
DisCoverage: From Coverage to Distributed
Multi-Robot Exploration ?

D. Haumann ∗ V. Willert ∗ K.D. Listmann ∗∗

∗ Institute of Automatic Control and Mechatronics, Technische
Universität Darmstadt, Landgraf-Georg-Str. 4, 64283 Darmstadt,

Germany {dhaumann, vwillert}@rtr.tu-darmstadt.de.
∗∗ABB AG, Corporate Research, Wallstadter Str. 59, 68526

Ladenburg, Germany, (kdl@ieee.org)

Abstract: DisCoverage transfers the well-known solution to the coverage problem to the
exploration problem. Essentially, DisCoverage solves the multi-robot exploration problem
through a spatially distributed optimization problem. Our contribution is a new objective
function for DisCoverage based on the centroidal search. Each robot continuously creates and
optimizes the proposed objective function, obtaining a gradient-based control law that leads
into unexplored regions. A proof of convergence is given as well as a simulation and a statistical
evaluation demonstrating DisCoverage.
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1. INTRODUCTION

Motion coordination of mobile robots has received con-
siderable amount of attention in the autonomous robotics
community. Within the past decade the focus shifted from
the single-robot to the multi-robot domain, stressing the
need for distributed coordination techniques that enable a
group of robots to act as a whole based on locally available
information (Mart́ınez et al., 2007). Examples are manifold
and include consensus, flocking, sensor deployment, target
tracking, and task allocation. Although these problems are
in common need of distributed motion coordination tech-
niques, individual solutions to these problems exist. Often
the considered problem is solved isolated from solutions to
related problems.

In particular, this observation holds for solutions to the
coverage and the exploration problem. As noted by Bur-
gard et al. (2005) the key problem in multi-robot ex-
ploration is to assign appropriate target points to each
robot such that all robots simultaneously explore differ-
ent regions of the environment. Therefore, existing explo-
ration strategies traditionally apply a two-step approach:
First, appropriate target points are chosen. Second, each
robot plans a path with standard path planning algo-
rithms (LaValle, 2006). Consequently, the difficulty of dis-
tributed multi-robot exploration lies in finding appropriate
target points for each robot in a distributed manner. Typi-
cally, effective target point selection is achieved by casting
the exploration task into a distributed optimization prob-
lem based on an appropriate objective function.

A vast amount of research on exploration exists that
follows this two-step approach, focusing on different as-
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Fig. 1. Closed feedback loop (cf. Haumann et al. (2010))

pects. To name a few, Burgard et al. (2005) maximize
the expected information gain, Fox et al. (2006) in par-
ticular solve the problem of Simultaneous Localization
and Mapping (SLAM), Sheng et al. (2006) and Rooker
and Birk (2007) focus on maintaining a communication
network amongst the robots, and Wu et al. (2010) cluster
the unknown space such that the robots evenly spread into
the unknown environment.

Contrary to the two-step approach to multi-robot explo-
ration, Cortés et al. (2005) provide a closed solution to the
coverage problem with multiple robots. There, the steps
of finding appropriate target points and path planning
are merged. Consequently, the additional step of path
planning is not needed. This is achieved by gradient-based
motion control laws, as depicted in Fig. 1. Based on the
Voronoi partition of the environment, the task of each
robot is to maximize coverage in its own Voronoi cell.
Maximizing coverage is achieved by the optimization of an
objective function H, resulting in gradient-based control
inputs ui that exclusively depend on information available
in the respective Voronoi cell.

The significant property of the solution to the coverage
problem in Fig. 1 is that it is spatially distributed over
the Delaunay graph, which is dual to the Voronoi partition
(de Berg et al., 2008). Once the partition is computed,
which is possible distributively amongst Voronoi neighbors
(Cao and Hadjicostis, 2003), the optimization and motion
coordination is fully distributed. Mart́ınez et al. (2007)
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provide a variety of motion coordination algorithms simply
by modifying the objective function H, with the most
prominent one being the centroidal search.

