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Abstract 
In this study the inclined louvered fin, a hybrid fin design based on the slit fin and louvered fin design is 

considered. The goal of the research program is to investigate the interaction between the flow behaviour 

(flow deflection and transition to unsteady flow) and the thermo-hydraulics of the fin design. This approach 

was selected in order to reveal the flow physics behind the transitions found in the thermo-hydraulic data. 

Through flow visualization (dye injection in a water tunnel) the flow deflection and transition to unsteady 

flow was studied in different configurations and for varying Reynolds number. The flow deflection was 

quantified through the ‘fin angle alignment factor’. Validated CFD simulations were used to further explore 

flow behaviour. In parallel, wind tunnel measurements were performed measuring the local heat transfer 

coefficients for the different louvers and the overall pressure drop. The impact of the fin pitch, fin angle 

and Reynolds number were studied. A comparison of both local and global parameters to the observed flow 

behaviour revealed the strong coupling between the flow and the thermo-hydraulics showing evidence of 

boundary layer driven flow. 
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Nomenclature 
Ac minimal free flow area [m²] 

Aext exterior surface area [m²] 

f Fanning friction factor [-] 

Fp fin pitch [m] 

Gc Mass flux through the minimal free flow area [kg/m²s] 

h convective heat transfer coefficient [W/m² K] 

j Colburn j-factor [-] 
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k thermal conductivity [W/mK] 

Lp louver pitch [m] 

Nu Nusselt number [-] 

∆p pressure drop [Pa] 

q surface heat flux [W/m²] 

qcond conductive heat flux [W/m²] 

Re Reynolds number [-] 

Ri Richardson number [-] 

St Stanton number [-] 

T temperature [K] 

t fin thickness [m] 

x,y,z spatial coordinate [m] 

X* dimensionless louver coordinate, Eq. (7) [-] 

 

Greek symbols 

α flow efficiency [-] 

ζ fin angle alignment factor [-] 

η flow efficiency [-] 

θ louver angle [°] 

ρ density [kg/m³] 

σ contraction ratio, Ac/Aext [-] 

φ fin angle [°] 

 

Subscripts 

balsa balsa wood 

bottom bottom surface 

ref reference 

surf surface 

top top surface 

 

1. Introduction 
Heat transfer as an energy transfer process affects every facet of our day-to-day lives, ranging from the 

generation of power (electricity), to cooking, preserving food (refrigeration) and providing a suitable indoor 

climate (HVAC - air conditioning). Because of the huge variety in the nature of the processes involving 

heat transfer, heat exchangers can take on many different forms (a classification can be found in e.g. Shah 

and Sekulic [1]). Regardless of their form, the heat exchangers are very important to the overall efficiency 

of the energy transfer process, and to the cost and size of the system. A very typical application is the 
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exchange of heat between a liquid and a gas, mostly air (e.g. air conditioning, space heating, energy 

recovery from flue gas streams). When exchanging heat with air, the main thermal resistance is located on 

the air-side. Over the course of the past decades, extensive research has been done on enhancing the 

performance of liquid-to-gas heat exchangers by modifying the design, as is clear from the vast number of 

papers published on this topic. And still today, this topic continues to draw a lot of attention. Bergles [2] 

summarized the idea of evolution in heat exchanger technology by defining ‘generations’. Each generation 

adds a heat transfer enhancement mechanism to the previous one. For this study, generation I consists of 

tubular heat exchangers, thus having only primary surface. In generation II exterior surface area (fins) are 

added, resulting in the commonly used fin-and-tube heat exchangers. By adding fins, an extra interesting 

flow phenomenon occurs: the horseshoe vortex. This is a set of longitudinal vortices which wraps itself 

around the fin-and-tube junction and flows over the fin surface. These vortices result in a locally thinning 

of the boundary layer, and thus enhance the local heat transfer rate. This naturally occurring enhancement 

has been studied in detail in the past. Romero-Méndez et al. [3] used flow visualizations to show that a 

large reduction of the fin spacing can result in excessive laminarisation of the flow. Any turbulent or 

vortical motion such as the horseshoe vortex is then quickly dissipated by mechanical blockage and skin 

friction. Similar findings were reported by Mon and Gross [4]. So there exists a law of diminishing returns 

for adding fin surface area. Below a certain fin pitch (spacing between two fins) the increase in surface area 

will in fact reduce local heat transfer coefficients, causing a need for even more surface area. Of course 

adding more fin surface area will also result in a large increase in pressure drop and material costs. To 

further enhance the heat transfer performance (i.e. the ability to transfer more heat in a given volume) of 

fin-and-tube heat exchangers, the convective heat transfer coefficient hext has to be increased. This can only 

be done through flow manipulation, as the heat transfer resistance is the result of the surface temperature 

distribution, which is closely coupled with the velocity field through the thermal boundary layer. This is 

done in generation III heat exchangers, which are commonly used today.  

 

2. Heat transfer enhancement through flow manipulation 
There are two methods of flow manipulation: alterations to the main flow and the introduction or 

exploitation of secondary flows. In main-flow enhancement, the gross characteristics of the flow are 

manipulated through geometric changes or pressure variations. In secondary flow enhancement, local flow 

structures are deliberately introduced. In some cases, it may be difficult to distinguish between main-flow 

and secondary flow methods because both methods can be present (compound designs).  

 

2.1 Main flow manipulation 
Today, corrugated or highly interrupted surfaces are widely used in compact heat exchangers. These fins 

mainly exploit two flow manipulation mechanisms to provide a performance improvement compared to 

continuous plain fins: (1) these surfaces restart the thermal boundary layer, resulting in a lower average 

thermal boundary layer thickness and thus a higher average convective heat transfer coefficient; and (2) 
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above a critical Reynolds number, these surfaces can cause vortex shedding and the resulting unsteady flow 

and mixing result in an increased heat transfer.  

Commonly used corrugated fin types are the sinusoidal and herringbone wavy fin. Mixing in these fins is 

accomplished through shear-layer instabilities and the formation of spanwise vortices. Metwally and 

Manglik [11] studied the impact of the corrugation depth and the Reynolds number on the thermo-

hydraulics of sinusoidal wavy fins. For very low Re or very low corrugation aspect ratio γ (ratio of the 

amplitude to the wavelength) the surface geometry has no effect on the flow and the fluid moves 

undisturbed through the channel without any recirculation. Increasing γ or Re gives rise to fluid 

recirculation or swirl flows in the troughs. The intensity and flow area coverage of this counter rotating 

lateral vortex grow with γ. This change in flow behaviour affects the pressure drop and heat transfer. At 

low Re the flow behaves as channel flow with a constant Nu and Re⋅f = cst. At higher Re the data 

diverges away from these regimes as the friction factor and Nu number increase. By considering the wall 

shear stress and heat flux distributions Metwally and Manglik [11] argued that the flow can be categorized 

into two distinct regimes: (1) an undisturbed streamline flow regime and (2) a steady swirl flow regime that 

is characterized by self-sustained transverse vortices in the troughs. Rush et al. [12] visualized these 

vortices and the resulting macroscopic mixing using dye injection in scaled up models. 

