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Abstract. We present a systematic approach for developing software,
using Funmath as a formal specification and verification language and
Haskell as a prototype programming language. We argue that a separate
formal specification of the desired functionality helps bridging the gap
between the initial informal specification and the final implementation.
We illustrate the application of our approach for the development of a
structural, DTD dependent XML editor.
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1 Introduction

In software development, the use of a formal modeling language can bridge the
gap between an informal specification and a final implementation, thus enhanc-
ing productivity, reliability and understanding. In recent years, there has been
a substantial amount of research on object oriented analysis and design using
UML. The general consensus now seems to be that any software engineer using
an object oriented approach can benefit from adopting (semi-)formal methods
like UML.

Because of the near-declarative nature and algebraic properties of functional
programs, using formal methods with functional programming might sound like
overkill to some. It is our opinion however, that using the right specification
language in combination with prototyping in a functional programming language
like Haskell can likewise produce an additional enhancement in productivity and
reliability. UML is not a serious candidate, as it is too strongly biased toward
the object oriented paradigm and thereby restrictive. Instead we advocate the
use of Funmath, a truly declarative specification and verification language, with
an extensive collection of calculation rules in a broad application area. We have
applied this approach [22] in a context where Haskell had already proven to be
a most suitable language, i.e., the development of XML tools.

In section 2 we give a brief overview of XML, Funmath and Haskell. Section
3 outlines our approach and the main advantages. Section 4 illustrates the appli-
cation of this approach for the systematic development of a graphical, structural
XML editor. In section 5 we formulate some conclusions and give an overview
of related and future research.
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2 Background

2.1 XML

A markup language allows to add structure to the content of any document. The
Extensible Markup Language (XML) [5] is a subset of the more complicated Stan-
dard Generalized Markup Language (SGML) that can be implemented relatively
easily while retaining enough flexibility to cover a wide range of applications.
XML allows to annotate text files with markup tags that explicitly describe the
structural content. While the syntax is simple and fixed, the author is free to
use his own tags, making XML both a uniform and a flexible language.

The XML syntax is based on a simple hierarchical view of the data. A
well-formed XML document, i.e., a document that conforms to all the XML
syntax rules, can be represented by a tree structure. Logically it consists of
an optional prologue and epilogue and a single rooted tree containing the ba-
sic data elements of the document as nodes. The data of each element con-
sists of other elements or character data, preceded by a start tag and followed
by an end tag: <element>data</element>. An empty element is an element
without any data, which can be denoted by <element></element> or simply
<element />. It is possible to add attributes to any element: <element at-
tribute="value">data</element>.

<?xml version="1.0"?>

<movie genre="Action">

<title>The Untouchables</title>

<director>Brian De Palma</director>

<year>1987</year>

<actor>Kevin Costner</actor>

<actor>Sean Connery</actor>

<actor>Robert De Niro</actor>

</movie>

Fig. 1. A well-formed XML document

Fig. 1 gives an example of a well-formed XML document. Note that the
markup tags are chosen to be self-explanatory. The corresponding element tree
is pictured in Fig. 2. A more extensive introduction to XML can be found in [15,
18] and detailed reference material in [5, 10, 24].

A Document Type Definition (DTD) [5] is used to define the structure of a
certain class of XML documents by specifying a fixed set of markup tags, the
corresponding attributes and the required order of the elements. An example of
a valid DTD is given in Fig. 3. For every kind of basic data element, there is a
corresponding !ELEMENT-tag in the DTD, specifying its structure.

A terminal element is an element which cannot contain any other elements,
i.e., it can only contain character data or it must be empty. In Fig. 3, title,
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film

genre="Action"

title

The Untouchables

director

Brian De Palma

year

1987

actor

Kevin Costner

actor

Sean Connery

actor

Robert De Niro

Fig. 2. The element tree

<!ELEMENT movie (title, director, year?, actor*)>

<!ATTLIST movie genre (Action | Drama | Comedy | Thriller)#REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT director (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT actor (#PCDATA)>

Fig. 3. A DTD for movie documents

director, year and actor are defined as terminal elements containing only
character data.