Haumann et al. (2010) introduce DisCoverage as a
paradigm to multi-robot exploration. In essence, the Dis-
Coverage paradigm follows the closed feedback loop of the
solution to the coverage problem in Fig. 1 by modifying
the optimization problem such that the robots jointly
explore the environment. Haumann et al. (2010) propose
an objective function H =

∑
iHi consisting of the robot

orientations δi defining the current moving direction, and
distance costs to unexplored space. Each robot optimizes
∂Hi

∂δi
, i.e. its objective function Hi with respect to its orien-

tation δi (instead of its position pi as in Fig. 1) to obtain an
optimal moving direction that quickly leads to unexplored
space. Although the approach was extended to nonconvex
environments and validated in lab experiments (Haumann
et al., 2011), the proper choice of parameters and a formal
proof of convergence are open issues.

In this paper we apply the DisCoverage paradigm again.
However, this time we introduce an objective function
Hdiscover that – being optimized with respect to the robot
positions pi as in Fig. 1 – provides a provably correct ap-
proach to distributed multi-robot exploration that closely
follows the limited centroidal search as proposed by Cortés
et al. (2005) for solving the coverage problem. We restrict
the presented work to robots with single integrator dynam-
ics exploring convex polygonal environments for clarity.
It should be noted that the proposed method can be
extended to system dynamics other than single integrator
dynamics by following Bullo et al. (2009). In addition,
it is possible to extend the work to nonconvex polygonal
environments with several minor adjustments.

Other efforts have been made to combine coverage and
exploration. Hussein and Stipanovic (2007) dynamically
cover the entire search domain over time, which matches
the idea of exploration. Although the authors provide a
gradient-based control strategy, convergence cannot be
guaranteed due to local minima. In that case, the strategy
needs to be switched to a different coverage strategy.
Closest to the DisCoverage approach proposed in this
paper is the strategy by Bhattacharya et al. (2013). The
authors follow the feedback loop in Fig. 1 by applying the
unlimited centroidal search based on the Voronoi partition.
If the centroid lies in already explored space, it is projected
to the nearest location where the desired coverage level
is not yet reached. Although this approach is provably
correct, neither the centroid of an unlimited Voronoi cell
nor its projection are optimal target points with respect
to the exploration problem, since the centroid does not
lie in unexplored space in most cases. Finally, Schwager
et al. (2011) provide a unified approach to multi-robot
deployment, but exploration is not considered.

The paper is structured as follows: Section 2 provides
preliminaries and formally introduces the solution to the
coverage problem and the problem statement. In Section 3
we apply the DisCoverage paradigm based on the coverage
functional. This is achieved through an integration range
and a modified density function. Further, we prove conver-
gence. Section 4 shows simulation results and a statistical
evaluation before we conclude in Section 5.

pi

Vi

pj

Vj

(a) Voronoi cells for 2 robots

pi

pj

∆Vj→i

∆Vi→j

(b) Changed partition after ∆t

Fig. 2. Exchanged map data amongst Voronoi neighbors

2. PROBLEM FORMULATION

2.1 Preliminaries

Although nonconvex polygonal environments with obsta-
cles are supported with minor adjustments, we consider
only convex, obstacle-free polygonal environments Q ⊂ R2

for clarity. With ∂Q we denote the boundary of Q. We
assume ideal measurements within the radially limited
sensing range r ∈ R>0. Any uncertainties in the robot
positions and the sensor model are neglected, avoiding the
problem of SLAM. Next, let P = {p1, . . . ,pN} be the
configuration of N robots pi ∈ Q. Define the Voronoi
cells as Vi = {q ∈ Q | ‖q − pi‖2 ≤ ‖q − pj‖2,∀j} and
let V = {V1, . . . ,VN} be the Voronoi partition. Further,
define the r̄-limited Voronoi cells as Vi,r̄ = {q ∈ Vi |
‖q − pi‖2 ≤ r̄}. We call the scalar r̄ ∈ R>0 integration
range. We refer to robots with adjoining Voronoi cells as
neighbors and assume ideal, bidirectional communication
between neighbors. Further, neighbors communicate each
other’s position and exchange map data to account for
the time-varying Voronoi cells according to Fig. 2. For
∆t → 0, neighbors i, j differentially exchange map data
of the areas ∆Vi→j . Last, define the δ-contraction of Q as
Qδ = {q ∈ Q | infq′∈∂Q ‖q − q′‖2 ≥ δ}.

