mSNR) that is defined in analogy to the standard SNR, i.e. as the ratio between the MPM 
parameter and its error. First, we illustrate how the sensitivity to the two types of variation 
(random noise and artefacts) manifest themselves in the error and the mSNR maps. In two 
follow-up analyses, we investigate each of the two types of variation in more detail. The 
random-noise sensitivity is evaluated by quantifying the relation between the mSNR and the 
standard raw-image based SNR using both simulations and measurements. The artefact 
sensitivity is used to robustly combine MPM estimates from two successively acquired sets of 
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MPM raw data (i.e. multi-echo SPGR images with PD-, T1-, and MT-weighting), where the 
acquisition-specific error maps are used to down-weight erroneous MPM parameters on a 
voxel-wise basis. We test the hypothesis that the robustly combined MPM estimates have 
lower image-artefact-related variability at the group level than the MPM estimates obtained 
from the arithmetic mean across acquisitions, or those obtained from a single MPM 
acquisition.  

Background  
This section contains terminology and background information about the measurement of the 
signal-to-noise ratio (SNR) from raw data, the MPM estimation framework, and how the error 
(and by extension the model-based SNR) can be estimated within this framework. The raw-
data SNR (Eq. (1)) is used as a reference to validate the utility of the mSNR and its capacity 
to estimate the per-acquisition SNR in the MPM parameters. 
 

Conventional SNR estimates of raw images  
As a reference method to estimate SNR, we use the difference-image based SNR estimated 
from the raw multi-echo SPGR images with PD-weighting of a two-repeat measurement 
(Price et al., 1990; Reeder et al., 2005) or in short raw-image based SNR. For a twice repeated 
MPM measurement, the raw-image based SNR is estimated for the SPGR image with PD-
weighting (������

	
� ) at the shortest echo time. The estimate of the mean signal is obtained 

from a small ROI by taking the mean of the signals from repeat 1 and 2, i.e. (
�
�

��	
�
��� �

�PDw2), and this value is divided by the standard deviation of the difference of the signals 
from repeat 1 and 2 across the ROI, i.e. (

�

√�
std��	
�

��� � �	
�
��� ��, giving:  

 

(1) ������
	
� � �

√�

�����
��� �����

��� �

��������
��� �����

��� �
 .  

 
This method has been demonstrated to be a robust estimate of the SNR across different 
acceleration factors (Reeder et al., 2005; Dietrich et al., 2007). Note that an equivalent metric 
to that in Eq. (1) can also be calculated for the other two contrasts (MTw and T1w) and other 
echo times. Without loss of generality we focused on ������

	
� in this study.  
 
Error in MPM parameters 
The noise level in the multi-echo SPGR images with PD-, T1-, and MT-weighting is 
estimated from the contrast-specific uncertainties (�	
� , ����, ���� in Fig. 1) derived from 
the root-mean-square (rms) difference of the predicted and measured signal decay across echo 
times. The errors in the MPM parameters differ from the associated contrast-specific 
uncertainties of the PD-, T1-, and MT-weighted SPGR signal as illustrated in Fig. 2. This 
section summarizes how these metrics are related.  
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Figure 2: Error maps, their dependencies on MPM data and sensitivity to artefacts.  
Left column: the offset (�	��� ,  ����� , and ����� ) and contrast-specific uncertainties (�	��, ����, and ����) of 
the SPGR signal as described in Figure 1. Middle column: the error maps and their dependencies (coloured 
lines) on offset and contrast-specific uncertainties. Right column: the MPM maps.  
The ��-error map (top-middle) depends on all offsets and contrast-specific uncertainties. In contrast, the ��- 
(bottom row) and �- (middle row) error maps (��� and ��), depend only on �����  and �����  as well as on 
the corresponding contrast-specific uncertainties ���� and ����. The red circles highlight regions with higher 
error or higher contrast-specific uncertainties and the corresponding region in the MPM parameters. Higher 
values in contrast-specific uncertainties are often smeared out (e.g. in ����) and localized increases are not 
necessarily accompanied by a biased MPM parameter (e.g. red circle in bottom row), whereas higher values 
in the error maps circle top row are co-localized with biased MPM parameters (e.g. circle in top row).  
 
Error propagation: To estimate the error of each quantitative map, we calculated the first 
order propagation of error in ��, ��, and ����� under the assumption of uncorrelated errors 
between the SPGR and calibration measurements. For example, the error of �� was derived to 
be: 
 

(2) 	�������, �	
� , ��
�� � �� ���

�����
	������ � � ���

�����
	�	
��� � ����

� �
� 	��

���
,   

 

with ��  ����
�  "��/$��������

�  "��/$���
�%����

� /"�������
� /"��&

. Local variations in the transmit field ��
� are 

incorporated into the flip angles via �	
 � ��
��	


��� (��� � ��
����

���) with �	

��� (���

���) 
being the nominal flip angles (Helms et al., 2008a; Lee et al., 2017; Tabelow et al., 2019), �	
�

�  (����
� ) being the signal approximated at zero echo time �	
���! � 0� (������! � 0�) 

using the linearized SPGR signal fit (see next paragraph), and 	��� and 	�	
 being the 
contrast-specific uncertainties. 
 
Linearized SPGR signal: To estimate the signal variation for each contrast, we first solved 
the joint model of the SPGR signals with PD-, T1-, and MT-weighting using the linearized 
exponential signal decay as introduced in the ESTATICS model (Weiskopf et al., 2014): 
 
(3) "# � $ %# � e'#  
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with "# � ("#	
�"#���"#���

) and "#' � ln ( �'��!��+�'��!(��), $ being an � , 4 design matrix with rows 

$),+ � .δ	
�,+ , δ���,+ , δ���,+ ,  � �!)0, �' is the number of echoes for each contrast 

1 2 3PDw, T1w, MTw8, δ,,+ 91 : � ;0 : < ;= is the Kronecker delta,  %'''# �
>
?@

ln ��	
�
� �ln �����
� �ln �����
� ���
� A

BC are 

regression coefficients, and the model-fit residual vector e'# is composed of elements e) that 
are equal to the difference between predicted and measured logarithmic signal for the k-th 
MPM volume D 2 31, … , �	
� � ���� � ����8. While it has been previously shown that 
the elements of e'# can be used to down-weight outliers for robust estimation of ��

� (Weiskopf 
et al., 2014), here, we use the rms difference of the predicted and measured signal as an 
estimate for the variation in the signal per contrast: 

(4a) �	
� F � �
(���

∑ H�	
�H�!,I � expH$,,: ·  %#II�(���
,.� ,  

(4b) ���� F � �

(���
∑ H����H�!,I � expH$(����,,:  · %#II�(���

,.� ,  

(4c) ���� F � �

(���
∑ H����H�!,I � expH$(����(����,,:  · %#II�(���

,.� . 

