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Abstract

We introduce an agent-based model for co-evolving opinion and social dynamics, under the influence
of multiplicative noise. In this model, every agent is characterized by a position in a social space and
a continuous opinion state variable. Agents’ movements are governed by positions and opinions of other
agents and similarly, the opinion dynamics is influenced by agents’ spatial proximity and their opinion
similarity. Using numerical simulations and formal analysis, we study this feedback loop between opinion
dynamics and mobility of agents in a social space. We investigate the behavior of this ABM in different
regimes and explore the influence of various factors on appearance of emerging phenomena such as group
formation and opinion consensus. We study the empirical distribution and in the limit of infinite number of
agents we derive a corresponding reduced model given by a partial differential equation (PDE). Finally, using
numerical examples we show that a resulting PDE model is a good approximation of the original ABM.

Keywords: opinion dynamics, feedback loop, agent-based modeling, multiplicative noise, group forma-
tion, mean-field limit, empirical distribution, stochastic partial differential equations.

1 Introduction

Opinion dynamics is one of the most important processes of our society, as our opinions influence not only
our individual actions and behavior; but can also shape collective dynamics governing societal change and
social movement. Complex interaction patterns between individuals and coupled social mechanisms in dif-
ferent environments are shown to be the crucial drivers of opinion dynamics [1]. With the introduction of
online social media, the way people interact and share their opinions has drastically changed. For example,
physical proximity is now not anymore a constrain for communication, everybody can engage in information
transmission and express their opinions to a large number of people in different social, political and cultural
environment. Additionally, large amounts of data became available about how people influence and are get-
ting influenced in their opinions [2], which provided new insights into the social mechanisms and emerging
phenomena such as formation of echo chambers and opinion consensus.

During the last decades, extensive research has been carried out in order to understand how people shape
their opinions in their social space, see recent reviews [3, 4]. Governed by an increasing amount of available
large-scale social data and fast computational advances, the topic of opinion dynamics gathered an interdis-
ciplinary research community [3, 5]. Existing work ranges from the studies on (1) model-driven approaches
that produce formal models for opinion dynamics that can be analysed using theories from mathematics and
statistical physics to (2) data-driven approaches that are used to explore empirical data using knowledge
from social sciences. Using computer simulations and computational analysis, opinion dynamics models can
be used as a tool for understanding social mechanisms, uncovering social interaction patterns and exploring
influences of various factors on e.g. group formation and opinion consensus [6, 7, 3, 8]. Furthermore, math-
ematical description of models is a starting point that enables the use of analytical tools. In such a way
we can get theoretical predictions of the models, such as: long time behaviour, limiting behaviour of the
system when the number of agents tends to infinity (macroscale) and description of the fluctuations in the
case when the number of agents is very big but still finite (mesoscale). In addition, this type of analysis is
a basis for developing rigorous numerical analysis which implies error estimates that should be expected by
numerical computations and which determine the choice of parameters in the model that should be used in
the experiments. However, most existing models are rather simple and rarely connect to empirical studies
and available real-world data [9]. In order to close this gap between model- and data-driven approaches,
new formal models need to be introduced that can better represent real-world social systems and capture
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complex mechanisms that govern how people shape their opinions.

The largest group of formal models for studying opinion dynamics are agent-based-models (ABMs),
where a process of opinion formation takes place through interactions between individual agents. One
example of such ABMs are Voter models [10], that describe opinion change between agents with discrete
opinion states, where agents interaction dynamics is defined through an underlying social network. In the
DeGroot model [11], agents have continuous-valued opinions that are formed as the average opinions of
all other agents. Further mathematical literature mostly focuses on bounded confidence models [12], where
the dynamics of opinions depends only on interactions among agents that have similar opinions, without
assuming an underlying interaction network, but rather all-to-all possible interactions. Different extensions of
these models have been considered in order to account for more realistic scenarios. For example, introducing
stochastic effects [13, 14, 15, 16, 6, 17], complex interaction mechanisms [18, 19] and different types of agents
(e.g. stubborn agents, influencers, campaigners) [20, 21]. Additionally, in the context of complex social
networks, the co-evolution of the opinion and the network dynamics has been studied, where the changes
in the network structure influence the opinion dynamics and vice versa. It has been shown that this co-
evolution process in network models governs the appearance of emerging structures, e.g. echo chambers
[22]. However, most of the existing ABMs for opinion dynamics do not include the dynamics of agents in a
social space, despite that this process determines agents’ interaction patterns. Extending on the models for
epidemic spreading [23] and cultural dissemination [24, 25], recently the so-called mobile agents [26, 7] were
introduced to account for the feedback between the spatial movement of agents and the social contagion
dynamics. While simulation results on co-evolving dynamics (both for network models and ABMs) provided
many useful insights into the social mechanisms behind opinion formation, theoretical considerations of such
models are still largely missing.
In this article, we introduce a mathematical ABM, that includes feedback loops in opinion dynamics of agents
moving in a social space, influencing and being influenced in their opinions. The focus of this manuscript
is on the non-trivial two-way interaction between the agents’ movement in a social space and their opinion
dynamics. More precisely, agents’ spatial movements can induce changes in opinion states over time and
additionally, opinion dynamics can influence the spatial position of agents and opinion states of agents
in their vicinity. This feedback loop between spatial and opinion changes is at the core of the systems
co-evolving dynamics. We consider that both spatial and opinion dynamics are governed by stochastic
dynamics with multiplicative noise, which generalizes the case of constant, additive noise that is usually
considered [14, 15, 16, 6, 17]. We explore the impact the feedback has on the behavior of the system and
in particular on the grouping of agents in opinion and/or social space. From the mathematical point of
view, our ABM can be seen as an interacting particle system. In particular, on the microscopic level (level
of agents) we formulate our model as a system of coupled stochastic differential equations (SDEs) with
multiplicative noise. From the application point of view, the interest is to have weak regularity assumptions
on the drift and diffusion coefficients. Next, we study the corresponding limiting equation in the case when
the number of agents tends to infinity, i.e. the so called McKean-Vlasov equation. Furthermore, we show
the well-posedness results for the limiting system, which is a very popular and challenging topic in the
field of stochastic analysis. Nowadays, there is extensive literature about these results, the standard results
are [27, 28, 29] and see the references therein. Another interesting class of results that is discussed in the
literature and that we also consider, is the so-called propagation of chaos, meaning that one wants to prove
the convergence of the microscopic model to McKean-Vlasov SDEs. The challenge in these proofs lies in
the weak assumptions on the coefficients. Since the topic of this article is not the theoretical investigation
of the weak regularity assumption, in order to illustrate our message we concentrate on the simple case of
Lipschitz bounded coefficients with multiplicative noise case. Furthermore, due to the high computational
cost of ABM simulations when the number of agents is large, we suggest the standard model reduction
approach that considers instead the empirical density rather than each agent individually. We derive the
formal equations of the empirical density and its so called hydrodynamic limit. These results are in the
spirit of the standard, so called Dean-Kawasaki equation [30]. In the setting of the social dynamics, this
model reduction for the uncoupled system has already been considered in [31]. Using a numerical example,
we illustrate the expected behaviour of the system on the macroscopic scale, that is given by the partial
differential equation.

The article is organized as follows. Our agent-based model for opinion dynamics with feedback loops is
introduced and studied through numerical simulations in Section 2. Next, we develop a theoretical framework
for studying the system at the macroscopic level by an mean-field approach in Section 3 and we present
the well-posedness result of the McKean-Vlasov SDE system with Lipschitz coefficients and the convergence
results of propagation of chaos. In Section 4 we present formal derivation of the equation that describes the
dynamics of the empirical measure and its hydrodyanamic limit. We illustrate the limiting behaviour of the
system on the macroscopic scale, by a numerical example. Finally, we derive our conclusions and possible
future directions in Section 5.
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2 Model Description

We consider a closed system of N interacting agents and agents’ co-evolving opinion and social dynamics.
At time t ∈ [0, T ], every agent k, k = 1, . . . , N has a position state Xk

t ∈ Rd and an opinion state Θk
t ∈ R.