2.2 Problem Description

We assume a homogeneous multi-robot system with a
simple integrator dynamics

ṗi = ui (1)

for each robot, where pi ∈ Q denotes the position, and
ui ∈ R2 the control input of robot i. Cortés et al. (2005)
propose the r-limited centroidal search with sensing range
r in terms of the expected-value multicenter function

Hcover(P) =
N∑
i=1

∫
Vi
f(‖q − pi‖2)φ(q)dq. (2)

Therein, f : R≥0 → R≥0, f(x) = x2 if x ≤ r, and
f(x) = r2 if x > r, denotes the nondecreasing performance
function. Increasing values f up to r2 imply performance
degradation. The density function φ(q) encodes a location
dependent information gain at a point q ∈ Q. Cortés
et al. (2005) show that minimizing (2) with respect to
P yields N expected values, distributively optimizing the
performance f in the r-limited Voronoi cells. Our idea
is to modify (2) such that the optimization with respect
to P distributively solves the exploration problem. The
fundamental difference to existing exploration strategies is
that each robot i optimizes the objective function Hcover

in (2) with respect to its position pi autonomously. Hence,
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all robots perform the optimization in parallel avoiding the
two-step approach of the exploration problem. Distributed
construction of a Voronoi cell is guaranteed as long as each
robot is aware of the positions of its neighbors (Cao and
Hadjicostis, 2003). Communication of robot positions and
map information between neighbors (cf. Fig. 2) are the
only requirements for our approach.

Focusing on exploration, we define S(t) ⊆ Q as the
explored space with ∂S(t) = ∂(S(t) \ ∂Q) denoting the
frontier. Let Si(P(t), t) = S(t) ∩ Vi(P(t)), i.e., S = ∪iSi.
Further, define ∂Si(P(t), t) = ∂S(P(t), t)∩Vi(P(t)) as the
frontier in Vi(P(t)). For ease of notation, we occasionally
omit the parameters P(t) and t and write S, Si, ∂Si,
and Vi. How to achieve exploration will be subject of the
next sections, and we conclude with the definition of our
problem as follows:

Problem. Given a configuration P = {p1, . . . ,pN} of N
robots in a convex polygonal environment Q ⊂ R2, find
an objective function Hdiscover of the form (2) to derive
control laws ui for (1) such that S(t)→ Q as t→∞.

3. FROM COVERAGE TO DISCOVERAGE

Cortés et al. (2005) use the sensing range r to construct
the r-limited Voronoi cells and a Gaussian density function
φ(q). Instead, we introduce an integration range r̄ ∈ R>0

in addition to the sensing range to construct the r̄-limited
Voronoi cells Vi,r̄, and propose a density φ(q, ∂Si(P(t), t))
as a function of the time-varying frontier ∂Si. Inserting
the performance function f in (2), we denote H as

Hdiscover(P,S) =

N∑
i=1

∫
Vi,r̄
‖q − pi‖22φ(q, ∂Si)dq +R (3)

with an additive term R. The idea is to find a density
as a function of the time-varying frontier, such that the
centroids of the gradient-based motion control laws

ṗi = ui = −∂Hdiscover

∂pi
(P,S), for i = 1, . . . , N, (4)

continuously approach the frontier, leading the robots
into unexplored regions. Therefore, the next section first
discusses the density before the gradient in (4) is given.

Remark 1. R in (3) accounts for the set Q \ ∪iVi,r̄, where
‖q − pi‖2 > r, and therefore f(x) = r2 = const from (2).

This term vanishes in the derivative ∂Hdiscover

∂P and is
therefore not further discussed (cf. Cortés et al. (2005)).

3.1 The Density Function

As a well-known fact, the objective function of the r-
limited centroidal search along with the gradient-based
motion control laws move the robots to locations with
high density, maximizing coverage (Bullo et al., 2009).
Therewith, it is fundamental that the density function φ
is designed such that its values are maximal in the criti-
cal locations and monotonically decrease with increasing
distance to the critical points.

In our case, the critical target points the robots need to
reach are located on the frontier. Therefore, we define the
density as a function of the time-varying frontier in terms
of the Gaussian mapping φ : Q×Q → R≥0,

r

r̄ r

r̄

frontier ∂S1

unexplored
frontier ∂S2

V1 V2

V1,r̄

V2,r̄

S1 S2

φmax

φmin

Fig. 3. Density function for 2 robots in the environment

φ(q, ∂Si) = exp

(
− 1

2σ2
dist2(q, ∂Si)

)
, (5)

where in the convex case dist(q, ∂Si) = infq′∈∂Si ‖q−q′‖2
computes the minimum Euclidean distance metric from q
to the time-varying frontier ∂Si(P(t), t) through free space
Si. Since the density function is a Gaussian, its value is
highest on the frontier and monotonically decreases with
increasing distance depending on the value of the standard
deviation σ.