 

Two widely used interrupted fin designs are the offset strip or slit fin and the louvered fin. But next to these 

two fin types a large range of different geometries are used, e.g. T’Joen et al. [13] studied an adapted 

inclined louvered fin used in a commercially available air conditioning unit. Louvered fins are very popular 

in automotive applications as combined with flat tubes they result in very compact heat exchangers. In both 

fin types the fin surface is divided into small sections called ‘louvers’. In the slit fin these louvers are 

parallel to the incoming flow, while in the louvered fin they are set at an angle to the flow (the louver 

angle). Both the louvered fin and slit fin types have been studied extensively through experiments and 

numerical simulations. Manglik et al. [14] presented an overview of previous correlations for the slit fin 

geometry and a new correlation. Based on a large database of experimental data, thermo-hydraulic 

correlations were derived for the slit fin (Wang et al. [15]) and for the louvered fin (Wang et al. [16]). Next 

to these full scale heat exchanger tests, some authors have focused on the flow behaviour within these 

interrupted fin designs, in order to better grasp the physics of the heat transfer enhancement. To this end 

they have studied only the interrupted section (mostly in a scaled version), neglecting the effects of the tube 

and the landing area. In both fin types self-sustained unsteadiness is present from a certain Reynolds 

number which improves mixing and thus the heat transfer rate. This was studied in detail by DeJong and 

Jacobi [17] for slit fins and DeJong and Jacobi [18] for louvered fins through flow visualisation and mass 

transfer measurements. Tafti and Zhang [19] performed a detailed numerical study of the transition from 

steady laminar to unsteady flow in standard louvered fins. They reported that the transition is due to the 

accumulation of flow perturbations and that it behaves in a gradual manner, starting from a ReLp as low as 

300 - 400 with initial wake instabilities and at higher Reynolds numbers (600 – 700) interior instabilities 
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become apparent. Cui and Tafti [20] studied the impact of the actual three dimensional geometry of the 

landing in louvered fins on the thermo-hydraulics. Strong three-dimensionality was found in the flow 

structure in the region where the angled louver transitions to a flat landing adjoining the tube surface, 

whereas the flow on the angled louver far from the tube surface is nominally two-dimensional. Due to the 

small spatial extent of the transition region, its overall impact on louver heat transfer is limited, justifying 

two-dimensional studies. 

 

Compared to slit fins, an additional flow characteristic arises in louvered fins: at high Reynolds numbers 

the flow is deflected, lengthening the flow path. This flow pattern is called ‘louver oriented flow’. The fluid 

particles travel a larger distance through the heat exchanger, resulting in more heat exchange, but at the 

same time the flow experiences a strong increase in frictional drag. At low Reynolds numbers, thick 

boundary layers block the passage between the louvers, forcing the flow to pass between the different fins. 

This is referred to as ‘duct oriented flow’. DeJong and Jacobi [18] studied this flow behaviour in detail and 

reported in agreement with other authors that the transition between the two flow profiles occurs rather 

sudden around ReLp = 200. The change in flow behaviour is due to the flow following the path of least 

resistance – the path corresponding to the lowest overall pressure drop. The degree of flow deflection is 

usually quantified using the concept ‘flow efficiency’ η. This is the ratio of the mean flow angle α to louver 

angle θ, Eq. (1). Achaichia and Cowell [21] found a strong link between the heat transfer rate of flat tube 

louvered fin heat exchangers and the mean flow behaviour, relating the Stanton number to η (Eq. (2)). 

 
ϑ
αη  =  (1) 

 58.0Re18.1 −⋅⋅= LpSt η  (2) 

Using a large database of validated two dimensional numerical CFD-simulations, Zhang and Tafti [22] 

determined a correlation for the flow efficiency of louvered fins. Results show that η is strongly dependent 

on geometrical parameters, especially at low Reynolds numbers. Flow efficiency increases with Re and 

louver angle, while decreasing with fin pitch and thickness ratio. Local heat transfer coefficients in 

louvered fins presented by Lyman et al. [23] showed the impact of the local thermal field surrounding a 

louver. If a louver is surrounded by the hot thermal wake of an upstream louver, it will have a lower heat 

transfer coefficient. It is therefore important, as noted by Tanaka et al. [24] to ensure a good positioning of 

the different louvers to improve the heat transfer rate of a given fin design. This concept is known as 

‘thermal wake management’.  

 

2.2 Secondary flows: longitudinal vortices 
The horseshoe vortex is an example of a secondary flow which enhances the heat transfer rate. It occurs 

naturally around any protrusion which extends out of the boundary layer. Sedney [5] presented a thorough 

review on the effects of small protuberances on boundary layer flows. For both laminar and turbulent 

boundary layers, the effects of a three-dimensional surface bump are qualitatively similar. A system of 
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vortices forms near the disturbance, bending around it to be carried downstream in a horseshoe pattern. 

This secondary flow will appear regardless of the shape of the protuberance; but the location and the height 

of the protuberance are important. The disturbance height must be comparable to the local displacement 

boundary layer thickness. Longitudinal vortices caused by surface protrusions were found to persist for 

more than 100 protrusion heights downstream. Protrusions which are designed to generate strong vortices 

are called ‘vortex generators’. A commonly used geometry is the delta winglet. A review on the heat 

transfer enhancement using longitudinal vortices was presented by Jacobi and Shah [6]. By positioning a 

row of vortex generators on the fin surface in between the tubes (‘common flow-up’) Joardar et al. [7] 

reported a 16.5% - 44% increase in the heat transfer coefficient for Re between 220 and 960 (0.7 m/s < V < 

1.8m/s). The vortex generators result in an accelerated flow due to the nozzle-like passage near the tube 

walls which can also help to reduce the size of the tube wake, as shown by O’Brien et al. [8]. As a final 

evolution of generation III heat exchangers, some designs incorporate both main flow and secondary flow 

enhancement, so-called compound designs. Only a few cases have been presented so far in open literature. 

Ge et al. [9] investigated the impact of multiple vortex generators on slit fin arrays using PIV and 

naphthalene sublimation. They reported a heat transfer enhancement of 32% at ReLp = 1000 for two rows of 

delta wings, one array at the inlet and one at half the flow length. Joardar et al. [10] studied the 

performance of a louvered fin heat exchanger with a row of vortex generators mounted upstream of the first 

tube row. The aim was to generate strong coherent vortices within the fin channels. They reported an 

average increase of 21% and 23.4% in the heat transfer coefficients respectively for dry and wet cases 

compared to the base case (only louvered fins). The pressure drop increased by only 6.6% on average. The 

inlet velocity varied between 1.5 m/s and 4m/s. These results clearly show the promise of this new 

technique to further augment the heat transfer of existing fin designs. 

 

The literature survey presented above summarizes the ideas behind the evolution of modern compact fin-

and-tube heat exchangers up to today. A similar review up to 1998 was provided by Jacobi and Shah [25]. 

The results show the strong interaction between flow behaviour and thermo-hydraulics for the different 

surfaces. So by understanding the flow physics which (can) occur, it is possible to seek out ways of 

improving a current design through foresight, rather than by trial-and-error. Fin designs should focus on 

reducing the average thermal boundary layer thickness, without incurring excessive frictional drag. With 

this in mind, this research study was performed, in which a hybrid fin design, the inclined louvered fin, was 

studied.  

 

3. Inclined louvered fins 
The inclined louvered fin is a hybrid design of louvered and offset strip fins, as described by Shah et al. 