The position state Xk
t of an agent is a point in an abstract social space, such that a distance between two

agents refers to their social proximity that is described by their social similarity. In real-world social systems,
information about a position in social space may be inferred from e.g. online social media. The opinion Θk

t

of an agent k is considered to be a continuous variable. For more generality, this model can be extended to
incorporate several opinion entities, such that Θk

t ∈ Rm. However, for technical simplicity in this paper we
will assume that m = 1. The state of the system at time t ≥ 0 for the set of N agents is given by

Zt = (Xt,Θt) ∈ (Rd)N × RN ,

where the k-th row of the systems’ state corresponds to the state Zkt = (Xk
t ,Θ

k
t ) of the k−th agent. All

agents follow the same rules that describe how their positions and opinions change. More precisely, agents
move in a social space governed by the position of other agents and their opinions. Similarly, the opinion
states of agents are influenced by both agents’ spatial proximity and their opinions. This feedback loop
between spatial and opinion changes determines the systems adaptive dynamics. Additionally, to be able to
account for external influences on agents and the sometimes seemingly random nature of human interactions,
we model this system via a coupled system of stochastic differential equations with multiplicative noise of
the form {

dXt = Ũ(Xt,Θt)dt+ σsp(Xt,Θt)dB
sp
t ,

dΘt = Ṽ (Xt,Θt)dt+ σop(Xt,Θt)dB
op
t ,

(1)

where:

• Ũ : (Rd)N × RN → (Rd)N is a spatial interaction map that models how the positions and opinions of
the agents influence the spatial movement of the agents,

• Ṽ : (Rd)N × RN → (Rd)N is an opinion interaction map that models how the positions and opinions
of the agents influence the opinion states of the agents,

• Bsp and Bop are independent Brownian motions starting in 0,

• σsp(Xt,Θt), σop(Xt,Θt) are diffusion coefficients for spatial and opinion dynamics respectively.

Dynamics given by the SDEs in (1) is rather abstract and in this form it doesn’t provide much intuition on
how it can be adapted to known social mechanisms coming from real-world systems. Thus, in the following
we will focus on how complex interaction patterns and stochastic influences can be enforced in our model.

2.1 Pairwise interactions

We start by exploring the simplest type of interaction dynamics, namely pairwise (or 2-body) interactions
that only take into account interactions between pairs of agents. More precisely, we consider the case
where the interaction maps Ũ , Ṽ are linear functions of simpler interaction maps U, V , i.e. we define Ũ =
(Ũ1, ..., ŨN ) : (Rd)N × RN → (Rd)N with

Ũk(X,Θ) =
1

N

N∑
j=1

U(Xk, Xj ,Θk,Θj), (2)

for some pair-interaction map U : Rd×Rd×R×R→ Rd and analogously for Ṽ . In this model, agents shape
their opinions based on the mean opinion of other agents through pairwise interactions, which is the setting
of many of the classical models for opinion dynamics [11, 32, 12]. Thus, the dynamics of the k-th agent are
given by {

dXk
t = 1

N

∑N
j=1 U(Xk

t , X
j
t ,Θ

k
t ,Θ

j
t)dt+ σsp(Xt,Θt)dB

sp,k
t ,

dΘk
t = 1

N

∑N
j=1 V (Xk

t , X
j
t ,Θ

k
t ,Θ

j
t)dt+ σop(Xt,Θt)dB

op,k
t .

(3)

Note that in order to simplify the notation, we do not write Xk,N
t , Θk,N

t , but instead Xk
t , Θk

t respectively.
As a more concrete example one can consider the following model that can be seen as an extension of a
classical model by DeGroot [11], in a sense that it does not assume interactions between all agents, but
instead assumes that two agents can only interact if their positions in a social space are closer than a certain
interaction radius R, like in the bounded confidence models. The reason for such modeling decision is that
agents that are further away in a social space, i.e. are having a low social similarity, may have conflicting
attitudes and social norms, and thus lack motivation to interact with each other. An opinion interaction
map that models this idea is

V (x1, x2, θ1, θ2) := α · 1[0,R] (‖x1 − x2‖) · (θ2 − θ1), (4)

where α is the opinion strength parameter and ‖·‖ refers to the Euclidean distance. In our model, α regulates
the strength of the social influence on the agent’s opinion, i.e. the higher the α the more influence the pairwise
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opinion difference has on an agent’s opinion. As given by (4), this model formalizes the idea that two agents
can only interact if their positions in a social space are close enough and if they interact, then their opinions
become more similar. Since we do not distinguish between individual agent types, we assume that α is a
constant, i.e. it is equal for all agents in the system. In the literature there are different variations of this
classical interaction dynamics [33, 19]. As discussed above, our model extends these by introducing the
movements of agents in a social space and its feedback loop with the opinion dynamics. An example of such
dynamics is given by the spatial interaction map

U(x1, x2, θ1, θ2) := β · 1[0,R] (‖x1 − x2‖) · sgn(θ1 · θ2) · (x2 − x1), (5)

where β denotes the spatial strength parameter regulating how much agents compromise when updating their
positions. The third term in (5) introduces a direction of agents’ spatial motion based on their opinions, i.e.
agents can either attract or repel each other, depending on whether their opinions are similar or different to
each other. Thus, movement of an agent in a social space is determined by its spatial closeness and opinion
similarity with other agents in the system.

2.2 Multi-body interactions

Most existing models of opinion dynamics only take pairwise interactions into account, ignoring any higher
order interaction dynamics. While this simplifies mathematical considerations significantly, this is a very
rough approximation of real life interactions and does not allow to model group effects such as peer pressure,
see e.g. [34, 35]. Recently there has been an increasing interest in going beyond pairwise interactions to
create more realistic models for social dynamics, e.g. [36]. Our model can be extended with such effects
by including the spatial interaction dynamics as introduced in the previous section by (5) and considering
multi-body interactions for the opinion dynamics proposed in [36]. In particular, the effect of peer pressure
within groups of agents in spatial proximity can be modeled by the opinion interaction map

V (x1, x2, x3, θ1, θ2, θ3) := α ·

(
3∏

i,j=1

1[0,R](‖xi − xj‖)

)
s(|θ2 − θ3|)[(x2 − x1) + (x3 − x1)], (6)

where s : [0,∞) → R is a non-increasing positive-definite function, e.g. s(x) = exp(λx), for some λ < 0.
This means, that the influence of agents 2 and 3 on the opinion of agent 1 is stronger if they have similar
opinions. Different from the classical DeGroot model, in a case when multi-body interactions are defined on
hypergraphs, shifts in the average opinion of the system have been observed [36]. Similar results are to be
expected in our model and will be the topic of our future work. Here, in order to keep our analytical results
more trackable, we will focus on the case of pairwise interactions.

2.3 Stochastic influence: Multiplicative noise

Many of the classical models of opinion dynamics are of a deterministic nature [11, 12, 32]. Historically, the
first stochastic versions of these models have always used additive noise, i.e. stochastic noise with constant
(in time, status and over the population) strength [37, 38]. Having a constant noise coefficient also implies
that the driving noise of agents i and j are independent for all i, j ∈ {1, . . . , N}. This makes the model
mathematically easier, but such a modelling choice is questionable from a social sciences perspective. The
usual role of the noise is to account for external influences, that are not already incorporated into the model
through agents interactions, such as randomly occurring environmental changes or some other significant
events. However, these events influence all (or at least most) agents, introducing non-trivial correlation
between the individual noises. The choice of additive noise also doesn’t account for more complex social
mechanisms observed in real world systems [7]. Namely, the strength of the noise can additionally depend
on how homogeneous the opinions of agent’s peers are. In a highly polarised group of individuals, one might
be more susceptible to random influences than in a group where everyone has roughly the same opinion.
Recently, a few models considered such complex mechanisms by introducing a multiplicative noise, e.g. in
the context of opinion dynamics [7, 39], animal movement [40] and flocking of a Cucker-Smale system [41].

