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Abstract. The article at hand describes an integrating system for the intelligent con-
trol of complex biotechnological processes including automatic modelling and model
based control strategy generation. Starting with a summary of previously achieved re-
sults, some new approaches that provide better transparency to process engineers and
operators are discussed. This includes aspects of self-organizing generation of struc-
tured dynamic nonlinear process models based upon the ideas of genetic programming
as well as the transparent generation of fuzzy rules in a particular NeuroFuzzy ap-
proach. The latter is used for the classification of physiological states during batch
and fed-batch fermentations and for the long time strategy generation to optimize the

achievable product yield.
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1. INTRODUCTION

The control and optimization of biotechnological pro-
cesses is a complex task of industrial relevance, due
to the growing importance attached to biotechnology.
Therefore the number of modern intelligent approaches
of computer and control engineering applied for devel-
opment and optimization of bioprocesses increases.

In biotechnological productions microorganisms are cul-
tivated which have the special property to excrete or ac-
cumulate a desired product as part of their metabolism.
The lack of a complete mathematical description that
arises from the incomplete knowledge on the dominant
biological pathways as well as the low availability of sen-
sor information about the current physiological state are
characteristic problems. Therefore an automatic control
and optimization of biotechnological processes often ap-
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pears to be very difficult. In industrial practice the de-
velopment of biotechnological production processes is
characterized by a big number of empirical test series
that are expensive and time consuming. Organisms and
substrate composition have to be selected or modified by
microbiologists. Furthermore a large number of experi-
mental runs is needed to find appropriate environmen-
tal process parameters (e.g. temperature or feed-rate).
During batch or fed-batch fermentations often signifi-
cant alternations in the cell metabolism due to changes
in extracellular conditions can be observed. Therefore it
is obvious that the environmental parameters have to
be changed during a fermentation in order to achieve
optimal product yield. However, in industrial practice
usually constant set-points are applied to the whole fer-
mentation which are chosen because they provided the
best results during test series in laboratory scale (see e.g.
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Bailey and Ollis, 1986). That is due to the fact that of-
ten appropriate methods for an analysis of experimental
data are not available. Neither an analytical way exists
in most cases to evaluate optimal temporal sequences for
the environmental parameters by biological or physical
reflections. For such processes computer based learning
control approaches are an attractive way for automatic
control and optimization.

The following section describes the basic ideas of learn-
ing control and a successful application of an approach
for learning control and optimization of biotechnologi-
cal processes. Afterwards, some extensions and improve-
ments of this approach are introduced which increase the
learning systems’ transparency and provide enhanced
possibilities for the use of knowledge and experience
of process engineers and controllers. The experimental
results achieved with the improved system under real-
world conditions are discussed in sect. 6. A short sum-
mary and a preview concerning the future practical and
theoretical work are given in the last section.

2. LEARNING PROCESS CONTROL AND
OPTIMIZATION

The basic conception of learning control loops can briefly
be explained by describing the system LERNAS (Tolle
and Ersi, 1992), shown in fig. 1. Basically there are
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Fig. 1. Scheme of the learning control loop LERNAS
(Tolle and Ersii, 1992).

two mechanisms working at the same time: First an as-
sociative memory — this could be a neural network —
which is connected in parallel to the process learns the
input/output mapping of a predictive process model. In
order to enable a pseudo dynamic mapping several his-
tory values taken from a short term memory are used
beside the actual process values as inputs of the associa-
tive memory. Second by applying different control inputs
to the predictive model and assessing the predicted out-
puts with respect to a predefined optimization criterion
advantageous control strategies are generated. Finally
these control strategies are stored into another associa-
tive memory. Both, modelling and optimization, can be
operated off-line based on stored process data as well as
on-line.

From this learning technique certain advantages arise
compared to adaptive approaches, as they were pro-
posed e.g. by Bastin and Dochain (1990) for bioprocess
control. Adaptive approaches use simplified models in
which the complex nonlinear dependence on environ-
mental process parameters arc not explicitly considered.
Instead they are interpreted by time-varying parame-
ters. That means changes — e.g. of temperature — lead
to a new adaption of the model’s parameters. Therefore,
based on such models, there is no chance to find optimal
set-point sequences due to the fact that the influence of
variations of the environmental parameters cannot be
predicted.