[26]. The plates are aligned with the main flow (Fig. 1) but are set out in a staggered layout, forming a stair 

like deflecting channel. In Fig. 1 the main geometric parameters are indicated: the fin pitch Fp, the louver 

pitch Lp, the fin thickness t, the fin angle φ and the number of louvers.  Just as in louvered fins there are 
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distinct inlet-, turnaround- and exit-louvers. The design shown in Fig. 1 represents the interrupted section 

of the fin surface between the tubes. This interrupted section needs to be connected to the tubes to form the 

heat exchanger, which is usually done using a transition to a flat fin surface (landing). Cui and Tafti [20] 

showed that the impact of the landing and transition area on the flow is focused close to the tube wall, so 

the interrupted element can be studied separately. To manufacture these fins a complex series of machining 

processes such as stamping, rolling… will be required, but considering current multi-louvered and 

corrugated designs in production, there appear to be no significant barriers to the production of the 

proposed design. 

 

Tanaka et al. [24] previously studied inclined louvered fins and considered another parameter: the louver 

angle, which is set at 0° in the current study. They used a two-dimensional analytical model to study the 

flow behaviour. The primary aims were to ensure that the air flow passed straight through the fin array, 

avoiding deflection to reduce the air-side pressure drop, and to enhance the heat transfer coefficient by 

positioning each louver outside of the boundary layer of an upstream louver. The flow in several scaled up 

models was visualized: for high fin angles (35°) deflection and strong wakes were noted, while for small 

angles (10°) a strong developing boundary layer was found. An intermediate fin angle (20°) resulted in an 

almost straight flow with little separation or deflection. After the scaled model tests, a single heat 

exchanger was built, tested and compared to a louvered fin. In the considered velocity range (1-5 m/s) the 

average heat transfer coefficient of the inclined louvered fin core was 16% higher and the pressure drop 21-

27% lower. This example clearly indicates the potential of this fin type. No other experimental data have 

been reported so far.  

 

If the geometry of the inclined louvered fin (Fig. 1) is considered, a priori it is clear that similar phenomena 

as in louvered fins will occur. At low Re the thick boundary layers will block the passages between the 

louvers, forcing the flow to wind up and down; while at high Re, the flow passages open up and the flow 

becomes more slit fin like, aligned with the louvers. This expected change in flow behaviour is the main 

reason why the inclined louvered fin geometry was selected for this study. As the flow deflection occurs at 

low Reynolds numbers, this fin type could present an interesting alternative to louvered fins. Just as in 

other interrupted fin designs it is expected that from a certain Re unsteady flow will be present in the fin 

array, which enhances local heat transfer. In order to study the interaction between the flow behaviour and 

the thermo-hydraulics, scaled up models of the fin will be used and a combination of experimental (flow 

visualization and local heat transfer coefficient measurements) and numerical techniques. As can be seen in 

Fig. 1, there are five potentially important geometric parameters: fin pitch, louver pitch, fin angle, number 

of louvers and fin thickness. Using a numerical screening study (T’Joen et al. [27]) it was shown that the 

fin pitch and fin angle had the strongest impact on the thermo-hydraulic behaviour, so these parameters are 

studied in more detail. 
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4. Flow behaviour  

4.1 Experimental set-up and procedure 
The flow field was studied by visualizing the flow in a water tunnel through dye injection. In the closed 

loop water tunnel (located at the University of Illinois), the water is circulated using a frequency controlled 

pump through a plenum, followed by a contraction section, the test section and then finally a reservoir. To 

ensure a uniform flow at the inlet of the test section, two honeycomb flow straighteners are used in the 

contraction. The test section has a length of 0.4 m, a width of 0.3 m, a height of 0.3 m and is made of 

transparent Plexiglass. A mirror mounted at 45° underneath the test section allows for convenient recording 

of the flow images using a digital camera. The water temperature was measured using a K-type 

thermocouple. In order to determine the water velocity, the time required for a dye marker to travel a given 

distance (0.25 m) was measured using a stop watch. To visualise the flow, dye is injected at a specific point 

just upstream of the test section, highlighting a single streakline. Scaled models (20:1) of the inclined 

louvered fin were placed in the test section. Five configurations with varying geometric parameters were 

studied (Configurations 1-5 in Table 1, Lp = 0.02 m, t = 0.002 m). The scaling factor was selected in order 

to obtain sufficient spatial resolution, while maintaining a sufficiently large number of fin rows to ensure 

periodic flow behaviour. DeJong and Jacobi [28] showed that wall effects can result in a strong distortion 

of the measured mean flow angle in louvered fins and they presented a calculation method to determine the 

minimal number of fin rows required. This method was used to guide the scaling factor of the fin array. The 

number of fin rows in the scaled models ranged between 8 and 14 depending on the fin pitch. More details 

on the measurement setup and procedure and the uncertainty analysis can be found in T’Joen et al. [29]. 

 

4.2 Mean flow behaviour: fin angle alignment factor 
In order to quantify the flow behaviour in the inclined louvered fins, the ‘fin angle alignment factor’ ζ 

(defined in Eq. (3) as the ratio of the mean flow angle α to the fin angle φ) is introduced. Note that the 

definition is identical to that of the ‘flow efficiency’ η for standard louvered fins. For louvered fins, a high 

value of η corresponds to a flow almost parallel to the louvers, resulting in large heat transfer coefficients 

due to thin boundary layers. Thus high values of η are good from a heat transfer perspective, resulting in 

the term flow ‘efficiency’ for η. For the inclined louvered fin array, high values of ζ indicate that the flow 

along the louver surface is dramatically reduced, and the local heat transfer coefficient can be expected to 

be reduced. This would make the term ‘flow efficiency’ misleading for inclined louvered fins, thus an 

alternate term is used, the ‘fin angle alignment factor’. 

 
ϕ
α

ϕ
ας

tan
tan

≈=  (3) 

For each of the five configurations flow images were recorded at various Reynolds numbers. At each ReLp 

the dye injection point was varied over the channel width. This resulted in a series of images of various 

streaklines which, once combined, provide an overview of the total flow field at that Reynolds number. 

For each of the flow images, ζ can be determined graphically based on the approximation in Eq. (3) and by 
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using a graphical software package. The mean flow angle was determined between the point where the 

streakline enters the fin array and the midpoint of the turnaround louver. For each configuration a series of 

graphs can then be made, one per Reynolds number, showing the local values of ζ set out against the 

injection location. This value represents the position of the injector relative to the fin passage and is scaled 

with the fin pitch, so it ranges from 0 (top of the fin passage) to 1 (bottom of the fin passage). An example 

is shown in Fig. 2 (filled symbols). The error bars are indicated. There is clearly a strong variation 

depending on the injection location, which is due to the turnaround louver: a streamline which just passes 

above or below the turnaround louver will have a higher or lower ζ compared to a streamline which passes 

at a distance of the turnaround louver. Similar findings were reported by DeJong and Jacobi [18], who 

found a maximum flow efficiency value for a streamline in the center of the fin passage, and a minimum 

for a streamline touching the inlet louver. In their data reduction the average of this minimum and 

maximum was used. It is clear from Fig. 2 that using the average of the maximum and minimum value of 

the experimental data points would not represent a fair average of ζ. So, to determine a correct average 

value the gaps between the data points should be filled with additional data. This was done by using 

numerical simulations. 