In the following, the measures in Eq. (4) are denoted as contrast-specific uncertainties (Fig. 
1). 
 
Error maps: Using the contrast-specific uncertainties (Eq. (4)) to characterise the noise 
within a given MPM acquisition, the error maps can now be estimated using the concept of 
error propagation. For the example of the error of R1 (Eq. (2)), the following is obtained:   
 

(5) 	��  �� ���
�����

M����� � � ���
�����

M	
���
,  

 
where the error in the transmit field is assumed to be negligible 	��

�  0. The same approach 
can be used to generate error maps for the �� and ����� estimates. Details of the derivation 
and the formulae of the errors for each parameter (	�� , 	��, 	��) can be found in 
Supplementary Materials 1-3 and their implementation in the hMRI toolbox can be found 
here: https://github.com/siawoosh/hMRI-toolbox. 
 
Sensitivity of error maps to imaging artefacts: The relation between the error maps, the 
intercept of the linearized SPGR-signals which enters the error maps via the derivative of the 

MPM contrasts (e.g. for 	�� see the formulae for 
���

�����
 and 

���
�����

 in the Supplementary 

Material, Eqs. [S3] and [S4]) and the contrast-specific uncertainties is illustrated in Fig. 2. We 
hypothesize that the error maps are sensitive to the factors that contribute to image 
degradation captured by the contrast-specific uncertainties (Eq. (4)), such as head motion 
during the acquisition of each image volume (Weiskopf et al., 2014; Castella et al., 2018), 
physiological artefacts, or sequence-specific artefacts (e.g. noise-enhancement due to parallel-
imaging). Our hypothesis is motivated by the observation that artefacts in the contrast-specific 
uncertainty maps are often smeared out across the whole brain (e.g. in M���, Fig. 2) and 
localized increases are not necessarily accompanied by a biased MPM parameter. High values 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475846doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475846
http://creativecommons.org/licenses/by/4.0/


8 
 

in the error maps, however, are localized and coincide with noticeable variation in the 
associated MPM parameter maps (red circles in top row, Fig. 2). 
 

Model-based SNR (mSNR)  
Following the definition of SNR, we introduce here the model-based SNR maps (in short 
mSNR maps) for each MPM parameter map. This is defined as the ratio between a 
quantitative MPM map and its corresponding error map. For example, the mSNR map for the �� parameter was calculated as follows:  
 

(6) 1����� � ��
���

 . 

 
To avoid divergence for very small error values, a threshold was used to set the mSNR map to 
zero when dR1 <  10�/ (the same was done for  1����� and 1���	
, with dMT < 10-4 
and dPD < 10�� respectively). These thresholds were chosen heuristically. Note that the 
MPM-specific mSNRs are estimated per MPM acquisition. 
 
Robust combination of MPM parameters 
When multiple MPM datasets are available, the resulting parameters can be combined by a 
simple arithmetic mean. Here we propose an alternative robust combination, of potentially 
erroneous MPM parameters, by exploiting their empirical error maps. The idea is formulated 
for the case of two distinct imaging repeats but can be generalized to multiple repeats. 
 
To generate robust MPM parameters (denoted by superscript “RO”) from a two-repeat 
protocol a function of the error maps is used to weight each repeat according to their voxel-
wise error. For the example of ��, the robust-combination was defined as follows on a voxel-
by-voxel basis: 
 

(7) ��
�� � N�� ��

��� � H1 � N��I ��
��� , 

 

where N�� � �

'0��
O P���

���

���
���Q; O�R� � �

123%�4���/)�&��
 is the Fermi function; ��

��,��; 	��
��,�� are 

the longitudinal relaxation rates and their respective errors from repeats (1) and (2), all 
defined on a per voxel basis; and 1N�� �  max56�O�T#�� is defined as the maximum weight 
across voxels T#.  The parameter D� tunes the sensitivity of the weights with respect to the ratio 
of errors: small D� leads to high sensitivity. The parameter �D� � 0.1� was heuristically 
optimized for one subject that showed strong motion artefacts in the scan-rescan 
measurements (see Figs. 5-7) and applied to the rest of the subjects. This parameter can be 
adjusted for different protocols via the local default file of the hMRI toolbox.  
 

Materials and Methods  
Subjects and MRI 
Subjects: 20 healthy volunteers participated in this study. 18 were measured with protocol 1, 
one with protocol 2 at 3T, and one with protocol 3 at 7T. We excluded two participants 
measured with protocol 1 from the analysis: one due to excessive, unsalvageable levels of 
movement and one due to image reconstruction problems. We included the remaining 16 
participants in the reported group analysis (age: 20-54 years; 1VWX���� � 32.63�8.55� 
years; 7 female, 9 male). Exclusion criteria were any psychiatric disorders, assessed via the 
Mini-International Neuropsychiatric Interview (Ackenheil et al., 1999), neurological diseases, 
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head trauma or metallic implants. Participants provided written informed consent and were 
compensated for their participation. The local ethics committees at University Medical Center 
Hamburg-Eppendorf and Medical Faculty of the University of Leipzig approved the study 
(PV5141; LPEK_006_Kühn; Reg.-No. 273-14-25082014).  
 