An example of the Gaussian density function (5) with σ =
2m (m = meter) is shown in Fig. 3. Two robots are placed
in a convex environment Q that is represented in terms
of an occupancy grid map (Elfes, 1987; Moravec, 1988).
Cells of the grid map are either unexplored, an obstacle on
the boundary of Q, or free. A cell on the boundary ∂Q
of the environment switches its state from unexplored to
obstacle, as soon as the cell intersects with a circle around
the robot positions pi defined by the sensing range r. A
cell in the interior of Q switches its state from unexplored
to free, if it is fully contained in one of the sensing circles.
The frontier is defined by all unexplored cells adjoining
free cells. The density decreases with larger distance and
is depicted by the color gradient on a logarithmic scale.

Remark 2. (Relation to the distance transform).The com-
putation of the weights of all points q in the explored
region Si relies on the distance from each q to the frontier
∂Si in a Voronoi cell Vi. Interestingly, this equals the
distance transform known in image processing (e.g., Fabbri
et al. (2008)), except that the distance is computed with
respect to the frontier instead of the obstacles.

3.2 Building the Partial Derivative

Cortés et al. (2002) and Pimenta et al. (2008) consider
time-varying density functions φ(q, t) for target tracking.
As a consequence, the control laws depend on the dynam-
ics of the centroid of the r-limited Voronoi cells, which in
turn depends on φ(q, t). This dependency is required, since
if the dynamics of φ(q, t) is ignored, convergence and thus
successful target tracking cannot be achieved.

In our case, the density function φ(q, ∂Si(P(t), t)) in (5)
does not explicitly depend on time. Instead, it depends
on the state of the frontier ∂Si(P(t), t) in the Voronoi
cell Vi(P(t)). This in turn implies that the frontier ∂Si is

constant over time if the robots do not move, i.e., if Ṗ = 0.
Considering moving robots, the density in a Voronoi cell
changes only in two cases: First, the robot moves into
unexplored regions of the environment and consequently
pushes back the frontier. Second, the partition changes
such that parts of the frontier are assigned from Voronoi
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r̄

V1,r̄

(a) vector field for φ = const

Qδ

δ = r̄

(b) δ-contraction Qδ for δ = r̄

Fig. 4. Fully explored, convex environment Q with con-
stant density. The boundary acts as repulsive force.
Legend: robot position, integration range r̄, cell
resolution 0.2m× 0.2m.

cell Vi to Vj . With this background, it is not crucial to
model the dynamics of the density function in the gradi-
ent (4). Therefore, we formulate the following assumption.

Assumption 3. Building the partial derivative of (3), the
density φ can be modeled as a quasi-stationary function.

Under Assumption 3, one obtains the well-known gradients

∂Hdiscover

∂pi
(P,S) = ki(pi − CMφ(Vi,r̄)), (6)

for each robot i = 1, . . . , N (Cortés et al., 2005). Therein,
ki ∈ R>0 denotes a positive gain, and the center of mass
CMφ(Vi,r̄) denotes the weighted centroid of the r̄-limited
Voronoi cell Vi,r̄. Obviously, the negative gradient points
straight from the robot position into the centroid, which
reflects the desired behavior in (4). Although Hdiscover

in (3) is defined over Q, the partial derivatives (6) solely
depend on pi and Vi,r̄. Consequently, the computation of
the partial derivatives is fully distributed.

3.3 Choice of Integration and Sensing Range

In addition to the density (5), the objective function
Hdiscover in (3) depends on the integration range r̄ which
defines the r̄-limited Voronoi cells Vi,r̄ in the Voronoi cell
Vi. The r̄-limited Voronoi cells Vi,r̄ form the base for
computing the motion control laws (4) through the partial
derivatives (6). In the following, we examine the impact of
the integration range r̄ on the motion control laws ui and
the sensing range r, and therefore the entire exploration
process. Based on examples, we deduce general upper and
lower bounds for the integration and sensing range.