Extending on the ideas from [7], one concrete example of a multiplicative noise for our model is defined
by

σiop(Xt,Θt) = min
j:‖Xi

t−X
j
t‖≤R

∣∣∣Θi
t −Θj

t

∣∣∣ · Id, i = 1, . . . , N. (7)

Thus, the noise in this model is characterized by a similarity bias, i.e. the closer the opinions of agents’
peers are to the opinion of that agent, the smaller the random fluctuations. Similarly, agents have a higher
probability to move away from agents with very different opinions. These effects have been shown to yield
fast formation of stable spatial clusters in which a local consensus is reached [7].

2.4 Numerical simulations of the ABM

In this section, we show the main properties of our proposed model for opinion dynamics with feedback loops
given by (3), (4) and (5). Using numerical simulations, we study how different parameters influence group-
ing of agents into social and opinion clusters. Additionally, we demonstrate a difference between additive
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and multiplicative noise and how this affects the stability of clusters and opinion distribution within clusters.
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(a) σ = 0.01
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(b) σ = 0.05
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(c) σ = 0.15

Figure 1: Snapshots from numerical simulations at final time T = 2.5 for different influences of additive noise:
(a) σ = 0.01, (b) σ = 0.05 and (c) σ = 0.15. Position of agents indicated their position in a social space.
Color of agents denotes their opinions according to the color-bar. Other parameters are fixed to R = 0.015 and
α = β = 20.
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Figure 2: Opinion trajectories of agents’ over time-period [0, 2.5] for different influences of additive noise: (a)
σ = 0.01, (b) σ = 0.05 and (c) σ = 0.15. Other parameters are fixed to R = 0.015 and α = β = 20.

(a) σ = 0.01 (b) σ = 0.05 (c) σ = 0.15

Figure 3: Distribution of agents’ opinions at final time T = 2.5 for different influences of additive noise: (a)
σ = 0.01, (b) σ = 0.05 and (c) σ = 0.15. Other parameters are fixed to R = 0.15 and α = β = 20.

We run stochastic simulations for N = 100 agents, where at t = 0 all agents are placed uniformly at
random inside [−0.25, 0.25]2 and their initial opinions are distributed uniformly in the interval [−1, 1]. We
run each simulation for 250 time-steps, i.e. until T = 2.5 where ∆t = 0.01. In every time-step, movement of
agents and their opinions are obtained using a Euler–Maruyama scheme [42, 43].
First, we consider the case of additive noise, where we assume that σ := σop = σsp and we distinguish
between different noise strengths, namely σ = 0.01, σ = 0.05 and σ = 0.15. We fix the interaction radius
R = 0.15 and include strong opinion influence α = 20 and strong spatial influence β = 20. In Figure 1 we
plot simulation snapshots at the final time T = 2.5 for these different values of σ, where agents’ positions
correspond to their position in a social space and agents’ colours indicate their opinion. We observe a strong
influence of noise on the cluster formation process. Namely, the higher the σ, the denser the inter-cluster
connections are, such that for σ = 0.15 there is no clear separation into different clusters neither in social
nor in opinion space. This can be seen in Figure 2 of opinion trajectories of individual agents. Additionally,
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stronger noise in the system leads to more diversified opinion distributions when reaching consensus, as can
be observed in the final distribution of agents’ opinions in Figure 3. For small values of noise, i.e. σ = 0.01,
the system reaches a stable state and we see several spatially separated clusters of agents that are stable
and within each cluster agents have similar opinions. This behavior has been observed in previous studies
of network models [22, 44].
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(a) α = β = 50
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(b) α = β = 5
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(c) α = 50, β = 5

Figure 4: Snapshots from numerical simulations at final time T = 2.5 for different influences of opinion and
spatial strength: (a) α = β = 50, (b) α = β = 5, (c) α = 50, β = 5. Position of agents indicated their position
in a social space. Color of agents denotes their opinions according to the color-bar. Other parameters are fixed
to R = 0.15 and σ = 0.05.

(a) α = 50 (b) α = 5 (c) α = 50, β = 5

Figure 5: Distribution of agents’ opinions at final time T = 2.5 for different influences of opinion and spatial
strength: (a) α = β = 50, (b) α = β = 5. Position of agents indicated their position in a social space. Color of
agents denotes their opinions according to the color-bar. Other parameters are fixed to R = 0.15 and σ = 0.05.

Next, we study the influence of opinion strength α and spatial strength β on the cluster formation
process. Additional to results shown in Figure1b for α = β = 20, in Figure 4 we show the snapshots after
250 time-steps for α = β = 50, α = β = 5 and α = 50, β = 5. Large values of α, β mean that agents
are strongly influenced by their peers, such that they compromise heavily towards their neighbours when
updating their opinions and positions. This leads to faster formation of stable clusters where within the
clusters agents have similar opinions, see Figure 4 and Figure 5. Because of this effect, in standard bounded
confidence models, these parameters are often called ‘convergence parameters’ as they affect the speed of
convergence [45]. Comparing the three scenarios in this experiment and in particular the cases when α = β
to α 6= β, we see that the spatial strength is important for formation of spatial clusters, but also in the case
when spatial strength is small β = 5 and opinion strength is large α = 50, because of the feedback loop
agents tend to form large, loose groups. This effect emphasises the importance of the feedback loop in this
system.

Finally, we examine the effects of multiplicative noise on the dynamics of our ABM given by (3), (4)
and (5). To this end, we consider multiplicative noise σop = σsp, as introduced in (7). In Figure 6 we see
a fast formation of 8 spatially well separated clusters. In each of these clusters local consensus is reached,
as discussed in Section 2.3. These clusters are stable in their spatial position and opinion distribution. In
comparison to the case of additive noise, see Figure 1, clusters obtained through the influence of multiplicative
noise are constructed faster and are more stable.

3 Theoretical analysis: Coupled mean-field limit

In this section we consider the theoretical setting that describes the feedback loop dynamics of the system
and its limit when N →∞. In particular, we start by briefly motivating the mean-field equation, and then
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Figure 6: Results of one simulation of the ABM with multiplicative noise, for α = β = 20 and R = 0.15.
Left: Snapshot of the dynamics at T = 2.5. Middle: Opinion trajectories during [0, 2.5]. Right: Distribution
of agents’ opinions at T = 2.5. Position of agents indicated their position in a social space. Color of agents
denotes their opinions according to the color-bar. Other parameters are fixed to R = 0.015 and σ = 0.05.

we state its well-posedness and the convergence of ABM to this mean-field equation.
From the theoretical point of view, one of the main challenges of these results lies in the regularity

assumptions of drift and diffusion coefficients. The standard result is considering Lipschitz coefficients and
additive noise, as presented in [27]. On the one hand, one can consider the dynamics just for one agent
with singular interactions and additive noise, such as in [29] and its extensions to multiplicative noise case
as in [46]. However, as noted in [47], these results can not be trivially extended for N particle systems.
Thus, different techniques need to be used to obtain results for the singular interactions, such as mixed Lp

drifts. The literature on the weaker assumptions on drift and diffusion than the standard global Lipschitz
assumption is tremendous as it is a very popular topic, see [48, 49, 50, 51, 52].

However, in order to illustrate the main message of this article that is the consideration of the feedback
loop dynamics with the multiplicative noise, it is enough to consider the standard Lipschitz setting. Since
the case of the multiplicative noise in this setting can not be found in an easily accessible form, for the
completeness of results, we state in the appendix the proofs of the well-posedness and convergence results,
without relying on the sophisticated analysis results. This result can be seen as an extension of the standard
result in [27].

In order to simplify the notation, we will write
∫

for
∫
Rd×R =

∫
Rd+1 and we define C := C([0, T ];Rd+1).

Hence, for the rest of the article, we will assume that potentials U and V are real valued Lipschitz functions
on R2d × R2. More precisely, we will always assume the following on the regularity of initial data:

Assumption 1 Let (Bsp, Bop) be a Brownian motion in Rd × R with respect to a filtration F = (Ft)t≥0,
the initial conditions X0 and Θ0 are F0-measurable and square-integrable, and the maps

U : Rd × Rd × R× R→ Rd, V : Rd × Rd × R× R→ R, (8)

σsp : Rd × Rd × R× R→ Rd×d, σop : Rd × Rd × R× R→ R (9)

are bounded and Lipschitz continuous.