MRI protocol: Scans were performed on three MRI systems (Siemens Healthineers, 
Erlangen, Germany): 3T PRISMA (protocol 1), 3T PRISMA-fit (protocol 2), and Magnetom 
7T (protocol 3). For protocols 1 and 2, the body coil was used for transmission (Tx) and the 
64-channel receiver head-coil for reception (Rx). For protocol 3, an integrated 1-channel 
Tx/32-channel Rx head coil (Nova Medical, Wilmington, MA, USA) was used. Whole brain 
MR images were acquired using the MPM (Weiskopf et al., 2013) protocol, including three 
differently weighted (MT-, PD- and ��-weightings) multi-echo SPGR contrasts (protocol 3 
only acquired two weightings, PD- and ��-weighting). Rapid calibration data were acquired at 
the outset of each repeat to correct for inhomogeneities in the RF transmit field (Lutti et al., 
2010, 2012) including a B0 field map for correction of EPI distortions in the transmit field 
map. For protocols 1 and 2, the automatic transmit adjust procedure was used, whereas for  
protocol 3, the transmit voltage was calibrated using an initial low-resolution transmit field 
map to be optimal over the occipital lobe. 
The sequence parameters for protocols 1-3 are summarized in Table 1.  
The acquisition of all multi-echo SPGR contrasts was repeated for each individual.  This was 
done within a single imaging session at 3T (i.e. protocols 1 and 2 contained two “runs” of 
each contrast) and in two separate imaging sessions at 7T (i.e. protocol 3 contained only one 
run).  
The total scan time of both runs was about 28 min (=2x11+6) for protocol 1, about 33 min  
(=2x13.5+6) for protocol 2, and about 84min (=2x(36+6)) min for protocol 3.  
For protocol 3, participant motion was monitored and corrected prospectively by an optical 
tracking system (Kineticor, Honolulu, HI, USA) (Callaghan et al., 2015). Each volunteer was 
scanned while wearing a mouth guard with a passive Moiré pattern marker used for tracking 
(manufactured by the Department of Cardiology, Endodontology and Periodontology, 
University Medical Center Leipzig; comparable to (Papoutsi et al., 2020)). The dataset 
acquired with protocol 3 was taken from the study by (McColgan et al., 2021). 
In all protocols, parallel imaging was performed using generalised autocalibrating partial 
parallel acquisition (GRAPPA) (Griswold et al., 2002) with acceleration factors of 3 or 4.  
 
Acquisition parameters Protocol 1 Protocol 2 Protocol 3 
Field strength 3T 3T 7T 
PDw & T1w min. TE : ΔTE : max. TE | # of 
echoes 

2.3:2.3:18.4  [ms] 
| 8 

2.3:2.3:18.4  [ms] 
| 8 

2.8: 2.8:16 [ms] | 6 

MTw min. TE : ΔTE : 
max. TE | # of echoes 

2.3: 2.3:13.8 [ms] 
| 6 

2.3: 2.3:13.8 [ms] 
| 6 

None 

Repetition time (TR) 25.0 [ms] 25.0 [ms] 25.0 [ms] 
Acquisition resolution  1 x 1 x 1 [mm3] 1 x 1 x 1 [mm3] 0.5 x 0.5 x 0.5 

[mm3] 
Acceleration factor in 
phase and partition 
directions 

3x1 2x2  2x2 

Partial Fourier in phase | 
partition directions 

6/8 | 6/8 OFF | OFF OFF | OFF 

Flip angle PDw, MTw 6° 6° 5° 
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Flip angle T1w 21° 21° 24° 
MT pulse angle  220o 220° None 
MT pulse length  4 [ms] 4 [ms] None 
MT pulse off res. freq.  2 [kHz] 2 [kHz] None 
MT pulse shape Gaussian Gaussian None 
PD, T1, (MTsat) TA 3:46 [min] 4:42 [min] 18 [min] 
Table 1: MRI parameters. 
Different sequence parameters for protocols 1-3. Note that protocol 3 does not include an MTsat map. 
Abbreviations: FoV, field of view, MT(w), magnetization transfer (weighted), PD(w), proton density 
(weighted), T1w, T1 weighted, T1, longitudinal relaxation time, TE, echo time, TA, acquisition time per set 
of multi-echo SPGR images, SPGR, spoiled gradient-recall echo.  
 
 
Map creation and spatial processing 
Map creation and spatial processing was performed using modules in SPM12 version v7771 
(Friston et al., 2006) and a branch of the hMRI toolbox (Tabelow et al., 2019) available here: 
https://github.com/siawoosh/hMRI-toolbox. 
 
Rigid-body registration: To ensure that the data from both repeats were in the same space, the 
second dataset was registered to the first using a rigid-body transformation (spm_coreg). To 
this end, first the MPM maps were aligned to the MNI-space template (“avg152T1”) with the 
auto-align module in the hMRI toolbox (Tabelow et al., 2019) using the ����� map as “source 
image” (i.e. the image that was used for estimating the transformation parameters). Then, the ����� maps were thresholded (�����>0 and �����<5 p.u.) to remove unreasonable or 
extreme values and segmented (spm_segment) into grey and white matter tissue probability 
maps (TPMs). These grey and white matter TPMs were combined and used as source and 
target images for inter-repeat registration, with the TPMs from the second repeat being the 
source and the TPMs of the first repeat being the target image. The estimated transformation 
parameters were applied to all maps from the second repeat. The reason for using the grey and 
white matter TPMs for registration instead of the original maps was to reduce potential 
confounding effects of motion artefacts in the individual MPM images on the accuracy of the 
registration. 
 
Non-linear spatial registration and spatial smoothing in common group space: First the 
MPM maps of each subject were transformed into MNI space using the geodesic shooting 
nonlinear registration tools (spm_shoot, (Ashburner and Friston, 2011)). To estimate the 
nonlinear transformation that maps each individual brain into common space, high-quality 
grey and white matter tissue probability maps were generated per subject by segmenting the 
arithmetic mean of the ����� maps across both repeats. Then, the hMRI toolbox was used for 
tissue-specific smoothing (Tabelow et al., 2019). 
 
 

Analysis  
Three analyses were performed, which we describe in detail below. In the first analysis, we 
assessed two different features of the error and mSNR maps: their sensitivity to the image 
SNR and to image artefacts. Second, the relation between mSNR and the image noise of 
SPGR raw images was quantitatively investigated. Third, the artefact-associated variability of 
MPM parameters at the group level was investigated for different combinations of a two 
repeat MPM protocol.  
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Analysis I: Illustration of error and mSNR maps: On the single-subject level, we 
investigated how the mSNR varied for different MPM protocols and how imaging artefacts in 
the MPM parameter maps appeared in the error and the mSNR maps. For the same subject, 
we investigated in two repeats with varying artefact levels the correspondence between error 
and respective MPM parameter maps in erroneous regions and how the MPM parameter 
values per repeat could be weighted towards the less erroneous repeat in the robust 
combination.  
 
