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Abstract
High-intensity beams in ring accelerators are subject to several destabilising effects.
Among them are transverse beam instabilities that cause severe beam losses. These
instabilities are considered at the design stage of any accelerator. One of the ways to
suppress the instability is Landau damping. Landau damping is caused by energy ex-
change between the incoherent and coherent motion of the beam’s particles. In this
work, a novel way to provide Landau damping is introduced and studied.
A pulsed electron lens produces a betatron tune shift in a hadron bunch as a function

of the longitudinal coordinates, which is a longitudinal detuning. An example of trans-
verse detuning is the tune shifts due to octupole magnets. This work considers a pulsed
electron lens as a measure to mitigate transverse instabilities.
Using a detailed analytical description with the Vlasov formalism, the coherent proper-

ties of the longitudinal and transverse detuning are presented. The analytical predictions
are compared with the results of the particle tracking simulations. A pulsed electron
lens is demonstrated to be a source of tune spread with two components: the static
one, leading to Landau damping; and the dynamic one, leading to effective impedance
modification, an effect demonstrated analytically and in the particle tracking simula-
tions. The effective impedance modification can be significant for beam stability due
to devices with longitudinal detuning, especially for the nonzero head-tail modes. The
Vlasov formalism is extended to include the combination of longitudinal and transverse
detuning. As a possible application for SIS100 (Facility for Antiproton and Ion Research
in Europe GmbH (FAIR) at GSI Darmstadt, Germany), a combination of a pulsed electron
lens with octupole magnets is considered.
Additionally, the results of experiments in the existing ring SIS18 are presented. The

feasibility of an electron lens for Landau damping was studied experimentally. It was
shown that increasing the current of the electron lens weakens the instability. However,
more experiments with a larger range of parameters are necessary to demonstrate the
reproducibility of this result. Experiments indicated a potential limiting factor for the
usage of electron lenses in SIS18.
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Zusammenfassung
Hochstromstrahlen in Ringbeschleunigern sind mehreren destabilisierenden Einflüssen
ausgesetzt. Dazu gehören transversale Strahlinstabilitäten, die schwere Strahlverluste
verursachen. Eine der Möglichkeiten zur Eindämmung der Instabilität ist die Landau-
Dämpfung. Diese Dämpfung erfolgt durch den Energieaustausch zwischen der inkohä-
renten und der kohärenten Strahldynamik. In dieser Arbeit wird eine neuartige Methode
zur Landau-Dämpfung vorgestellt und untersucht.
Eine gepulste Elektronenlinse erzeugt eine Betatron-Frequenzverschiebung in einem

Hadronenstrahl als Funktion entlang des Bunches, was ein longitudinales Detuning dar-
stellt. Ein Beispiel für ein transversales Detuning ist die Betatron-Frequenzverschiebung
wegen der Oktupol-Magnete. In dieser Arbeit wird eine gepulste Elektronenlinse als
Maßnahme zur Bekämpfung von transversalen Instabilitäten betrachtet.
Die kohärenten Eigenschaften des longitudinalen und transversalen Detuning wer-

den mit Verwendung einer detaillierten analytischen Beschreibung, basierend auf dem
Vlasov-Formalismus, untersucht. Die analytischen Vorhersagen werden mit den Ergeb-
nissen der Teilchen-Tracking-Simulationen verglichen. Die theoretisch Betrachtungen
zeigen, dass eine gepulste Elektronenlinse eine Quelle des Detunings mit zwei Kompo-
nenten ist: die statische, die zur Landau-Dämpfung führt; und die dynamische Kompo-
nente, die zur Modifikation der effektiven Impedanz führt. Der letztere Effekt wird in
Rahmen der Arbeit analytisch und in den Simulationen übereinstimmend nachgewie-
sen. Die Modifikationen der effektiven Impedanz können für die Wirkung der Geräte
mit longitudinalem Detuning von grosser Bedeutung sein.
In Rahmen der Arbeit wurde der Vlasov-Formalismus erweitert, um die Kombination

von longitudinalem und transversalem Detuning zu beschreiben. Als eine mögliche An-
wendung für SIS100 (FAIR bei GSI Darmstadt, Deutschland), wurde eine Kombination
aus einer gepulsten Elektronenlinse mit Oktupol-Magneten untersucht.
Die Ergebnisse der dedizierten Experimenten im GSI-Ringbeschleuniger SIS18 wur-

den vorgestellt. Die Möglichkeit der Nutzung einer Elektronenlinse zur Landau-
Dämpfung wurde experimentell untersucht. Es konnte dabei gezeigt werden, dass ei-
ne vorher vorhandene Strahlinstabilität nicht mehr auftrat. Weitere Experimente mit
geänderten Parametern zur Reproduzierbarkeit dieses Effekts sind noch erforderlich.
Experimente hatten eine potenzielle Begrenzbarkeit der Verwendung von Elektronen-
linsen im SIS18 angedeutet.
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1 Introduction
Particle accelerators play an essential role as an instrument in various fundamental re-
search areas: atomic and nuclear physics, astrophysics, elementary particle physics,
plasma physics, biophysics, material science and others. Several significant discover-
ies were made with the help of particle accelerators. For example, the discovery of
Higgs boson at the Large Hadron Collider (LHC) [1], [2] or, most recently, anomalous
magnetic moment of the muon [3]–[8] at the Fermi National Accelerator Laboratory,
Batavia IL (FNAL). However, the vast majority of particle accelerators are applied in
industry and medicine. Industrial applications range from materials processing to envi-
ronmental protection [9]. In medicine, particle accelerators are employed to produce
x-rays, protons, neutrons or heavy ions for radiation treatment of cancer tumours. Two
other examples of medical applications are the production of radioisotopes for nuclear
medicine and imaging for medical diagnoses [10].
The first charged particle acceleration was performed by a high voltage in the gap

between the cathode and the anode. The history of modern particle accelerators began
with the inventions of Rolf Widerøe. He conceptualised the betatron, the first circular
accelerator, but a working betatron was built only decades after. Then, he built the
first linear accelerator [11] based on the design of Gustav Ising [12], using the Radio
Frequency (RF) acceleration. Linear accelerator refers to an accelerator design where
particles travel along a line and are only accelerated once by a single accelerating section
(for example, RF cavities). Circular or ring accelerators all refer to an accelerator design
in which particles pass through the same accelerating section many times.
The first breakthrough in the development of circular accelerators was the first cy-

clotron [13]: in a cyclotron, charged particles circulate in a magnetic field and are
repetitively accelerated by the same accelerating section. This results in particles having
an outwards-spiralling trajectory. The work on the betatron, which is also a cyclic accel-
erator, was finalised in [14], [15] by Kerst and Serber. In the betatron, charged particles
travel on a trajectory with a constant radius. They are accelerated by the change in the
magnetic flux (integral of the magnetic field passing through a surface).
High beam energies are necessary for numerous experimental applications, for exam-

ple for Compressed barionic matter (CBM) [16], [17] experimental programme at FAIR.
High energy beams can either be obtained from a Linear Accelerator (linac) or in a syn-
chrotron. The synchrotron utilises the principle of repetitive acceleration by RF cavities
and at the same time the particles’ orbits are kept constant [18], [19]. This is achieved
by increasing the strength of the magnetic field in the bending magnets to account for
the increasing energy of the beam. After the discovery of the strong focusing principle
[20], the transverse focusing is achieved via dedicated quadrupole magnets. The strong
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focusing is achieved by varying focusing and defocusing magnets, resulting in a net fo-
cusing effect on the beam. The weak focusing refers to a situation when all magnets
focus the beam transversely. Before in the weak focusing machines, the focusing was
achieved via the bending magnets. In the transverse plane particles oscillate due to the
transverse focusing and in the longitudinal plane they oscillate due to the longitudinal
RF potential. This is referred to as betatron and synchrotron oscillations respectively.
The number of such oscillations in a single revolution period are named betatron tune
and synchrotron tune.
The synchrotrons are used to this day in various accelerator facilities. Other acceler-

ator types have emerged, and new designs and applications are proposed to this day:
storage rings [21], colliders [22], [23], Energy Recovery Linacs (ERLs) [24], [25], Free
Electron Lasers (FELs) [26], Fixed Field Alternating Gradient accelerators (FFAGs) [27]–
[29] and others.
At present, accelerator facilities with several different accelerator types are used to

achieve higher target beam parameters (beam intensity, beam energy, luminosity for
colliders, brilliance for light sources, for example). For instance, the European Organi-
zation for Nuclear Research (CERN) main accelerator chain: the beam is injected from
a linac, then it is accelerated in three different synchrotrons (PS booster, Proton Syn-
chrotron (PS) and Super Proton Synchrotron (SPS)) and afterwards, it is injected into
the LHC. The purpose of this long accelerator chain is producing high energy proton
and heavy ion (only 82Pb) beams.
The FAIR accelerator complex will be discussed in this dissertation. Its accelerators are

used to produce a variety of heavy ions, with a focus on high intensity, beam quality and
a certain range of available beam energies. In this work, the most important parameter
is beam intensity, the number of particles in a beam.