 

4.3 Numerical set-up and procedure 
The flow through the five different configurations was simulated using Fluent© (double precision 

segregated solver). Two dimensional cases were studied using unstructured quadrilateral meshes generated 

by Gambit©. A single louver row was simulated with an entry region (two fin pitches) and exit region (five 

fin pitches). The height of the computational domain is set to one fin pitch with periodic boundary 

conditions on the top and bottom of the domain, representing the periodic unit of an infinite stack of fins. A 

uniform inlet velocity in the x-direction (parallel to the louvers) was imposed. At the outlet the static 

pressure was set to 0 Pa (pressure outlet boundary condition). Convergence criteria were set to 10-8 for 

continuity and velocity components. Second order discretization was used in combination with the 

SIMPLE algorithm for pressure-velocity coupling. Substance properties were set to a constant value. The 

average pressure drop and local velocity components were monitored during the iterations to determine if 

the simulations had converged. If no steady state convergence was obtained, an unsteady simulation was 

performed till the different monitored signals (pressure drop, local velocity in the wake of the louvers and 

mean outlet velocity) showed a clear periodic behavior. For those cases data was averaged out over 10 - 15 

periods of the signal. A grid independence study was performed. More details on the numerical setup and 

benchmarking can be found in T’Joen et al. [30].  

 

In order to determine ζ from the CFD simulations, the same procedure was used as for the water tunnel 

experiments. The streamlines were visualized using the ‘path lines’ option in Fluent© and the resulting 

image was exported to the graphical software. The same data reduction was performed as for the 

experimental flow images which resulted in a set of numerical data points, spread evenly out over the fin 
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spacing. The results are shown in Fig. 2 (open symbols). As can be seen, the agreement between the 

simulations and the experimental data is very good (the difference is for most data points smaller than 

0.05). This was the case for all considered Reynolds numbers. As this method of determining ζ is tedious, 

an alternative method was used as well. For each louver (excluding the inlet, turnaround and exit louver) an 

average flow angle αL over the fin passage was determined based on the ratio of the average values of the 

x- and y- component of the velocity. These averages were determined over a cut perpendicular to the louver 

spanning the fin passage, intersecting the louver at the center. The αL values are then averaged out over all 

the louvers and divided by the fin angle to determine the fin angle alignment factors, labeled ζT. 

Downstream of the turnaround louver, the average flow angle is divided by the negative fin angle as the 

flow now points down instead of up. This is described in more detail in T’Joen et al. [30]. This definition of 

ζT makes sense, recalling the original goal of this parameter, which is to quantifiably describe the mean 

flow behaviour in the louver passages. Comparing the graphically measured data with the ζT values 

revealed strong differences. By comparing graphically measured ζ values based on different measurement 

locations (varying the points in between which the flow angle is measured) revealed that the graphical 

measurement can be biased due to the occurrence of recirculation zones. Through extensive comparison it 

was shown (T’Joen et al. [30]) that ζT is the correct measure for the mean flow behaviour surrounding the 

louvers. Using the validated numerical method described above, 8 additional configurations were studied 

(configurations 6-13 in Table 1). The results for configuration 1-5 are shown in Fig. 3. From the results it is 

clear that flow deflection occurs at low Reynolds numbers, but that it is less pronounced than in louvered 

fins: Zhang and Tafti [22] and DeJong and Jacobi [18] reported η values between 0.5 and 0.95 in the same 

ReLp range. The data in Figure 3 also shows that if the fin angle is not too small (configurations 3 – 4 – 5), 

the flow deflection is nearly constant in the considered Reynolds range (50-500, consistent with air 

conditioning applications). This is in contrast to louvered fins, which show a sharp reduction in η (and thus 

become less effective) once ReLp drops below 200. The flow deflection also shows an opposite trend in 

inclined louvered fins, increasing as the Reynolds number decreases. The data shows that decreasing the 

step size (smaller fin angle), and increasing the fin pitch ratio (ratio of Fp to Lp) results in stronger flow 

deflection. This is due to a combination of boundary layer growth on the louvers (smaller passages are 

more easily blocked) and the flow following the path of least resistance (a wider channel in between the 

fins than in between the louvers favors flow deflection). These results show how the flow in the inclined 

louvered fin array is driven by the growth of boundary layers on the louvers.   

 

4.4 Transition to unsteady flow 
During the flow visualization the transition from steady laminar flow to unsteady flow was also studied. It 

was found that the initial instability appears in the wake of the exit louver. As the Reynolds number 

increases the flow instabilities move upstream into the fin array. The onset of unsteady flow occurred at 

low Reynolds numbers (200-300). Figure 4 shows the Reynolds numbers at which the first unsteady flow 

behaviour was detected at the inlet-, turnaround- and exit-louver for configurations 1-5. It can be seen that 
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the fin pitch and fin angle both impact the transition to unsteady flow: e.g. decreasing the fin pitch 

postponed transition to much higher Reynolds numbers for a small fin angle. A detailed description of the 

transition for each configuration is presented in T’Joen et al. [29]. As a reference numerical data by Tafti 

and Zhang [19] for two louvered fin cases were added to Fig. 4. As can be seen, the transition in the 

inclined louvered fin configurations occurs at much lower Reynolds numbers. Tafti and Zhang [19] showed 

that both in louvered and slit fins the transition is due to the accumulation of perturbations in the flow and 

that it behaves in a gradual manner. The louvers act as individual roughness elements perturbing the flow 

and the cumulative effect of these perturbations causes the flow to develop instabilities. The transition in 

the inclined louvered fins clearly is different, as it moves much faster upstream into the fin array (Fig. 4). It 

was shown (T’Joen et al. [29]) that the transition is geometrically triggered by the large recirculation zones 

which are present on the inclined parts of the inlet and turnaround louver. At low ReLp steady recirculation 

bubbles form, but as the velocity increases the shear layers trigger unsteady flow and vortex shedding 

becomes apparent. The previously studied louvered fin designs all had a much smaller inclined section on 

the turnaround louver, which is why this phenomenon has not been reported so far. The experimental 

findings agree well with the numerical simulations both for the predicted Reynolds number at which 

unsteady flow first appears as well for the way the unsteadiness moves rapidly upstream into the fin array 

as the Reynolds number is increased. To quantify this transition the local flow velocity was recorded in the 

wake of each louver 0.5 Lp away from the trailing edge. Once periodic conditions were achieved, the ratio 

of the amplitude of the velocity variation to the mean value was set out for each louver. The results for 

configuration 4 at different Reynolds numbers are shown in Fig. 5. The initial unsteadiness was found at 

ReLp = 295 in the wake of the exit louver. At ReLp = 316 the entire downstream half of the fin array 

experiences periodic unsteady flow (Fig. 5), but in the upstream half of the fin laminar flow is present. 

Increasing the Reynolds number results in stronger oscillations and at ReLp = 550 the upstream of the fin 

array also shows strong periodic oscillations apart from the wake of the inlet louver. At ReLp = 800 the flow 

behaviour in the entire fin array has become very chaotic with strong oscillations (Fig. 5: ratio ~ 1). Similar 

agreement was found for the other cases, see T’Joen [31].  