Analysis II: Quantifying relation between raw-image-based and model based SNR: The 
propagation of SNR into mSNR was characterized by simulations and in vivo measurements. 
Hereby, we used the raw-image-based SNR of the PD-weighted image (������

	
�, see Eq. (1)) 
as a proxy for the image SNR, both in the simulations and measurements. To assess the 
dependence between ���	
�  and 1���' for varying SNRs, a linear model was fit to the 
data:  
 
(8) 1���,

' � ,̀
' ���,

	
� � �,
',  

 
with ,̀

' and �,
' being the fitted parameters, 1 2 3PD, R1, MT8 and ; being the index that 

specifies whether simulated or measured data was used (; 2 3sim, meas8).  
 
 
Simulated cde789

:;<  and fcde789
= : To simulate the noisy SPGR signal, we added complex-

valued Gaussian noise to the rational approximation of the Ernst equation (Ernst and 
Anderson, 1966; Helms et al., 2008a) with heuristic approximation of the MT-pulse effect 
(Helms et al., 2008b). Then, the absolute value of the noisy signal was calculated as follows:  
 

(9) ����, �!, ��, ��
� , �� , �, �����, � � M� g� $� ��

��

�
�>$����$� ��

exp���! ��
�� � �

√�
�R � :"�g 

with R, " ~��0, ��. 
 
The multi-echo SPGR signals were simulated using Eq. (9) and the parameters in Table 2. To 
achieve PD- and T1-weighting using the respective flip angles for protocol 1 (see Table 1) 
and ����� � 0. The MT-weighted multi-echo SPGR signal was simulated using the same 
parameters as for the PD-weighted signal only with the difference that the ����� value in 
Table 2 was used. Then, 1���	
, 1�����, and 1����� were calculated from the 
simulated SPGR signals using the proposed approach (see Background and Supplementary 
Material 1-3). Additionally, ����?�

	
� was calculated from the simulated signal using Eq. (1). 
Note that the simulation was performed separately for white matter and grey matter ground 
truth parameters (Table 2) to investigate the influence of tissue type on the relation between ����?�

	
� and 1���' . 
 
 �� ij��k ��

�ij��k �����ip. u. k 
White matter 0.94 22 1.59 
Grey matter 0.70 15 1.04 
Table 2: Simulation parameters. 
These parameters were used to simulate the signal in Eq. (9) for grey and white matter. Additionally, the net 
magnetization was set to ��

 � � 100 and other parameters (repetition time: ��, echo time: ��) were as in 
protocol 1. Finally, the zero-mean, additive Gaussian noise ��0, �� with varying standard deviation was 
added (� � �0.002, … , 0.1��, each time with 5000 noise realisations. This resulted in ���!����� values between 
62 and 2. 
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Measured cde@A<

:;<  and fcde=:  To partition the MRI brain volumes into regions of 
interest (ROIs) with varying SNR, we used the Oxford-Harvard atlas for grey and white 
matter (Frazier et al., 2005; Desikan et al., 2006; Makris et al., 2006; Goldstein et al., 2007). 
Hereby, it was assumed that regions closer to the skull have higher SNR because they are 
closer to the head coil than regions within the centre of the brain. Note that this analysis 
assumes that the proposed SNR measures are independent of the tissue type (i.e. whether it is 
grey or white matter) but solely depend on their distance to the head coil.  
 
The SNR measures were estimated for each subject in individual space, to prevent 
interpolation artefacts associated with the spatially non-linear registration into common space 
affecting the estimation of ������

	
�. To this end, ROIs were projected into individual space 
using the inverse of the spatial transformations estimated in the “spatial processing section”. 
Then, the individual tissue probability maps for white and grey matter were multiplied with 
each individual ROI and thresholded at 90%. Only ROIs containing more than 100 voxels 
were used for the analysis. Then, SNR���

	
�  and mSNR�  were estimated within each ROI for 
each subject. This experiment was performed for the data acquired with protocol 1. 
 
Additionally, the subject-averaged ������

	
� per ROI was projected into a template image in 
group space for visualization purposes only. The spatial dependence of mSNR maps was 
qualitatively compared for two different protocols at 3T (protocol 1 and 2) and one at 7T 
(protocol 3). Then, the average mSNR value across the brain was quantified per MPM 
parameter and protocol (averaged across subjects for protocol 1). 
 
Analysis III: Artefactual variation at the group level: The variability of MPM parameters 
across a group of healthy subjects is expected to be a combination of the true anatomical 
variability in the cohort and artefactual variability caused by instrumental, physiological, and 
subject-movement related noise. While the latter can be reduced by averaging, the former 
cannot. To assess the variability across the group, we calculated the standard-error-of-the-
mean (SEM) for four sets of MPM parameters in MNI space after tissue-specific hMRI 
smoothing (see section “spatial processing”). The four sets of MPM parameters were 
generated either from repeats (1� and (2) separately, or from the arithmetic mean (AM� across 
repeats or their robust combination (RO in !q. �7�).  
To assess the effect of instrumental, physiological, and subject-movement on the variability, 
the SEM of the arithmetic-mean combined MPM parameters (�!��

' ) were used as reference 
(with 1 2 3MT, PD, �18) and compared to the SEM of the other sets of MPM parameters via 

their relative difference: T�!�+
' � P �B>"

�

�B>#�
� � 1Q , 100 with : 2 31,2, RO8. Hereby, a 

negative (positive) T�!�+
' would indicate that the variability in the : dataset is smaller 

(larger) than in the reference AM dataset. Since it is expected that instrumental, physiological, 
and subject-movement artefacts increase the variability of the estimated parameters, negative T�!�+

' values in each dataset were interpreted as a reduction of artefactual variability and 
thus an increase of sensitivity towards group differences whereas positive T�!�+

' values 
were interpreted as a decline of sensitivity. 
 