For a non-terminal element, the occurrence and the order of the elements
corresponding with the child nodes in the element tree can be specified. For in-
stance, the first line in Fig. 3 specifies that every movie element must contain
a sequence consisting of a title element, a director element, an optional (as
indicated by “?”) year element and zero or more (as indicated by “*”) actor
elements. Attributes are either required, implied or fixed, as specified in the cor-
responding !ATTLIST-tag. The value of an attribute usually consists of character
data, but it is also possible to define an enumeration type, as for attribute genre
in Fig. 3.

While it is perfectly possible to write XML documents without any DTD,
the resulting documents can only be checked for well-formedness, i.e., syntactical
correctness. The use of a DTD allows to check whether an XML document con-
forms to additional, application-dependent specifications. A well-formed XML
document is said to be valid with respect to a given DTD if it conforms to all
the specifications of that DTD. While the XML syntax rules are fixed, every ap-
plication can define its own DTD, meaning validity or grammatical correctness
is a more dynamic and flexible concept than well-formedness.

XML Schema (XSD) [8] is a more recent alternative for DTD’s which is
rapidly gaining popularity in the XML community. XSD is based on the same
idea of grammatical correctness, but an XML schema has greater expressive
power than a DTD. Also, an XML schema is a well-formed XML document,
while DTD’s use a separate syntax. For technical reasons (including reuse of
existing tools), our software is DTD oriented and makes no use of XSD. The
underlying ideas, however, are based on the general concept of grammatical
correctness.
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2.2 Funmath

Functional Mathematics [3] is an approach to structure formalisms by conceiv-
ing mathematical objects as functions whenever convenient — which is quite
more often than common practice reflects. Funmath combines a simple language
that is devoid of the defects of common mathematics conventions, with a set of
convenient calculation rules that is sufficiently comprehensive for everyday use.

The main elements are a functional predicate calculus and concrete generic
functionals. The first supports practical formal calculation with quantifiers while
the second achieves the same for calculating with functionals. Here we only
provide a rather compact summary of the key conventions used in the sequel.
Full details are given in [3].

A binding v :X ∧. p ( ∧. p optional) introduces the identifier v, specifying
v ∈ X ∧ p. For instance, n : N ∧. n/2 ∈ N declares n to be an even natural
number.

A function f is fully defined by its domain D f and its mapping (image for
every domain element). Some functions can be denoted by an abstraction of
the form binding . expression. Writing f for v :X ∧. p . e, the domain axiom is
d ∈ D f ≡ d ∈ X ∧ p[vd and the mapping axiom is d ∈ D f ⇒ f d = e[vd. Here e[vd
is e with d substituted for v. For instance, n : N . 2 · n doubles naturals. Other
examples are the constant function definer • with X • e = v :X . e (taking v
not free in e) and the single point function definer 7→ with, for any x and y,
x 7→ y = ι x • y (ι denotes the singleton set).

Predicates are B-valued functions (B = {0, 1}). The quantifiers ∀ and ∃ are
defined as predicates over predicates: ∀P ≡ P = D P • 1 and ∃P ≡ P 6= D P • 0.
Writing predicates as abstractions conveniently yields familiar expressions such
as ∀P ≡ ∀x :D P .P x and ∀x : R .x2 ≥ 0. An extensive set of rules making
formal calculation with quantifiers convenient and useful in everyday practice is
given in [3].

Generic functionals are general-purpose operators on arbitrary functions.
Here we only introduce a few from a rather extensive collection [4]. The range
operator R has axiom e ∈ Rf ≡ ∃x :D f . f x = e. Using {—} as a synonym
for R synthesizes set notations such as {m : N | m < n}, with the general con-
vention that x :X | p is shorthand for the abstraction x :X ∧. p .x. Expressions
like {e, e′, e′′} also have their usual meaning. The function arrow operator → is
defined by f ∈ X → Y ≡ D f = X∧Rf ⊆ Y , for any sets X and Y . The generic
set filtering operator ↓ is defined by X ↓ P = {x :X ∩ D P | P x} for any set X
and predicate P . We write XP as a shorthand for X ↓ P . The function composi-
tion operator ◦ is defined by f ◦ g = x :D g ∧. g x ∈ D f . f (g x). Note that we
do not restrict the argument functions but, instead, precisely define the domain
of the result. Another example is the function merge operator ∪· , defined by
f ∪· g = x :D f ∪ D g ∧. (x ∈ D f ∩ D g ⇒ f x = g x) .x ∈ D f ? f x |-g x. The
conditional of the form c ? b |-a is defined by (a, b) c or, alternatively, 0 ? b |-a =
a and 1 ? b |-a = b.

