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Abstract To facilitate decision support in freshwa-

ter ecosystem protection and restoration manage-

ment, habitat suitability models can be very valuable.

Data driven methods such as artificial neural net-

works (ANNs) are particularly useful in this context,

seen their time-efficient development and relatively

high reliability. However, specialized and technical

literature on neural network modelling offers a

variety of model development criteria to select model

architecture, training procedure, etc. This may lead to

confusion among ecosystem modellers and managers

regarding the optimal training and validation meth-

odology. This paper focuses on the analysis of ANN

development and application for predicting macroin-

vertebrate communities, a species group commonly

used in freshwater assessment worldwide. This

review reflects on the different aspects regarding

model development and application based on a

selection of 26 papers reporting the use of ANN

models for the prediction of macroinvertebrates. This

analysis revealed that the applied model training and

validation methodologies can often be improved and

moreover crucial steps in the modelling process are

often poorly documented. Therefore, suggestions to

improve model development, assessment and applica-

tion in ecological river management are presented. In

particular, data pre-processing determines to a high

extent the reliability of the induced models and their

predictive relevance. This also counts for the validation

criteria, that need to be better tuned to the practical

simulation requirements. Moreover, the use of sensi-

tivity methods can help to extract knowledge on the

habitat preference of species and allow peer-review by

ecological experts. The selection of relevant input

variables remains a critical challenge as well. Model

coupling is a missing crucial step to link human

activities, hydrology, physical habitat conditions, water

quality and ecosystem status. This last aspect is

probably the most valuable aspect to enable decision

support in water management based on ANN models.

Keywords Data driven models � Decision support
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models � Knowledge extraction � Water management

Introduction

Artificial neural networks (ANNs) are non-linear

mapping structures that can be applied for predictive
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modelling and classification. Various types of neural

networks exist, suitable to solve different kinds of

problems. The choice of the type of network depends

on the nature of the problem to be solved. The most

popular ANNs are multi-layer feed-forward neural

networks with the backpropagation algorithm, i.e.

backpropagation networks (Rumelhart et al. 1986;

Hagan et al. 1996) and Self-organizing Maps, i.e.

Kohonen networks (SOMs) (Kohonen 1982). How-

ever, the latter are mainly interesting for clustering

data and will not be further discussed in this review.

A backpropagation network is based on the ‘super-

vised’ procedure and can be used for the development

of predictive models. The network constructs a model

based on examples of data with known outputs. It has

to build up the model solely from the examples

presented, which are together assumed to contain the

information necessary to establish the relation. An

example can be the relation between the presence/

absence or abundance of macroinvertebrate taxa

(such as Gammaridae (Crustacea, Amphipoda),

Baetidae (Insecta, Ephemeroptera), Chironomidae

(Insecta, Diptera)) and river characteristics such as

dissolved oxygen, pH, flow velocity, river depth, ...

A backpropagation network typically comprises

three types of neuron layers: an input layer, one or

more hidden layers and an output layer, each includ-

ing one or more neurons (Fig. 1). In a backpropagation

network neurons from one layer are connected to all

neurons in the subsequent layer, but no lateral

connections within a layer, nor feedback connections

are possible. With the exception of the input neurons,

which only connect one input value with its associated

weight values, the net input for each neuron is the sum

of all input values xn, each multiplied by its weight

wjn, and a bias term zj which may be considered as the

weight from a supplementary input equalling one

(Fig. 2):

aj ¼
X

wjixi þ zj ð1Þ

The output value, yj, can be calculated by feeding

the net input into the transfer function of the neuron:

yj ¼ f ðajÞ ð2Þ

Before training, the values of the weights and

biases are initially set to small random numbers.

Subsequently, a set of input/output vector pairs is

presented to the network. For each input vector, the

output vector is calculated by the neural network

model, and an error term is calculated for the outputs

of all hidden and output neurons, by comparing the

calculated output vector and the actual output vector.

Using this error term, the weights and biases are

updated in order to decrease the error, so future

outputs are more likely to be correct. This procedure

is repeated until the errors become small enough or a

predefined maximum number of iterations is reached.

This iterative process is termed ‘training’. After the

training, the ANN can be validated using independent

data. A more detailed description can be found in Lek

and Guégan (1999).

This paper analyses ANN development procedures

from both technical and ecological perspectives and

studies ANN applications to predict macroinverte-

brate communities in aquatic ecosystems, as these

communities have been proven to be good indicators

Fig. 1 Schematic illustration of a three-layered feed-forward

neural network consisting of one input layer, one hidden layer

and one output layer

x1

x2 wj1. wj2 Neuron J
.
. yj

xi wji
.
. wjn
. zj

xn

yj = f(aj) aj = ¬ wjixi + zj

Fig. 2 Scheme of a neuron in a backpropagation network

receiving input values from n neurons, each associated with a

weight, as well as a bias zj. The resulting output value yj is

computed according to the presented equations
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for the assessment of surface waters. Based on this

overview, suggestions to improve model develop-

ment, assessment and application in ecological river

management are presented.