A good understanding of the impact of the integration
range r̄ is obtained by considering an explored, convex
environment Q with a single robot and constant density
φconst = 1 as shown in Fig. 4. In Fig. 4a the vector field is
shown for the robot with an integration range of r̄ = 1m.
The normalized gradients are computed by applying (6)
to (4) in each cell of the explored environment. Obviously,
the boundary acts as repulsive force such that all trajec-
tories lead into an invariant set in Q that is defined by
all points q ∈ Q whose distance to the boundary ∂Q is
greater than or equal to the integration range r̄. This is
formalized as follows.

Theorem 4. Given a single robot in p1 ∈ Q with r̄-limited
Voronoi cell V1,r̄, integration range r̄, and a constant
density φ, all gradients (4) are zero in the δ-contraction

(a) preview of pi(t) for r̄ = 1m (b) pi(t) for r̄ = 3m and r = 1m

Fig. 5. Vector field for a convex environment with a single
robot. Legend: robot position, integration range
r̄, sensing range r, trajectory, cell resolution
0.2m× 0.2m.

Qδ=r̄ of Q, which defines an invariant set. All negative
gradients in (4) for p1 ∈ Q \ Qδ point towards Qδ.

Proof. If p1 ∈ Qδ, the r̄-limited Voronoi cell V1,r̄ is
radially unbounded. In this case, the centroid CMφ(V1,r̄)
lies in p1, and the gradients in (6) vanish. If p1 ∈ Q \
Qδ, the r̄-limited Voronoi cell V1,r̄ intersects with the
boundary. In this case, the centroid CMφ(V1,r̄) does not
equal p1. Instead, it is pushed away from the boundary
towards Qδ. Bullo et al. (2009) prove that the gradients
in (4) point straight from p1 into the centroid. Hence,
trajectories starting in Q \ Qδ approach Qδ. 2

Theorem 4 is an inherent property of the limited centroidal
search (Bullo et al., 2009). The δ-contraction of Q is also
known as growing of obstacles in robotics for collision-
free path planning (Udupa et al., 1977; Lozano-Pérez and
Wesley, 1979). The invariant set, where all gradients are
zero, is equal to Qδ for δ = r̄ as shown in Fig. 4b.
Consequently, the integration range can be thought of as
a safety distance to the boundary. This further allows
for a physical interpretation: When using real robots
with physical diameter diamrobot and dynamics (4), the
integration range r̄ must satisfy the lower bound

r̄ ≥ r̄min =
1

2
diamrobot . (7)

If (7) is violated, the risk of colliding with the environment
rapidly increases with decreasing integration range.

Unfortunately, (7) does not strictly hold for non-uniform
densities such as (5), since higher densities may shift the
centroid closer to the boundary depending on the slope of
the density. Hence, the distance from the centroid to the
boundary may be less than r̄. Thus, applying Theorem 4
for non-uniform densities, (7) imposes only a necessary
condition, but it is not sufficient to avoid collisions. Nev-
ertheless, the δ-contraction can still be regarded as an
approximate safety distance. This is depicted in Fig. 5a for
a single robot in a partially explored convex environment
Q. In line with Fig. 3, the density is illustrated through
the color gradient. Despite the non-uniform density, the
trajectory of the robot still adheres to the safety distance
of r̄ = 1m, finally approaching unexplored space.

Next to the lower bound r̄min of the integration range,
we want to find an upper bound r̄max. Closely investi-
gating Fig. 5b reveals that too large values for r̄ result
in trajectories that all lead into a single time-invariant
equilibrium point. In fact, for r̄ → diamQ, the limited
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(a) ∂Vi acts as repulsive force

V1

V2

p1

p2

α
α
2N

r̄rmin

(b) minimum sensing range rmin

Fig. 6. rmin in dependence of N and the interior angle α

centroidal search equals the unlimited centroidal search
(Cortés et al., 2004), which is known to maximize coverage
for the entire convex domain and therefore not suited for
exploration. This also becomes clear by recognizing that
the sensing range of r = 1m is not sufficient to explore
new parts of the environment in Fig. 5b. From Fig. 4 and
Theorem 4, it can be concluded that the δ-contraction of
Q can be interpreted in terms of a defensive approximation
of the reachability set for δ = r̄. The reachability set Qδ
contains all points that can safely be reached while strictly
maintaining the safety distance δ to the boundary ∂Q. In-
creasing values for the integration range r̄ push the robots
further away from the boundary ∂Q. Finally, a value δmax

exists such that the reachability set Qδ degenerates into a
single line or a point. The δ-contraction of Q for δ > δmax

yields an empty set Qδ = ∅. Therefore, if a robot should
be able to navigate in the environment Q, the condition

r̄ ≤ r̄max = δmax (8)

must hold. Interestingly, Qδ=δmax equals the paths defined
by the generalized Voronoi partition (Latombe, 1991).