A sequence or tuple is any function with domain �n, with n : N or n :=∞.
The block operator � is defined by �n = {m : N | m < n}, so � 0 = ∅, � 2 = B
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and �∞ = N. The length operator # is defined by # x = n ≡ D x = �n. The
empty tuple is ε and τ is the singleton tuple operator with axiom τ x = 0 7→ x for
any x. The shift operator σ has axioms # (σ x) = # x− 1 and σ xn = x (n + 1).
The prefixing operator >− is defined by # (a>−x) = # x + 1 and (a>−x) i =
(i = 0 ? a |-x (i− 1)). The postfixing operator −< is defined similarly. An array
of length n over set A is a function of type �n → A, written An. The set of lists
over A is

⋃
n : N .An, written A∗, and A+ is the set of nonempty lists.

Finally, the generalized functional Cartesian product × [4] is defined for
any family T of sets by×T = {f :D T →∪T | ∀x :D T . f x ∈ T x}. Observe
that, for sets A and B,×(A,B) = A × B and×(A • B) = A → B. If T is an
abstraction of the form x :A .B, where B may depend on x, then×x :A .B is
often written as A 3x → B.

2.3 Haskell

A distinguishing characteristic of functional programming languages, as opposed
to traditional imperative programming languages, is the stronger focus on what
is to be computed, not how it should be computed [16], and constitutes a first
step toward declarativity. Because of the referential transparency and rigorous
control of side effects, it is far easier to prove certain properties for functional
programs than for imperative ones.

Functional programming languages have many other serious advantages over
imperative languages. We mention some of the specific advantages of the purely
functional language Haskell for writing (large) software systems [16]:

– Substantially increased programmer productivity.
– Shorter, clearer, and more maintainable code.
– Fewer errors, higher reliability.
– A smaller semantic gap between the programmer and the language.
– Shorter lead times.

For certain application areas, like multimedia, there are additional advantages
[13]. Here we will focus on the development of XML tools. An XML document
can be represented by a tree, and functional programming languages are strong in
working with recursive data types and hierarchically structured data in general.

The simple typing language of DTD’s can be embedded in the richer Haskell
type system by interpreting the declaration of an element in a DTD as a data
type declaration in Haskell [23]. A sequence of child nodes can be represented
by a Haskell product type and a list of alternatives by a sum type. An optional
node is represented by a Maybe type and repetition of elements by a Haskell list.
There is an obvious mapping between the XML documents that are valid with
respect to a given DTD and the values of the corresponding Haskell data type.

This kind of shallow embedding leads to very elegant programs for processing
XML, e.g., checking XML documents for well-formedness and validity is already
implicitly implemented by the Haskell type checking mechanism.

A thorough introduction to Haskell can be found in [2, 13, 14].
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Because of the many strengths of Haskell, which has even been dubbed an
executable specification language, using a separate formal specification language
might seem superfluous or at least redundant at first. There is, however, still a
considerable difference with Funmath, which is a purely declarative formalism
that offers an abstract reasoning level completely independent of any imple-
mentation. Funmath also offers a wide range of formal proof techniques and
calculation rules, which allows proving properties in a universal mathematical
framework.

3 Systematic approach

We suggest the following general purpose methodology for the development of
software, using Haskell as a programming language and Funmath as a formal
specification and verification language:

– Providing an informal but (preferably) detailed specification of the desired
new functionality.

– Providing a formal specification of existing software that will be used in
the final implementation. This should be a relatively easy task because the
expressive power of a formalism like Funmath subsumes any existing pro-
gramming languages.