3.1 Motivation for the limiting equations

In this section we will present a general motivation on how one can derive the so-called mean-field limit of
coupled SDEs on [0, T ] for a fixed number N ∈ N of interacting agents which is a special case of our ABM
(3). The mean-field limit is the coupled system of SDEs that describes the averaged dynamics of the system
when the number of agents tends to infinity.

In particular, from now on the coupled SDE system that we will analyse is given by{
dXk,N

t = 1
N

∑N
j=1 U(Xk

t , X
j
t ,Θ

k
t ,Θ

j
t)dt+ 1

N

∑N
j=1 σsp(X

k
t , X

j
t ,Θ

k
t ,Θ

j
t)dB

sp,k
t ,

dΘk,N
t = 1

N

∑N
j=1 V (Xk

t , X
j
t ,Θ

k
t ,Θ

j
t)dt+ 1

N

∑N
j=1 σop(X

k
t , X

j
t ,Θ

k
t ,Θ

j
t)dB

op,k
t ,

(10)

for k = 1, ..., N , an independent family (Bsp,k, Bop,k)k∈N of (d+ 1)-dimensional Brownian motions.
Let us define the empirical density by

µNt :=
1

N

N∑
j=1

δ
(X

j,N
t ,Θ

j,N
t )

(11)

with δ being the Dirac distribution. Now the previous system can alternatively be written as
dXk,N

t =
∫
Rd×R U(Xk

t , y,Θ
k
t , θ)µ

N
t (dydθ)dt+

∫
Rd×R σsp(X

k
t , y,Θ

k
t , θ)µ

N
t (dydθ)dBsp,kt ,

dΘk,N
t =

∫
Rd×R V (Xk

t , y,Θ
k
t , θ)µ

N
t (dydθ)dt+

∫
Rd×R σop(X

k
t , y,Θ

k
t , θ)µ

N
t (dydθ)dBop,kt ,

µNt = 1
N

∑N
j=1 δ(Xj,N

t ,Θ
j,N
t )

.

(12)
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Utilizing the law of large numbers we will show that the mean-field limit of the system is of the form
dXt =

(∫
Rd×R U(Xt, y,Θt, θ)µt(dydθ)

)
dt+

(∫
Rd×R σsp(Xt, y,Θt, θ)µt(dydθ)

)
dBspt ,

dΘt =
(∫

Rd×R V (Xt, y,Θt, θ)µt(dydθ)
)
dt+

(∫
Rd×R σop(Xt, y,Θt, θ)µt(dydθ)

)
dBopt ,

µt = Law(Xt,Θt),

Xt=0 = X0, Θt=0 = Θ0,

(13)

for suitable initial values X0,Θ0 and a (d+ 1)-dimensional Brownian motion (Bspt , B
op
t ).

Remark 1 One can write the system more compactly by summarizing the state of each agent into a single
Rd+1-valued random variable Y = (X,Θ). In order to do this, we define the combined interaction map to be

W : Rd × R× Rd × R→ Rd+1, (x1, θ1, x2, θ2) 7→ (U(x1, x2, θ1, θ2), V (x1, x2, θ1, θ2)).

With this notation we can write the system (13) as{
dYt =

(∫
Rd+1 W (Yt, y, θ)µt(d(y, θ))

)
dt+

(∫
Rd+1 σ̃(Yt, y, θ)µt(d(y, θ))

)
dB̃t,

µt = Law(Yt),
(14)

where B̃ is a (d + 1)-dimensional standard Brownian motion and σ̃ is a (d + 1) × (d + 1) diagonal matrix

with diag( ˜σsp(Xt,Θt)) = (σsp(Xt,Θt), ..., σsp(Xt,Θt), σop(Xt,Θt)).
In the case of additive noise, if U, V are assumed to be Lipschitz continuous, then W is also a Lipschitz
function and one can apply the classical existence and uniqueness and convergence results from [27] directly
to (14). With the focus on the different interpretation of processes Xt and Θt from the application point of
view, we will keep the separate notion which enables us to directly see the limiting equations for position and
opinion.

3.2 Well-posedness result of the coupled mean-field SDE

Here, we will study the well-posedness of the limiting stochastic differential equations given by (13).
The proof is based on the classical results on mean-field theory (see e.g. for additive noise [27]) and the

classical existence and uniqueness theory for SDEs via the standard fixed-point argument.
In order to set up our fixed point argument we, let us define

P2 := P2(C([0, T ];Rd+1))

:=

{
µ : µ is a probability measure on C([0, T ];Rd+1) s.t.

∫
‖x‖2∞ µ(dx) <∞.

}
.

Furthermore, we need to equip this space with a notion of distance, that turns P2 into a complete metric
space. To make use of a common tool for this type of proof, namely Gronwall’s inequality, we need to
consider a whole family of distances (which are not necessarily metrics due to a lack of definiteness). To be
precise we define the truncated 2-Wasserstein distance for t ∈ [0, T ] by

D2
t (µ1, µ2) := inf

µ

∫
C×C

(
sup
s≤t

(‖Xs(ω1)−Xs(ω2)‖2 + |Θs(ω1)−Θs(ω2)|2)

)
dµ(ω1, ω2), (15)

where we take the infimum over all couplings µ of µ1 and µ2 and Xs(·),Θs(·) are the projections onto the
time s marginal of the d-dimensional component and the 1-dimensional component respectively. Note that
for t = T , i.e. if we don’t truncate, we obtain the standard 2-Wasserstein metric W2

2 (·, ·) on P2.

Remark 2 Observe that the Lipschitz Assumption 1 on the coefficients also implies, that the induced maps
defined by

Û : Rd × R× P2(Rd+1)→ Rd, (x, θ, µ) 7→
∫
Rd+1

U(x, y, θ, η)µ(dydθ), (16)

and analogously V̂ , σ̂sp, σ̂op, satisfy a Lipschitz-type inequality (17) with respect to the product metric, when
we equip P2 with the 2-Wasserstein metric. Indeed, for (x1, θ1, µ1), (x2, θ2, µ2) we have by Jensen’s inequality∥∥∥Û(x1, θ1, µ1)−Û(x2, θ2, µ2)

∥∥∥2

≤
∫
‖U(x1, y1, θ1, η1)−U(x2, y2, θ2, η2)‖2 π(d(y1, θ1)d(y2, θ2)),

where π is an arbitrary coupling of µ1, µ2. We can now use the Lipschitz assumption on U to get∫
‖U(x1, y1, θ1, η1)− U(x2, y2, θ2, η2)‖2 π(d(y1, θ1)d(y2, θ2))

≤2L2 ‖x1 − x2‖+ 2L2 ‖θ1 − θ2‖+ 2L2

∫ (
‖y1 − y2‖2 + ‖η1 − η2‖2

)
π(d(y1, θ1)d(y2, θ2)).

Now we can take the infimum over all couplings π of µ1 and µ2 on the right hand side to obtain∥∥∥∥∫
Rd+1

U(x1, y1, θ1, η1)µ1(dy1dη1)−
∫
Rd+1

U(x2, y2, θ2, η2)µ2(dy2dη2)

∥∥∥∥2

≤2L2(‖x1 − x2‖2 + ‖θ1 − θ2‖2 +W2
2 (µ1, µ2)).
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As already announced, to show the well-posedness of (13), we rely on Banach’s classical fixed-point
theorem. Therefore we need to make sure that the metric space (P2, D2

T ) is sufficiently regular.

Lemma 1 (P2, D2
T ) is a complete metric space.

The proof of this lemma is standard and is given in Appendix A.1.
In addition, for the proof of the next theorem we need the following a priori estimate.

Lemma 2 Assume that the coefficients U, V, σop, σsp are bounded by some positive constant K > 0 and that
the initial values X0,Θ0 satisfy E[‖X0‖2] <∞ and E[|Θ0|2] <∞. Then for any T > 0 there exists a constant
C = C(T,K) > 0 such that every solution (X,Θ) to (13) satisfies

E

[
sup
t∈[0,T ]

‖Xt‖2 + |Θt|2
]
≤ C

(
E
[
‖X0‖2 + |Θ0|2

]
+K2(T 2 + T )

)
,

In particular, it holds that Law(X,Θ) ∈ P2.