Predictive ANN development

Data analysis and processing

Data processing

Generally, most variables span different numerical

ranges. In order to ensure that all variables can

receive equal attention during the training process,

standardization is recommended. In addition, the

variables have to be scaled in such a way as to be

commensurate with the limits of the activation

functions used in the output layer (Maier and Dandy

2000). Several authors (Chon et al. 2001, 2002;

Gabriels et al. 2007; Obach et al. 2001; Park et al.

2003a, b; Schleiter et al. 1999; Schleiter et al. 2001;

Wagner et al. 2000) proportionally normalized the

data between zero and one [0 1] in the range of the

maximum and minimum values, while Dedecker

et al. (2004, 2005a) and Gabriels et al. (2002) used

the interval [�1 1]. Moreover the division of the

dataset in folds for cross-validation is crucial for a

good model training and evaluation. However this

fold optimization process is not described in the

analysed publications. This aspect will be further

discussed in the paragraphs on validation.

Band width

Lek and Guégan (1999) stated that ANN models are

built solely from the examples presented during the

training phase, which are together assumed to

implicitly contain the information necessary to

establish the relation between input and output. As

a result, ANNs are unable to extrapolate beyond the

range of the data used for training. Consequently,

poor and unreliable predictions can be expected when

simulations have to be made based on values outside

of the range of those used for training (Maier and

Dandy 2000). Dedecker et al. (2005a) tested the

sensitivity and robustness of the ANN models when

data, containing variables with values beyond the

range of the data for initial training, was added.

Therefore, they created a virtual dataset based on

ecological expert knowledge to introduce a small set

of instances with ‘extreme’ values to the model. Their

work demonstrated that coupling of data driven

modelling techniques with expert knowledge can be

very valuable.

Input variable selection

Data driven approaches, such as ANN models, have

the ability to determine which model inputs are

critical to obtain the best possible predictions within

the presented dataset. However, presenting a large

number of inputs to ANN models, and relying on the

network to determine the critical model inputs,

usually increases network size. This has a number

of disadvantages, for example decreasing processing

speed and increasing the amount of data required to

estimate the network parameters efficiently (Maier

and Dandy 2000). In this way, selection of input

variables can considerably reduce the model calcu-

lation time, but also the related field data collection

efforts.

According to Walczak and Cerpa (1999), three

steps can be followed to determine the optimal set of

input variables. The first one is to perform standard

knowledge acquisition. Typically, this involves con-

sultation with multiple domain experts. Walczak

(1995) has indicated the requirement for extensive

knowledge acquisition utilizing domain experts to

specify ANN input variables. The primary purpose of

the knowledge acquisition phase is to guarantee that

the input variable set is not under-specified, providing

all relevant domain criteria to the ANN. Once a base

set of input variables is defined through knowledge

acquisition, the set can be pruned to eliminate

variables that contribute noise to the ANN and

consequently reduce ANN generalization perfor-

mance. ANN input variables should not be highly

correlated. Correlated variables degrade ANN per-

formance by interacting with each other as well as

other elements to produce a biased effect. From an

ecological point of view, relationships between

environmental variables and taxonomic richness

should be considered with caution, as these analyses,

based on correlation, do not necessarily involve

relevant ecological processes. However, the only way

to establish reliable causal relationships between

input and output, is to use experimental designs
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(Beauchard et al. 2003). For macroinvertebrates, this

can be done on the basis of spiking tests in situ or

with artificial river systems for instance. These are

however both very time consuming, expensive and

are moreover limited regarding their practical set-up

(collection of individuals, controlling physical–chem-

ical conditions,...). A first filter to help identify

‘noise’ variables is to calculate the correlation of

pairs of variables. If two variables are strongly

correlated, then one of these two variables may be

removed without adversely affecting the ANN per-

formance. The cut-off value for variable elimination

is a heuristic value and must be determined separately

for every ANN application, but any correlation

absolute value of 0.20 or higher indicates a probable

noise source to the ANN (Walczak and Cerpa 1999).

When a significant correlation (P < 0.01) was found

between two variables, Brosse et al. (2003) removed

the one accounting for less variation in the single-

scale models.

In addition, there are distinct advantages in using

analytical techniques to help determine the inputs for

ANN models (Maier and Dandy 2000). However,

these methods can merely be applied when large

datasets are available. Beauchard et al. (2003), Obach

et al. (2001), Schleiter et al. (1999, 2001) used a

stepwise procedure to identify the most influential

variables. In this approach, separate networks are

trained for each input variable. The network perform-

ing best is retained and the effect of adding each of

the remaining inputs in turn is assessed. This process

is repeated for three, four, five, etc. input variables,

until the addition of extra variables does not result in

a significant improvement in model performance. On

the other hand, one can start with all the available

variables and remove one by one the least important

ones (e.g. Beauchard et al. 2003; Gabriels et al.

2007). Disadvantages of these approaches are that

they are computationally intensive and that they are

unable to capture the importance of certain combi-

nations of variables that might be insignificant on

their own. Obach et al. (2001), Schleiter et al. (1999,

2001) and Wagner et al. (2000) applied a special

variant of the backpropagation network type, the so-

called senso-net, to determine the most important

input variables (sensitivity analysis). Senso-nets

include an additional weight for each input neuron

representing the relevance (sensitivity) of the corre-

sponding input parameter for the neural model. The

sensitivities are adapted during the training process of

the network. Appropriate subsets of potential input

variables can be selected according to these sensitiv-

ities. A third frequently used technique is genetic

algorithms (e.g. D’heygere et al. 2006; Obach et al.