– Providing a formal specification of the desired new functionality based on
both the informal description of the new functionality and the formal de-
scription of the existing software. Because of the expressive power and uni-
versal applicability of Funmath, a semantic gap between the informal and
the formal specification can be avoided to a large extent.

– Verifying any required property of the functionality based on the formal
specification. Within Funmath, there is an extensive collection of formal
calculation rules available for this task.

– Implementing a prototype based on the formal specification. The gap be-
tween a formal specification in Funmath and an initial implementation in
Haskell is relatively small, because both languages are based on the mathe-
matical concept of a function and many executable Funmath constructs have
an equivalent representation in Haskell.

– Optimizing the prototype implementation if necessary.

It is our opinion that applying the above approach can further strengthen the
aforementioned advantages of using Haskell. For instance, the semantic gap be-
tween programmer and programming language will be even smaller due to the
intermediate formal specification step. As a consequence, the source code will be
clearer and more maintainable. Whenever a problem occurs, the developer can
always fall back on the formal definitions. Programmer productivity will increase
because mistakes in the design can be caught at an early stage of the develop-
ment, before any actual implementation takes place. Finally, the reliability will
be higher because more properties can be more easily verified using the formal
calculation rules in Funmath.
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Additional advantages of our approach are that the formal specification in
Funmath serves as a platform independent reference for the implemented func-
tionality and forces the developer to give a precise description of the desired
functionality in an early stage of the development.

We will now illustrate our approach by providing a case study, i.e., the sys-
tematic development of a graphical, structural XML editor.

4 Development of a structural XML editor

4.1 Informal specification

An XML document is a text document with a clean separation between the
actual content and the markup tags. It is possible to edit XML documents with
an ordinary text editor, but this approach brings along considerable repetitive
work, is very sensitive to typing errors and requires technical knowledge of the
XML syntax rules. To ensure the syntactical and grammatical correctness of
an XML document, it is possible to perform an automatic check after every
modification to the document.

With a specialized XML editor, XML documents can be edited in a more
intuitive, user-friendly manner. Modifications to the document are restricted
to ensure that the well-formedness and validity of the document can never be
invalidated, alleviating the need for a separate check routine.

We also want the final editor to be structural, meaning that the building
blocks are the basic syntactic XML constructs, not the individual characters of
the text file.

Whether an XML document is well-formed or not depends on a fixed set of
XML syntax rules, but the concept of validity only makes sense with respect
to a given specification. Hence the functionality of the editor depends at least
partially on a given DTD. Informally, the intended basic functionality of such a
DTD dependent XML editor consists of the following functions:

– Opening and saving a document. Opening an existing XML document only
succeeds if the document is well-formed and valid with respect to the given
DTD. When opening a new XML document, the result is not an empty
document, but rather a minimal document that conforms to the DTD.

– Displaying the content of a document. This function will generate a text
representation of the content of the XML document, along with additional
information that can be used for navigation and lay-out.

– Editing a document. This is the core function of the editor, which consists
of three separate phases:
• The user navigates in the document and selects a location.
• The possible modifications for that location are presented to the user.
• The user selects a modification which is then executed.

For a given location in the document, the number of possible modifications
is usually rather low, so it makes sense to present them to the user in a
selection menu (Fig. 4). To edit character data in the document, we will
provide a simple text sub-editor.
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Fig. 4. The editor in action
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This informal description of the desired functionality is too vague to be im-
plemented directly. The required level of detail will usually become clear when
constructing the formal specification and resolving certain ambiguities along the
way.

4.2 Formal specification in Funmath

Formally, an editor for a given data type can be characterized as a piece of
software that allows to manipulate values of that data type. In our case, the
data type is the class of XML documents that are valid with respect to a given
DTD, hence the resulting editor is DTD dependent.

To avoid redundant work, the final implementation will make use of the
Haskell toolkit HaXml [23], which consists of a number of tools to aid in pro-
cessing XML. For our purposes, the tool DtdToHaskell is especially useful. The
input for this application is a valid DTD and the output is Haskell source code,
consisting of a Haskell data type declaration and functions to read in and write
out values of that data type. These values correspond to the XML documents
that are valid with respect to the DTD.