Results  
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Analysis I: Illustration of error and mSNR maps  
This analysis illustrates how variations due to image SNR and artefacts manifest themselves 
in the mSNR and error maps for different MPM protocols and at different field strengths. The 
different protocols showed a decrease of mSNR towards the centre of the brain. Although 
protocols 1 and 2 were measured with similar parameters (e.g. spatial resolution, TE, TR) and 
instruments (e.g. at 3T and with a 64ch head-coil), the decrease towards the centre of the 
brain was differently shaped within the respective mSNR maps: the mSNR maps measured 
with protocol 1 had an elliptical pattern of lower mSNR centrally, the long axis of which ran 
anterior-posterior whereas the central region of lower mSNR was circular for protocol 2, but 
decreased less rapidly than protocol 1 (dashed lines in Fig. 3a). The decline of mSNR was 
accompanied by an increase in the average contrast-specific uncertainty for protocol 1 (1st 
row, 4th column, Fig. 3a), indicating that the noise or artefact-level is higher in the areas of 
decreased mSNR. Although 1���	
 and 1����� maps measured with protocol 3 showed 
smaller gradients towards the centre of the brain as compared to their counterparts measured 
with protocols 1 and 2, they revealed the same trend (higher mSNR values towards the cortex 
and lower towards the centre of the brain). On average, across the brain, we found that the 
mSNR values decreased from protocol 1 to 3 (Fig. 3b): the mSNR of protocol 1 was about 1.2 
times larger than the mSNR of protocol 2, whereas the ratio between the mSNR values of 
protocols 1 and 3 was about 1.6 for �� and ��. The ratio of 1���	
 to 1����� was 
similar across protocols: 1.79 for protocol 1, 1.80 for protocol 2, and 1.82 for protocol 3.  
 

 
Figure 3: Variation of mSNR maps across the brain for different MPM protocols. (a): mSNR maps for 
three MPM protocols (P1-P3) are depicted (1st row: P1, 2nd row: P2, and 3rd row: P3):  ������ (1st column), 
����$� (2nd column), ����	� (3rd column). Fourth column: the averaged across contrast-specific 

uncertainties is depicted (�!%
 � ��

&
����� � ���� � �	�� �, 4th column). (b) The mSNR parameters averaged 

across the brain for protocols P1 (circle), P2 (cross), and P3 (triangle) for the three MPM parameters (�: 
blue, ��: black, ��
��: green). Note that P1 was calculated across a group of healthy subjects (standard 
deviation across group in black) whereas P2 and P3 were calculated only for a single subject (no standard 
deviation). ����' and �!%
 in arbitrary units.  
The values in the mSNR maps decrease towards the centre of the brain accompanied by an increase in the 
�!%
  values. While the mSNR map measured with protocol 1 showed a strong left-right gradient (middle row, 
left: ellipse with large eccentricity), the mSNR maps measured with protocols 2 (and two out of three mSNR 
maps measured with protocol 3) showed a circular shaped area of decreased values (middle row: middle and 
right). Note that, since no MT measurement was available for protocol 3, �!%
 was the mean of the remaining 
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two residuals. 
 
Fig. 4 shows the relation between each MPM parameter, the associated error and mSNR 
maps. The mSNR maps had the same contrast for all MPM parameters, while the contrast in 
the error maps reflects the MPM parameter contrast (��: high in grey matter and low in white 
matter, ����� and ��: low in grey matter and high in white matter).  
As expected, artefacts in the MPM maps (highlighted by dashed circles) manifested 
differently in the error and mSNR maps: while the error in regions affected by artefacts was 
increased, the mSNR value was decreased because the latter depends reciprocally on the 
error. Three artefactual regions with potentially different artefact-causes were identified. The 
artefact in the top row may be caused by physiological noise due to flow artefacts because it 
was located in the superior sagittal sinus and did not vary between repeats. In the middle row, 
an aliasing artefact was identified which varied between repeats and thus might be enhanced 
by involuntary subject motion. The artefact highlighted in the bottom row was most likely a 
result of involuntary subject motion because it varied between the two repeats. 
 

 
Figure 4: Artefacts in the MPM, error, and mSNR maps. Depicted are the quantitative MPM parameters (left 
column), the error maps (middle column), and corresponding mSNR maps (right column) for a subject, 
measured in two repeats with varying artefacts using protocol 1. The mSNR maps have the same contrast, even 
though the contrast of the associated MPM map varies (top: �, top: ��, bottom: ��
��). The artefacts in the 
parameter maps (highlighted by dashed circles) manifest themselves as increased error-map values and reduced 
mSNR-map values. Three artefacts were identified with potentially different origin: physiological noise that 
remained almost the same between repeats at the superior sagittal sinus (top row), aliasing artefacts that varied 
between repeats (middle row), and voluntary subject motion artefacts that strongly varied between repeats 
(bottom row). Note that intensity ranges for the three mSNR maps differ. 
 
Figures 5-7 illustrate regionally localized artefacts in the MPM parameters that were captured 
by the error maps, became less pronounced in the arithmetic mean and could be partly 
removed in the robust combination (Fig. 5 for ��, Fig. 6 for ��, and Fig. 7 for �����). These 
artefacts were probably related to involuntary subject-motion because they varied between 
repeats.  
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Figure 5: Reduced artefacts in robustly-combined proton density (��) map. Depicted are: two 
successive repeats of the PD map using protocol 1 with superscript (1) and (2) (top row), the associated error 
maps for each repeat (middle row), and their arithmetic mean and robustly combined average with superscript 
AM and RO (bottom row). An area is magnified (red box, left column), where the error maps were sensitive to 
artefacts (hyper intensities) and the robust combined PD contained less artificially increased values than the 
arithmetic mean (circle) and single-repeat PD maps.  
 

 
Figure 6: Reduced artefacts in robustly-combined longitudinal relaxation rate (��) parameter. Depicted 
is the same information as in Figure 5 for the �� parameter instead of the � parameter. 
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Figure 7: Reduced artefacts in robustly-combined magnetization transfer saturation rate ( !()*) 
parameter. Depicted is the same information as in Figure 5 for the ��
�� parameter instead of the � 
parameter. 
 

Analysis II: Quantifying relation between raw-image and model based SNR 
Here, we quantify a linear relation between image SNR and mSNR at the group level and in 
simulations. Fig. 8 depicts the linear relation between ������

	
�  and the 1���� of the three 
MPM parameters (1 2 3PD, R1, MT8) in simulation (Fig. 8a-c) and in measurements (Fig. 8d-
f) with slopes and intercepts reported in Table 3. For the measurement, variation in ������

	
�  
and 1���� was achieved by measuring the respective metrics within 111 regions of interest 
(ROIs) averaged across 16 healthy subjects using protocol 1 (Fig. 9).  
 