The proof of this lemma is classic and it is based on the Burkholder-Davis-Gundy inequality. For the
completeness we wrote the proof in Appendix A.1. Now we can state the well-posedness result:

Theorem 1 Let X0 and Θ0 be Rd-valued, respectively R-valued, random variables with finite second moment
i.e.

E
[
‖X0‖2

]
<∞, E

[
|Θ0|2

]
<∞.

Under Assumption 1, there exists a unique (pathwise and in law) solution to equation (13).

As already announced, the proof of the existence is based on the fixed point argument and it can be
found in a more general setting. Nevertheless, for the completeness we sketch in the Appendix 1.1 the basic
idea of the proof in our setting that is simpler than in the general setting, and hence easier accessible.

3.3 Convergence of the microscopic model to the mean-field equation

In this section we will prove that the the system of coupled SDEs for fixed N ∈ N given by (10) indeed
converges to the mean-field limit, i.e. to show the so called propagation of chaos. For N ∈ N we denote the
(measure-valued) empirical process of this system by µN = (µNt )t≥0, i.e. for t ≥ 0 we set

µNt :=
1

N

N∑
i=1

δ
(X

i,N
t ,Θ

i,N
t )

. (17)

For fixed i we consider the process (X
i
t,Θ

i
t)t≥0 that solves

dX
i
t =

(∫
Rd+1 U(X

i
t, y,Θ

i
t, θ)µt(dy dθ)

)
dt+

(∫
Rd+1 σsp(X

i
t, y,Θ

i
t, θ)µt(dy dθ)

)
dBi,spt ,

dΘ
i
t =

(∫
Rd+1 V (X

i
t, y,Θ

i
t, θ)µt(dy dθ)

)
dt+

(∫
Rd+1 σop(X

i
t, y,Θ

i
t, θ)µt(dy dθ)

)
dBi,opt ,

µt = Law(X
i
t,Θ

i
t).

The existence of (X
i
t,Θ

i
t)t≥0 follows from Theorem 1 and µ = (µt)t≥0 does not depend on i. From now

on we will denote the law of (X
i
t,Θ

i
t)t≥0 by µ.

Next, we will study the case when N tends to ∞. The key idea for the proof is to use the law of large

numbers (LLN) for empirical measures µN of i.i.d. copies of the process (X
i
,Θ

i
), cf. [53, Theorem 11.4.1].

We will see that by a uniform integrability argument, LLN also implies that

E
[
D2
T (µ, µN )

]
→ 0 as N →∞.

The rest of the needed estimates are then the same as in the proof of Theorem 1 and are mainly done for
the purpose of showing that

E
[
D2
T (µ, µN )

]
≤ CE

[
D2
T (µ, µN )

]
for some constant C > 0.

Theorem 2 For any i ∈ N we have

E
[

sup
0≤s≤t

∥∥∥Xi,N
s −Xi

s

∥∥∥2

+
∣∣∣Θi,N

s −Θ
i
s

∣∣∣2]→ 0 as N →∞.

Moreover, we have

lim
N→∞

E
[
D2
T (µ, µN )

]
= 0. (18)

The details of the proof are presented in Appendix 1.2.
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4 Characterization of the empirical measure and its limit

In this section we derive the formal stochastic partial differential equation (SPDE) for the empirical measure
µN , that is the so-called Dean–Kawasaki type equation [30, 54] with multiplicative noise and we derive the
McKean-Vlasov type PDE for the limiting measure µ. Recall that if X = (Xt)t≥0 is a Markov process with
generator L, then its law µ = (µt)t≥0 is a (weak) solution to the linear PDE

∂tµ = L∗µ, (19)

also known as the Kolmogorov forward equation. A similar equation still holds true for solutions (X,Θ, µ)of
the type of equation (13) and empirical measure for (10). However, the PDE that we will derive will be
non-linear.

4.1 Derivation of the PDE for the law of the coupled mean-field SDEs

We consider a system of coupled mean-field SDEs given by (13) and we want to derive equation for the
hydrodynamic limit µt = Law(Xt,Θt).

Let φ : Rd × R→ R be a smooth and compactly supported function. Then by Itô’s formula we have

dφ(Xt,Θt) =(∫
U(Xt, y,Θt, θ) · ∇xφ(Xt,Θt)µt(dydθ)

)
dt+

(∫
V (Xt, y,Θt, θ)

∂

∂θ
φ(Xt,Θt)µt(dydθ)

)
dt

+
1

2

(
d∑

i,j=1

(∫
σsp(Xt, y,Θt, θ)µt(dydθ)·

(∫
σsp(Xt, y,Θt, θ)µt(dydθ)

)
>
)
i,j

× ∂2

∂xi∂xj
φ(Xt,Θt)

)
dt

+
1

2

((∫
σop(Xt, y,Θt, θ)µt(dydθ)

)2
∂2

∂θ2
φ(Xt,Θt)

)
dt

+

(
(∇xφ(Xt,Θt))

> ·
∫
σsp(Xt, y,Θt, θ)µt(dydθ))

)
dBspt

+

(∫
σop(Xt, y,Θt, θ)µt(dydθ) ·

∂

∂θ
φ(Xt,Θt)

)
dBopt .

Taking the expectation the martingale part vanishes, differentiating in t and recalling that µt = Law(Xt,Θt)
we can rewrite the previous equation as

d

dt

∫
φ(z, η)µt(dzdη) =∫ [(∫

U(z, y, η, θ) · ∇zφ(z, η)µt(dydθ)

)
+

(∫
V (z, y, η, θ)

∂

∂η
φ(z, η)µt(dydθ)

)
+

1

2

(
d∑

i,j=1

(∫
σsp(Xt, y,Θt, θ)µt(dydθ) ·

(∫
σsp(Xt, y,Θt, θ)µt(dydθ)

)>)
i,j

× ∂2

∂xi∂xj
φ(Xt,Θt)

)
+

1

2

((∫
σop(Xt, y,Θt, θ)µt(dydθ)

)2
∂2

∂θ2
φ(Xt,Θt)

)]
µt(dzdη).

Assuming that µt is absolutely continuous with respect to Lebesgue measure and that its density µt(z, η)
is sufficiently regular, we can apply Fubini’s theorem and integration by parts. Since φ is an arbitrary
sufficiently regular test-function, we see that µ = (µt)t≥0 is a distribution-valued solution of the PDE

∂tµt(z, η) =− divz (µt(z, η) · U(z, η, µt))− divη (µt(z, η) · V (z, η, µt))

+
1

2

d∑
i,j=1

∂2

∂zi∂zj

(
µt(z, η) · σsp(z, η, µt) · σsp(z, η, µt)>

)
i,j

+
1

2

∂2

∂η2

(
µt(z, η)σop(z, η, µt)

2) ,
(20)

where we use the shorthand notation

U(z, η, µt) :=

∫
Rd×R

U(z, y, η, θ)µt(dydθ), (21)

V (z, η, µt) :=

∫
Rd×R

V (z, y, η, θ)µt(dydθ), (22)

σspace(z, η, µt) :=

∫
Rd×R

σspace(z, y, η, θ)µt(dydθ), (23)

σop(z, η, µt) :=

∫
Rd×R

σop(z, y, η, θ)µt(dydθ). (24)
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Remark 3 Note that in the case of the additive noise this equation becomes

∂tµt(z, η) =− divz
(
U(z, η, µt)µt(z, η)

)
− divη

(
V (z, η, µt)µt(z, η)

)
+

1

2
σ2

1∆zµt(z, η) +
1

2
σ2

2∆ηµt(z, η),

which coincides with the standard result from [27]. Hence, as expected the only difference are the coefficients
of the second order part of the differential operator on the right hand side, which are either constants or
functions.