 

5. Thermo-hydraulics 

5.1. Experimental set-up and procedure 
To determine the thermo-hydraulic characteristics of the inclined louvered fin, a series of wind tunnel 

experiments was performed on the scaled models. The test rig is an open wind tunnel, as shown in Fig. 6, 

consisting of a large centrifugal fan (3) driven by a frequency controlled drive (2+1). The fan blows the air 

through a large settling chamber filled with a honeycomb (4) (section: 1.10 m x 1.10 m). The air then 

passes through a contraction section (5) with sinusoidal shaped walls to generate a uniform flow at the inlet 

of the settling channel (6) (3m long, section: 0.4 m x 0.2 m). The area contraction ratio is 15, which is 

larger than the recommended 6 - 9 by Mehta and Bradshaw [32] for small size wind tunnels. The air then 

flows through the test section (7) and a final channel section (8) of 1 m. This section was added to prevent 
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any upstream influence of the flow contraction as it enters the downstream tube. The air mass flow rate is 

measured using a calibrated orifice plate (9) (designed and installed according to the standard ISO 5167) 

set in the downstream tube (I.D. = 18.29 mm). The test section and downstream channel were insulated 

using 5cm thick polystyrene plates to reduce any heat losses to the ambient. The test section contains the 

scaled fin model (20:1). The same scaling factor as for the water tunnel experiments was used based on a 

similar compromise between spatial resolution (measuring the local wall temperature using embedded 

thermocouples) and the need for having sufficient fin passages to prevent any wall effects. As the wind 

tunnel is higher than the water tunnel the fin pitch ratio could be increased up to 2 while maintaining 

periodic flow conditions. Wall pressure taps were mounted at the side of the test section to measure the 

pressure drop with a piezoresistive sensor (LP1000, GE Druck, range: 25 Pa, accuracy: 0.125 Pa). As a 

benchmark experiment the test section was filled with narrow (8 mm high) 0.26m long rectangular 

channels. The pressure drop was recorded and the isothermal friction factor f (Kays and London [33], Eq. 

(4)) was determined. All pressure drop measurements were done without heating. The results showed a 

very good agreement with laminar developing flow theory as presented by (Shah and London [34]).  

 
extc

c

AG
AP

f
⋅

⋅∆⋅⋅
= 2

2 ρ
 (4) 

The walls of the test section were made out of 3 mm thick balsa wood. This material was selected as it 

allows for easy manual cutting of the complex fin shapes without any machining. The louvers are made out 

of print board material (2 mm thick) coated with a thin copper layer on both sides. To provide heating, a 

current was sent through the copper layer resulting in a uniform heat flux boundary condition. The current 

is controlled using an external power supply and measured using a current meter. The maximum current 

sent through the louvers is 10 A (maximum heat flux = 187.5 W/m²). The different louvers are connected in 

series to each other electrically using wires, ensuring the same heat flux is dissipated throughout the fin 

array. The top and bottom of each louver are connected using soldered copper contacts. Only five louver 

rows were heated: those surrounding the center row where the temperature measurements are done. It is 

important to heat the adjacent fin rows in order to accurately capture any thermal wake effects, as shown by 

Lyman et al. [23]. By measuring the local air velocity (using a pitot tube) and temperature in the wake of 

the fin array the heat balance was verified to be within 5%.  

 

To determine the local heat transfer coefficient, the surface temperature Tsurf must be determined. This was 

done using a measurement louver made from balsa wood in which nineteen K-type thermocouples (0.5 mm 

thickness) were embedded. The junctions were aligned in the center of the louver along the flow direction 

in order to measure the surface temperature change along the flow path. The balsa wood was covered with 

a layer of paper and then a thin copper foil was glued on top. The thermocouple junctions just pierced the 

paper. To ensure a good contact between the copper foil and the junctions, these were covered with 

thermally conductive paste before the foil was glued on. Current was sent through the measurement louver 

to provide heating, but as the resistance of the copper foil differed a bit from the resistance of the copper 
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film on the other louvers a separate control circuit was used to ensure all louvers dissipated the same heat 

flux. The thermocouples were calibrated individually using a reference thermometer, which resulted in an 

uncertainty of 0.1 °C on the measured surface temperatures. The heat flux was set depending on the air 

velocity and this by monitoring the surface – air temperature difference to minimize the impact of natural 

convection. The temperature difference was limited to 4 °C at the lowest ReLp which resulted in Ri ~ 0.16.  

 

The measurements were taken at steady state conditions. To determine that transient effects (start up or 

changing of incoming air mass flow rate) had ceased the surface temperature variation was monitored. 

Once steady state was achieved the measurements were started and the data-acquisition system recorded 

the surface temperature and inlet temperature values for a period of 2 minutes every 2 seconds. Once this 

was done, the measurement louver was placed at the next position, and as soon as steady state was again 

achieved, the temperatures on this position were recorded. This was done for all louver positions. The 

average values of the signals were used in the data reduction.  

 

5.2. Data reduction 
To determine the local heat transfer coefficient, Eq. (5), three variables are needed: the surface heat flux q, 

the surface temperature Tsurf and a reference temperature Tref. In the experiments the heat flux is imposed 

and thus known (by measuring the current and the resistance of the louvers), and the local surface 

temperatures are measured. As a reference temperature, the inlet air temperature was used to allow for an 

easy comparison with other researchers. Alternative reference temperatures include the bulk mean 

temperature (which can result in biased values due to thermal wake effects, as shown by Zhang and Tafti 

[35] and Lyman et al. [23]) or the adiabatic mean temperature as introduced by Moffat [36]. The latter 

represents the actual driving potential for heat transfer and enables the effects of the flow field and thermal 

field to be separated. However, hardly any data is available on other fin types providing heat transfer 

coefficient values based on this temperature and using this temperature increased the time required for the 

measurements significantly.  
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The core of the measurement louver was constructed of balsa wood. During the measurements a 

temperature difference was recorded between the top and bottom of the louver, which will result in a heat 

flux qcond flowing through the louver. This must be taken into account when calculating the heat transfer 

coefficient. This conductive flux can be calculated based on the thermal conductivity of the balsa wood 

(0.0453 W/mK, measured using guarded hot plate - ISO 8302), the louver thickness and the measured 

temperature difference (Eq. (6)). The impact of the copper foil, paper and thermal conductive paste were 

negligible. Even though kbalsa is very low, because the louver is thin it still results in a significant 

conductive heat flux through the louver, even for small temperature differences between the top and 

bottom. By assuming one dimensional conduction through the louver (perpendicular to the surface), the 
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conductive heat flux can be computed based on the measured local surface temperatures. As the stream 

wise temperature differences were small, this is considered a reasonable approximation. By adding or 

subtracting qcond to/from the imposed heat flux q, the actual heat flux is known (Eq. (5)).  

 ( )bottomtop
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To determine the average heat transfer coefficient, the local values were first averaged out for a louver and 

then the average was determined for the whole fin array. Due to the smaller size, it was not possible to 

determine the local h values with sufficient accuracy on the inlet, turnaround and exit-louver. So no 

average values will be presented for these louvers. The local temperature measurements did reveal the 

presence of the recirculation zone on top and underneath the turnaround louver: large temperature 

difference between the top and bottom and a sharp gradient from leading to trailing edge. In order to be 

able to indicate the quality of the measurements a thorough error analysis was made using the procedures 

found in Moffat [37]. The uncertainty on the viscosity and thermal conductivity of the air in the 

calculations was 2% (Kadoya et al. [38]). The air density was determined through the ideal gas law and the 

uncertainty was determined through error propagation based on the environmental temperature and 

pressure measurement. Based on the uncertainty in the resistance (1.25%) and current measurements (0.05 

A) an average uncertainty of 3.6% was found for the imposed heat flux q. The uncertainty on qcond was 

determined based on the uncertainty of the temperature difference and of the thermal conductivity of the 

balsa wood (1.5%). This resulted in an uncertainty ranging from 5% to 16% on the local h values.  