Next, we give a lower bound rmin for the sensing range
r. To this end, we first note that the boundary ∂Vi of a
Voronoi cell Vi acts as repulsive force exactly the same
as the boundary ∂Q of the environment, see Fig. 6a. It
follows that the minimum sensing range depends on the
partition, the number of robots and the smallest interior
angle α of the polygonal environment.

Theorem 5. (Lower bound for the sensing range r). Given
N robots with integration range r̄ > r̄min. Denote with α
the smallest interior angle of the convex polygonal envi-
ronment Q. The minimum sensing range rmin required to
explore Q is defined by

rmin =
r̄

sin( α
2N )

. (9)

Proof. Since the boundary of the Voronoi cell acts as
repulsive force, consider the Voronoi cell Vi of a single
robot. Therein, the reachability set is defined by the δ-
contraction of the Voronoi cell Vi (cf. Fig. 6b). The interior
angle α

2N in the Voronoi cell along with the minimum
sensing range rmin and the integration range r̄ define a
right triangle. Using the sine function, one obtains rmin as
hypotenuse. 2

According to condition (9) in Theorem 5, the sensing range
r must satisfy r ≥ rmin to allow for complete exploration of
the environment. Based on the discussion in this section,
we sum up the results as follows.

Corollary 6. (Choice of integration and sensing range).
Let Q be a convex environment. Then, the entire environ-

(a) Unstable equilibrium point (b) — unstable invariant set

Fig. 7. Unstable equilibrium points and invariant sets

ment can be explored over time if the integration range r̄
and the sensing range r of the robots satisfy (7) according
to Theorem 4, and (9) of Theorem 5, respectively.

3.4 The Separatrix: Unstable Invariant Sets

The density function (5) assigns decreasing real values to
each q with increasing distance to the frontier. However,
considering that the frontier may have arbitrarily curved
shapes during the exploration, the non-uniform weights
in the explored parts Si of the respective Voronoi cell
Vi of the environment Q introduce multiple maxima and
minima, where

∂Hdiscover

∂pi
(P,S) = 0 (10)

holds. As frequently discussed in the solution to the cov-
erage problem (Bullo et al., 2009), the objective function
Hcover exhibits its minima for centroidal Voronoi config-
urations P, maximizing coverage. However, (10) imposes
only a necessary condition for a minimum, implying that a
configuration P may represent a maximum. A maximum
is the worst case for a centroidal Voronoi configuration
P, since the gradients are zero. Consequently, the robots
remain at their position forever without moving to unex-
plored regions.

In fact, these worst-case situations appear frequently in the
proposed approach to multi-robot exploration, as Fig. 7
shows for a single robot with integration range r̄ = 0.5m
and sensing range r = 1m. In Fig. 7a, the vector field
is shown for a single robot in an unknown environment
right after mapping the surrounding area for the first time.
Obviously, the gradient in the robot position is zero, and
all other gradients in the explored region point away from
the robot to the frontier. Hence, the robot is positioned
in a maximum of the objective function Hdiscover, which
is equal to an unstable equilibrium point from a controls
perspective. Theoretically, the robot stays in this position
forever, and a random infinitesimal small perturbation
needs to be added to the gradient to continue exploration.
In Fig. 7b, the robot continued the exploration to the east,
finally arriving at the boundary ∂Q of the environment.
This time, the vector field reveals an invariant set in the
shape of a line instead of a single equilibrium point. Analog
to the circular case, all other gradients point towards the
frontier, therefore the invariant set is unstable.

From a mathematical point of view, these unstable invari-
ant sets can be detected by checking whether the Hessian
matrix of Hdiscover with respect to a robot position pi is
negative definite. However, it is much more easy to detect
this case according to the following observation.
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φmax

φmin

Fig. 8. Separatrix of the vector field, keeping maximum
distance to the frontier.

Corollary 7. (Leaving unstable invariant sets).
If condition (10) holds, i.e., the gradient of robot i is 0,
and if there still exists a frontier ∂Si in the Voronoi cell
Vi of the robot, then the robot is located in the unstable
invariant set and an arbitrary perturbation must be added
to the gradient for the robot to leave the invariant set and
continue exploration.