Gehlen et al. (1992) introduced an extension of LER-
NAS with respect to the specific properties of biotech-
nological processes. The system BioX, shown in fig. 2
includes a number of special solutions for an integrated
knowledge-based and learning control of bioprocesses:
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Fig. 2. Scheme of the system BioX.

(1) For the control of fermentations the major task is
not to establish given set-points for environmental
parameters at the reactor but to choose these set-
points. Therefore the optimization module is used
to generate optimal inputs for underlying conven-
tional control loops.

(2) As already mentioned in sect. 1, fermentation pro-
cesses are characterized by a temporal sequence
of process phases, in which process behaviour can
be very different. By a classification of the current
physiological state combined with the use of phase
specific models and control strategies, easier gen-
eration and better quality of the predictive model
can be achieved (Halme, 1989; Gehlen and Betten-
hausen, 1990). For this reason a rule based phase
clagsifier was realized.

(3) Finally, a rule-based fault detection and a plausi-
bility check for the generated control action was
supplied to the process control system.

BioX was successfully applied to the process control of
an a-amylase production with B. subtilis. By optimized
dynamic variation of the environmental process parame-
ters the product yield was increased by more than 100%.
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In spite of these good results achieved at a real-world
process with an industrial production strain there still
remain some arguments against a wide application of
this method in industrial practice:

(1) The black box structure of associative memories
used for the control strategies does neither provide
an insight into the optimized strategies to an oper-
ator nor offers him a simple possibility to introduce
his personal experience.

(2) The configuration of a classical expert system for
a robust and faultless detection of changes of the
current process phase is very difficult.

(3) The predictive process model, which is realized as a
black box too, enables the numerical optimization
of set-points based on short-term predictions. How-
ever, long-term predictions, which are in particular
useful for bioprocesses, based on this type of mod-
els are difficult in most cases. Furthermore, for the
process engineer a trained associative memory does
not provide an insight into how a measured value
influences the process behaviour. This information
would be of great interest to draw conclusions for
the process development.

3. AUTONOMOUS GENERATION OF
TRANSPARENT CONTROL STRATEGIES

During the last few years the mentioned points were sys-
tematically investigated. The extended concept BioX*+
was first presented by Bettenhausen and Tolle (1993).
A homogeneous object oriented implementation concept
was chosen to overcome the explicit separation between
knowledge based and learning layer. Since that time a
number of new techniques were developed to provide a
better transparency and to make the system more user-
friendly (see also Bettenhausen et al., 1995b).

The usage of existing ideas and experiences of process
operators — which are expressed in a linguistic way in
general - are the foundations of the popularity of fuzzy
controllers designed and applied to complex nonlinear
systems like chemical or biotechnological processes. The
linguistically initialized fuzzy inferences as well as the
trainable neural networks are based upon a function ap-
proximation by static nonlinear mappings with a weighted
superposition of basis functions. The usage of this sim-
ilarity — which can also be observed in the internal rep-
resentation (cf. for example Brown and Harris, 1994) -
leads to optimizable or trainable fuzzy systems, the so
called NeuroFuzzy approaches.

A fuzzy approach offers several possibilities for auto-
matic manipulation and optimization, i.e. the introduc-
tion of learning capabilities, examples are the use of pa-

rameterizable operators for union and intersection, the
modification of number and shape of the membership
functions and the weighting of existing rules. An exten-
sion of the last mentioned approach - that we call com-
pletely defined rule space — expands the well known rule
matrix (fig. 3) by introducing weights for each term of a
linguistic output variable (fig. 4). The value of 1 means

System deviation erk)

ab u P P I
..... - . Output variable:
o || [ nl l—l_ [ " [ Manipulated
i i variable
. .m| . l, [, . change Au(k)
L

|
I U |
frlr
x| ' ¢ k Ip., [ nb: negative big
tl i n: negative
-
2 JI |

11 Tz zero
o

System deviation e(k-1)
- T T
s i 3
e
1 1
I T 7

phy | p: positive
- oo L Tpbe positive big

Fig. 3. Standard rule matrix of a fuzzy-controller with
two inputs (e(k — 1), e(k)) and one output (Au(k)).
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Fig. 4. Completely defined rule space of the same fuzzy
controller as in fig. 3.

that the conjunction of all input terms fully activates
the concerned output term. A rule base represented in
this extended form can be initialized by the process op-
erator using the conjunctive normal form of the existing
or available rules and setting the corresponding weights
to 1. Afterwards this initial set. of weights can automati-
cally be modified in order to optimize the fuzzy system’s
behaviour, i1.e. wrong rules can be deleted by reducing
their weight and new rules can be generated by increas-
ing their weight.