The tool however does not generate functions to edit such values. In order to
implement the required new functionality, we will simply extend DtdToHaskell
to generate additional functions, e.g., a function that returns a default value of
the data type, which corresponds to a minimal XML document that conforms
to the DTD.

The resulting application, i.e., an extended version of DtdToHaskell, is not
yet an editor, but generates Haskell source code that contains all the required
functionality. Additionally we will implement a graphical user interface that links
all these functions together.

The Funmath specification of our application consists of a set of formal func-
tion definitions. Here we mainly restrict ourselves to discussing the typing of
these functions. The full function definitions along with a more detailed discus-
sion can be found in [22].

The input for our application is a DTD, i.e., a text file of type A∗. Obviously
not all possible text files conform to the DTD syntax rules, and parsing will only
succeed if the input is a valid DTD. This means that, at least conceptually, there
is an implicit validity function available to decide whether a text file is a valid
DTD. Every valid DTD will be parsed to a list of type definitions. Each type
definition corresponds to a single !ELEMENT-tag in the original DTD. We may
further assume that the first type definition in the list corresponds to the root
element.

validdtd : A∗ → B
parsedtd : (A∗)validdtd → Typedef+

Recall that XP is shorthand for X ↓ P . All DTD dependent functionality can
now be modeled by functions taking a list of type definitions as a parameter. The
remaining functionality of the original DtdToHaskell tool (i.e., without the new
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editing functionality) is specified by the following DTD dependent functions:

toType :Typedef+ → T
valid :Typedef+ → A∗ → B
open :Typedef+ 3 t → (A∗)valid t → toType t

save :Typedef+ 3 t → toType t → (A∗)valid t

The function toType associates a rather simple, recursive data type with every
list of type definitions. In the final implementation, this data type will be a
Haskell data type, but here we do not have this restriction so we simply use the
type universe T as codomain. Values of the resulting data type correspond to
XML documents that are valid with respect to the list of type definitions and
hence with respect to the original DTD.

The function open is a parser for this class of XML documents. Again there
is an implicit validity function (conveniently called valid), because parsing only
succeeds for XML documents that are both syntactical and grammatical correct.
The type of the function open can be interpreted as follows: for any list of type
definitions t, any text document that is valid with respect to t will be mapped
to a value of the data type associated with t.

Example: Let moviedtd : (A∗)validdtd be defined as the (valid) DTD from
Fig. 3. Let moviedef :Typedef+ be the list of type definitions obtained by apply-
ing the function parsedtd to moviedtd and let movietype : T be the associated data
type, obtained by applying the function toType to moviedef . Furthermore, let
moviedoc : (A∗)validmoviedef be defined as the XML document from Fig. 1, which
is a valid XML document with respect to the DTD. With these definitions,
movie := openmoviedef moviedoc yields the following value of type movietype:

movie = n 7→ “movie”

∪· a 7→ τ (n 7→ “genre” ∪· a 7→ ε ∪· c 7→ τ2“Action”)

∪· c 7→ τ ( n 7→ “title” ∪· a 7→ ε ∪· c 7→ τ2“The Untouchables”,

n 7→ “director” ∪· a 7→ ε ∪· c 7→ τ2“Brian De Palma”,

n 7→ “year” ∪· a 7→ ε ∪· c 7→ τ2“1987”,

( n 7→ “actor” ∪· a 7→ ε ∪· c 7→ τ2“Kevin Costner”,

n 7→ “actor” ∪· a 7→ ε ∪· c 7→ τ2“Sean Connery”,

n 7→ “actor” ∪· a 7→ ε ∪· c 7→ τ2“Robert De Niro”)),

where n, a and c are labels denoting the name, attributes and constructors (i.e.,
child nodes) of the elements respectively. Note the highly uniform and hierarchi-
cal structure of the above value (which is a Funmath function).

The function save is the semi-inverse of open, meaning that the composition
(open ◦ save) yields the identity function but the converse is not necessarily true.
The XML syntax allows a certain freedom, e.g., regarding the use of whitespace,
meaning that two (slightly) different text files might represent the same XML
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document. Such differences will however be eliminated when both text files are
first opened and then saved again.