 

5.3. Numerical setup 
To gain more quantitative insight into the local flow behaviour (e.g. the thermal boundary layers) a number 

of two and three dimensional numerical simulations were performed including heat transfer. Even though 

the flow visualization provides a great tool to study the mean flow behaviour, and specific local phenomena 

such as separation and unsteadiness, it was found that more detailed information was needed to link the 

measured data to the occurring flow physics. The same simulation settings as described above (4.3) were 

used. In addition, a uniform heat flux boundary condition was imposed on the louvers, and the required 

residual for convergence of the energy equation was set to 1e-6. Second order discretization was used for 

the energy equation. The air substance properties remained constant apart from the density (set to 

‘incompressible ideal gas’) and the dynamic viscosity (set to the ‘Sutherland law’) which were allowed to 

vary as a function of temperature. For the three dimensional cases the two dimensional models of the fin 

were extruded. The width equaled half the test section width (0.1 m). A symmetry boundary condition was 

imposed on one side wall and a no-slip condition on the other (= channel wall).  

 

A comparison between the numerical (both two and three dimensional simulations) and experimental 

friction and Colburn factor data is shown for configuration 2 in Fig. 7A. As can be seen, the numerical 

results agree well with the experimental data for both heat transfer and pressure drop. The difference 
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between the 2D and 3D CFD values of the Colburn factor is very small. This is due to the flow acting 

nominally two dimensional. This is illustrated in Fig. 7B in which the louver averaged span wise heat 

transfer coefficient is set out as a function of the distance to the wall (z, in m). The coordinate z = 0 

corresponds to the channel wall, while z = 0.1 m is the center of the channel. The values represent the 

average heat transfer coefficient over a louver length at different z coordinates. Figure 7B shows that the 

impact of the boundary layer on the channel wall is confined to a small section of the channel, and even 

there the drop off is not that sharp, as the values only reduce by about 20% at the point closest to the wall (z 

= 0.005 m). Figure 7B shows data for the lowest considered value of ReLp, which had the strongest impact 

of the boundary layer. This two dimensional flow behaviour had also been noted during the experiments, as 

temperature measurements using the measurement louver at different locations in the channel section (0.25 

of the width, in the center and at 0.75 of the width) revealed no difference within measurement 

uncertainties. Figure 7A shows a slight difference between the 2D and 3D values for the friction factor. 

This is due to the added flow friction by the channel wall. As can be seen the experimental f values agree 

well with both cases, but the difference with the 3D cases is slightly smaller.  

 

5.4. Results and discussion 
An example of a heat transfer coefficient measurement is shown in Fig. 8 for configuration 1 (Table 1) ReLp 

= 185. As a dimensionless coordinate x-coordinate X* (Eq. (7)) is introduced. Positive values represent the 

top side of the louver, negative the bottom side. The definition shows that 0 represents the leading edge of 

the louvers, while 1corresponds to the trailing edge. The heat transfer coefficients on the top side of the 

upstream louvers show the typical boundary layer behaviour: a sharp drop off starting from the leading 

edge. The bottom side however of these louvers shows the opposite trend, increasing towards the trailing 

edge. To explain these trends the local velocity field around L3 is shown in Fig. 9A. On the top side of the 

louver a boundary layer grows starting from the leading edge. Because the flow is only slightly deflected (ζ 

~ 0.63, corresponding to a mean flow angle of about 8°) the boundary layer growth is very similar to that of 

a flat plate parallel to the flow. Near to the trailing edge the boundary layer becomes thinner due to the 

local flow acceleration as a small portion of the flow is deflected between the louvers. This result in higher 

heat transfer coefficient values near the trailing edge, a phenomenon also noted by DeJong and Jacobi in 

slit fins [17]. On the bottom side of the louver the boundary layer starts to grow from the leading edge. Due 

to the presence of the accelerating flow from in between the louvers the local flow angle to the louver 

surface is increased, thickening the boundary layer. Further downstream on the bottom the soft 

impingement of the main flow thins the boundary layer as it approaches the trailing edge, resulting in the 

‘inversed’ heat transfer coefficient profile. In the second half of the fin array (L6 – L10) the trends are 

reversed as the top edges now show an ‘inversed profile’, though to a lesser extent. The top edges of the 

upstream louvers have the highest h values. As stated above the heat transfer coefficient is determined 

using the inlet temperature as a reference value. If the flow would be perfectly mixed after every louver 

using Tin as a reference would result in a steady dropping value of h as the heat flux is fixed. Instead, the 
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temperature distribution is very non uniform, exposing the top surfaces of the upstream and the bottom 

surfaces of the downstream louvers to cooler air, raising their h values. This is illustrated in Fig. 9B. This 

example clearly illustrates the coupling between the local flow behaviour and the heat transfer coefficients.  
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By averaging out the local heat transfer coefficients per louver, the impact of the change in flow behaviour 

can be visualised in the fin array at different Reynolds numbers. Figure 10 shows an overview of the 

numerically determined averaged heat transfer coefficients per louver for different Reynolds numbers for 

configuration 2. As is shown, at low Reynolds numbers the fin acts as if it was a plate with a growing 

boundary layer: the averaged convection coefficients gradually decreased downstream. At low Re the flow 

is nearly aligned with the fin angle (Fig. 3), transporting all heat from the louvers following the shape of the 

fin array (strong ‘intra-fin’ interference, Zhang and Tafti [35]). As ReLp increases, the mean flow angle 

reduces as the fin passages open up. As a result the thermal wakes of the louvers are deflected more away 

from the fin array, resulting in an increase of the convection coefficients moving downstream in the fin 

array. Louvers 6 and 7 present the lowest louver averaged heat transfer coefficient values at higher ReLp. 

This is due to thermal wake interference: as the flow angle reduces in value (Fig. 3) the hot wakes of L4, 

L5 and the TL are directed towards L6 and L7. This results in local reductions of the heat transfer 

coefficient. This is consistent with the experimental results of Springer and Thole [39] who studied the flow 

in different louvered fin arrays. They reported that at higher ReLp the hot wakes of the louvers became 

narrower but persisted over a larger stream wise distance. This explains the sharp drop at L6. As the flow 

angle reduces the louvers are exposed to cold air from the inlet which results in higher heat transfer 

coefficient values in the downstream half of the fin array.  

 

Based on the average heat transfer coefficient for all the louvers, the Colburn j-factor can be determined for 

the fin array (Eq. (8)). An overview of the experimentally and numerically determined (based on two 

dimensional cases) Colburn j-factor and friction factor is presented in Fig. 11A and 11B respectively for 

configurations 1 – 9. Only these configurations are shown to avoid overcrowding the figure while still 

highlight the trends in the data-set. The remaining configurations showed the same trends. As shown 

already in Fig. 7, good agreement is found between the numerical and experimental data. So it was chosen 

to only list numerically determined values in Fig. 11B, as data points with error bars would overcrowd the 

graph. Figure 11A shows a combination of experimental data and numerical values due to the long 

computational times required for the unsteady simulations with heat transfer. Figure 11C shows the 

corresponding fin angle alignment factor values ζT. It is clear from this figure that at a given inlet velocity 

(ReLp), the resulting flow behaviour is very dependent on the fin geometry. It can vary from strong flow 

deflection following the stair like channel to almost slit-fin like flow. Configurations with a small fin angle 

and high fin pitch ratio are prone to channel flow, while configurations with a high fin angle are prone to 
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slit fin like flow. The absolute value of the mean flow angle ranged between 0.4° (configuration 4, ReLp = 

550) and 15.8° (configuration 6, ReLp = 20).   