1.1 FAIR accelerator complex and its heavy ion synchrotrons

The FAIR accelerator complex is currently under construction at Helmholtzzentrum für
Schwerionenforschung GmbH (GSI) in Darmstadt, Germany. The layout of the facility
is depicted in Fig. 1.1. This accelerator complex is designed to accelerate ions from pro-
tons to uranium with various charge states. The primary ion beams are produced by
the accelerator chain consisting of ion sources, Universal Linear Accelerator (UNILAC)
[30], Schwerionensynchrotron 18 (ger. for heavy ion synchrotron 18) (SIS18) [31]
and Schwerionensynchrotron 100 (ger. for heavy ion synchrotron 100) (SIS100) [32].
Secondary ion beams (rare isotopes) are produced after the UNILAC-SIS18-SIS100 accel-
erator chain via a collision with a target before the Superconducting Fragment Separa-
tor (Super-FRS). The proton beams utilise dedicated Proton Linear Accelerator (p-linac)
instead of the UNILAC. Proton beam collisions with the target produce the antiprotons
after the extraction from the SIS100.

2 1 Introduction



Figure 1.1: FAIR accelerator complex featuring two heavy ion synchrotrons SIS18 and
SIS100. The beam is injected from the UNILAC into the booster synchrotron
SIS18 with the kinetic energy of 11.4 MeV/nucleon. After the acceleration
in the SIS18 the beam is injected into the main FAIR synchrotron SIS100.
(Figure from [33])

First, the beam from the ion source is accelerated in the UNILAC. Then, it is injected
into the SIS18 and captured by the voltage of the RF cavities into the buckets. An RF
bucket is an area where the particles are confined longitudinally and in a specific range
of energies. The number of RF buckets depends on the settings of the RF cavities. A
collection of particles inside a single RF bucket is called bunch. This beam is called
a bunched beam (and it can consist of several bunches). In the SIS18, the bunches
are further accelerated up to the injection energy of the SIS100. To achieve a higher
beam intensity, the bunches injected into the SIS100 are merged and compressed by
performing RF manipulations. Secondary beams require high primary beam intensity

1.1 FAIR accelerator complex and its heavy ion synchrotrons 3



because the intensity of the secondary beam is only a fraction of the primary beam
intensity (especially rare isotope beams with low production cross-sections). Machine
parameters of SIS18 and SIS100 and beam parameters for the reference ion 238U28+ are
presented in Table 1.1.

Parameter Units Symbol SIS18 SIS100
Intensity ions/cycle Ncycle 1.5× 1011 5× 1011

Circumference m C 216.72 1083.6
Revolution frequency kHz frev 214 180

Injection energy MeV/nucleon Einj 11.4 200
Maximal beam rigidity T·m Bρ 18 100

RF voltage kV VRF 16 58.3
RF harmonic hRF 4 10

Vertical betatron tune Q y 3.47 18.73
Horizontal betatron tune Q x 4.27 18.84

Slip factor η −0.93 −0.67
Synchrotron tune Qs0 7× 10−3 4.5× 10−3

rms bunch length m σz 4 13.2
Vertical rms emittance mm·mrad ϵy 12.5 3.75

Horizontal rms emittance mm·mrad ϵx 37.5 8.75

Table 1.1:Machine parameters and beam parameters of the SIS18 and the SIS100 for the
reference ion 238U28+ [31], [32], [34], [35]. The parameters are introduced
and explained in Chapter 2.

The four pillars of research at FAIR [36] are: 1) CBM program [16], [17], 2) Atomic,
Plasma Physics and Applications (APPA) program [37], [38], 3) Nuclear Structure, As-
trophysics and Reactions (NUSTAR) program [39], 4) Hadron structure and dynamics
program and Antiproton Anihilation at Darmstadt (PANDA) collaboration [40]. The Nu-
clear Physics European Collaboration Committee (NuPECC) 2017 long-range plan [41]
lists the FAIR research program as a top priority. The high beam intensity requirements
for FAIR synchrotrons are imposed by this research program; for NUSTAR in particular
high-intensity primary beams are essential. However, there are several destabilising ef-
fects [42], [43] that scale with the beam intensity and lead to beam losses. Therefore,
these intensity-dependent effects give an upper limit for the beam intensity and can de-
grade the beam quality. The instabilities discussed in this work lead to the loss of the
major part of the beam if not mitigated.
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1.2 Intensity limitations in the SIS100

The two FAIR synchrotrons, SIS18 and SIS100, are used to accelerate and deliver the
beams, ranging from protons to uranium, to the FAIR experiments. Both are designed
to operate with a high beam intensity.

Intensity-dependent effects become more potent with higher beam intensity. There-
fore, if the intensity-dependent effect has a negative impact on the beam dynamics, it
will determine an upper intensity limit. These effects can be classified into a single par-
ticle effects and coherent effects. For single particle effects, the individual particles gain
unstable trajectories, and the beam loses intensity. The coherent effects are related to
the motion of the beam as a whole, for example, trajectories of the beam centre of mass
or its transverse size. In this work, we only discuss in detail coherent instabilities when
the whole beam becomes unstable. The beam is experiencing an instability when one of
its statistical momenta is growing exponentially in time.

There are several significant intensity limitations for FAIR synchrotrons. Space charge
[44]–[46] effects associated with the self-force (Coulomb interaction) of the beam parti-
cles on each other. The effect of this force on the beam is defocusing and, in general, this
defocusing is transversely nonlinear. Transverse single-bunch instabilities for ion beams
[44], [47] are discussed in this work. Some other transverse instabilities are relevant
for SIS100 and SIS18 operation. For example, beam break up instability for protons is
predicted to be significant for SIS100 [43]. Two-stream instabilities involve two parti-
cle species, for example, electrons and ions [43], [48]. In the SIS18, vacuum-related
instabilities are also significant [49].

The topic of compensation of intensity effects related to space charge in SIS100 is cur-
rently studied [34], [50], [51]. One effect of space charge on the beam is a change in
the betatron frequencies of individual particles depending on their position in the beam.
For example, the net space charge force on the particle in the centre of the beam is zero.
On the other hand, particles on the edges of the beam are experiencing a defocusing
force due to space charge. This position-dependent defocusing, leads among others to
position-dependent change in betatron frequencies. The distribution of betatron fre-
quencies in a bunch is referred to as tune spread. It can lead to several undesirable
effects.

Electron lenses were proposed for the compensation of this space charge tune spread
in the SIS100 [35] and will be discussed in more detail in the next subsection. In par-
ticular, for space charge compensation in [35] a Pulsed Electron Lens (PEL) with a ho-
mogeneous transverse distribution of the electron beam is proposed. In the SIS100, the
bunches have a length of ≈ 58 meters each, which is long enough to allow matching
the electron lens current to the ion beam profile. Recent studies show a PEL to be an
effective measure [34] for compensation of space charge tune spread and reducing its
negative effects on the beam intensity. This type of an electron lens can also influence
transverse beam stability; this effect was not considered before in the literature.

1.2 Intensity limitations in the SIS100 5



Transverse beam instabilities have been identified as a potential limiting factor in the
SIS100 for the beam intensity [52], [53]. For the ion beams, the transverse head-tail
instability1 is expected to be significant. The head-tail instability occurs due to the inter-
action between particles in the head and tail of the bunch. This can lead to a transverse
instability with a specific longitudinal pattern. Several transverse instability mitigation
measures are foreseen for the SIS100: transverse feedback system [54], as an active
measure; Landau Octupoles (LO) [52], [55]–[57], as a passive (Landau damping [58]
measure); (linear) chromaticity adjustments [53].
This contribution describes how a PEL will affect the transverse instabilities and how

it can be combined with some of the instability mitigation measures. It will be demon-
strated that a PEL can also be successfully employed for transverse instability mitigation,
in particular, for Landau damping.

Wake

Wake

Figure 1.2: A schematic illustration of an instability (black) and a mitigated instability
(blue). The external force causing the instability is shown in black and blue
as F⃗external. Individual particles (Ions) are displayed as orange dots.

An example 2 of a transverse instability is displayed in Fig. 1.2. Individual particles
are shown in orange, the collection of these particles here is called a bunch. In the ab-
sence of any mitigation measure the average position of a collection of particles (shown
in black) grows exponentially until the whole beam is lost. This is an example of a co-
herent instability, where all particles move as a whole and will be lost. In this example
the external force is proportional to this average position. However, when mitigation
measure is applied, the beam remains stable. Some of the possible mitigation measures
are: Landau damping, an effect causing an energy exchange between coherent and in-
coherent motion; transverse feedback system, a dedicated system that detects the beam

1 see Sec. 2.3.8 for details on the instability itself
2 Actual instabilities in a ring accelerator typically slowly develop over many revolution turns. The

external force, in this case, can be applied once per revolution turn.
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Figure 1.3: Schematic of electron beam trajectory in an electron lens prototype for SIS18
(Figure adapted from [59]). Electron beam travels from the electron gun
(left) into the main solenoid (centre) and then it is dumped in the collector
(right).

offset and counteracts the external force; an adjustment of chromaticity can weaken the
interaction of external force with the beam.