2001; Schleiter et al. 2001). This technique automat-

ically selects the relevant input variables (Goldberg

1989). However, the dataset needs to contain a

sufficient number of instances to enable the applica-

tion of these methods.

Model architecture

According to Haykin (1999), generalization capabil-

ity of a neural network is influenced by three factors:

the size of the training set and how representative it is

of the environment of interest, the architecture of the

neural network, and the complexity of the problem

studied. The architecture is the only of these three

factors that can be influenced in the modelling

process, making it a crucial step, which should be

considered carefully.

Walczak and Cerpa (1999) distinguish four design

criteria for ANNs which should be decided upon in

subsequent steps: knowledge-based selection of input

values, selection of a learning method, design of the

number of hidden layers and selection of the number

of hidden neurons for each layer. Input variable

selection was already discussed in the previous

section.

Learning method

The suitability of a particular method is often a trade-

off between performance and calculation time. The

majority of the ANNs used for prediction are trained

with the backpropagation method (e.g. Cherkassky

and Lari-Najafi 1992; Maier and Dandy 2000). Due

to its generality (robustness) and ease of implemen-

tation, backpropagation is the best choice for the

majority of ANN-based predictions. Backpropagation

is the superior learning method when a sufficient

number of relatively noise-free training examples are

available, regardless of the complexity of the specific

domain problem (Walczak and Cerpa 1999).

Although backpropagation networks can handle noise

in the training data (and may actually generalize

better if some noise is present in the training data),

too many erroneous training values may prevent the
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ANN from learning the desired model. When only a

few training examples or very noisy training data are

available, other learning methods should be selected

instead of backpropagation (Walczak and Cerpa

1999). Radial basis function networks perform well

in domains with limited training sets (Barnard and

Wessels 1992 in Walczak and Cerpa 1999) and

counterpropagation networks perform well when a

sufficient number of training examples is available,

but may contain very noisy data (Fausett and Elwasif

1994 in Walczak and Cerpa 1999).

In order to optimize the performance of backprop-

agation networks, it is essential to note that the

performance is a function of several internal param-

eters including the transfer function, error function,

learning rate and momentum term. The most fre-

quently used transfer functions are sigmoid ones such

as the logistic and hyperbolic tangent functions

(Maier and Dandy 2000). However, other transfer

functions may be used, such as hard limit or linear

functions (Hagan et al. 1996). The error function is

the function that is minimized during training. The

most commonly used error function is the mean

squared error (MSE) function. However, in order to

obtain optimal results, the errors should be indepen-

dently and normally distributed, which is not the case

when the training data contain outliers (Maier and

Dandy 2000). To overcome this problem, Liano

(1996) proposed the least mean log squares (LMLS)

error function. The learning rate is directly propor-

tional to the size of the steps taken in weight space.

Traditionally, learning rates remain fixed during

training (Maier and Dandy 2000) and optimal learn-

ing rates are determined by trial and error. However,

heuristics have been proposed which adapt the

learning rate as training progresses to keep the

learning step size as large as possible while keeping

learning stable (Hagan et al. 1996). A momentum

term is usually included in the training algorithm in

order to improve learning speed (Qian 1999) and

convergence (Hagan et al. 1996). The momentum

term should be less than 1.0, otherwise the training

procedure does not converge (Dai and Macbeth 1997).

Dai and Macbeth (1997) suggest a learning rate of

0.7 with a momentum term of at least 0.8 and smaller

than 0.9 or a learning rate of 0.6 with a momentum

term of 0.9. Qian (1999) derived the bounds for

convergence on learning rate and momentum param-

eters, and demonstrated that the momentum term

can increase the range of learning rates over which the

system converges.

Number of hidden layers

A greater number of hidden layers enables an ANN to

improve its closeness-of-fit, while a smaller quantity

improves the smoothness or extrapolation capabilities

of the ANN (Walczak and Cerpa 1999). Theoreti-

cally, an ANN with one hidden layer can approximate

any function as long as sufficient neurons are used in

the hidden layer (Hornik et al. 1989). Flood and

Kartam (1994) suggest using two hidden layers as a

starting point. However, it must be stressed that

optimal network geometry is highly problem depen-

dent and therefore trial and error is in most cases the

only option to determine the optimal number of

hidden layers based on ‘experience’ with the dataset.

Number of hidden neurons

The number of neurons in the input layer is fixed by

the number of model inputs, whereas the number of

neurons in the output layer equals the number of

model outputs. The critical aspect however is the

choice of the number of neurons in the hidden

layer(s). More hidden neurons result in a longer

training period, while fewer hidden neurons provide

faster training at the cost of having fewer feature

detectors (Bebis and Georgiopoulos 1994). For two

networks with similar errors on training sets, the

simpler one (the one with fewer hidden units) is

likely to produce more reliable predictions on new

cases, while the more complex model implies an

increased chance of overfitting on the training data

and reducing the model’s ability to generalize on new

data (Hung et al. 1996; Özesmi and Özesmi 1999).