 
3

1
PrRe ⋅⋅

⋅
=

Lpair

p

k

Lh
j  (8) 

Examining the friction factor data (Fig. 11B) shows that increasing the fin angle and reducing the fin pitch 

results in higher friction factors. A smaller fin pitch results in a more compact structure, exposing the flow 

to more surface friction. It also reduces the ζT values (Fig. 11C), which means the flow is better aligned 

with the louvers, so the flow experiences more frictional drag. If the ζT value is high, the flow follows the 

channel and the louver surfaces (particularly the frontal one) experience relatively low velocities around it 

(as shown in Fig 9A), which reduces form and frictional drag. As the ζT values reduce, the velocities 

around the louvers increase and the flow experiences an increasing amount of drag. This also explains the 

impact of the fin angle as increasing the fin angle reduces the flow deflection. Additionally a larger fin 

angle also results in a slight increase in the frontal surface area of the inclined parts (IL, TL and EL) which 

increases the form drag. As a reference value, Fig. 11B contains the friction factor for fully developed 

laminar channel flow (solid black line). At low ReLp, the friction factor of configurations with a small fin 

angle is almost parallel to this line but higher. The flow does behave as in a channel but due to the extra 

form drag the friction factor is higher. As ReLp increases, a transition occurs as the friction factors move 

away from solid line. This corresponds to a drop in ζT: the flow becomes more aligned with the louvers and 

less channel like. Cases with a high fin angle also result in friction factors which behave nearly parallel to 

the solid line at low ReLp, but at much higher values. For these cases the flow is aligned with the louvers, 

flowing straight through. The flow experiences the louvers as obstacles (in particular the inclined sections) 

in the channel which results in high friction factors. From a certain ReLp value the curves gently start to 

move away from the solid line. This is due to the onset of unsteady flow (Fig. 4-5): the onset of large scale 

mixing results in a larger pressure drop. This transition is less pronounced than the change due to the drop 

in ζT values for the cases with a small fin angle. The friction factor of the cases with an intermediate fin 

angle value show a mixed behaviour as they are already moving away from the solid line at the lowest ReLp 

considered here (corresponding to their change in flow deflection). Additionally starting from ReLp ~ 400 

unsteady flow appeared and started to move upstream into the fin array. As a result the flow never behaves 

channel like.   

 

Comparing the heat transfer data in Fig. 11A to the ζT values shows a similar agreement in trends as for the 

friction factors. For configurations with a small fin angle an increase of the fin spacing results in a 

reduction of the Colburn factor. As the fin passage becomes larger, more air flows through the passage 

without making contact with the fin surface (see e.g. Fig. 9) resulting in a decreased heat transfer rate. As 

ReLp increases, a transition occurs as the Colburn j-factor curves start to decrease less fast with ReLp 

compared to at low ReLp. This transition corresponds to the change in flow behaviour: as the louver 

passages open up, the flow becomes better aligned with the louvers resulting in higher heat transfer 
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coefficients. For configurations with a larger fin angle an increase of the fin pitch results in a small increase 

of the Colburn j-factor. This is due to inter-fin interference: as the fin angle increases, the flow alignment 

decreases, resulting in flow that passes straight through the fin. The hot wakes of the louvers in the 

upstream half of the fin array will then be transported down towards the downstream louvers, resulting in 

(strong) reduction of the heat transfer coefficients. By increasing the fin pitch the flow is slightly more 

deflected resulting in less interference. Also, by increasing the fin pitch the stream wise distance between 

two louvers is increased, reducing the interference. Springer and Thole [39] showed that at high ReLp the 

louver wakes become narrower and persist over a greater distance through the fin array. So at high ReLp the 

interference should increase again, reducing heat transfer coefficients. But as the flow becomes unsteady at 

these velocities, the flow gets mixed, breaking up the wakes. Similar to the friction factors, the Colburn j-

factors of the configurations with an intermediate and high fin angle show a relative increase compared to 

the trend of the low ReLp data due to the onset of unsteady flow.    

 

These results clearly highlight the link between the mean flow behaviour (deflection and unsteadiness) and 

the thermo-hydraulics in the inclined louvered fins. This link is due to the boundary layers on the louvers 

and the onset of unsteady flow. As was shown, the boundary layers on the louvers drive the flow deflection 

and also govern the local heat transfer which is then averaged out over the array. By aligning the flow to 

the louvers the boundary layers become thinner and heat transfer increases. At the same time the pressure 

drop increases as the flow experiences more frictional and form drag. Through a better understanding of the 

flow physics occurring within fin designs, a further improvement of the performance could be achieved. In 

particular this study showed how flow behaviour can be manipulated through a choice of geometric 

parameters. It was shown that by using large inclined sections unsteady flow can be geometrically triggered 

at low Reynolds numbers. By incorporating more of these inclined sections throughout the fin array (e.g. a 

W-shaped fin structure compared to the current V-shaped structure), the flow could be made unsteady in a 

larger part of the fin array at low Reynolds numbers, which could enhance performance. This idea should 

be further studied and it seems to be in commercial use already: T’Joen et al. [13] recently reported on a 

complex louvered fin design which consists of a W shaped interrupted fin with large inclined sections.     

 

5.5. Comparison with other fin types 
To quantify the ‘performance’ of a fin design and provide a fair comparison to other designs, so called 

‘performance evaluation criteria’ or PEC are used. A large number of different criteria exist, e.g. the 

surface and volume goodness as defined by Kays and London [33]. Here the surface goodness (j/f) will be 

used as a measure, but it should be stressed that this PEC is just one of many ways to consider the benefits 

of a fin design. Depending on the actual application the PEC could have an entirely different form, 

incorporating e.g. manufacturing costs, volume, weight… Figure 12 shows the PEC values for 

configurations 1 – 9 and compare them to experimental data for three louvered fin designs (DeJong and 

Jacobi [18]) and one slit fin design (DeJong and Jacobi [17]). This reference data was determined 
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experimentally through naphthalene sublimation experiments on scaled models. They are one of the few 

studies reporting data for the interrupted element only and thus provide a comparison basis as in this study 

the interrupted element is also studied on its own, without the remainder of the heat exchanger. It should be 

stressed that the slit fin design presented here has a very small fin pitch ratio and thus a large pressure drop, 

resulting in lower PEC values. The louver fin designs have louver angle values which are comparable to the 

high end range of the inclined louvered fin dataset and fin pitch ratios which are comparable to the lower 

end of the dataset. Increasing the fin pitch ratio or reducing the louver angle will lower the fin efficiency 

(Zhang and Tafti [22]) making the flow less aligned to the louvers and lowering heat transfer. So within the 

considered parameter range the louvered fin cases in Fig. 12 represent solid reference cases. It was however 

the only data of this type available in open literature. Figure 12 suggests that the inclined louvered fin could 

provide benefits in the considered ReLp range. In particular high fin pitch configurations with a low fin 

angle (at very low ReLp) or with an intermediate fin angle (at higher ReLp) show the highest promise. 