1.3 Electron lens

Electron lens is a dedicated device, where the stored ion beam interacts with low energy
electron beam. In this work, two types of electron lenses are considered. In one electron
beam current is constant during the passage of the ion beam. This is what is called DC
Electron Lens (DC EL). In the other electron beam current varies to match the charge
distribution of the ion beam. This configuration is referred to as PEL. The ion beam
is affected by an electromagnetic field of the electron beam, while the electron beam
is confined by an electromagnetic field of the solenoid magnet. Schematically electron
lens is demonstrated in Fig. 1.3. The electron beam is colour-coded depending on its
energy, with the red colour corresponding to the maximal energy and the blue colour
to the minimal one. The electron beam is generated on the electron gun cathode (left).
Then it is steered into the solenoid (centre), where interaction between the ion beam
and electron beam occurs. The transverse distribution of the electrons are maintained
by the strong magnetic field in the solenoid. The magnetic field should be strong enough
to prevent transverse oscillations of the electron beam in the interaction region. After
the interaction section, the electron beam is steered into the collector (right), where the
electron beam is destroyed. Every revolution, the ion beam interacts with a new electron
beam, thus avoiding effects similar to electron clouds [59].
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The electron lens was initially proposed for the compensation of beam-beam effects
in colliders [60]–[63]. These lenses were successfully used for the beam-beam com-
pensation in the Tevatron collider at FNAL [64], [65] and in the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory, Upton NY (BNL) [66]. Since then,
electron lenses proved themselves as useful tools in various applications: beam halo
collimation [67], space charge tune spread compensation [68], and others.
Recently, electron lenses have been considered for space charge compensation in FAIR

synchrotrons [35]. In the SIS18, a prototype PEL will be installed [59] and the resulting
increase of the space charge limit in the SIS18/SIS100 is under an active investigation
[34], [59].
A PEL affects the hadron bunch via the electromagnetic field of a co-propagating (or

counter-propagating) electron beam, similar to a DC EL. It relies on pulsing the electron
beam current so that each particle of the hadron bunch receives a kick dependent on its
longitudinal position. The longitudinal pulsing, in this work, has a Gaussian profile
with the peak current occurring in the longitudinal centre of the bunch. Additionally,
homogeneous transverse distribution of the electron beam is considered. This PEL was
proposed in [35] for the space charge compensation in the SIS18 [31]/SIS100 [32].
Another type of an electron lens is a DC EL, where the current of the electron beam is
constant. In contrast to PEL, a DC EL relies on the transverse nonlinearity of the electron
beam’s electromagnetic field, providing tune shifts depending on the transverse single-
particle amplitudes.

1.4 Current status and motivation

Transverse collective instabilities, induced by the beam coupling impedances3, can limit
the beam intensity in synchrotrons. The head-tail instability occurs without a threshold
in the beam intensity and it is observed or expected in many synchrotrons [in the heavy
ion synchrotron SIS100 of the FAIR accelerator complex [36], [52] or the LHC [69],
for example]. Instability mitigation methods (linear chromaticity adjustments, Landau
damping, transverse feedback system, linear coupling, and others) play a crucial role in
the operation of synchrotrons for high beam intensities [70].
This work focuses on Landau damping, an effect caused by energy exchange between

coherent and incoherent motion of the beam particles, in ring accelerators [57], [58],
[69]–[79]. This effect can occur only if there is an incoherent betatron tune spread in the
bunch. The incoherent tune distribution can depend on longitudinal or transverse single-
particle amplitudes. An incoherent betatron tune shift as a function of the longitudinal
amplitude is referred to as longitudinal detuning. The transverse detuning is the tune
shift as a function of the transverse action variable (for example, octupole magnets). The
dispersion relation analytically links the incoherent tune spread to Landau damping.

3 A measure of electromagnetic interaction between the beam and its surrounding environment: beam
pipe, cavities, bellows and more.

8 1 Introduction



This work introduces a longitudinally PEL as a source of the longitudinal detuning
and demonstrates its ability to mitigate transverse instabilities via Landau damping. A
PEL is compared with other possible devices (Radio Frequency Quadrupole Cavity (RFQ)
[76], DC EL [77], and LO [78]) and investigate their effects on the coherent beam sta-
bility for a possible SIS100 application. The known analytical formulae are re-derived
and extended to include the linear combination of longitudinal and transverse detun-
ing. Particle tracking simulations are used to verify the analytical results. As a possible
application at the SIS100, a combination of a PEL with LO is considered.
In the existing literature, Landau damping in particle accelerators is an actively re-

searched topic. Often it is described analytically via a dispersion relation, an integral
equation relating beam stability and incoherent frequency spread. Dispersion relations
for Landau damping of transverse instabilities in bunches were given in Eq. (1, 2) of [75]
for two particular cases: only transverse detuning or only longitudinal detuning. Com-
bined dispersion relation for arbitrary longitudinal and transverse bunch profiles have
not been given before. Such dispersion relations could be used to estimate stability
boundaries from the following devices and their combinations.
LO are a standard source of the transverse detuning to mitigate transverse instabilities

in several accelerators, e.g. the LHC [78], SIS100 [57] and the proposed Future Circular
Collider (hadron-hadron option) (FCC-hh) [79]. In recent years, several alternative to
LO methods of Landau damping were proposed, mainly for high-energy hadron collid-
ers. The authors of [77] proposed a DC EL as a source of Landau damping due to the
transverse detuning. They analytically estimated and compared the resulting stability
boundary with LO for the LHC and FCC-hh using Eq. (1) from [75]. The magnitude and
the shape of the stability boundaries given in [77] for a DC EL were not confirmed with
particle tracking simulations for different head-tail modes.
Authors of [76] introduced an RFQ as an alternative to LO for Landau damping. An

RFQ, like a PEL, provides Landau damping due to the longitudinal detuning. Studies
of an RFQ using the dispersion relation (Eq. (2) in [75]) and particle tracking were
performed in [71], [76]. In [76] a combination of LO with an RFQ for the instability
mitigation was proposed and verified in [71] using particle tracking. However, no an-
alytical expression for this combination was given via a dispersion relation for a bunch
with a realistic Gaussian-like distribution.
In [72], [80] the second order chromaticity ξ(2) was studied in an experiment and,

analytically, using a Vlasov formalism, where its effects on the coherent beam stability
were linked to an RFQ. A new dispersion relation (see Eq. (31) in [72]) was derived, in-
cluding only the longitudinal detuning. Authors of [72] established two separate effects
for an RFQ and for the second order chromaticity ξ(2): Landau damping and an effec-
tive impedance modification. Effective impedance modification leads to a change in the
instability growth rate and the frequency of coherent oscillations. These effects were
studied separately. The effective impedance modification was demonstrated in a case
of an airbag bunch, with no incoherent tune spread, which means no Landau damping.
Landau damping was demonstrated in a regime where the effective impedance modi-
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fication was shown to be weak. Therefore, it was impossible to establish the relative
strength of Landau damping and the effective impedance modification for various pa-
rameter regimes. In this work, we use Vlasov formalism to derive a dispersion relation
that includes a linear combination of transverse and longitudinal detuning.
Landau damping of nonzero head-tail modes was investigated in detail for transverse

detuning [81] due to octupoles. Studies of a DC EL, an RFQ and the second order
chromaticity ξ(2) neglected to discuss Landau damping of nonzero head-tail modes in
detail using either particle tracking or analytical expressions. Nevertheless, in the oper-
ation usually the instability is shifted to nonzero head-tail modes by adjusting the linear
chromaticity.
In hadron synchrotrons operating below transition energy, the zero head-tail mode is

usually suppressed by natural chromaticity. Transverse feedback systems can be effective
mitigation against head-tail instability, and other instabilities [82], [83]. However, they
can have restrictions, for example, higher-order head-tail modes in short bunches or
an instability due to a resistive damper [84]. In such cases, Landau damping devices
are indispensable for beam stability. For the l = 0 mode, even if a feedback system
can suppress it, Landau damping devices can be used supplementary, resulting in lower
power requirements for the feedback, for example.

1.5 Overview of the thesis

In Chapter 1, a motivation for this work was given. FAIR accelerator complex was de-
scribedwith an emphasis on the new synchrotron SIS100. The beam intensity limitations
in the SIS100 were discussed. Several existing transverse instability mitigation measures
were listed. A concept of a PEL was introduced and briefly compared with a DC EL. Re-
cent literature was discussed with an emphasis on Landau damping studies in order to
motivate this study.
Chapter 2 introduces fundamental concepts of beam dynamics in accelerators, starting

from a single particle motion and ending with collective instabilities and Landau damp-
ing. Only the concepts relevant to understanding the present work are discussed. Known
instability mitigation methods are briefly introduced. Among them, Landau damping is
explained in detail.
Chapter 3 describes the simulation framework and numerical implementation of a

PEL that are used in this study. The general concept of macroparticle tracking codes is
introduced and discussed.
Chapter 4 focuses on the coasting beam experiments conducted as a part of this study.