Before further analyzing convergence properties of DisCov-
erage, we take a closer look at Fig. 8. Therein, all points in
the unstable invariant set form the separatrix, highlighted
by the solid line in the explored regions. The vectors are
omitted for clarity. Interestingly, the separatrix appears to
be defined in line with the generalized Voronoi partition,
except that the distance is maximized with respect to
the frontier instead of to the boundary ∂Q. Thereafter,
the separatrix equals the set defined by the maximum-
clearance road maps in robot navigation (LaValle, 2006).

3.5 Proof of Convergence

According to the problem formulation in Section 2, the
exploration process is complete if S(t) → Q as t ap-
proaches ∞. Since the density function is constructed
such that it is maximal on the frontier and monotonically
decreases with increasing distance to the frontier, the fol-
lowing theorem states that the r̄-limited centroidal search,
denoted by the objective function (3) together with the
gradient-based motion control laws (4), moves the robots
into regions with maximum density, resulting in a r̄-limited
centroidal Voronoi configuration.

Theorem 8. (Frontier-based centroidal search). Let Q de-
note a convex polygonal environment and let S denote
the explored region in Q. Let P = {p1, . . . ,pN} be the
configuration of N robots in S with integration range r̄,
and denote with V = {V1, . . . ,VN} the Voronoi partition
of S for P. Then, applying (3) and (4) results in a r̄-limited
centroidal Voronoi partition for t→∞.

Proof. Building the time-derivative of (3) and inserting
(4) yields

Ḣdiscover(P,S) =

N∑
i=1

∂Hdiscover

∂pi
(P,S)ṗi

= −
N∑
i=1

∥∥∥∥∂Hdiscover

∂pi
(P,S)

∥∥∥∥2

2

(11)

under Assumption 3. The partial derivatives of Hdiscover

with respect to the robot positions pi are given by (6).
Inserting (6) into (11) is equivalent to

Ḣdiscover(P,S) = −kp
N∑
i=1

‖pi − CMφ(Vi,r̄)‖22 ≤ 0 (12)

for a positive gain kp. Obviously, (3) decreases over time
since the sum of squares as well as kp in (12) are non-
negative. Applying the Krasovskii-LaSalle invariance prin-
ciple (Khalil, 2001), the robots move to the largest invari-
ant set, which equals the set of all r̄-limited centroidal
Voronoi configurations. 2

With the help of Corollary 6 and 7, and Theorem 8, we
next give a proof of convergence for the DisCoverage-based
exploration approach.

Theorem 9. (Proof of convergence). Let Q denote a con-
vex environment and let S denote the explored region inQ.
Let P = {p1, . . . ,pN} be the configuration of N robots in
S and denote with V = {V1, . . . ,VN} the Voronoi partition
of S for P. Then, if r̄ ≥ r̄min and r ≥ rmin ≥ r̄ holds and
applying Corollary 7, continuous minimization of (3) and
applying the motion control laws (4) solve the multi-robot
exploration problem and S(t)→ Q for t→∞.

Proof. Applying Corollary 6 and 7, the lower bound r̄min

for the integration range r̄ results in trajectories that
approach the frontier, converging to a r̄-limited centroidal
Voronoi configuration as stated by Theorem 8. Since for
the sensing range r ≥ rmin holds, the frontier is within
sensing range r and therefore pushed back, which in turn
changes the density function φ(q, ∂Si). Therewith, the r̄-
limited centroidal Voronoi configuration is never reached
and the exploration continues until the entire environment
is explored. 2

In line with the solution to the coverage problem by Cortés
et al. (2005), the optimization of the DisCoverage ap-
proach follows exactly the closed feedback loop in Fig. 1
withH = Hdiscover. The partition is defined by the Voronoi
partition V, the optimization by the density function (5)
and the objective function (3), and the robot dynamics by
the motion control laws (4) and (6).