Configurations with a large fin angle result in low PEC values due to the large pressure drop.  

 

6. Conclusions 
In this study the flow behaviour and thermo-hydraulic characteristics of a hybrid fin design, the inclined 

louvered fin, have been reported. Using a combination of experimental (water tunnel visualization) and 

numerical (CFD simulation) data the flow behaviour was quantified using the fin angle alignment factor ζ. At 

low Reynolds numbers the flow is deflected due to boundary layer growth. Using wind tunnel experiments 

local heat transfer coefficients and pressure drop were measured. Comparison of the ζ curves with the j and f 

data set out against ReLp, revealed the strong link between the flow and j – f. A sharp decrease in ζ results in a 

rise of both j and f, as the flow becomes better aligned with the louvers. The onset of unsteady flow further 

increases j and f. During the visualization it was shown that unsteady flow occurs at low Reynolds numbers 

(~200-300) and that this transition is geometrically driven by recirculation zones on the inclined sections of the 

fin array. Using the surface goodness PEC it was shown that compared to louvered and slit fins, the inclined 

louvered fin can offer benefits at low ReLp. 
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Figure captions 
Figure 1: The inclined louvered fin and its relevant geometric parameters. The flow passes from left to 

right. 

Figure. 2: Comparison of the experimentally and numerically determined local ζ values set out against the 

injection point, configuration 5 - ReLp = 402. 

Figure 3:  Averaged ζT values for configurations 1-5 over the studied Reynolds number range. The filled 

symbols represent validated numerical simulations. The open symbols are purely numerical cases without 

accompanying experimental data. 

Figure 4:  Reynolds number of the onset of unsteady flow at three locations in the inclined louvered fin 

configurations compared with similar data for louvered fins [19].  

Figure 5: Ratio of the amplitude of the local velocity signal to the mean value of this signal determined in 

the wake of the louvers, configuration 4 - various ReLp  

Figure 6: Schematic view of open air wind tunnel used for the thermo-hydraulic experiments. Frequency 

controlled drive (2+1) - centrifugal fan (3) - settling chamber with honeycomb (4) - contraction section (5) - 

settling channel (6) - test section (7) - exit channel section (8) - calibrated orifice plate (9) 

Figure 7: A: Comparison of experimental thermo-hydraulic Colburn and friction factor data and numerical 

predictions based on two dimensional and three dimensional simulations, configuration 2. B: comparison of 

the louver averaged span wise heat transfer coefficient derived from a three dimensional simulation 

(symbols) to the two dimension values (lines) for 5 different locations, configuration 2, ReLp = 20. 

Figure 8: Local heat transfer coefficients (W/m²K) on the different louvers, configuration 8, ReLp = 185. 

Open symbols: upstream louvers L1 - L5, filled symbols: downstream louvers: L6 - L10. Symbol sequence 

following the flow direction: □, ∇, Δ, ○, ◊. 
Figure 9: A: Local velocity magnitude [m/s] and streamlines around L3, B: local temperature profile [°C] 

around L3 (configuration 1, ReLp = 175) 

Figure 10: Louver averaged heat transfer coefficients (2D CFD results), configuration 2, various ReLp.  

Figure 11: Overview of the Colburn j-factor (A), friction factor (B) and fin angle alignment factor ζT (C) 

for different configurations. Open symbols: φ = 12.64° (○: config. 2, ∇: config. 1, □: config. 8), grey 

symbols: φ = 19.78° (○: config. 5, ∇: config. 7, □: config. 6), black symbols: φ = 30.96° (○: config. 4, ∇: 

config. 3, □: config. 9).  

Figure 12: Comparison of the surface goodness of configuration 1-9 to three louvered fins (DeJong and 

Jacobi [18]) and one slit fin (DeJong and Jacobi [17]) 
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Figure 1: The inclined louvered fin and its relevant geometric parameters. The flow passes from left to 

right. 
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Figure 2: Comparison of the experimentally and numerically determined local ζ values set out against the 

injection point, configuration 5 - ReLp = 402. 
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Figure 3:  Averaged ζT values for configurations 1-5 over the studied Reynolds number range. The filled 

symbols represent validated numerical simulations. The open symbols are purely numerical cases without 

accompanying experimental data.
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Figure 4:  Reynolds number of the onset of unsteady flow at three locations in the inclined louvered fin 

configurations compared with similar data for louvered fins [19].  

 



 28 

 
Figure 5: Ratio of the amplitude of the local velocity signal to the mean value of this signal determined in 

the wake of the louvers, configuration 4 - various ReLp 
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Figure 6: Schematic view of open air wind tunnel used for the thermo-hydraulic experiments. Frequency 

controlled drive (2+1) - centrifugal fan (3) - settling chamber with honeycomb (4) - contraction section (5) - 

settling channel (6) - test section (7) - exit channel section (8) - calibrated orifice plate (9). 
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Figure 7: A: Comparison of experimental thermo-hydraulic Colburn and friction factor data and numerical 

predictions based on two dimensional and three dimensional simulations, configuration 2. B: comparison of 

the louver averaged span wise heat transfer coefficient derived from a three dimensional simulation 

(symbols) to the two dimension values (lines) for 5 different locations, configuration 2, ReLp = 20.  
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Figure 8: Local heat transfer coefficients (W/m²K) on the different louvers, configuration 1, ReLp = 185. 

Open symbols: upstream louvers L1 - L5, filled symbols: downstream louvers: L6 - L10. Symbol sequence 

following the flow direction: □, ∇, Δ, ○, ◊.  
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Fig. 9. A: Local velocity magnitude [m/s] and streamlines around L3, B: local temperature profile [°C] 

around L3 (configuration 1, ReLp = 175) 
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Figure 10: Louver averaged heat transfer coefficients (2D CFD results), configuration 2, various ReLp.  

 

 



 34 

 
Figure 11: Overview of the Colburn j-factor (A), friction factor (B) and fin angle alignment factor ζT (C) 

for different configurations. Open symbols: φ = 12.64° (○: config. 2, ∇: config. 1, □: config. 8), grey 

symbols: φ = 19.78° (○: config. 5, ∇: config. 7, □: config. 6), black symbols: φ = 30.96° (○: config. 4, ∇: 

config. 3, □: config. 9).  
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Figure 12: Comparison of the surface goodness of configuration 1-9 to three louvered fins (DeJong and 

Jacobi [18]) and one slit fin (DeJong and Jacobi [17])
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Table 1.  Geometric parameters of the studied inclined louvered fins 

 

Fin parameters Fp [m] φ  

Configuration 1 0.0340 12.64° 

Configuration 2 0.0225 12.64° 

Configuration 3 0.0340 30.96° 

Configuration 4 0.0225 30.96° 

Configuration 5 0.0276 19.78° 

Configuration 6 0.0400 19.78° 

Configuration 7 0.0340 19.78° 

Configuration 8 0.0400 12.64° 

Configuration 9 0.0400 30.96° 

Configuration 10 0.0225 19.78° 

Configuration 11 0.0300 12.64° 

Configuration 12 0.0300 19.78° 

Configuration 13 0.0300 30.96° 

 

 

 