4.2 SPDE description for the empirical measure µN

The goal is to derive a formal SPDE for the empirical measure µN , i.e. the analogue to the Dean-Kawasaki
equation, but with multiplicative noise. More precise, forN ∈ N let (XN

t ,Θ
N
t )t≥0 be such that its components

(Xk,N
t ,Θk,N

t )t≥0 solve the system (10).
In the following, we want to (formally) derive the SPDE that is solved by the empirical measure µN =

(µNt )t≥0 defined by (11).
Let φ : Rd × R → R be a smooth and compactly supported function. By definition of the empirical

measure we have ∫
Rd×R

φ(z, η)µNt (dzdη) =
1

N

N∑
i=1

φ(Xi,N
t ,Θi,N

t ).

Hence, we will first calculate each of the summands individually. For fixed i = 1, . . . , N we denote by
Bsp,i = (Bsp,i,1, . . . , Bsp,i,d) the components of the driving Brownian motion of the i-th agent. By Itô’s
formula we have

dφ(Xi,N
t ,Θi,N

t ) =

∫
µi,Nt (dzdη)

[(∫
U(z, η, µNt ) · ∇xφ(z, η) + V (z, η, µNt )

∂

∂θ
φ(z, η)

)
dt

+
1

2

(
d∑

i,j=1

(
σsp(z, η, µ

N
t ) · σsp(z, η, µNt )>

)
i,j

∂2

∂zi∂zj
φ(z, η)

)
dt

+
1

2

(
σop(z, η, µ

N
t )2 ∂

2

∂η2
φ(z, η)

)
dt

+
(

(∇zφ(z, η))>σsp(z, η, µ
N
t )
)
dBsp,it +

(
σop(z, η, µ

N
t )

∂

∂θ
φ(z, η)

)
dBop,it

]
,

where we again used the shorthand notation introduced in (21)-(24).
Assuming that µi,Nt is absolutely continuous with respect to Lebesgue measure with a sufficiently smooth

density µi,Nt (z, η) and applying integration by parts with respect to the Lebesgue integral, we obtain

dφ(Xi,N
t ,Θi,N

t ) =∫
dzdηφ(z, η)

[
− divz

[
U(z, η, µNt )µi,Nt (z, η)

]
dt− divη

[
V (z, η, µNt )µi,Nt (z, η)

]
dt

+
1

2

(
N∑

i,j=1

∂2

∂zi∂zj

((
σsp(z, η, µ

N
t ) · σsp(z, η, µNt )>

)
i,j
µi,Nt (z, η)

))
dt

+
1

2

∂2

∂η2

(
σop(z, η, µ

N
t )2µi,N (z, η)

)
dt−

d∑
k,l=1

∂

∂zk

(
σl,ksp (z, η, µNt )µi,N (z, η)dBsp,i,kt

)

− ∂

∂η

(
σop(z, η, µ

N
t )µi,N (z, η)dBop,it

)]
.

Utilizing that for each i = 1, . . . , N we have

d

dt
φ(Xi,N ,Θi,N ) =

∫
Rd+1

dzdηφ(z, η)

[
∂

∂t
µi,Nt (z, η)

]
,
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and after the summation over i we conclude that the empirical measure (µNt )t≥0 solves the SPDE

∂tµ
N
t =− divz

[
U(z, η, µNt )µNt (z, η)

]
− divη

[
V (z, η, µNt )µNt

]
+

1

2

N∑
i,j=1

(
∂2

∂zi∂zj

(
σsp(z, η, µ

N
t ) · σsp(z, η, µNt )>

)
i,j
µNt (z, η)

)

+
1

2

∂2

∂η2

(
σop(z, η, µ

N
t )2µN (z, η)

)
− 1

N

N∑
i=1

q∑
k=1

d∑
l=1

∂

∂zk

(
σl,ksp (z, η, µNt )µi,Nt (z, η)dBsp,i,kt

)
− 1

N

N∑
i=1

∂

∂η

(
σop(z, η)µi,Nt (z, η)dBop,it

)
.

However, this is not yet a closed equation for the empirical measure, because it still depends on the individual
trajectories through the noise term. As in the case of additive noise [30], we will first calculate the covariance
of this noise term and then replace it by a statistically identical term. For this, let’s denote the two noise
terms by

ξsp(t, z, η) :=
1

N

N∑
i=1

d∑
k=1

d∑
l=1

∂

∂zk

(
σl,ksp (z, η, µNt )µi,Nt (z, η)dBsp,i,kt

)
,

ξop(t, z, η) :=
1

N

N∑
i=1

∂

∂η

(
σop(z, η)µi,Nt (z, η)dBop,it

)
.

Then, the covariances are given by

E [ξsp(t, z, η)ξsp(s, y, θ)] = δ(t− s) 1

N2

N∑
i=1

d∑
k=1

d∑
l,g=1

∂

zk

(
σl,ksp (z, η, µNt )µi,Nt (z, η)

)
× ∂

xk

(
σg,ksp (x, θ, µNs )µi,Ns (x, θ)

)
,

E [ξsp(t, z, η)ξop(s, x, θ)] = 0,

E [ξop(t, z, η)ξop(s, x, θ)] = δ(t− s) 1

N2

N∑
i=1

∂

∂η

(
σop(z, η, µ

N
t )µi,Nt (z, η)

)
× ∂

∂θ

(
σop(x, θ, µ

N
s )µi,Ns (x, θ)

)
.

First note that by the definition of µi,Nt as a Dirac delta distribution, we have for each i = 1, . . . , N

µi,Nt (z, η)µi,Nt (x, θ) = δ(z − x)δ(η − θ)µi,N (z, η) = δ(z − x)δ(η − θ)µi,N (x, θ).

Therefore we can rewrite the non-trivial covariances as

E [ξsp(t, z, η)ξsp(s, y, θ)]

= δ(t− s) 1

N

N∑
i=1

d∑
k=1

d∑
l,g=1

∂

∂zk

∂

∂xk

(
δ(η − θ)δ(z − x)σl,ksp (z, η, µNt )σg,ksp (z, η, µNt )µNt (z, η)

)
,

and

E [ξop(t, z, η)ξop(s, x, θ)] = δ(t− s) 1

N

∂

∂η

∂

∂θ

(
δ(z − x)δ(η − θ)σop(z, η, µNt )2µNt (z, η)

)
.

Furthermore, let ζ be a (d+ 1)-dimensional Gaussian random field indexed by R+×Rd×R with covariance
given by

E
[
ζi(t, z, η)ζj(s, x, θ)

]
= δi,jδ(t− s)δ(z − x)δ(η − θ).

We define two noise fields ξsp
′
, ξop

′
via

ξsp
′
(t, z, η) :=

1√
N

d∑
k=1

d∑
l,g=1

∂

∂zk

∂

∂xk

(
σl,ksp (z, η, µNt )σg,ksp (z, η, µNt )µNt (z, η)

1
2 ζ(t, z, η)

)
ξop

′
(t, z, η) :=

1√
N

∂

∂η

∂

∂θ

(
σop(z, η, µ

N
t )µNt (z, η)

1
2 ζ(t, z, η)

)
.
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Note that these noise fields are statistically equivalent to ξsp, ξop. Altogether, we conclude that the dynamics
of the empirical measure µN of the feedback-loop dynamics with multiplicative noise given by (1) is described
by the following formal SPDE

∂tµ
N
t =− divz

[
U(z, η, µNt )µNt (z, η)

]
− divη

[
V (z, η, µNt )µNt (z, η)

]
+

1

2

N∑
i,j=1

(
∂2

∂zi∂zj

(
σsp(z, η, µ

N
t ) · σsp(z, η, µNt )>

)
i,j
µNt (z, η)

)

+
1

2

∂2

∂η2

(
σop(z, η, µ

N
t )2µN (z, η)

)
− 1√

N

d∑
k=1

d∑
l,g=1

∂

∂zk

∂

∂xk

(
σl,ksp (z, η, µNt )σg,ksp (z, η, µNt )µNt (z, η)

1
2 ζk(t, z, η)

)
− 1√

N

∂

∂η

∂

∂θ

(
σop(z, η, µ

N
t )µNt (z, η)

1
2 ζd+1(t, z, η)

)
.