Due to previously gained theoretical and practical expe-
riences algebraic product is used as t-norm and algebraic
sum as t-conorm operator in our actual implementation.
The center-of-singleton defuzzyfication is the standard
method for time-reducing implementations. For the ef-
ficient optimization of the rule weights, algorithms were
developed integrating a local parameter search algorithm
and stochastically stimulating components for reducing
early optimization ending in local extrema.
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Bettenhausen et al. (1995¢) presented first experimental
results using this approach for the generation and stor-
age of strategies for the control of a - still simulated -
biotechnological batch fermentation. These experiments
have shown, that a significant increase of the product
yield can be achieved - similar to the results gained
by the usage of the interpolating associative memory
described in sect. 2. The major advantage of the new
approach is the increased transparency caused by the
representation of control strategies as a readable set of
fuzzy rules and the possibility of initializing the system
with existing linguistic prior knowledge in a simple way.

4. SELF-ORGANIZING GENERATION OF
STRUCTURED MODELS

The disadvantages that arise from the use of a pure
input/output model of the biotechnological process for
control purposes were already mentioned. The missing
transparency of neural models, means that since the in-
put/output behaviour is approximated by a black box
approach no direct insight into the process and its un-
derlying relationships can be gained. This usually leads
to a low acceptance of these approaches in industrial
applications. Another point is that a process engineer
usually wants to have a structured mathematical de-
scription of his process, even if an associative mem-
ory which perfectly reproduces the observed process be-
haviour would be available. This is due the fact that
information about what influences the different process
variables have can be an important help for the opti-
mization of the biological side of the process, too.

A new approach that we call self-organizing generation
of structured models is an attempt to overcome these
disadvantages. The general idea is to automate the iter-
ative methodology of empirical modelling used by a pro-
cess engineer. Therefore, existing knowledge of biochem-
ical experts on structural properties should be taken into
account. Fig. 5 shows the basic scheme of self-organizing
model generation, which is indeed very similar to the
way models are developed by a process engineer. The
algorithm distinguishes between two tasks: One is the
optimization or identification of the structure’s inher-
ent set of parameters which is achieved by well known
conventional methods. The other even more interesting
task is the symbolic generation of an appropriate model
structure which is done by means of genetic program-
ming (for an introduction see Koza, 1992).

Block diagrams which are often employed in control the-
ory are used for the symbolic representation of process
models. In order to apply the methods of genetic pro-
gramming for generation and modification of these mod-
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Fig. 5. Scheme of automatic generation of structured
process models.

els they are internally represented in a tree structure.
Fig. 6 shows an example of a simple model depicted as
a block diagram (left) and the equivalent genetic repre-
sentation in a tree structure (right).
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Fig. 6. Simple process model: depicted as a block dia-
gram (left) and as a tree structure (right).

Starting with a collection of elementary transfer ele-
ments like time-delay or Monod kinetics placed in a so
called “model construction set” a number of models is
created. The degree of how much this is done by ran-
dom depends on how much a priori knowledge is avail-
able. In an evolutionary process the following three steps
are performed iteratively. First each model of a gener-
ation is adapted to measured process data by optimiz-
ing its internal parameters, using well known parameter
search methods. After that a fitness value is evaluated
for each model by assessing its accuracy and complexity.
Directed by this fitness value new models are created by
modifying and extending the actual model’s structure.
This iterative methodology finally leads to models that
hopefully combine high accuracy and low complexity,
which are needed for most kinds of control and design
purposes. A priori knowledge on structural properties
can be taken into account in this process by constrain-
ing the elements in the model construction set and by
influencing their selection frequency. Furthermore, cer-
tain parts of the models, e.g. basic balance equations of
fermentation processes, can be predefined and elements
can be combined to “super-blocks” that are treated as if
they where single elements. Therefore both, predefined
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submodels and super-blocks, cannot be divided by ge-
netic operators.