In the beam dynamics experiments, an existing electron cooler in the SIS18 was used
as a (transversely) non-linear DC EL. Its effects on the transverse beam stability were
studied in the experiment. First, the experimental setup used in the SIS18 beam time is
explained in detail. Then, the results are presented for studies with 40Ar10+ and 40Ar18+

beams. Finally, the obtained results are interpreted with a semi-analytical model.
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Chapter 5 presents this study’s main analytical results. First, the effect of a PEL on the
coherent beam dynamics is discussed. PEL is determined to be a strong source of longitu-
dinal betatron frequency detuning and is related to an RFQ and higher order chromatic-
ity. First, we demonstrate that the longitudinal detuning induced by a a PEL leads to
Landau damping of a transverse head-tail instability. Second, two effects of a PEL on the
head-tail instability are analysed: Landau damping and the effective impedance mod-
ification. The effective impedance modification is related in this work to the head-tail
mode spectrum distortion by the longitudinal detuning. Third, an integral equation for
the longitudinal modes, including both longitudinal and transverse detuning, is derived.
Finally, new dispersion relations are derived for the linear combination of longitudinal
detuning and transverse detuning.
Chapters 6, 7 discuss the main numerical results of this study. Chapter 6 presents

the simulation results for Landau damping of head-tail mode zero. Zero head-tail mode
stability boundaries are reconstructed for a PEL, a DC EL, LO and an RFQ by the means
of particle tracking using an antidamper [85] as a rigid mode kick (Section 6.2). Similar
reconstruction methods were used in [86] for the transverse plane and in [87] for the
longitudinal plane. These simulation results are compared to the respective dispersion
relations from Section 5. Furthermore, with this method, we validate the dispersion
relation for a combination of LO and a PEL for the FAIR SIS100.
In Chapter 7, we investigate Landau damping of nonzero head-tail modes using a

resistive wall impedance model (Section 7.1). Particle tracking simulation results are
compared with analytical formulae of Chapter 5 for a PEL, a DC EL, LO, an RFQ. We
discover that the effective impedance modification for nonzero head-tail modes signifi-
cantly increases the threshold for Landau damping due to the longitudinal detuning.
In Chapter 8, the main results of this work are summarised and the limitations of the

current study are discussed briefly.
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2 Fundamentals of accelerator beam
dynamics

The beam dynamics topics and terminology relevant to the understanding of this work
are presented in this chapter. Detailed discussion of particle dynamics in accelerators
can be found in numerous textbooks, for example in [88]–[91], in particular the high
intensity dynamics in [43], [92].
Any particle of the beam can be described by six coordinates and the location s of the

reference particle in the accelerator:

X⃗ (s) = (x(s), x ′(s), y(s), y ′(s), z(s), δ(s))T . (2.1)

Location along the accelerator s is conventionally used in accelerator physics instead of
time. The coordinates x ′, y ′, δ, s are defined as

x ′i =
dx i

dsi
=

px

p0
, (2.2)

y ′i =
dyi

dsi
=

py

p0
, (2.3)

δi =∆pi/p0, (2.4)

si =

t∫
0

v0( t̃)d t̃, (2.5)

where p0 is the reference particle momentum, px , py are the horizontal and vertical mo-
menta of a deviated particle, ∆pi is the momentum offset from the reference particle,
and v0 is the reference particle velocity. The momentum deviation is defined as the ratio
of the momentum offset ∆pi and the reference particle momentum p0. The x ′, y ′ vari-
ables describe the slope between reference particle momentum and the deviated particle
momentum. These coordinates are always defined relative to the coordinates of the ref-
erence particle, that travels on the design orbit with design energy. In this coordinates
reference particle is always located at the origin. The particles with nonzero momentum
deviation are called off momentum particles.
Figure 2.1 illustrates the coordinate frame, co-moving with the reference particle.

The reference particle (red dot) travels along the reference orbit (red curve), while the
deviated particle (green dot) travels along its actual orbit (green curve). The deviated
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Figure 2.1:Moving frame coordinate system is illustrated as black axis lines. The coor-
dinate frame is moving with the reference particle from point s0, through s1

and to s2. In red, the reference particle orbit is shown. The green line is the
actual orbit of a deviated particle. The deviated particle is located {x , y, z}
and has a momentum pi . The coordinates of all deviated particles are always
described w.r.t. the reference particle position.

particle is fully described by this set of coordinates. The deviated particle coordinates
are always described w.r.t. the reference particle position.

Beam rigidity is defined as

Bρ = p0/(eZ), (2.6)

where e is the elementary electric charge, Z is the charge number of the ion. The beam
rigidity relates the strength of the bending magnets and effective radius of the accelera-
tor to the beam energy that can be achieved. Beam rigidity is often mentioned instead of
energy in heavy ion accelerators because of the variety of ions accelerated. This allows
to give a single quantity describing the available energies for different ions.
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2.1 Transverse beam dynamics

The single-particle dynamics of a particle in an accelerator can be split into a transverse
dynamics and longitudinal dynamics. Usually, the transverse motion occurs at a much
higher frequency. Therefore, we can rightfully approximate transverse and longitudinal
motion to be independent of each other.

2.1.1 Single-particle dynamics

In an alternating gradient synchrotron, the transverse particle dynamics are described
with a Hill equation

x ′′ + Kx (s)x = 0, (2.7)

y ′′ + Ky(s)y = 0, (2.8)

where Kx ,y(s) is the horizontal and vertical focusing functions. In a ring accelerator,
these function will be periodic, Kx ,y(s) = Kx ,y(s+ C), with a period equal to the circum-
ference of the ring C . One of the simplest ways to make an alternating gradient focusing
is the use of a Focusing - drift space - Defocusing - drift space (FODO) cell structure. The
focusing and defocusing is typically achieved with quadrupole magnets. In a FODO cell,
Kx (s) = −Ky(s), due to the geometry of a quadrupole magnet. The solutions of the Hill
equation, for example for the horizontal plane are described as

x = Ax wx (s) cos
�
ψβ̂x
(s) + θβ̂x

�
, (2.9)

x ′ = Ay w y(s)

�
−ψ′̂

βx
(s) sin

�
ψβ̂x
(s) + θβ̂x

�
+

w′x (s)
wx (s)

cos
�
ψβ̂x
(s) + θβ̂x

��
, (2.10)

where Ax ,y are the horizontal and vertical amplitudes of particle oscillations. The initial
betatron phase offset, determined by the ratio of x and x ′, is denoted as θβ̂x

. Functions
wx ,y(s) are the horizontal and vertical envelope functions, describing the envelope of the
particle oscillations along the accelerator ring. Functions ψβ̂x ,y

(s) are called horizontal
and vertical betatron phase advance.
Twiss parameters or Twiss functions are defined as follows

β̂x ,y(s) = w2
x ,y(s), (2.11)

α̂x ,y(s) = −β̂ ′x ,y(s)/2, (2.12)

γ̂x ,y(s) =
1+ α̂2

x ,y(s)

β̂x ,y(s)
. (2.13)
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Twiss beta function is defined as proportional to the envelope of particle oscillations.
Here we use a proportionality constant equal to 1. Twiss alpha function is related to the
slope of this envelope.

The betatron phase ψβ̂x ,y
and betatron tune Q x ,y are defined as

ψβ̂x ,y
=

s∫
0

ds̃

β̂x ,y(s̃)
, (2.14)

Q x ,y =
1

2π

∮
ds

β̂x ,y(s)
. (2.15)

Betatron tune is the number of transverse oscillations a particle makes in a single revo-
lution period. The betatron tune can be split into an integer part and a fractional part of
the tune. The integer part describes the number of full oscillations. The fractional part
of the tune describes the incomplete part of the oscillation. The transverse dynamics
can often only depend on the fractional part of the tune. Betatron tune can be estimated
from a uniform focusing approximation:

Q x ,y ≈ R/〈β̂x ,y〉, (2.16)

where R = C/(2π) is the effective radius of the accelerator, 〈β̂x ,y〉 is the average Twiss
beta function.

Figure 2.2 represents themotion of a particle on the horizontal phase space x , x ′ plane.
The particle (orange dot) coordinates x , x ′ are restricted to an ellipse defined by the
Twiss parameters. The Twiss parameters are changing with s, transforming the ellipse
but the ellipse area πϵx stays constant. Furthermore, Twiss parameters are periodic
in s with the period of accelerator circumference C . Thus the phase-space ellipse at s
repeats itself at s + nC (n ∈ N), but the particle arrives each turn with a phase advance
by ∆ψx ,y(s) = 2πQ x ,y . Therefore, at the location s the particle over many turns will fill
out the ellipse from Fig. 2.2 (if the fractional part of the tune has several digits)

The ellipse is described by the Twiss parameters as

γ̂x x2 + 2α̂x x x ′ + β̂x x ′2 = πϵx . (2.17)
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Figure 2.2: Horizontal phase space for a single particle (orange dot shows initial coor-
dinates). The particle can only have coordinates that lie on an ellipse with
the area of πϵx . The characteristics of this ellipse are expressed via Twiss
parameters.

Since the area of this ellipseπϵx is constant, ϵx is an invariant of motion. The coordinates
{u, u′} (u ∈ {x , y}) could be transformed in {Ju,θu} coordinates with Ju∝ ϵu as follows

u=
q

2Juβ̂u cosθu, (2.18)

u′ = −
q

2Juβ̂u sinθu, (2.19)

where Ju is called action, or particle amplitude, θu is called angle coordinate.