(25)

Remark 4 The previous equation (25) is the generalization of the standard Dean-Kawasaki equation [30] to
the dynamics with the multiplicative case. In particular, in the case of the additive noise this SPDE becomes

∂tµ
N
t (x, θ) =− divx

[
µNt (x, θ) ·

∫
U(x, y, θ, η)µNt (y, η)dydη

]
− divθ

[
µNt (x, θ) ·

∫
V (x, y, θ, η)µNt (y, η)dydη

]
+

1

2
σ2

1∆xµ
N
t (x, θ) +

1

2
σ2

2∆θµ
N
t (x, θ)

− 1

N
σ1divx

[
µNt (x, θ)

1
2 · ζ(t, x, θ)

]
− 1

N
σ2divθ

[
µNt (x, θ)

1
2 · ζ(t, x, θ)

]
which is the standard type of Dean-Kawasaki equation. Concerning the SPDE formulations of an ABM,
observe that the diffusion part that appears in the dynamics of the empirical measure (see [31]) is exactly of
this type and the case with multiplicative noise is its generalization.

4.3 Numerical experiment

We will here illustrate the behaviour of the feedback loop system at the macroscopic level, i.e. when the
number of agents tend to infinity. As we showed in the previous Section, this dynamics is described by the
PDE (20). We will simulate it using finite difference method with one spatial dimension and one opinion
dimension. The considered domain is [−2, 2]2 with the grid size 0.05 and the time interval is [0, 1] with
time step dt = 0.0001. We use no-flux boundary conditions. The initial conditions are randomly chosen
four clusters with normal distribution. Other parameters are chosen in a similar way as in the experiments
made in Section 2.4. In particular, the potentials U and V are given by (4) and (5) respectively, with the
additional scaling parameter that is taken to be 0.5 and represents scaled space/opinion interaction strength.
Note that these potentials do not satisfy our regularity Assumption (1), however, as already explained, from
the literature is expected that the PDE equation for the empirical density has the same form as (20). As
in the ABM, the interaction radius is taken to be 0.15 and we consider the additive noise with strength
0.01 for both space and opinion dynamics. In Figure 7 we show the empirical density of agents from the
numerical discretization of the equation (20) at the initial time t = 0, intermediate time t = 0.5 and final
time t = 1. We observe that the behavior of the ABM shown in 2.4 agrees with the emerging dynamics of
the PDE model. Namely, the agents empirical density show the cluster formation that is in agreement with
the ABM and reflects the feedback loop dynamics of the system. Note that the diffusive behaviour depends
on the choice of the scaled space/opinion strength parameter. In particular, it is expected to have stronger
clustering effects with the increasing of space/opinion strength parameter. More detailed investigation of
this, and the effect of the boundary conditions will be the topic for the future research.

5 Conclusion

Literature on opinion dynamics is very rich and diverse, spanning from empirical approaches, that rely on
real-world data, to mathematical models, that mostly consider simple social rules and allow for rigorous
analysis. However, there is a large gap between data- and model- driven approaches, that asks for introduc-
ing new formal models that can better represent complex social mechanisms governing how people shape and
share their opinions. As a step towards closing this gap, in this paper we introduced an agent-based model
for studying the feedback loop between opinion and social dynamics. This co-evolving dynamics governs
how agents position in a social space (e.g. online social media) is influencing and is being influenced by
other agents opinions. Additionally, unlike most existing models for opinion dynamics that consider only
deterministic dynamics or additive noise, in order to account for more realistic scenarios, we introduce the
influence of a multiplicative noise. In order to explore how these different factors influence the appearance
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(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 7: Empirical density of agents in mean-field limit given by equation (20) at initial time t = 0, intermediate
time t = 0.5 and final time t = 1.

of emerging phenomena in the system, we tested our ABM model on several toy examples. In particular,
we simulated the model for different parameter choices and we showed how these govern grouping of agents
into spatial clusters, within which agents hold similar opinions. Our experiments have shown that cluster
formation with respect to agents’ social and/or opinion states is strongly influenced by the feedback loop.
Further investigations of this model and possible effects the feedback loop could have in real-world social
systems, will be the topic of future research.
Additionally, we formulated the feedback loop model in a rigorous mathematical framework and considered
its behaviour in the case when the number of agents tends to infinity. Although the well-posedness propa-
gation of chaos results have been proved for these type of systems in various weak regularity assumptions
scenarios, we stated the proofs of these results in the case of the Lipschitz assumption that are easier to
access and present the extension of the work presented in [27]. Finally, we derived formal equation for the
empirical density of the ABM that is in the spirit of the so-called Dean-Kawasaki equation, and the equation
of its hydrodynamic limit. Motivated by applications, considering the feedback loop dynamics with more
singular interaction potentials and its numerical analysis would be a natural next step and will be considered
in the future.
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6 Appendix

Appendix A.1.

proof 1 (Proof of Lemma 1) This follows from Theorem [55, Theorem 6.18] and the fact that

d((x, θ), (y, η)) := sup
s≤T
‖(xs, θs)− (ys, ηs)‖ , (x, θ), (y, η) ∈ C([0, T ];Rd+1),

where ‖(xs, θs)‖ :=
(∑d

k=1

∣∣xks ∣∣2 + |θs|2
)2

, defines a metric on C([0, T ];Rd+1).

proof 2 (Proof of Lemma 2) For n ∈ N consider the stopping time

τn := min {inf {t ≥ 0 : |Xt| ≥ n} , inf {t ≥ 0 : |Θt| ≥ n}} .

Then for the stopped process (Xτn
t ,Θτn

t )t≥0 it holds that

E

[
sup
t∈[0,T ]

‖Xτn
t ‖

2 + |Θτn
t |

2

]
≤ E

[
‖X0‖2 + |Θ0|2

]
+ 2n2.

Via Cauchy-Schwarz and the Burkholder-Davis-Gundy inequality one can now derive the upper bound

E

[
sup
t∈[0,T ]

‖Xτn
t ‖

2 + |Θτn
t |

2

]
≤ C

(
E
[
‖X0‖2 + |Θ0|2

]
+K2(T 2 + T )

)
,

where the constant C only depends on T and K. The right hand side of this inequality does not depend on
n, so we can conclude that the unstopped process X also satisfies this inequality by letting n tend to infinity.
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proof 3 (Proof of Theorem 1) As already announced, the proof of the existence is based on the fixed
point argument. Let us define a map Φ : P2 → P2 by mapping µ ∈ P2 to the law of the solution of the
coupled system of SDEs

dXµ
t =

(∫
C U(Xµ

t , y,Θ
µ
t , θ)µ(dydθ)

)
dt+

(∫
C σsp(X

µ
t , y,Θ

µ
t , θ)µ(dydθ)

)
dBspt ,

dΘµ
t =

(∫
C V (Xµ

t , y,Θ
µ
t , θ)µ(dydθ)

)
dt+

(∫
C σop(X

µ
t , y,Θ

µ
t , θ)µ(dydθ)

)
dBopt ,

Xµ
t=0 = X0,

Θµ
t=0 = Θ0.

The existence and uniqueness of a solution to this system follows from the fact that for fixed µ the drift and
diffusion coefficient are Lipschitz continuous and bounded. Moreover, from standard a priori estimates for
classical SDEs it follows that Φ(µ) ∈ P2.

It remains to show, that Φ is indeed a contraction on P2. To see this, fix two probability measures
µ1, µ2 ∈ P2 and let (X1,Θ1), (X2,Θ2) be the corresponding solutions, i.e. for i = 1, 2 we have{

dXi
t =

(∫
C U(Xi

t , y,Θ
i
t, θ)µ

i(dydθ)
)
dt+

(∫
C σsp(X

i
t , y,Θ

i
t, θ)µ

i(dydθ)
)
dBspt ,

dΘi
t =

(∫
C V (Xi

t , y,Θ
i
t, θ)µ

i(dydθ)
)
dt+

(∫
C σop(X

i
t , y,Θ

i
t, θ)µ

i(dydθ)
)
dBopt .