4. RESULTS

We demonstrate DisCoverage in a rectangular environ-
ment Q of size 15m× 10m with N = 3 robots as shown in
Fig. 9. The cell resolution of the grid map is set to 0.2m×
0.2m. The integration range is set to r̄ = 0.5m. Inserting
N , r̄ and the minimum interior angle α = π

2 into (9) yields
a minimum sensing range of rmin ≈ 1.93m. Satisfying
Theorem 5, we set the sensing range to r = 2m > rmin. The
simulation is performed in the DisCoverage exploration
framework (Haumann, 2013), which provides a discrete-
time implementation of the proposed approach. Initially,
the entire scene is unexplored. After 30 iterations, the
robots spread into different directions, exploring unknown
space in Fig. 9a. In addition to the trajectories, the integra-
tion range, the Voronoi cells as well as the vector fields of
free grid cells in the respective Voronoi cells are visualized.
The exploration proceeds over time (cf. Fig. 9b). Whenever
no frontier cells are left in a Voronoi cell, i.e., ∂Si = ∅, a
robot is said to be unemployed. In this case, the density
φ is set to a constant value of one, and the robot falls
back to the unlimited centroidal search in its Voronoi cell
Vi (Cortés et al., 2004). The unlimited centroidal search
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equals setting the integration range r̄ to ∞, meaning that
the robot always integrates over the entire Voronoi cell
Vi in (6). This effect can be observed in Fig. 9c for the
robot in the upper right corner. Therein, all trajectories
in the Voronoi cell point into one single equilibrium point.
The exploration continues, until the entire environment is
explored after 95 iterations as depicted in Fig. 9d.

Fig. 10 shows statistics for a sample size of 1000 simu-
lation runs for the scene in Fig. 9. Each run starts with
randomly generated initial robot positions. The number of
iterations is displayed on the horizontal axis. The vertical
axis shows the exploration progress in percent. A value of
100% implies that all grid cells are explored. Each iteration
vertically shows a box plot: the ±25% band around the
median represent 500 of the 1000 runs. The ‘best case’
corresponds to the maximum of the explored space in per-
cent in each iteration, while the ‘worst case’ corresponds
to the minimum.

In addition to the median, the mean and standard devia-
tion of the iterations needed to explore 90%, 95%, 98% and
100% are depicted horizontally.

The slope of the exploration progress decreases with in-
creasing number of iterations. This can be explained by
observing that robots get unemployed during the explo-
ration process. As already discussed based on Fig. 9c, an
unemployed robot falls back to the unlimited centroidal
search and therefore does not contribute to the explo-
ration. Fig. 10 includes the statistics about how many
robots are unemployed on average (in percent). Statisti-
cally, the unemployment decreases from iteration 88 to
iteration 150, since an increasing number of simulation
runs already explored 100% of Q. That is, if a simulation
run already finished exploration, all robots are counted as
employed robots as they are open for new tasks.

Finally, Fig. 10 also shows the time-optimal case intro-
duced by Frank et al. (2010). In short, the time-optimal
case defines a lower bound of the iterations needed to
explore an unknown environment.

5. CONCLUSION

In conclusion, this paper introduced a new approach
to multi-robot exploration in line with the DisCoverage
paradigm: Based on the elegant solution to the coverage
problem, the limited centroidal search is modified to facil-
itate multi-robot exploration. To this end, an integration
range was introduced and the density was defined as a
function of the frontier. DisCoverage is fully distributed in
terms of the gradient-based feedback loop in Fig. 1. The
advantages to existing exploration strategies are as follows:
First, distributed coordination is an inherent property
because each robot solely relies on information available
in its Voronoi cell. Second, due to the gradient-based mo-
tion control laws, an additional path planning step is not
needed. An interpretation of the integration range in terms
of a safety distance as well as lower and upper bounds were
given, allowing for a formal proof of convergence. Further,
the relation of DisCoverage to the method “growing of
obstacles” as well as to the distance transform and the
generalized Voronoi partition was given.

(a) Scene after 30 iterations

(b) Scene after 60 iterations

(c) Scene after 61 iterations

(d) Final configuration after 95 iterations

Fig. 9. DisCoverage exploration process with 3 robots
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Fig. 10. Statistics of 1000 simulation runs for N = 3 robots

For clarity, only single-integrator dynamics and convex en-
vironments were handled. However, the proposed approach
can be extended to passive and unicycle dynamics (Cortés
et al., 2004; Bullo et al., 2009) as well as nonconvex
environments with minor adjustments.

It is further noteworthy that the Voronoi partition is
not necessarily optimal for the multi-robot exploration
task, since unemployed robots do not contribute to the
exploration. Therefore, finding an optimal partition in a
distributed way for exploration is still an open problem.
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