If the focusing Kx ,y(s) in an accelerator can be assumed to be independent of the
particle amplitudes Ju, then all particles have the same betatron tunes Q x0

, Q y0
. The

approximate Hamiltonian H⊥ of this system is that of a two-dimensional harmonic os-
cillator:

H⊥ =Q x0
Jx +Q y0

Jy . (2.20)
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2.1.2 Betatron frequency detuning

In an accelerator, the focusing can always depend on the transverse amplitudes of the
particles or be perturbed by an unintended magnetic field deviation. This detuning can
be described as

∆Qu =
1

4π

∮
β̂u(s)B′u(s)

Bρ
ds, (2.21)

where B′u is the gradient of the magnetic field. The detuning is usually a lot weaker
than the linear focusing of the accelerator. Meaning that δQ x ,y �Q x0,y0

One particular
example of betatron frequency detuning is the detuning due to octupole magnets [78].
The magnetic field of an octupole is described as:

By + jBx = O3(x + j y)3, (2.22)

where O3 is the octupolar strength [78], [83], j is used to describe the imaginary unit
throughout this work. In the action-angle coordinates the magnetic field has first and
third order harmonics of θx ,y .
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Figure 2.3: (Left) An example of an incoherent tune distribution in both vertical and
horizontal planes. The coloured histogram shows the tunes of individual
particles. The orange line indicates where on the tune diagram the particles
with the tune of Q y = 0.19 are located. (Right) An example of betatron
oscillations of different particles within the tune spread.
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For dipolar oscillations the third harmonic terms can be omitted. Then the magnetic
field gradients in action-angle variables are expressed as

∂ Bx

∂ y
≈ 3

2
O3(β̂x Jx − 2β̂y Jy), (2.23)

∂ By

∂ x
≈ 3

2
O3(2β̂x Jx − β̂y Jy), (2.24)

where β̂x ,y are vertical and horizontal beta functions at the location of an octupole mag-
net.

From the tune shift formula Eq. (2.21) then we obtain a tune shift depending on the
action variables

∆Q x (Jx , Jy) = ax x Jx + ax y Jy , (2.25)

∆Q y(Jx , Jy) = ay x Jx + ay y Jy , (2.26)

where ax x , ax y , ay x , ay y are called octupole detuning coefficients. This coefficients are
defined as:

auu =
3

8π

∮
β̂2

u

O3

Bρ
ds, (2.27)

auv = − 3
8π

∮
β̂uβ̂v

O3

Bρ
ds, (2.28)

where u and v each stand for either x or y, the integration over s is performed to account
for octupoles distributed at different positions in a ring.

Octupoles are only one of the ways to create a betatron frequency detuning. In this
work we refer to all betatron frequency detuning that depends on transverse action vari-
ables (Jx , Jy) as the transverse detuning. While the betatron frequency detuning that de-
pends on the longitudinal variables (z,δ) and longitudinal action angle variables (Jz ,φ),
as the longitudinal detuning.

Figure 2.3 illustrates betatron frequency detuning: (left) 2D histogram of individual
particle horizontal Q x and vertical Q y tunes; (right) an example of transverse offset of
a reference particle (blue) and a particle with a detuned frequency (yellow). In this
illustrative figure the horizontal and vertical tunes simply have a Gaussian distribution.
For a small transverse detuning ∆Qu � Qu, the Hamiltonian of the transverse motion
can be written as

H⊥ = [Q x0
+∆Q x (Jx , Jy)]Jx + [Q y0

+∆Q y(Jx , Jy)]Jy =Q x Jx +Q y Jy . (2.29)
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2.2 Longitudinal beam dynamics

In a synchrotron the particles are accelerated repeatedly by RF cavities. The cavities
create a longitudinal potential and confine the particles longitudinally into bunches. The
RF voltage as a function of time can be expressed as:

VRF(t) = V0 sin (hRFω0 t +ϕ0) = V0 sinϕs, (2.30)

where we define ϕs as the synchronous phase, the phase at which the reference (some-
times also referred to as synchronous) particle arrives at the cavity; V0 is the maximum
RF voltage; hRF is called the RF harmonic. ω0 is the angular revolution frequency. The
deviated particle has a different phase ϕi = ϕs + ∆ϕi , where ∆ϕi = 2π zhRF

C . While
discussing longitudinal dynamics the reference particle with phase ϕs is referred to as
synchronous particle. The longitudinal motion of an individual particle i is described by
the following set of differential equations

dδi

dt
=
ω0qV0

2πE0β2
r

(sinϕi − sinϕs), (2.31)

dϕi

dt
= hRFω0

∆τi

τ
, (2.32)

where E0 is the energy of the reference particle, q is the electric charge of a particle, τ
is the arrival time of the reference particle, ∆τi is the difference in arrival time between
particle i and the reference particle. This difference in arrival times depends on the
speed at which particle travels in the accelerator and on the length of its closed orbit.

2.2.1 Momentum compaction factor and transition energy

The difference∆τi between arrival time of a deviated particle i and the reference particle
τ is described as follows

∆τi

τ
=
∆Li

L
− ∆vi

v
, (2.33)

where L is a closed orbit of the reference particle (equal to the design circumference
C), ∆Li is a difference between closed orbits of deviated particle i and the reference
particle, v = βr c is the speed of the reference particle, ∆vi is the difference between the
speed of the deviated and reference particle. The first term is the influence of deviated
particle having a different path length Li that the reference particle. Indeed, particles
that have a longer path ∆Li > 0 will contribute to a later arrival time. The momentum
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compaction factor α(n)c is defined as a proportionality coefficient between the relative
change in path of an off-momentum particle and the momentum deviation δi:

∆Li/L =
∞∑
n=1

α(n)c δ
n
i ≈ α(n)c δi +O(δ2

i ). (2.34)

In this work only the first ordermomentum compaction factor is considered. Throughout
this work it is referred to as the momentum compaction factor αc .
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Figure 2.4: RF voltage seen by the reference particle, and particles with higher and lower
energy than the reference particle. Two cases are presented: η > 0 case is
the acceleration above transition energy; η < 0 case is the acceleration below
transition energy.

The second term reflects the impact of a different deviated particle speed. If the parti-
cle is faster than the reference particle ∆vi > 0, the arrival time τi is shorter. This term
can be expressed as a difference in particle momentum

∆vi

v
=

1
γ2

r

δi , (2.35)

where γr is the relativistic gamma factor.
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The dependency of the arrival time difference on the momentum deviation is ex-
pressed as:

∆τi

τ
=
∞∑
n=0

η(n)δn, (2.36)

similarly to the higher order momentum compaction factor α(n)c . In this work only the
first-order dependency η(1) = η is considered. We can define the proportionality coeffi-
cient between relative time slippage ∆τi/τ and the momentum deviation δ as the slip
factor:

η = αc − 1
γ2

r

=
1
γ2

t
− 1
γ2

r

. (2.37)

The transition energy is determined as the energy at which the slip factor is zero:

γt = 1/
p
αc . (2.38)

The slip factor can have a positive or a negative sign. For a positive slip factor, particles
with longer path ∆Li > 0 have a later arrival time ∆τi > 0, for a negative slip factor –
an earlier arrival time ∆τi < 0.
Figure 2.4 illustrates two scenarios: particle acceleration below and above the tran-

sition energy. In the case below transition energy η < 0, the phase of the synchronous
particle must be between 0 and π/2 for a stable acceleration. This range can be under-
stood if we consider two other particles: one (orange dot) with higher energy than the
reference particle; another (magenta dot) with lower energy than the reference particle.
The higher energy particle δi > 0 will arrive at a time τi = τ(1 + ηδi) < τ, and will
be decelerated w.r.t. the reference particle. On the next revolution turn this particle
will arrive at a time closer to the reference particle one. The particle with lower energy
δi < 0 will be accelerated instead, and will arrive on the next revolution turn also at a
time closer to a reference particle.

2.2.2 RF buckets and the synchrotron motion

The longitudinal phase space area of particles circulating in a synchrotron is divided by
a line called separatrix into two regions where the particle motion in it is qualitatively
different. In areas enclosed by the separatrix, the particles have closed trajectories in
a phase space and are confined. The longitudinal phase space area that lies inside the
separatrix is called a bucket. Outside the separatrix, a particle can be found anywhere
in the accelerator. With a different RF setting, for example for acceleration, the particles
outside of the separatrix will be lost.
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In Fig. 2.5 one bucket around the position z = 0 is illustrated along with the halves of
its neighbouring buckets. The bunch is all the particles that are located inside a single
bucket. In a synchrotron several bunches can travel simultaneously depending on the
RF harmonic hRF. For example, in the SIS100 hRF = 10 and two buckets are left empty.
In this situation 8 bunches are present in 8 non empty buckets in the SIS100.

Figure 2.5: An example of an RF bucket and the separatrix (purple dashed curve), calcu-
lated from Eq. (2.39). Trajectories inside the separatrix are shown in bright
orange colours. Trajectories outside of the separatrix are shown in dark pur-
ple and black. Accelerator parameters of SIS100 from Table 1.1 were used
to produce this figure (below transition energy η < 0).