Hecht-Nielsen (1987) showed that any continuous

function with Ni inputs in the range [0 1] and No

outputs can be represented exactly by a feedforward

network with 2Ni + 1 hidden neurons.

Various authors propose rules of thumb for

determining the number of hidden neurons. Some of

these rules are based on the number of input and/or

output neurons, whereas others are based on the

number of training samples available. Walczak and

Cerpa (1999) warn that these heuristics do not use

domain knowledge for estimating the quantity of
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hidden nodes and may be counterproductive. Table 1

shows the rules that suggest the number of hidden

neurons based on the number of input (Ni) and/or

output (No) nodes.

Some authors suggest rules to determine the

necessary number of training samples (S) based on

the number of connection weights. Given the number

of training samples is fixed, inverting these rules

gives an indication of the maximum number of

connection weights to avoid overfitting (Table 2).

The number of hidden neurons necessary can be

calculated given the number of connection weights

and the number of input and output neurons.

Rules of thumb are clearly divergent and when

selecting the number of hidden neurons, one should

take both S and Ni into account. Assuming only one

hidden layer is used, the number of connection

weights should not exceed S/10 and the number of

hidden neurons should be at least, roughly, (Ni + No)/

2. Evidently, in order to be able to meet both

constraints, the number of training samples has to be

sufficiently large.

According to Walczak and Cerpa (1999), the

number of hidden neurons in the last layer should be

set equal to the number of decision factors used by

domain experts to solve the problem. Decision factors

are the distinguishable elements that serve to form the

unique categories of the input vector space. The

number of decision factors is equivalent to the

number of heuristic rules or clusters used in an

expert system (Walczak and Cerpa 1999).

Alternatively, techniques for automatically select-

ing ANN architecture with the required number of

hidden units may be used. Such techniques were

proposed by e.g. Bartlett (1994), Nabhan and Zomaya

(1994) and Anders and Korn (1999).

Model validation and interpretation

Model validation

To validate the model performance, a set with data

independent from the training set is required (Lek and

Guégan 1999; Maier and Dandy 2000). In the

validating phase, the input patterns are fed into the

network and the desired output patterns are compared

with those given by the ANN model. The agreement

or disagreement of these two sets gives an indication

of the performance. As mentioned before, the data

used for validation must be within the range of the

data used for training. Therefore, this is a key element

to take care of during data preparation (data strati-

fication). It is also imperative that the training and

validation sets are representative of the same popu-

lation. The optimal solution is to have two indepen-

dent databases (Lek and Guégan 1999). In this way,

the first can be used for training and the second for

validation of the model (e.g. Mastrorillo et al. 1998;

Obach et al. 2001). However, when limited data are

available, it might be necessary to split the available

data into a training and a validation set. A frequently

used procedure, is the k-fold cross-validation method

(e.g. Dedecker et al. 2002, 2004, 2005a, b, 2007;

D’heygere et al. 2006). In this case, the data set is

equally divided into k parts. The ANN model is

trained with (k�1) parts, and validated with the

remaining part. This is repeated k times. The variance

of the performance results gives an indication of the

robustness of the induced model(s). To determine the

optimal k-value, it is best to try out a set of

combinations of k between 3 and 10, and find a

balance between the robustness and reliability of the

developed models. In many software packages, 10-

fold cross validation is used as default setting,

however, when the dataset is relatively small, lower

Table 1 Rules suggesting the number of hidden neurons

based on the number of input (Ni) and/or output (No) nodes

Rule Reference

(2/3) * Ni Wang (1994)

0.75 * Ni Lenard et al. (1995)

0.5 * (Ni + No) Piramuthu et al. (1994)

2 * Ni + 1 Fletcher and Goss (1993),

Patuwo et al. (1993)

2 * Ni or 3 * Ni Kanellopoulos and Wilkinson (1997)

Table 2 Indication of the maximum number of connection

weights to avoid overfitting based on the number of training

samples (S)

Maximum number of

connection weights

Reference

S After Rogers and Dowla (1994)

S/2 After Masters (1993)

S/4 After Walczak and Cerpa (1999)

S/10 After Weigend et al. (1990)

S/30 After Amari et al. (1997)
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k-values can result in more robust ANN-models, but

with a relatively low performance. Therefore, a high

k-value is recommended for small datasets. Beau-

chard et al. (2003), Brosse et al. (2001, 2003) and

Guégan et al. (1998) for example used the ‘leave-one-

out’ cross-validation method (Efron 1983). This

procedure is a special case of k-fold cross-validation,

where k equals the sample size (number of instances

in the dataset).