 
Figure 8: Relating mSNR to the image SNR of the PD-weighted acquisition. Depicted is mSNR as a 
function of ���!����� (Eq. (1)) using simulations (a-c) and measurements across a group of healthy subjects (d-
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f). (a-c): The simulated mSNR is depicted as a function of ���!��+,- with mean (circle) and standard deviation 
(errorbar) across 5000 noise realisations for the � (blue), �� (black), and ��
�� (green) parameters (Eq. (9)). 
(c-e): For the ROIs depicted in Figure 9 the mSNR parameters (a: ����	� as green crosses, b: ����$� as 
black crosses, c: ������ as blue crosses) are plotted against the corresponding ���!����� value. A heuristic 
linear relation is fitted between the mSNR and ���!����� data (Eq. (8)), both for simulated and measured data. 
The dashed line in magenta is the unity line.  
 

 
Figure 9: mSNR and "#$.)/

012 maps averaged within regions-of-interest (ROIs) across the brain. Depicted 
are the following maps for protocol 1: (a) ���!����� , (b) ������, (c) ����$�, and (d) ����	�. While the 
���!����� was calculated within each ROI using Eq. (1) per subject, the mSNRs were spatially averaged within 
each ROI per subject. Then, each of the four different SNR metrics was additionally averaged across the group 
of healthy subjects on a voxel-by-voxel level. The ROIs were selected using the Oxford-Harvard atlas (Frazier et 
al., 2005; Desikan et al., 2006; Makris et al., 2006; Goldstein et al., 2007). The 111 ROIs out of 117 were used in 
which the number of voxels was larger than 100.  
 
The range of each SNR measure was as follows: 18-54 for ������

	
�, 11-54 for 1���	
, 6-
30 for 1����� , and 4-18 for 1�����. We observed a linear relation between ������

	
� and 
the mSNRs with highly significant p-values for the slopes but non-significant p-values for the 
intercept in the simulated data (significance level: p < 0.05 with the null hypothesis in each 
case being that the parameter is zero). The slope of the mSNR parameter curve was steepest 
for 1���	
, followed by 1�����, and was smallest for 1�����. The simulations 
revealed that the slope of the mSNR parameter curve was systematically smaller for WM than 
for GM (2% for 1�����, 6% for 1���	
, and 14% for 1�����). We found a similar 
trend for the ratio of the slopes between measurements and simulations when taking the fitted 1���	
-parameter as reference:  the slope of 1���	
 was 1.8 to 2 times higher than the 
slope of 1����� , whereas it was 3.2 to 4.5 times higher for 1�����, indicating that MTsat 
requires a much bigger gain in ������

	
� for them to translate into gains in 1����� as 
compared to PD. Moreover, we found that the fitted intercept differed substantially between 
measurements and simulations (Table 3).  
 
 Slope parameter `>C> 

(p-value) 
Offset parameter �>C> 
(p-value) 

Ratio slopes 

(
D��

D�
) 1����1��

	
   1.28 (2.19 x 10-8) -13.45 (2.19 x 10-8) 1 1����1��
��   0.71 (1.88 x 10-41) -7.07 (1.06 x 10-8) 1.80 1����1��
��   0.40 (3.52 x 10-44) -3.43 (1.28 x 10-7) 3.20 1����?�
	
  in GM 1.02 (4.10 x 10-78)  -0.03 (0.84) 1 1����?�
	
  in WM 0.96 (1.60 x 10-77)  -0.07 (0.59) 1 1����?�
��  in GM 0.52 (5.82 x 10-80 )  -0.01 (0.84) 1.97 
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1����?�
��  in WM 0.51 (2.34 x 10-77) -0.06 (0.39) 1.88 1����?�
��  in GM 0.24 (5.79 x 10-78) -0.08 (0.03) 4.24 1����?�
��  in WM 0.21 (7.89 x 10-76) -0.09 (5.58 x 10-3) 4.53 

Table 3: Simulated and measured relation between model-based and raw image-based SNR.  
The coefficients of the heuristic linear models (Eq. (8)) that relate the ���!����� to the simulated 
(����
3%' ) and measured (����%4�
' ) mSNR, summarizing the slopes and intercepts of the curves in 
Figure 8, with %' being the slope and �' being the intercept, and the ratio between %�� and %' (� �
��, R1, MT� ). 
The subscript “sim” refers to the simulated data in Figure 8a-c and “meas” to the measured data in Figure 
8e-f (for details see methods section “Analysis II”). Note that for the measured mSNR the average across 
repeats was used. 
 
 

Analysis III: Reducing artefactual variation at the group level     
In this analysis, we show how artefactual variations at the group level vary for different 
combinations of a two-repeat MPM acquisition. Variability at the group level was assessed by 
the standard-error-of-the-mean (SEM). For WM, the SEM of the arithmetic mean (AM) of the 
MPM parameters showed opposite variability between �!�	
 and �!���, e.g.: �!�	
 was 
high in the cortical spinal tracts whereas �!��� was low (arrow in Fig. 10a). For GM, the 
SEM showed higher values toward the outer edge (Fig. 11), potentially caused by residual 
inaccuracies in spatial registration.  
 

 
Figure 10: Group variability across subjects for white matter. The group variability was assessed by the 
standard-error-of-the-mean (���') for the quantitative MPM maps ��
�� (top row), � (middle row) and �� 
(bottom row) and is illustrated for white matter (� � ���, �, �1�). Depicted are (a): ���' maps generated 
from the arithmetic mean (AM) of the two-repeat datasets; (b, from left to right): the relative change of ���' 
(denoted as )���) for the 1st and 2nd repeat dataset, and their robust combination (RO) using ���56 as 
reference; (c): the group-averaged MPM maps. Regions showing reduced SEM are blue and regions showing 
increased SEM are red. Note that the ���' values are not directly comparable, since the scaling of the 
associated parameters is very different. 
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Figure 11: Group variability across subjects for grey matter. Depicted is the same information as in Fig. 
10 but for grey matter instead of white matter. 
 