The Hamiltonian of the longitudinal motion is given by

H‖ = 1
2

hRFω0ηδ
2
i +

ω0qV0
2πβ2

r E0
[cosϕi − cosϕs + (ϕi −ϕs) sinϕs] . (2.39)

If we examine a particle with a small phase ϕi − ϕs � 1 and small momentum offset
δi � 1, they all rotate in the longitudinal phase space with the same frequency Ωs0

. This
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frequency is referred to as small amplitude synchrotron frequency or simply as synchrotron
frequency. A synchrotron tune is defined as

Qs0
= Ωs0

/ω0 =

√√√qhRFV0|η cosϕs|
2πmγrβ2

r c2
, (2.40)

where m is the mass of the particle. It describes the number of oscillations a particle
makes in the longitudinal phase space in a single revolution turn. Particles that do
not fulfill the assumptions above will have a different synchrotron tune Qs 6= Qs0

. The
synchrotron tune in modern ring accelerators has only a fractional part. The speed
of oscillations in the longitudinal plane is much slower than in the transverse plane
Qs0
� Q x ,y . The factor |η cosϕs| is taken as a modulus, in fact for a case η < 0, below

transition energy 0 < ϕs < π/2 meaning that cosϕs > 0. While for the case above
transition energy η > 0 the cosine is negative cosϕs < 0. Thus, η cosϕs is always
negative for the stable motion, and the modulus is taken for convenience.

Practically, the sign of the slip factor η determines the direction of rotation of the
particles in the longitudinal phase space. This can be determined from the equations
of motion Eqs. (2.31, 2.32), where the sign of η determines the sign of the deriva-
tives. For η < 0, the particles travel in a counterclockwise direction in phase space,
as demonstrated by black arrows in Fig 2.5. For η > 0, the particles will travel in the
clockwise direction. For the special case of the bunch at the transition energy η = 0, the
synchrotron motion is frozen Qs0

= 0.

Depending on the slip factor of the ring accelerator, the synchronous phase ϕs is cho-
sen to be either 0 orπ to keep the energy of the bunched beam constant. The synchrotron
tune in hadron synchrotrons is of the order ≈ 10−3, and in the electron synchrotrons it
is often higher ≈ 10−2.

Similarly to the transverse planes we can define a longitudinal Twiss beta function
(that has the same dimension of meters):

β̂z =
ηv

Qs0
ω0

. (2.41)

And the longitudinal coordinates z, δ can be expressed as action-angle coordinates Jz , φ.
The simplified Hamiltonian for the linear synchrotron motion is:

H‖ =Qs0
Jz . (2.42)

The full Hamiltonian of transverse and longitudinal motion in our approximation is sim-
plyH =H⊥ +H‖.
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2.2.3 Chromaticity

The chromaticity is an important effect in the beam dynamics. It links a longitudinal
coordinate δ to the change of the transverse betatron tune ∆Q x ,y . This proportionality
coefficient between the ratio of tune spread ∆Q x ,y to the reference particle tune Q x0,y0
and the ratio of momentum spread ∆p to reference particle momentum p0 is known as
(linear) chromaticity ξ(1)x ,y :

∆Q x ,y/Q x0,y0
= ξ(1)x ,yδ, (2.43)

where δ = ∆p/p0. Sometimes ξ(1)x ,y is referred to as the normalised chromaticity, and

ξ(1)x ,yQ0x ,y
is then called chromaticity. In this work this property ξ(1)x ,y will simply be re-

ferred to as linear chromaticity. The chromaticity of the accelerator without a dedicated
correction scheme is called natural chromaticity. For example, the natural chromaticity
of a FODO cell is precisely ξ(1)x ,y = −1. In many synchrotrons the natural chromaticity is
shifted to a different value in order to optimise the performance of the accelerator. This
is achieved by using a dedicated sextupole magnets. Usually a two-family scheme is em-
ployed to control the chromaticity in the vertical and horizontal planes independently.
This concept of the chromaticity can be expanded to include the dependency of the

tune spread on higher order of momentum deviation δn. This property is referred to as
higher order or nonlinear chromaticity ξ(n)x ,y :

∆Q x ,y/Q x0,y0
=
∞∑
n=1

ξ(n)x ,yδ
n ≈ ξ(1)x ,yδ+ ξ

(2)
x ,yδ

2 +O(δ3), (2.44)

where (n) in ξ(n)x ,y denotes order of the chromaticity, but in δn, n is the argument of the
exponentiation operation.

2.3 Multiparticle dynamics and beam distribution function

Considering each individual particle in the beam separately is impractical, taking into
account, that beam intensities in modern heavy ion synchrotrons can be higher than 1011

particles. Instead, a distribution of particles and the momenta of the particle distribution
can be considered to describe the beam as a whole.

2.3.1 Emittance and rms beam properties

An ensemble of particles in the beam can be described by a distribution function

Ψ = Ψ(x , x ′, y, y ′, z,δ; s) = Ψ(Jx ,θx , Jy ,θy , Jz ,φ; s). (2.45)
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The first momentum of a distribution function will determine the transverse (or longi-
tudinal) total beam offset

〈u〉(s) = u(s) =

∫
uΨ(x , x ′, y, y ′, z,δ; s)dxdx ′dydy ′dδdz, (2.46)

where u ∈ {x , y}. Additionally to the total beam offset, a related quantity can be defined
local beam offset or beam offset. This would describe the beam offset within the bunch,
depending on the position z

〈u〉(z, s) = u(z, s) =

∫
uΨ(x , x ′, y, y ′, z,δ; s)dxdx ′dydy ′dδ. (2.47)

The commonly used statistical quantity, describing the beam size in transverse or longi-
tudinal direction is rms beam size

σu=x ,y,z(s) =

∫
(u− u)2Ψ(x , x ′, y, y ′, z,δ; s)dxdx ′dydy ′dδdz. (2.48)

One can define an rms emittance as:

ϵu =
Æ〈u2〉〈u′2〉 − 〈uu′〉2, (2.49)

where u ∈ {x , y z}. The main focus of this work is the stability of the transverse beam
offset over time s.

2.3.2 Vlasov equation

For the analysis of beam stability with the distribution function one can employ Liou-
ville’s theorem, which states the preservation of the particle density in phase space under
the influence of conservative forces [88]:

dΨ
ds
=
∂Ψ

∂ s
+ [H ,Ψ], (2.50)

where H is the Hamiltonian of motion, [H ,Ψ] denotes a Poisson bracket. This expres-
sion is also known as the Vlasov equation.
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2.3.3 Detuning due to a pulsed electron lens

Here we assume that a PEL has a homogeneous (and round) transverse distribution, and
the distribution of a PEL current is Gaussian. Additionally, PEL beam fully covers the ion

beam transversely. HamiltonianHPEL of the PEL isHPEL =
r⊥∫
0

Fr⊥dr⊥:

HPEL =
Imaxe(1± βeβi)
ϵ0cβeσ2

e p0ω0
r2⊥ exp

�
− z2

2σ2
e

�
. (2.51)

where Imax is the maximal current of the electron beam; βe is the relativistic beta of the
electron beam; βi is the relativistic beta of the ion beam; ϵ0 is the vacuum permitivity
or an electron constant; σe is the rms longitudinal size of the electrom beam; p0 is the
momentum of the reference particle in the beam;ω0 is the angular revolution frequency;
r2⊥ = x2+ y2 is the radius of the ion beam in the transverse direction; z is the longitudinal
position of a particle within the ion beam. While considering y-plane effects, x-plane
term could be ignored as the derivatives of the respective Hamiltonian over Jy are zero,
and we will show that all derivatives over the longitudinal coordinates can be neglected

HPEL =

�
2Imax e(1± βeβi)
ϵ0cβeσ2

e p0ω0
βy

�
Jy(1+ cos2θy)exp

�
− Jzβz

2σ2
e

(1+ cos2φ)

�
, (2.52)

where we have changed to action-angle coordinates (Jx , θx , Jy , θy , Jz , φ). Let us exam-
ine the derivatives and determine smallness parameters for each derivative starting with
the detuning derivative

∆Q‖y =
∂HPEL

∂ Jy
= Aβy(1+ cos2θy)exp

�
− Jz

2ϵz

σ2
z

σ2
e

(1+ cos2φ)

�
∝∆Qmax, (2.53)

where σz is the rms longitudinal size of the ion beam; ∆Qmax is the maximum tune shift
due to the electron lens. In this particular case, the maximum tune shift is achieved for
the particles in the longitudinal centre of the beam. The term Aβy is a dimensionless
constant that represents the maximum tune shift ∆Qmax due to the electron lens, i.e.
tune shift for a particle with zero amplitude (Jx , Jy , Jz) = 0. Another important term,
that can cause Landau damping (via detuning of the synchrotron tune) is

∆QPEL
s =

∂HPEL

∂ Jz
= Aβy Jy

σ2
z

σ2
e

1
ϵz
(1+ cos2θy)(1+ cos2φ)

× exp

�
− Jz

2ϵz

σ2
z

σ2
e

(1+ cos2φ)

�
∝∆Qmax

ϵy

ϵz
,
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where ϵx ,y are the rms geometrical transverse emittances of the ion beam; ϵz is the rms
geometrical longitudinal emittance of the ion beam. This term is directly proportional
to the transverse emittance of the beam and inversely proportional to the longitudinal
emittance. For this term we assume that PEL is matched to the ion beam longitudinal
profile σe = σz . The same applies to the following term:

∂Hforce

∂ φ
= Aβy Jy

Jz

ϵz

σ2
z

σ2
e

(1+ cos 2θy)exp

�
− Jz

ϵz

σ2
z

2σ2
e

(1+ cos2φ)

�
∝∆Qmaxϵy , (2.54)

and the last term affects non-dipolar harmonic of the transverse motion:

∂HPEL

∂ θy
= Aβy Jy sin2θy exp

�
− Jz

2ϵz

σ2
z

σ2
e

(1+ cos2φ)

�
∝∆Qmaxϵy . (2.55)

Additionally, one can ignore all the harmonics higher than θy for the transverse motion,

as it’s driven by a dipolar force – eliminating the ∂HPEL
∂ θy

term, and the last term appears

in the Vlasov equation as ∂HPEL
∂ φ

∂ψ0
∂ Jz

, with the whole term scaling as ϵy/ϵz . This effect
can be ignored as long as ϵy � ϵz , which is usually the case in particle accelerators.
For the SIS100, ϵy/ϵz < 10−3, meaning that the only significant effect from the pulsed

lens is the detuning of the betatron tune with longitudinal amplitude Jz . The detuning
of the synchrotron tune can be ignored in comparison. For a pulsed lens the total tune
spread at any given moment within a single synchrotron period is given as:

∆Q(Jz ,φ)/∆Qmax = I (e)0

�
Jz

2ϵz

σ2
z

σ2
e

�
+ 2

∞∑
n=1

I (e)n

�
Jz

2ϵz

σ2
z

σ2
e

�
cos (2nφ), (2.56)

where I (e)n (u) = e−u In(u) is the exponentially scaled modified Bessel function of the
first kind. This has a static and a dynamic part, later we will show that the first one
leads to Landau damping and the other one is equivalent to a higher order chromaticity
effect. We can write the effective detuning term, as an exponentially scaled modified
Bessel function, after averaging over the synchrotron phase φ

〈∆Q(Jz)〉ϕ/∆Qmax = exp

�
− Jz

2ϵz

σ2
z

σ2
e

�
I0

�
Jz

2ϵz

σ2
z

σ2
e

�
= I (e)0

�
Jz

2ϵz

σ2
z

σ2
e

�
, (2.57)

where 〈∆Q(Jz)〉ϕ indicates average value over φ. The limiting cases are σz
σe
� 1 and

σz
σe
� 1. For σz

σe
� 1, than all dynamics terms are zero and∆Q ≈∆Qmax. This is a DC EL

limit. For σz
σe
� 1, than the static part goes to zero, and we have only influence from

higher harmonics of cosφ. PEL range of parameters are in fact for a σe ≈ σz , meaning
that we have both static and dynamic terms contributing significantly to the dynamics.
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In conclusion, this short derivation demonstrates that the main effect from a pulsed
electron lens kick is longitudinal detuning, detuning with longitudinal amplitude Jz and
longitudinal phase φ.

2.3.4 Wakefield

Wakefields describe the interaction between the beam and its environment (beam pipe,
cavities, etc) via electromagnetic interaction. Two approximations are necessary for
the present explanation. In the rigid beam approximation, the beam travels through
the vacuum chamber rigidly and the wakefield does not affect this rigidity in a single
revolution turn.
In the impulse approximation, particles motion can be described via impulse. This is

necessary because the electromagnetic fields E⃗, B⃗ are more difficult to compute. The
impulse received from the electromagnetic field can be expressed as

∆p⃗ =

∞∫
−∞

F⃗dr, (2.58)

where ∆p⃗ is the impulse the particle receives; F⃗ = e(E⃗ + v⃗ × B⃗) is the Lorentz force.
Through the Panofsky-Wentzel theorem [43], [92] the computation of the impulse

can be performed. The decomposed into two directions (parallel to z and perpendicular
to s) form of the theorem reads as [43]:

∇ · (e⃗s ×∆p⃗) = 0, (2.59)
∂

∂ z
∆p⃗⊥ = (∇⊥ ·∆ps) , (2.60)

where p is the particle momentum; ∆p⃗⊥ is the projection of the momentum on the
transverse plane; ∆ps is the momentum component in the s direction; ∇ is the nabla
operator and∇⊥ is the nabla operator only taking the derivatives in the transverse plane.
For example for a cylindrical beam pipe the components of the impulse are expressed

as

v∆p⃗⊥ = −qMmWm(z)mrm−1[e⃗r cos (mθ )− e⃗θ sin (mθ )], (2.61)

v∆ps = −qMmW ′m(z)rm cos (mθ ), (2.62)

where r, θ are the cylindrical coordinates; q is the charge of the source particle; Mm
is the mth multipole moment of the source particle; m is the azimuthal number; W ′m is
the longitudinal wake function of azimuthal m; Wm is the transverse wake function of
azimuthal m. An example of a wakefield is illustrated in Fig. 2.6.
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Figure 2.6: Illustration of a wakefield generated by a single particle with a charge q inside
a resistive beam pipe. Picture is taken from [92], where the wakefield was
computed. z/(2χ)1/3 b is a measure of distance from the source particle.

The following relationship between transverse and longitudinal wakefields is a con-
sequence of Panofsky-Wentzel theorem

W ′m(z) = − d
dz

Wm(z), (2.63)

where m is the azimuthal number; W ′m is the longitudinal wake function of azimuthal
m; Wm is the transverse wake function of azimuthal m. In this work we would only be
interested in the dipolar transverse impedance, the resulting force from a wakefield can
be expressed as [93]

F coh
y (z, t) =

q2

2πR

∞∫∫
0

∞∑
k=−∞

dz′dδ′Wy(z
′ + 2πkR− z) (2.64)

×
∫∫∫∫

dJ ′xdθ ′xdJ ′ydθ ′xΨ
�
J ′x ,θ ′x , J ′y ,θ ′x , J ′z ,φ′, t − k

�q
2J ′yβy sinθ ′y ,
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where F coh
y (z, t) is the force for a particle at longitudinal position z at time t; k is the

number of revolution turns; Ψ is the particle distribution in 6D phase space; Wy is the
transverse vertical dipolar wakefield (m= 1).

2.3.5 Beam coupling impedance

Wakefield expressed in the frequency domain is referred to as beam coupling impedance:

Z‖m(ω) =

∞∫
−∞

e jω/v W ′m(s)
ds
v0

, (2.65)

Z⊥m(ω) =
j
βr

∞∫
−∞

e jω/v Wm(s)
ds
v0

. (2.66)

In this work we are only interested in transverse beam coupling impedance, that will
drive transverse instabilities. The transverse impedance would have the following prop-
erties[43]:

1. Because wake-function are real-valued functions: Z⊥m(−ω) = [Z⊥m(ω)]†1.
2. Z⊥ is analytic with only poles in the lower half ω-plane.

3. The energy of the particle cannot be increased without any accelerating forces:
ℜZ⊥m ≥ 0 if ω > 0, if the beam pipe has the same cross section at the entrance
and at the exit.

4. From Wm(0) = 0 follows that
∫∞

0 ℑZ⊥m(ω)dω = 0.

One of the sources of impedance in an accelerator is resistive beam pipe, referred to as
resistive wall impedance. The resistive wall dipolar impedance of a circular beam pipe
can be expressed as [92]2

Z⊥1 (ω) = Z⊥(ω) = [1− j sgn (ω)]
cLρ

ωπb3δskin
(2.67)

where δskin =
Ç

2ρ
µrµ0ω

is the skin depth at frequency ω; µ0 is the vacuum permeability;
µr is the relative permeability; L is the length of beam pipe with the resistive wall; b is
the radius of the beam pipe; ρ is the conductivity of the beam pipe material.

1 a† denotes complex conjugate of a.
2 This formula is only valid if the wall thickness t is much larger than the skin depth δskin.
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In a real accelerator there are many sources of beam coupling impedance and the
wakefields: resistive wall beam pipe, cavities, belows, etc. The influence of the wake-
field on the beamwill scale with Twiss beta function. Therefore, total machine impedance
can be defined as a Twiss beta function weighted sum of all impedance sources in the
machine:

Zmachine(ω) =

∑
i β̂x ,y Zi(ω)

β̂ x ,y

. (2.68)

2.3.6 Transverse instabilities

Beam coupling impedances add an external force that acts on a beam and depends on
its particle distribution in the phase space Ψ. We would define an instability as a situ-
ation when one or more momenta of the beam distribution (beam offset, transverse or
longitudinal rms beam size, etc.) increases exponentially. In this work we only study
transverse instabilities, related to the transverse particle distribution momenta. In par-
ticular, this work deals with transverse beam offset stability. The transverse offset can
be driven to be unstable, for example, by a dipolar transverse impedance. Transverse
instabilities limit the maximal achievable beam intensity. For a recent overview of trans-
verse and longitudinal instabilities in hadron synchrotrons we would direct the reader
to [42].
The transverse instabilities can be characterised in several different ways. One is

to distinguish bunched beam and coasting (unbunched) beam instabilities, the differ-
ence between them is often due to the synchrotron motion. Another one is to separate
bunched beam instabilities into single-bunch and multibunch instabilities. We would
consider only two specific transverse instabilities: coasting beam instability due to a
resistive wall impedance; head-tail instability, which is a single bunch instability that
occurs for nonzero chromaticity.