Performance measures

Based on the output, different performance measures

can be distinguished. When presence/absence of the

macroinvertebrates is predicted, the percentage of

correctly classified instances (CCI) is frequently used

to assess model performance. There is however clear

evidence that this CCI is affected by the frequency of

occurrence of the test organism(s) being modelled

(Fielding and Bell 1997; Manel et al. 1999). Among the

different measures, which are based on a confusion

matrix (Table 3), proposed to assess the performance of

presence/absence models (Table 4), Fielding and

Bell (1997) and Manel et al. (1999) recommended

Cohen’s kappa as a reliable performance measure,

since the effect of prevalence on Cohen’s kappa

appeared to be negligible (e.g. Dedecker et al. 2004,

2005a; D’heygere et al. 2006). Therefore, kappa

provides a more reliable representation of model

performance (Cohen 1960). However, these kappa

values also represent the information content of the

dataset, and each dataset has a limit regarding extract-

able information. Consequently, differences in kappa

threshold values (and evaluation classes) can be

expected between disciplines in general and datasets

in particular (Gabriels et al. 2007). In an ecological

context, Randin et al. (2006) assess kappa values as

follows: 0.00–0.40: poor; 0.40–0.75: good; 0.75–1.00:

excellent. These classes can consequently be used to

assess model reliability, but can not be used to evaluate

the modelling method in an absolute manner, only on a

relative basis (e.g. comparison of models based on the

same dataset). In this context, the reliability of the

monitoring procedure of the input and output variables

has to be taken into account. Comparison of monitoring

reliability with model performance can give valuable

insight in how reliable models can potentially be and

how much they can be improved.

When the output of the ANN model consists of the

species abundance, richness, diversity, density or a

derived index, commonly used performance measures

are the correlation (r) or determination (R2) coeffi-

cient and the (root) mean squared error ((R)MSE) or

a derivative between observed (O) and predicted (P)

values (Table 5).

Model interpretation

Although in many studies ANNs have been shown to

exhibit superior predictive power compared to tradi-

tional approaches, they have also been labelled as a

Table 3 The confusion matrix as a basis for the performance

measures with true positive values (TP), false positives (FP),

false negatives (FN) and true negative values (TN)

Observed

+ �

Predicted + a b

� c d

Table 4 Measures based

on the confusion matrix to

assess the performance of

presence/absence models

(after Fielding and Bell

1997)

CCI is the percentage

correctly classified

instances, NMI is the

normalised mutual

information statistic and N

is the total number of

instances

Performance measure Calculation

CCI
aþdð Þ

N

Misclassification rate
bþcð Þ
N

Sensitivity a
aþcð Þ

Specificity d
bþdð Þ

Positive predictive power a
aþbð Þ

Negative predictive power d
cþdð Þ

Odds-ratio
abð Þ
cdð Þ

Cohen’s kappa
ðaþdÞ�ðððaþcÞðaþbÞþðbþdÞðcþdÞÞ=NÞ½ �

N�ðððaþcÞðaþbÞþðbþdÞðcþdÞÞ=NÞ½ �

NMI
�a: ln að Þ�b: ln bð Þ�c: ln cð Þ�d: ln dð Þþ aþbð Þ: ln aþbð Þþ cþdð Þ: ln cþdð Þ½ �

N: ln Nð Þ� aþcð Þ: ln aþcð Þþ bþdð Þ: ln bþdð Þð Þ½ �
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‘‘black box’’ because they provide little explanatory

insight into the relative influence of the independent

variables in the prediction process (Olden and

Jackson 2002). This lack of explanatory power is a

major concern to ecologists since the interpretation of

statistical models is desirable for gaining knowledge

of the causal relationships driving ecological phe-

nomena. As a consequence, various authors have

explored this problem and proposed several algo-

rithms to illustrate the role of variables in ANN

models. Sensitivity analysis is frequently used (Bros-

se et al. 2003; Chon et al. 2001; Dedecker et al. 2002,

2005b; Guégan et al. 1998; Hoang et al. 2001, 2002;

Laë et al. 1999; Marshall et al. 2002; Mastrorillo

et al. 1997a; Olden and Jackson 2002) and is based on

a successive variation of one input variable while the

others are kept constant at a fixed value (Lek et al.

1995, 1996a, b). The ‘Perturbation’ method (Yao

et al. 1998; Scardi and Harding 1999) assesses the

effect of small changes to each input on the neural

network output (e.g. Park et al. 2003a; Gevrey et al.

2003; Dedecker et al. 2005b, 2007). This method can

thus be seen as a ‘local’ sensitivity analysis. Gevrey

et al. (2003), Dedecker et al. (2005b, 2007) and

Beauchard et al. (2003) used the ‘PaD’ method

(Dimopoulos et al. 1995; Dimopoulos et al. 1999)

which consists in a calculation of the partial deriv-

atives of the output according to the input variables.

Several authors (Brosse et al. 1999, 2001, 2003;

Dedecker et al. 2005b, 2007; Gevrey et al. 2003;

Mastrorillo et al. 1997b; Olden and Jackson 2002)

applied Garson’s algorithm (Garson 1991; Goh

1995). This algorithm is based on a computation

using the connection weights. Gevrey et al. (2003)

and Dedecker et al. (2005b, 2007) applied the

‘Stepwise’ procedure, as discussed earlier, to identify

the most influential variables. Özesmi and Özesmi

(1999) described the Neural Interpretation Diagram

(NID) to provide a visual interpretation of the

connection weights among neurons. The relative

magnitude of each connection weight is represented

by line thickness and line shading represents the

direction of the weight. Olden and Jackson (2002)

proposed a randomization test for input–hidden–

output connection weight selection in ANN models.

By eliminating connection weights that do not

significantly differ from random, they simplified the

interpretation of neural networks by reducing the

number of axon pathways that have to be examined

for direct and indirect (i.e. interaction) effects on the

response variable, for instance when using NIDs.