In order to develop the core functionality of the editor, we need to specify
(and later implement) a few additional DTD dependent functions:

new :Typedef+ 3 t → toType t

showXml :Typedef+ 3 t → toType t → (A∗ × N∗ × ContentType)+

alternatives :Typedef+ 3 t → toType t → N∗ → (A+)∗

update :Typedef+ 3 t → toType t → N∗ → A+ → toType t

The function new returns a default value for the data type associated with a list
of type definitions. This value corresponds to a minimal XML document where
all optional elements are left out, all lists of elements are empty, all enumerations
are set to their first value and all required character data is set to “-”.

To display an XML document on screen, the function showXml will be used.
This function returns a list of tuples representing the contents of the document.
Every tuple consists of a text string, a navigation code and a content type. Each
text string represents a small part of the actual content. The content type as-
signed to each text string will be used to implement a simple syntax highlighting
mechanism and is either element, attribute, enum or string. The navigation code
associated with each text string is a sequence of naturals of type N∗ and will
be used to navigate through the document. Whenever a user selects a certain
text string on screen, either by clicking or by moving the cursor, the associated
navigation code will tell us the exact location in the document. To construct the
navigation code, the n child nodes of every node in the element tree are marked
with the numbers 0 to n − 1, hence a unique sequence of naturals corresponds
with each path from the root to a node.

Given a document and a navigation code, the function alternatives returns
a list of possible modifications for that specific location in the document. The
possibilities are represented by non-empty text strings of type A+, e.g., “Change
to Thriller”or“Add actor”, which can then be composed to form a selection menu
to be presented to the user. Once the user has chosen a specific modification,
the function update will return the modified value of the (same) data type.

Besides the DTD dependent functions that make up the core of the editor,
there are also a few more general editor functions that are independent of any
specific DTD.

Example: Consider the undo function, which allows the user to restore a
document to a previous state when an unwanted modification has been made.
Assume we have an undo-buffer u of finite size n to store recently modified
document values and a redo-buffer r of equal size, allowing the user to navigate
in both directions between a limited number of recent document values. We
obviously need to alter the update function to take these buffers into account.
Note that both buffers u and r have type∪ i :� (n + 1) .Ai, assuming the type
of document values is A. An update function that modifies the value old into the
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value new can be modeled as follows:

def update :A × A∗ × A∗ → A × A+ × A∗

with update (old , u, r) = (new , taken (old >−u), ε)

The function take is an auxiliary function used to enhance readability:

take : N → A∗ → A∗

take 0 x = ε

taken ε = ε

taken (a>−x) = a>− take (n − 1) x

After any update, the new undo buffer is constructed by prefixing the old doc-
ument value to the existing buffer, and retaining the first n values of the result.
The new redo buffer will be empty because a redo action only makes sense if
preceded by one or more undo actions without any updates in between. The
actual undo and redo functions can be modeled in a similar fashion:

def undo :A × A+ × A∗ → A × A∗ × A+

with undo (old , u, r) = (u 0, σ u, old >− r)

def redo :A × A∗ × A+ → A × A+ × A∗

with redo (old , u, r) = (r 0, old >−u, σ r)

The above definitions may appear rather trivial, but formally proving a few
expected properties reveals some of the subtleties (e.g., why is the use of take
required in the definition of update but not in the definitions of undo and redo?).
Some of the properties we expect to hold are:

(undo ◦ update) (old , u, r) 0 = old
(redo ◦ undo) (old , u, r) = (old , u, r)
(undo ◦ redo) (old , u, r) = (old , u, r)

With the extensive collection of Funmath calculation rules for tuples and se-
quences at our disposal, proving these properties is a simple exercise (elaborated
here just by way of illustration):

(redo ◦ undo) (old , u, r)
= 〈definition ◦ 〉 redo (undo (old , u, r))
= 〈definition undo〉 redo (u 0, σ u, old >− r)
= 〈definition redo〉 ((old >− r) 0, u 0 >−σ u, σ (old >− r))
= 〈(a >− x ) 0 = a〉 (old , u 0 >−σ u, σ (old >− r))
= 〈σ (a>−x) = x〉 (old , u 0 >−σ u, r)
= 〈x = (x 0 >−σ x)〉 (old , u, r)

The formalization outlined above can serve as a platform independent specifi-
cation for the functionality of an (XML) editor, potentially valuable to anyone
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developing such an application. Proving properties using Funmath is relatively
easy due to the available formal proof techniques and allows design errors to be
caught at an early stage of development, which avoids later additional imple-
mentation costs.