A detailed description of this approach as well as first ex-
perimental results taken from a cooperation with BASF
AG, Germany, in which the self-organizing modelling
technique was applied to a biotechnological fed-batch
fermentation have been published by Bettenhausen et
al. (19954a).

5. LEARNING DETECTION OF PHASE
TRANSITIONS

Another property of biological processes, which causes
difficulties in process control, is that even under identi-
cal measured experimental conditions different fermen-
tations produce characteristic but nevertheless consid-
erable differing time responses. Together with the diffi-
culties that arise from alternations in the behaviour of
the microorganism due to changes in cell metabolism
this leads to a point where even data driven modelling
becomes a very complex task.

An efficient way to overcome these difficulties is to di-
vide the process behaviour into characteristic physiolog-
ical states that correspond to the different phases (see
Halme, 1989; Gehlen and Bettenhausen, 1990). If now
phase specific models are used instead of trying to find
an accurate model for the whole fermentation modelling
becomes much easier, because only those effects have to
be considered that are dominant in the actual phase.

For the system BioX described in sect. 2 an expert sys-
tem based on the programming language Lisp was used
for recognition of the different process phases. The dis-
advantage of this approach was, that rules in the way
they are formulated by an expert are not enough to
achieve a robust and faultless recognition. In their fun-
damental paper Konstatinov and Yoshida (1989) already
proposed the use of a learning fuzzy-approach — similar
to the one described in sect. 3 -- for the representation
of control strategies.

This offers the possibility to first take the linguistic for-
mulated rules for initialization and then optimize the
rule base according to phase separations of measured
process data which also should be done by an expert.
A tool that provides the functionality to do this separa-
tion graphically on a computer screen and to optimize
the fuzzy rules afterwards together with first experimen-
tal results were part of the oral presentation of Betten-
hausen and Tolle (1993).

6. APPLICATION

The previous sections discussed a couple of methods
and approaches which are part of the integrating system
conception BioX**. Due to several practical necessities,

these methods were examined and applied to different
processes.

In order to summarize this work and to give some gen-
eral information about the flexibility of the developed
tools, a recipe for the application and some benchmark
values to make the tools comparable to other developed
approaches, the actual examinations are concentrated
on a complete application to a process examined to-
gether with the Institute of Biochemistry at Darmstadt
University of Technology ! . This process is the produc-
tion process of a-amylase with B. subtilis. The complete
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Fig. 7. Experimental set-up.

installation based upon a 19! fermenter with flow injec-
tion analyzer (FIA) for the on-line measurement of a-
amylase concentration is shown in fig. 7. For the control
of the FIA and the data acquisition conventional PCs
are used. The additional components - integrated in the
system BioXtt — take place on a UNIX workstation.
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Fig. 8. Experimental results.

Fig. 8 shows actual results of three fermentations demon-
strating the enormous capabilities and robustness of the
integrating approach. A small number - only one is
shown — of runs with constant set-points for temperature
and pH was used as training data for the phase classifi-
cation. Then phase specific constant set-points accord-

1 These examinations are partially granted by the German Min-
istry of Education and Research (BMBF).
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ing to a priori knowledge were applied (cf. fig. 9). The
resulting data was used for training of an associative
memory. The off-line generated short-time strategies in-
creased the product yield considerably, particularly tak-
ing the previously gained results into account. However,
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Fig. 9. Environmental parameters: pH an temperature.

the structured modelling approach has not been applied
to B. subtilis up to now.

7. CONCLUSIONS

The article at hand describes the characteristic main
parts of the system BioXt* for the autonomous control
of biotechnological batch and fed-batch fermentations.
The system is based on two modelling approaches -
neural modelling for continuous short-time optimization
and data-driven self-organizing generation of structured
models by the means of genetic programming as a basis
for the generation of long-term strategies and for the in-
crease of process understanding. Due to the well-known
fact that different dominant effects can be observed in
different process phases, the expenditure of modelling
can easily be decreased by a stable classification and
separation of these characteristic phases. A transparent
approach based on existing operator knowledge and a
data-driven extension and optimization is discussed and
presented in detail. Current work is concentrated on an
intense examination of the different techniques and the
transition to fed-batch operating mode.
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