Olden et al. (2004) compared these methodologies

using a Monte Carlo simulation experiment with data

exhibiting defined numeric relationships between a

response variable and a set of independent predictor

variables. Using simulated data with known proper-

ties, they could accurately investigate and compare

the different approaches under deterministic condi-

tions and provide a robust comparison of their

performance.

Model optimization

Traditionally, optimal network geometries were

searched for by trial and error (Maier and Dandy

2000). However, a number of systematic approaches

for determining optimal network geometry have been

proposed, including pruning and constructive algo-

rithms. The basic idea of pruning algorithms is to

start with a network that is large enough to capture

the desired input–output relationship and to subse-

quently remove or disable unnecessary weights

and/or neurons. A review of pruning algorithms is

given by Reed (1993). Constructive algorithms

approach the problem of optimizing the number of

hidden layer neurons from the opposite direction to

Table 5 Measures based

on observed (O) and

predicted (P) values to

assess the performance of

ANN models using

abundance, richness,

diversity, density or a

derived index as model

output

N is the total number of

instances

Performance measure Calculation

Correlation coefficient (r)

P
ðP�OÞ�ðð

P
P�
P

OÞ=NÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

P2�ðð
P

PÞ2=NÞÞ�ð
P

O2�ðð
P

OÞ2=N
p

ÞÞ

Determination coefficient (R2)

P
ðP�OÞ�ðð

P
P�
P

OÞ=NÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

P2�ðð
P

PÞ2=NÞÞ�ð
P

O2�ðð
P

OÞ2=N
p

ÞÞ

 !2

Root mean squared error (RMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
P� Oð Þ2

q

Mean squared error (MSE) 1
N

P
P� Oð Þ2
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pruning algorithms. The smallest possible network is

used at the start. Hidden layer neurons and connec-

tions are then added one at a time in an attempt to

improve model performance. A review of construc-

tive algorithms is given by Kwok and Yeung (1997a).

Several disadvantages of these approaches are men-

tioned in literature (Maier and Dandy 2000). For

example, the networks generally have to be trained

several times, i.e. each time a hidden neuron is added

or deleted (Kwok and Yeung 1997b). It has also been

suggested that the pruning and constructive algo-

rithms are susceptible to becoming trapped in struc-

tural local optima (Angeline et al. 1994). In addition,

they ‘only investigate restricted topological subsets

rather than the complete class of network architec-

tures’ (Angeline et al. 1994). Algorithms based on

evolutionary programming and genetic algorithms

have been proposed to overcome these problems and

have successfully been used to determine optimal

network architecture (e.g. Fang and Xi 1997; Kim

and Han 2000; Zhao et al. 2000; Wicker et al. 2002).

Evolutionary approaches are significantly different

from the previous techniques described. They pro-

duce more robust solutions because they use a

population of networks in the search process. A

complete review of the use of evolutionary algo-

rithms in neural networks is given by Yao (1993).

Beside the optimization of the network geometry,

input variable selection can also be seen as model

optimization. However, this has already been dis-

cussed in Section ‘‘Input variable selection’’.

Applications of macroinvertebrate predictions

using ANNs in water management

This paper focussed on macroinvertebrates. However,

the general aspects are very similar for other fresh-

water communities regarding model development

approaches. However, differences can be expected

regarding reliabilities as a result of natural dynamics

(algae blooms), behavioural complexity (e.g. fish

migration), monitoring methods,... Also, the relevant

input variables will differ among communities. For

algae nutrients and climate will play a crucial role,

whereas for fish the habitat related variables are

essential. For fish, moreover age dependent models

might be necessary, since depending on the age,

different habitat conditions are preferred. For algae

often time series are used for predictions (e.g.

Recknagel et al. 2006).

Table 6 gives an overview of articles discussing

case studies on the prediction of macroinvertebrates

by means of ANNs. A total of 26 cases were found in

literature. These papers were however produced by a

far smaller number of research groups, since most of

the research groups published more than one paper on

the subject. Among them, there is a French, Belgian,

German, British, South-Korean and Australian re-

search group, counting up to six groups although this

number is debatable because the groups do not work

completely independently, as some cooperative

papers clearly testify. All papers are very recent,

the earliest dating from 1998.

About one out of two papers mention the software

package used for modelling. Three different packages

were cited: MATLAB, WEKA and NNEE. Several of

the modellers not mentioning the software package

use their own code, implemented in an existing

modelling environment such as MATLAB. Evi-

dently, the software package used should not influ-

ence the modelling results although neither the use of

own programming nor existing software is an abso-

lute guarantee that no errors will occur, which means

that any system should be used with care.

The number of input variables ranged from 3 to

39, usually between 5 and 15. These variables

included geographical, seasonal and habitat quality

parameters (sinuosity, vegetation,...) as well as phys-

ical–chemical properties (dissolved oxygen, water

temperature, pH, nutrient concentrations, COD, ...)

and characteristics of toxicity. The performance of

neural networks with more input variables was not

necessarily higher, as shown in some studies (e.g.

Walley and Fontama 1998). The target variables were

usually presence/absence (nine cases) or abundance

(six cases) of macroinvertebrate taxa or derived

properties such as taxa richness, ASPT score or

exergy.