4.3 Implementation in Haskell

Implementing our editor prototype in Haskell based on the Funmath specification
is rather straightforward. For each formal function definition we implement a
corresponding Haskell function.

There are a few subtle but important semantic issues to be dealt with in this
process, but we do not necessarily consider this to be a disadvantage. Making
the semantic differences between the formal specification and the implementation
explicit provides additional insight that helps bridging the gap.

As stated before, the main application generates Haskell source code that
will be called from the graphical user interface linking everything together. The
formal Funmath functions are all DTD dependent, i.e., they take a list of type
definitions as a primary argument. The corresponding Haskell functions are also
DTD dependent, but it is unnecessary, and even undesirable from a performance
point of view, to have a list of type definitions as an explicit argument. Surely,
even though the functionality for e.g. creating a new document definitely depends
on the DTD, it would be a bad idea to evaluate the type definitions every time
a new document is created. Instead we can evaluate these type definitions just
once, i.e., when the source code is generated, and generate a specific set of
functions based on this evaluation. The resulting functions are DTD dependent,
but this dependency is built in, i.e., a function application does not require an
evaluation of the DTD. The generated Haskell functions are in a sense partial
applications of the corresponding Funmath functions and this shift in semantics
does not imply any additional problems.

The internal structure of the extended DtdToHaskell application is pictured
in Fig. 5. The dashed lines represent the newly implemented (editor) functional-
ity. For a given DTD, the generated source code consists of a Haskell data type
and a set of functions which allow this data type to be declared as an instance
of the classes XmlContent and Editable.

The function ppTypedef is an implementation of the formally defined toType
function that generates a Haskell data type based on a list of type definitions.

Example: Applying this function to the type definitions associated with the
DTD from Fig. 3 yields the following Haskell data type, which corresponds to
the Funmath data type movietype introduced in section 4.2, and which should
be fairly self-explanatory to readers familiar with Haskell:

data Movie = Movie Movie_Attrs Title Director (Maybe Year) [Actor]
data Movie_Attrs = Movie_Attrs { movieGenre :: Movie_Genre }
data Movie_Genre = Movie_Genre_Action | Movie_Genre_Drama |

Movie_Genre_Comedy | Movie_Genre_Thriller
newtype Title = Title String
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DTD

dtdparse DocTypeDecl

[ MarkupDecl ] dtd2typedef [ Typedef ]

ppTypedef

Haskell Datatype

mkInstance

Instance XmlContent

mkEditable

Instance Editable

Graphical User Interface

Fig. 5. Inside view of the software

newtype Director = Director String
newtype Year = Year String
newtype Actor = Actor String

The function mkInstance takes a list of type definitions as its argument and
generates the corresponding functions used to implement readXml and writeXml,
i.e., the Haskell counterparts of the formally defined open and save functions:

readXml :: (XmlContent a) => FilePath -> IO a
writeXml :: (XmlContent a) => FilePath -> a -> IO ()

Example: When we apply the function readXml to the XML document from
Fig. 1, we get the following Haskell value, which belongs to the above data type
and corresponds to the Funmath function movie from section 4.2:

Movie Movie_Attrs {movieGenre = Movie_Genre_Action}
(Title "The Untouchables")
(Director "Brian De Palma")
(Just (Year "1987"))
[Actor "Kevin Costner",
Actor "Sean Connery",
Actor "Robert De Niro"]

We extend DtdToHaskell with the function mkEditable in order to generate
the DTD dependent functions used to implement the core functionality of the
editor:

new :: (Editable a) => a
showXml :: (Editable a) => a -> [ContentElement]
alternatives :: (Editable a) => a -> [Int] -> [String]
update :: (Editable a) => a -> [Int] -> String -> a
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Note the resemblance in typing with the (partial applications of) the formal
Funmath functions with the same name. A similar resemblance can be found in
the actual function definitions, omitted here for brevity’s sake, further justifying
the separate formal specification phase.