To estimate D2
T (Φ(µ1),Φ(µ2)), we will use that the law of (X1,Θ1, X2,Θ2) is actually a coupling of the two

probability measures Φ(µ1) and Φ(µ2). Therefore, by definition of the 2-Wasserstein distance as the infimum
over all couplings we have

D2
T (Φ(µ1),Φ(µ2)) ≤ E

[
sup
s≤T

∥∥X1
s −X2

s

∥∥2
+
∣∣Θ1

s −Θ2
s

∣∣2] .
We will now set up a Gronwall-type argument to obtain an upper bound of the right-hand side of this inequality
in terms of the 2-Wasserstein distance of µ1 and µ2. As a first step, we use Hölder’s and Young’s inequality
to see that for fixed s ≤ T we have

|X1
s −X2

s |2 ≤ 2s

∫ s

0

∣∣∣∣∫
C
U(X1

r , yr,Θ
1
r, θr)µ

1(dydθ)−
∫
C
U(X2

r , yr,Θ
2
r, θr)µ

2(dydθ)

∣∣∣∣2 ds
+2

∣∣∣∣∫ s

0

(∫
C
σsp(X

1
r , yr,Θ

1
r, θr)µ

1(dydθ)−
∫
C
σsp(X

2
r , yr,Θ

2
r, θr)µ

2(dydθ)

)
dBspr

∣∣∣∣2
where yr, θr are the projections onto the time r coordinate of the d-dimensional spatial component and

the 1-dimensional opinion component respectively. We obtain the analogoue estimate for
∣∣Θ1

s −Θ2
s

∣∣2.
Utilizing then Doob’s L2−inequality to estimate the stochastic part and Lipschitz-type inequality (17),

enable us to apply Gronwall’s lemma which implies that for all t ∈ [0, T ] we have

E
[
sup
s≤t

∥∥X1
s −X2

s

∥∥2
+
∣∣Θ1

s −Θ2
s

∣∣2] ≤ C ∫ t

0

W2
2,Rd+1(µ1

r, µ
2
r)dr, (26)

where the constant C is given explicitly by

C := 2(8 + 2T )L2 exp(2(8 + 2T )L2)

and W2,Rd+1 is the usual 2-Wasserstein distance on P2(Rd+1). Next observe that for two measures µ, ν ∈
P2((C([0, T ];Rd+1)) and fixed r ∈ [0, T ] we have

W2
2,Rd+1(µr, νr) ≤ D2

r(µ, ν). (27)

Applying (27) to (26) gives us

E
[
sup
s≤t

∥∥X1
s −X2

s

∥∥2
+
∣∣Θ1

s −Θ2
s

∣∣] ≤ C ∫ t

0

D2
r(µ

1, µ2)dr.

Furthermore, since the law of (X1,Θ1, X2,Θ2) is a coupling of Φ(µ1),Φ(µ2), the definition of the 2-Wasserstein
distance (15) implies

D2
T (Φ(µ1),Φ(µ2)) ≤ E

[
sup
s≤T

∥∥X1
s −X2

s

∥∥2
+
∣∣Θ1

s −Θ2
s

∣∣] ≤ C ∫ T

0

D2
r(µ

1
r, µ

2
r)dr.

After establishing this inequality, the well-posedness follows from the usual application of Banach’s fixed point
theorem. By Lemma 2 this shows that the solution is unique in law. Now if we let µ be the unique law of the
solution, and let it be the drift and diffusion coefficient of (13), then we have a standard SDE with bounded
and Lipschitz continuous drift and diffusion coefficients. For such systems it is well known, that pathwise
uniqueness holds. Therefore we can conclude that the solution to (13) is not only unique in law but also
pathwise unique.

15



Appendix A.2.

proof 4 (Proof of Theorem 2) For fixed t ∈ [0, T ] we have by Hölder’s inequality∥∥∥Xi,N
t −Xi

t

∥∥∥2

≤2t

∫ t

0

∥∥∥∥∫
C
U(Xi,N

s , y,Θi,N , θ)νN (dydθ)−
∫
C
U(X

i
s, y,Θi,N , θ)µ(dydθ)

∥∥∥∥2

ds

+2

∥∥∥∥∫ t

0

(∫
C
σsp(X

i,N
s , y,Θi,N , θ)νN (dydθ)−

∫
C
σsp(X

i
s, y,Θi,N , θ)µ(dydθ)

)
dBsps

∥∥∥∥2

.

We obtain the analogue estimate for
∣∣∣Θi,N

t −Θ
i
t

∣∣∣2.

Similarly as before, taking the supremum of previous estimates and integrating with respect to P and
Doob’s L2-inequality and the Lipschitz type inequality (17) we obtain

E
[

sup
0≤s≤t

∥∥∥Xi,N
s −Xi

s

∥∥∥2

+
∣∣∣Θi,N

s −Θ
i
s

∣∣∣2]
≤2(2t+ 8)L2E

[∫ t

0

∥∥∥Xi,N
s −Xi

s

∥∥∥2

+
∣∣∣Θi,N

s −Θ
i
s

∣∣∣2 +W2
2,Rd+1(µNs , µs)ds.

]
,

where W2,Rd+1(·, ·) is the usual 2-Wasserstein metric on the set of probability measures on Rd+1 with finite
second moment. The application of Gronwall’s inequality and the analogue arguments as in the proof of
Theorem 1, yield the estimate

E
[

sup
0≤s≤t

∥∥∥Xi,N
s −Xi

s

∥∥∥2

+
∣∣∣Θi,N

s −Θ
i
s

∣∣∣2] ≤ CE
[∫ t

0

D2
s(µ, µ

N )ds

]
.

By construction we know that (X
i
,Θ

i
)i∈N is an i.i.d. family with Law(X

i
,Θ

i
) = µ for all i ∈ N. We define

the empirical measure of the (X
i
,Θ

i
)’s by

µN :=
1

N

N∑
i=1

δ
(X

i
,Θ

i
)
. (28)

Note that the random measure 1
N

∑N
i=1 δ(Xi,N ,Θi,N ,X

i
,Θ

i
)

is a random coupling of the random measures µN

and µN . Therefore the definition of the truncated 2-Wasserstein distance gives us the pathwise inequality

D2
t (µ

N , µN ) ≤ 1

N

N∑
i=1

sup
0≤s≤t

(∥∥∥Xi,N
s −Xi

s

∥∥∥2

+
∣∣∣Θi,N

s −Θ
i
s

∣∣∣2) . (29)

Hence, by our previous considerations we have

E
[
D2
t (µ

N , µN )
]
≤ CE

[∫ t

0

D2
s(µ, µ

N )ds

]
. (30)

Moreover, combining this with the triangle inequality for the truncated 2-Wasserstein distance (15), we obtain

E
[
D2
t (µ, µ

N )
]
≤ 2E

[
D2
t (µ, µ

N )
]

+ 2CE
[∫ t

0

D2
s(µ, µ

N )ds

]
.

Now we can apply Gronwall’s inequality and take t = T to get

E
[
D2
T (µ, µN )

]
≤ 2e2CTE

[
D2
T (µ, µN )

]
,

where the right hand side tends to 0 as N →∞ by the LLN for empirical measures of i.i.d. random variables,
cf. [53, Theorem 11.4.1].
Since this LLN only gives us the almost sure convergence of the random measures µN → µ, it remains to
show that the family (D2

T (µ, µN ))N∈N is uniformly integrable.
This can be shown by observing that

D2
T (µ, µN ) ≤ 2D2

T (µ, δ0) + 2W2
2 (δ0, µ

N ) ≤ 2D2
T (µ, δ0) + 2

1

N

N∑
j=1

sup
s≤T

∥∥∥(X
j
s,Θ

j
s)
∥∥∥2

, (31)

where δ0 is the Dirac zero measure on C([0, T ];Rd+1). The right hand side of this inequality is uniformly

integrable, since the first term does not depend on N and the family ( 1
N

∑N
j=1 sups≤T

∥∥∥(X
j
s,Θ

j
s)
∥∥∥2

)N∈N is

uniformly integrable as the empirical average of i.i.d. copies of an integrable random variable. Then the
uniform integrability of the empirical averages follows directly from the definition.
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