The neural networks were in almost all cases of the

feedforward connection type, in some cases com-

bined with a Self-organizing Map. Exceptions

included real-time recurrent neural networks, an

Elman recurrent neural network and a forward only

neural network. Most Self-organizing Maps were

trained with the Kohonen learning rule, one was

trained with a radial basis function. Most feedforward
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neural networks were trained with backpropagation or

a modification of it. In some cases the Levenberg–

Marquardt algorithm, general regression, a linear

neural network and/or counterpropagation were tested.

The real-time recurrent neural networks were trained

with recurrent learning and the Elman recurrent neural

network was trained with backpropagation.

The network architecture was reported in most

cases. The number of hidden layers was usually one

and in none of the reported cases higher than two. The

number of hidden neurons was usually of the same

order of magnitude as the number of input nodes.

Network architecture was determined, if stated, by

‘trial and error’ (seven cases), ‘empirically’ (two

cases) or ‘arbitrarily chosen’ (one case). In the

majority of the cases, the choice of network architec-

ture was not discussed at all. Clearly, this crucial step

in the modelling process is poorly documented for this

type of applications. In general, rules of thumb were

not (explicitly) used while trial and error was applied

without a clear strategy. However, it is recommended

to use rules of thumb as a starting point for a

systematic trial and error process in order to refine and

validate the choice of neural network architecture. In

addition, techniques for model optimization were

hardly used to optimize network geometry.

The transfer functions, where specified, were of

the sigmoid transfer function type.

The data were generally rescaled to the interval

[�1 1] or [0 1]. Maier and Dandy (2000) recommend

avoiding the extreme limits of the transfer function

when rescaling the outputs. However, in only one

study (Park et al. 2001) an interval smaller than the

transfer function allows was used.

A variety of performance measures was used,

strongly related to the type of output parameter. For

predictions of presence/absence, the percentage of

CCI was the most frequently used performance

measure. In some cases Cohen’s kappa was calculated

and in one case also the RMSE. When predicting

continuous variables such as abundance or taxa

richness, a variety of criteria were calculated in the

cited case-studies: r, R2, MSE, RMSE. Also the cross-

validation error (CVE) and /or the proportion of

predictions within a specified distance of the observed

value (PI) were applied as alternatives to these more

common performance measures. Two other measures

were used after transforming the abundance outputs

into abundance classes: CCI and Cohen’s kappa.

Among the articles that specify the number of

samples used for training, the number ranges from 40

to 650. The ratio of the number of training samples

versus the number of hidden neurons ranges from 4.5

to 52.5 with an average of 16.8, when all specified

combinations are taken into account.

Discussion and needs for further research

Predictive ANN model development and

application

So far, several rules of thumb for determining model

geometry have been proposed. Alternatively, tech-

niques for automatically selecting model architecture

are suggested. However, in most of the studies

discussing the prediction of macroinvertebrates in

aquatic systems, model geometry was decided with

trial and error. But details on this process are in most

cases missing. Consequently, there is a need to

develop guidelines to clearly identify the circum-

stances under which particular approaches should be

used and how to optimize the parameters that control

neural network architecture (Özesmi et al. 2006). A

major aspect in this context is the data splitting for

training and validation. It is important to determine

the optimal number of folds for cross-validation. A

balance needs to be determined between reliability

and robustness. For this, it is recommended to train

and validate models based on at least five different

fold options (e.g. 3, 5, 10, total number of instances

divided by two as well as total number of instances

minus one) and select the best fold number.

The use of sensitivity methods can allow peer-

review by ecological experts, and offer an additional

method to guarantee the quality of ANN models.

Testing the model in a wider range of situations (in

space and time) will permit to define the range of

applications for which the model predictions are

suitable. It is moreover crucial to provide information

about the range of the training for all input variables.

Based on this, a user has information about the

reliability of the simulations and in what range the

predictions are relevant. In this manner, the quality of

the models is assessed from several perspectives and

reduces the chance to develop theoretically very good

models, that are from a practical or ecological point of

view misleading (Tan et al. 2006).
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The contribution and related selection of input

variables is another very important aspect that calls

for more research (Jeong et al. 2006). Many variables

are missing, while others have a high variability,

caused by measurement difficulties or by the natural

dynamics in the river systems (e.g. flow velocities,

water temperatures). Therefore, also the effect of

monitoring methods needs more research, in partic-

ular the incorporation of ‘new’ variables which are

less straightforward to be used in a model. This is in

particular the case for structural and morphological

variables that often need to be visually monitored, but

also for heavy metals and other potential toxicants,

since their effects are often related to the environment

in which they are released (bio-availability, accumu-

lation, ...). These toxicants may be a new challenge in

the field of soft computing models to predict river

communities, in particular macroinvertebrates.