4.4 The graphical user interface

The extended DtdToHaskell application basically generates a Haskell data type
based on a given DTD, along with functions to edit values of this data type. It is
the task of the (graphical) user interface (GUI) to link the functionality together
and make it accessible to the user.

There are several GUI toolkits available for Haskell. We opted for FranTk [19],
a toolkit built upon Tcl/Tk, which is a largely platform independent scripting
language for developing GUI’s. FranTk allows to implement a GUI in Haskell
while employing a declarative style of programming using the GUI monad, an
extension of the standard IO monad [17]. Values of type GUI a represent actions
that return a value of type a and that may have a side effect on the user interface.

FranTk is based on the same mathematical foundations as the Functional
Reactive Animation language (FRAN) [7]. Concepts like listeners and events,
which obey certain algebraic laws, can be used to construct a model of a time
dependent system which can be formally verified. FranTk also provides a set of
primitive widgets which can be combined into more powerful constructs.

More details and an overview of our editor’s GUI source code can be found
in [22].

5 Conclusions, related and future work

In our opinion, an explicit formal specification helps bridging the gap between
the initial informal specification and the final implementation of any system.
Obviously, the implementation itself is also a formal specification, but program-
ming languages — even functional ones — are often too restrictive to express
certain concepts in the most intuitive way.

A truly declarative formalism like Funmath does not suffer from the same
restrictions and allows to specify systems in the most convenient way. Further-
more, an extensive collection of formal calculation rules is available for formal
verification. It is hence obvious that, compared to functional programming lan-
guages, Funmath offers additional advantages for specification and verification
of software systems.

On the other hand, the overhead of the separate modeling phase is small,
since implementing a prototype in Haskell based on a specification in Funmath
is usually rather straightforward. Hence we argue that using formal methods with
functional programming can produce a significant enhancement in productivity
and reliability.

Combining Funmath and Haskell allowed us to develop a working prototype
of a DTD dependent XML editor with a modest amount of resources. By using
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the toolkits HaXml and FranTk, we could restrict the implementation of the
editor functionality to 350 lines of source code, with an additional 200 lines for
the graphical user interface. Developing an actual production type would further
involve an additional fine-tuning phase in order to obtain a more efficient and
user-friendly software product.

The HaXml toolkit implements two complementary approaches to combine
Haskell and XML [23]. The first approach consists in defining a generic combi-
nator library used to process XML documents, without considering the gram-
matical correctness of the documents. The second approach generates a Haskell
data type based on a given DTD, effectively embedding the typing language of
DTD’s in the Haskell type system. This allows using the Haskell type checker to
check XML documents for grammatical correctness.

A similar, more recently developed toolkit is the Haskell XML Toolbox [20],
which also includes an XPath [6] interpreter. Danny Van Velzen has developed
an implementation in Haskell of an XML library, an XPath interpreter and an
XSLT [1] processor [21]. Generic Haskell [11] is an extension of Haskell which
allows defining generic functions, i.e., functions taking arbitrary data types as
arguments. Generic Haskell can be used to develop DTD dependent XML tools
in an elegant way [12]. Recently the core functionality of an XML editor was
implemented in Generic Haskell [9].

Even though the XML community currently advocates the adoption of XML
Schema, many in the Haskell community still prefer DTD’s because they can
be easily mapped to Haskell data types. It would be interesting to find out to
what extent combining Haskell and XML Schema actually requires a deeper
and hence less elegant embedding. Another promising research direction consists
in embedding a Haskell implementation of XSLT in our DTD dependent XML
editor.

In a more general context, it would be interesting to explore the similarities
between generic combinator libraries written in Haskell — as used for parsing,
pretty printing, web scripting, XML processing, etc. — and the generic function-
als that are defined in Funmath.
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