All three MPM parameters showed, on average across the brain, a higher variability if the 
SEM was estimated on the basis of a single repeat as compared to the AM combined MPM 
parameters (Table 4): across contrasts the relative SEM for repeat 1 and 2 was between 5.3% 
(T�!����

�� in GM) and 18.7% (T�!����
��  in GM). In some specific regions, however, one of the 

two repeats showed smaller SEM (blue areas in Figs. 10b and 11b, first and second column). 
Across the brain, the robust combination (RO) based MPM parameters showed a lower 
variability as compared to the AM combined MPM parameters: across contrasts the relative 
SEM was between -0.7 (T�!�����

�� ) to -4.7% (T�!�����
�� ). Again, in some localized regions 

the corresponding T�!� maps were also positive, indicating a higher variability after robust 
combination in specific regions (Figs. 10b and 11b, third column). 
 
 Repeat 1 (1) Repeat 2 (2) Robust (RO) T�!�+

�� in WM 7.1 t 15.0 % 11.1 t 14.7 % �0.8 t 4.6 % T�!�+
	
 in WM 14.4 t 19.4 % 9.1 t 19.5 % �2.9 t 9.1 % T�!�+
�� in WM 14.4 t 19.3 % 9.1 t 17.5 % �2.9 t 8.0 % T�!�+
�� in GM 10.5 t 18.6 % 12.6 t 17.1 % �0.7 t 6.7 % T�!�+
	
 in GM 9.0 t 15.8 % 6.1 t 14.6 % �1.0 t 8.3 % T�!�+
�� in GM 18.7 t 21.0 % 5.3 t 16.7 % �4.7 t 10.6 % 

Table 4: The average relative standard error of the mean (rSEM). 
The rSEM is estimated with respect to the SEM of the arithmetic-mean (AM) combined MPM parameters 

(�, ��, and ��
��): )���7
' � * 896

�

�

896
��
�

+ 1, - 100 with � � �PD, R1, MT� and 0 � �1, 2, RO�, where (1) 

and (2) are the respective repeats of the acquisition and RO is the robustly combined parameters. Rows 1-3 
show the rSEM in white matter (WM) and rows 4-6 show the rSEM in grey matter (GM). 
 

Discussion  
For three quantitative MPM parameters (��, ��, �����) we introduced a method to estimate 
the associated error and model-based signal-to-noise ratio (mSNR) maps without the need to 
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acquire additional data. First, we illustrated that the error and mSNR maps capture the random 
noise variations associated with instrumental features (e.g. head coil configuration) as well as 
noise sources related to artefacts (e.g. subject motion). Second, we used measurements across 
a group of healthy subjects together with simulations to show that mSNRs also reflect SNR. 
We found that they were linearly related to raw-image-based SNR and that their slopes varied 
between MPM parameters: the slope was highest for ��, lower for �� and lowest for �T���. 
Third, we exploited the artefact-sensitivity of the error maps to generate robust MPM 
parameters from a two-repeat MPM protocol. We showed that artefactual group variability 
was reduced in the two-repeat MPM acquisition as compared to the single-repeat MPMs. 
Importantly, the variability was lowest when using the robust MPM parameters as compared 
to the arithmetic-mean combination of MPM parameters.  
 

Error and mSNR   
To efficiently capture the errors in the MPM parameters (��, ��, and �T���) for each 
individual MPM experiment, we proposed using error propagation of uncorrelated 
uncertainties and to approximate the noise variance via the contrast-specific uncertainties of 
the transverse decay for the PD-, T1-, and MT-weighted SGPR signals (Eq. (4)). The error 
maps capture noise variation due to random noise and noise associated with artefacts such as 
subject motion.  
The random noise sensitivity is best revealed when using the mSNR which is calculated, in 
analogy to the SNR, as the ratio between the parameter and its error. The mSNR (Fig. 3a) 
decreased towards the centre of the brain, which is in accordance with the expected decrease 
in SNR due to the receive field of the head coil (64ch coil in protocol 1 and 2 and 32ch coil in 
protocol 3). We found that the change of the mSNR from the brain periphery to the centre was 
different for protocols 1 and 2 although they were using equivalent MR systems (3T and 64ch 
head-coil). The most apparent difference in those protocols was the acceleration and the 
Partial-Fourier (PF) factors: a 3x1 acceleration together with a PF of 6/8 was used in protocol 
1 whereas in protocol 2 a 2x2 acceleration and no PF was used. The direction of acceleration 
in protocol 1 coincided with the direction in which the steeper decline of mSNR values was 
observed in the respective mSNR maps (left-right direction) as compared to the mSNR 
acquired with protocol 2. Moreover, the local decrease in mSNR was accompanied by an 
increase of the contrast-specific uncertainties, meaning that the lower mSNR is driven by a 
higher noise or artefact level in those regions. One potential reason for the protocol-specific 
noise-pattern could be an interaction between the g-factor-induced SNR loss (Robson et al., 
2008) and Partial Fourier imaging effects. Additionally, the changes in spatial resolution and 
field strength not only changed the decline of mSNR towards the centre of the brain (protocol 
2 showed a steeper decline than protocol 3) but also the averaged mSNR value across the 
brain.  
The noise variations due to artefacts such as subject motion, were better visualized by the 
error maps but also present in the mSNR. We demonstrated that this second source of 
variance typically appeared as a local increase in error (and decrease in mSNR) and was 
accompanied by a bias in the MPM parameters (Fig. 4 and Figs. 5-7).  
 

Raw-image vs. model-based SNR  
We found in simulations and group-level measurements that the mSNR is linearly related to 
the image-based SNR. This confirms that the mSNR is a genuine measure of SNR. 
Interestingly, the relative slopes showed a similar trend between simulations and 
measurements: the slope of 1���	
 was 1.8 to 2 times higher than the slope of 1�����, 
whereas it was 3.2 to 4.5 times higher than for 1�����. The relation between 1���	
 and 1����� will depend on the chosen flip angles and TRs as has previously been shown for 
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SNR in R1 and PD (Helms et al., 2011). A similar argument can be used to understand that 1����� will also be flip angle dependent.  
 
The following application exemplifies how this information can be relevant for large-scale 
neuroimaging studies, fundamental neuroscience or clinical research studies. If we assume 
that two groups of subjects possess different myelin densities in the brain (e.g. due to aging 
(Callaghan et al., 2014)) and that this difference has the same effect size in �� (via ��u �1 � ��/100, (Mezer et al., 2013)) and ����� we would need 3.2-4.5 times higher image 
SNR to observe the same effect under the influence of noise when using ����� as a biomarker 
for myelin instead of ��. Only considering noise, this provides a good argument to skip the 
MT-weighted contrast and thus to further reduce scan time in time-critical studies. 
 