ANNs versus other habitat suitability modelling

techniques

Recently, numerous computational and statistical

approaches have been developed (Chon and Park

2006). The combination of methods (datadriven and

expert knowledge based) is moreover an important

new trend, e.g. Salski and Holsten (2006). Neverthe-

less, at present, there is a lack of comparative papers

(e.g. Skidmore et al. 1996; Manel et al. 1999) in

which more than two statistical methods have been

applied to the same data set. Most published ecolog-

ical modelling studies use only one of the many

techniques that may be properly used, and little

information is available on the respective predictive

capacity of each approach. The debate is usually

restricted to the intrinsic suitability of a particular

method for a given data set. When starting a static

modelling study the choice of an appropriate method

would be much facilitated by having access to

publications that show the advantages and disadvan-

tages of different methods in a particular context

(Guisan and Zimmermann 2000).

When looking at the different soft computing

techniques, they all seem to have particular strengths

and weaknesses. ANNs for instance can provide well

performing models, but the integration of expert

knowledge is difficult. Fuzzy logic can be used to

develop models merely on expert knowledge, but the

number of input variables is very limited, because the

rule sets become very complex when more than five

input variables are used (e.g. Adriaenssens et al.

2006). Bayesian Belief Networks have the interesting

characteristic to be able to reveal how different

variables interact, on the other hand, the information

necessary to build these networks and to set-up the

variable distributions is also huge (Adriaenssens et al.

2005). Goethals (2005) compared two different data-

driven methods (ANN and classification trees) for the

prediction of macroinvertebrates. Crucial findings of

this study were that different methods seem to use

different input variables and extract other relations,

but the reliability seems in particular to be limited by

the information in the dataset. Moreover, the outcome

of the two methods is quite different, in the case of

the classification trees threshold values about river

characteristics can be obtained, whereas in case of

ANN (in combination with sensitivity analyses),

habitat preference curves for the river characteristics

could be generated.

However, based on the rather limited set of case

studies in which several methods were compared, it is

up to now nearly impossible to have clear insight in

when to use what kind of method. For this, meta-

models (technique selection models) based on a large

set of datasets should be developed. However, several

methods such as Bayesian Belief Networks and fuzzy

logic have to date rarely been applied in ecology, so

the methods themselves need further exploration as

well, since the quality of the application of a

technique is to a high extent related on a well

understanding of the modelling method. Also the use

of different evaluation measures and methods (vali-

dation) is crucial, and should be related to the type of

predictions. Most likely, the type of predictions

needed, the timeframe and available data will mainly

determine what technique is most relevant.

Integrating and combining models

Recently, several practical concepts and software

systems were developed related to environmental

decision support (e.g. Argent 2004; Lam et al. 2004;

Voinov et al. 2004; Poch et al. 2005; Pereira et al.

2006). From a technical point of view, one can opt to

build a new model for each application (integrative

approach) or to utilize existing models where possible

(combinatory approach). The first approach has the

benefit of control in the models’ design and linkage,
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but requires longer development time. The second

approach saves on the development time, but requires

additional work to link up existing models (Lam et al.

2004). However, when a lot of models are already

available, it is probably the best option. However, up

to now, this type of coupling is missing in scientific

literature and remains a crucial aspect to support

decision making in integrated ecological water man-

agement.

Conclusion

Although there is quite some experience gained with

data driven models to predict macroinvertebrates,

several aspects need more attention in future ANN

development studies. Regarding model training and

validation, many rules of thumb and performance

indicators are provided in technical literature, and this

review suggested a subset that is relevant to be used

in ecological modelling. Moreover, data preparation

for training and validation was usually decided by an

undefined trial and error process in most of the

studies available in the literature. Suggestions for

optimization of the number of folds (data pre-

processing) and considering more input variables

were raised in this paper. Many essential variables,

such as heavy metals and other potential toxicants,

are often not taken into account so far, whereas other

variables are superfluous and might be removed. The

use of sensitivity analyses is probably a major need to

increase the credibility of these often called ‘black

box methods’ to ecologists and valid practical

simulations are necessary to gain trust among river

managers. Furthermore, there is also a need for more

comparative research that shows the strengths and

weaknesses of different types of habitat suitability

models in a particular context. In this way, it would

be possible to have insight in when to use what kind

of method, and which data need to be collected to be

able to answer the relevant questions of water

managers.
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Lek S, Guégan JF (1999) Artificial neural networks as a tool in

ecological modelling, an introduction. Ecol Model

120:65–73

Lenard MJ, Alam P, Madey GR (1995) The application of

neural networks and a qualitative response model to the

auditor’s going concern uncertainty decision. Decision Sci

26(2):209–227

Liano K (1996) Robust error measure for supervised neural

network learning with outliers. IEEE T Neural Networks

7(1):246–250

Maier HR, Dandy GC (2000) Neural networks for the predic-

tion and forecasting of water resources variables: a review

of modelling issues and applications. Environ Model

Softw 15:101–124

Manel S, Dias JM, Buckton ST, Ormerod SJ (1999) Alternative

methods for predicting species distribution: an illustration

with Himalayan river birds. J Appl Ecol 36:734–747

Marshall J, Hoang H, Choy S, Recknagel F (2002) Relation-

ships between habitat properties and the occurrence of

macroinvertebrates in Queensland streams (Australia)

discovered by a sensitivity analysis with artificial neural

networks. Verh Internat Verein Limnol 28:1415–1419

Masters T (1993) Practical neural network recipes in C++.

Academic Press, San Diego

Mastrorillo S, Dauba F, Oberdorff T, Guégan JF, Lek S (1998)
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