In contrast to the slope of 1���', its offset strongly differed between simulations (almost 
zero) and measurements (-13 for 1���	
 to -3 1�����). One reason for this deviation 
could be that the mSNR in the experiment was compared between different brain regions with 
different relaxation rates and MTsat values, each of which might possess a slightly different 
linear dependency between 1���' and ������

	
�  (1 2 3PD, R1, MT8). Our simulations 
revealed that the slope was consistently smaller in WM than in GM (2% for ��, 6% for �� 
and 14% for �����). Another reason for the deviation could be the fact that the measured 
mSNR map is sensitive to both random noise and spatially varying artefacts, e.g., due to 
parallel imaging, whereas simulations included only random noise. 
 

Reducing artefactual variation at the group level     
The variability at the group level is composed of the true anatomical variability and the 
artefactual variability induced by different noise sources (e.g. thermal noise, physiological 
noise, or subject motion). In contrast to the former, the latter type of variability can be 
reduced by repeated measurements. In accordance with this knowledge, we found that an 
arithmetic-mean combination of the two repeats reduced the group variability of the MPM 
parameters (variability reduction: 10.9% in WM and 10.4% in GM) but even more so if the 
robust combination was used (additional reduction of 2.2% in WM and 2.1% in GM). The 
additional improvement using robust combination confirms that the reliability of MPM 
parameters can be further improved when the error map information is exploited to down-
weight erroneous MPM values on a per-repeat basis. 
Note that we focussed here on the direct effects of the two-repeat protocol on the MPM 
parameters by using the same transformation and tissue segments for all datasets. However, 
we believe that the higher artefact level in the single-repeat MPM parameter maps will also 
degrade the segmentation and by consequence the spatial registration, which, in turn, will 
further degrade the sensitivity to any true group differences.  
 

Considerations  
The two-repeat protocols are longer in scan time than their one-repeat counterparts (e.g. for 
protocol 1 it is: 17 min vs. 28 min). Since scan time is often the limiting factor, it is important 
to consider scan time when comparing variability. To do so, here we translate the reduction in 
variability into an effective increase in sample size, assessed via the standard-error-of-the-
mean (SEM). Under the assumption of Gaussian distributed independent data the SEM 
directly dictates statistical sensitivity (t-score w 1/SEM) and scales with one-over the square-
root of the sample size N. With these relations in mind, a 13% reduction of �!��� relative to 
the SEM of a standard MPM acquisition (�!������) would translate to an effective increase 
of the sample size of 31%. This number is directly proportional to the gain in effective scan 
time, i.e. cumulative scan-time across all subjects. Since a two-repeat acquisition is required 
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for the robust combination, it comes at the price of an extended MPM protocol that was about 
39% longer than the corresponding one-repeat acquisition of protocol 1 (total scan time about: 
17 min). In total, the effective scan time of the proposed protocol is about 8% longer than the 
one-repeat protocol, even if accounting for the improved variability due to robust 
combination. Thus, the proposed protocol and robust combination might be more useful for 
specific studies, where a small group of subjects, e.g., patients with a rare disease, are 
investigated and high-quality data of each subject is of higher priority than scan time, but not 
for studies where a large number of subjects can be afforded (and poor datasets excluded).  
In some regions, we found that the proposed robustly combined MPM parameters showed a 
higher SEM than the arithmetic mean combination, indicating that the error maps do not 
always correctly capture erroneous regions. One reason might be that the propagation of 
uncorrelated errors that was used to generate the error maps relied on the assumption that 
imaging artefacts were adequately captured by the contrast-specific uncertainties estimated 
from the linearized SPGR fit. This, however, might not always be valid. For example, the 

contribution from uncertainties in the B1+ estimate is neglected (i.e. we assume 
���
� �

� 	��
�  0), but may play an important role as a source of variance in the MPM parameters (Lee et al., 

2017), especially for applications at 7T. 
 

Potential applications 
The knowledge that the mSNR is a genuine measure of SNR can be useful for global and 
local power analyses. On a local level the mSNR maps might inform studies interested in 
specific regions regarding which protocol settings, e.g. parallel imaging acceleration or RF 
head coil, would be optimal. For example, in studies focussing on the hippocampus a less 
steep decay of mSNR towards the centre of the brain would be preferred, whereas maximal 
peripheral sensitivity may be preferable for a study interested in the neocortex.    
The error and/or mSNR maps can be directly used for statistical comparisons as confidence 
measures reflecting variation in SNR and erroneous MPM values due to artefact. This allows 
use of the error maps to improve the robustness of statistical analyses at the group level 
without needing a two-repeat MPM acquisition. Further research is necessary to find the best 
statistical neuroimaging framework (e.g. a linear mixed model) that allows integration of 
confidence maps at the individual subject level (here the error or mSNR maps) with 
variability measures at the group level (typically standard-error-of-the mean across subjects).    
Alternatively, error and mSNR maps can be used as additional information in group statistics 
to assess the reliability of observed differences. For example, if statistical significance in 
voxel-based statistics between two groups is driven by a few outliers, these might be 
accompanied by particularly high error values. Thus, the error maps can be used to remove or 
down-weight erroneous regions in group statistics. This application has been shown to 
improve statistical significance to detect group differences (David et al., 2017). 
 

Conclusion 
We have introduced a new method to estimate parameter-wise error and model-based SNR 
(mSNR) maps for three MPM parameters (proton density, PD, longitudinal relaxation rate, 
R1, and magnetization transfer saturation, �����) on a routine basis without requiring 
additional data. These new measures can be used to estimate the noise sensitivity of MPM 
parameters and, if two or more MPM measurements are available, improve their robustness to 
artefacts such as involuntary subject movement on a per-subject level. The sensitivity to noise 
might be useful for power-calculations and to compare the suitability of the different MPM 
parameters as biomarkers in neuroscience or clinical research studies. The improved 
robustness of MPM parameters might be particularly important in clinical studies where 
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patients with a rare disease are investigated and high data quality is more crucial than high 
throughput of data. All three advances, the error maps, the mSNR maps, and the robustly 
combined MPM maps, are available in the open-source hMRI toolbox.  
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