2.3.7 Resistive wall coasting beam instability

Coasting beam occupies the whole circumference of the ring, and thus, we can describe
it with just the transverse coordinates (x , px , y, py), momentum offset ∆p/p0, position
along the ring s and the time t taken in turns. For the study of dipolar transverse in-
stabilities we are interested in transverse beam offsets 〈x〉(s, t), 〈y〉(s, t). For coasting
beam case we can use the following ansatz for the beam offset:

〈y〉(s, t) =
∞∑
n=0

eN∆y

C
e j(ns/R−Qcoh t), (2.69)
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where e is the elementary electric charge; ∆y is the maximum vertical amplitude; N
is the number of particles in the beam; C is the circumference of the accelerator; R =
C/(2π) is the effective radius of the accelerator; n is the mode number; Qcoh frequency
of the coherent oscillations (in turns).
The equation of motion in y-plane is a driven harmonic oscillator:

ÿ(s, t) +Q2
y y(s, t) =

F(s, t)
γr m

=
jevβr

γr mC
Z⊥1 (Qcoh)〈y〉(s, t). (2.70)

This equation will have the following solution:

�
Q2

y − (Qcoh − n)2
�

y(s, t) =
je2NcZ⊥1 (Qcoh)∆y

E0T 2
0

e jnS/R− j(Qcoh−n)t . (2.71)

From the self-consistency we can obtain a dispersion relation:

1=
je2NcZ⊥1 (Q y)

E0T 2
0

∫
dQ y

ψ(Q y)�
Q y − (Qcoh − n)

�2 , (2.72)

where the betatron frequency distribution is denoted as ψ(Q y).
We can assume that the coherent tune shift due to the wakefield is Qcoh ≈ Q y + n,

meaning that the instability is close the one of the beam modes. Then, we can classify
the beam modes in the following way: n > 0 will be fast waves, n < 0 will be slow
waves, with specifically |n| < Q y be referred to as backward waves. This classification
is due to a comparison of the wave frequency to the frequency of the angular phase:

Qang = 1+Q y/n, (2.73)

fast waves travel faster than the revolution frequency, slow waves travel slower than the
revolution frequency, and backward waves travel in the opposite direction.
Since ∆Qcoh ∝ − jZ⊥1 (Q y + n), for an instability we would need negative real part

of the impedance ℜZ⊥1 (Q y + n) < 0. Due to the properties of the wakefield and beam-
coupling impedances (see Section 7.1), the real part of the impedance is only negative for
negative frequencies. This means that in coasting beam case only slow waves (with |n|>
Q y) can be driven to an instability by a beam coupling impedance. The fast waves and
backward waves are not excited by the wakefield. However, those are the eigenmodes
of the beam and can be excited and even be unstable.
In our work, related to the coasting beam, the betatron frequency will depend on

the momentum offset δ (for example, from chromaticity and momentum compaction
factor) and on the transverse amplitudes (Jx , Jy) (for example, from space-charge and
DC electron lens or octupole magnets). Let us here consider only the momentum spread
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Figure 2.7: Examples of a head-tail instabilities observed in the simulation for several
chromaticity values. Each curve corresponds to an intrabunch offset during
one turn. Curves for several consecutive turns are superimposed on each
other to produce a stroboscopic plot.

contributions, because, in the case of DC electron lens and space-charge, the transverse
amplitude contribution will be significantly smaller. Then, we can write the betatron
tune spread as

∆Q y = ξyQ y − (n+Q y)η, (2.74)

where ξy is the normalised vertical chromaticity and η is the slip factor. The contribu-
tion of the slip factor is due to particles with positive momentum offset have a smaller
revolution frequency for accelerator above transition (η > 0). Landau damping becomes
stronger for larger tune spreads, consequently different modes n of the coasting beam
will be damped differently.

For the slow wave modes n < 0 and |n| < Q y and an accelerator below transition
energy at natural (negative) chromaticity we will have: ξyQ y < 0 and −(n+Q y)η < 0,
where both the chromaticity and the slip factor contribute to the increase of the momen-
tum spread. In this case, the beam will naturally have some stabilisation due to Landau
damping. If one wants to excite an instability, this could be achieved by shifting chro-
maticity to a positive value, such that ∆Q y ≈ 0. For SIS18, with η = −0.93, Q y = 3.27
and a first slow wave, driven by a wakefield n= 4, the compensated chromaticity would
be ξ≈ 0.21.

For the fast wave modes n > 0 and an accelerator below transition energy at natu-
ral chromaticity we will have: ξyQ y < 0 but −(n + Q y)η > 0. In this situation, the
chromaticity and momentum offset are counteracting each other, for a certain mode
number n, the Landau damping will be minimal. Let us consider SIS18 as an example
with η = −0.93, Q y = 3.27 and ξyQ y = −5.6. Then, ∆Q y = −5.6+ 0.93(n+ 3.27) will
clearly be minimal for n= 3 at the natural chromaticity.
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2.3.8 Transverse head-tail instability

In this work, we are concerned with the head-tail instability. This is a transverse single
bunch instability that is observed or expected in many synchrotrons.
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Figure 2.8: Head-tail mode spectrum (taken for an airbag bunch) with zero chromaticity
(solid lines) and nonzero linear chromaticity (dashed lines). First three head-
tail modes are demonstrated.

The detailed derivations and explanations of head-tail instability can be found in stan-
dard accelerator physics textbooks [43], [92]. We would only provide and interpret
results of these derivations here and in Chapter 5 we would give a detailed solution
for Landau damping of a head-tail instability where the betatron frequency detuning is
present.
Let us assume the form of the perturbation to the distribution function

Ψ(Jx ,θx , Jy ,θy , Jz ,ϕ; s) = Ψ0(Jx , Jy , Jz) +Ψ1(Jx ,θx , Jy ,θy , Jz ,ϕ)e− jΩs/v , (2.75)

where Ω is the frequency of the coherent transverse oscillations.
Figure 2.7 demonstrates examples of a transverse offset along the bunch length of an

unstable bunch for several head-tail modes. The head-tail mode can be characterised by
a number of “knots”, by the frequency of oscillations and an instability growth rate.
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Figure 2.8 demonstrates the head-tail mode spectrum for a specific longitudinal distri-
bution – an airbag bunch. An airbag bunch is a simplification of a real bunch longitudinal
distribution. In an airbag bunch all the particles have the same longitudinal amplitude
Jz . The effect of the linear chromaticity on the spectrum of the head-tail modes will
remain the same for other longitudinal distributions. In Fig. 2.8 the spectrum is shown
to be shifted by the linear chromaticity by a chromatic frequency ωξ(1) =Q x ,yω0ξ

(1)/η.
Themode spectrum shape remains unperturbed and the azimuthal modes l = ±n (where
n is an arbitrary integer) are degenerate.
It is useful to define effective impedance of a given head-tail mode:

Zeff =

∑∞
p=0 Zy(ω)|λ(ω)|2
|λ(ω)|2 , (2.76)

where |λ(ω)|2 is the spectral power of a given mode. The effective impedance describes
the interaction between the machine impedance and the beam mode spectrum. The
instability growth rate and coherent frequency of oscillations are related to this quality.
In the absence of chromaticity, the mode spectrum is an even function λ(ω) = λ(−ω).

From the impedance property 1 in Subsection 2.3.5 we can make conclusion about the
real and imaginary part of the effective impedance. The real part of the impedance is an
odd function ℜZ⊥(ω) = −ℜZ⊥(ω), so the real part of the effective impedance would be
zeroℜZeff = 0. The imaginary part is an even function ofω, ℑZ⊥(ω) = ℑZ⊥(−ω), so the
effective impedance would be nonzero ℑZeff 6= 0. For the zero chromaticity, there is no
instability until the effective impedance will couple two neighbouring modes. When the
chromaticity is not zero, as in Fig. 2.8 (dashed lines), the mode spectrum is no longer
an even function of the frequencies. Therefore, an instability with a certain growth rate
will develop for nonzero chromaticity. Depending on the impedance and the sign of the
chromaticity, different modes can become unstable.

2.4 Landau Damping and other instability mitigation measures

There are several ways to mitigate or suppress beam instabilities in an accelerator (for
an overview see [70]). In the case of a head-tail instability those include: transverse
feedback system [82], chromaticity adjustment and Landau damping [70]. Adjusting
chromaticity with the sextupole magnets is not always possible because strong nonlin-
ear magnetic fields significantly reduce single particle stability. Transverse feedback
systems are usually operating in a narrowband frequency range. If the tune shift of the
instability is known one can design a transverse feedback system that will help damp
the instability. Landau damping on the other hand is a passive mitigation measure that
requires a betatron frequency spread in the bunch. For many accelerators these and
other mitigation measures are combined with each other.
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orange) terms of the beam offset in Eq. (2.79) for two different times. The
frequency distribution was assumed to be uniform ρ(ωi) = 1.
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Figure 2.10: Single particle offset for three different particles: one had a natural fre-
quency very close to the frequency of the driving force; another a close
frequency; and a third one a frequency far from the frequency of the driv-
ing force.

Landau damping was first conceived analytically by L. D. Landau [58] and later con-
firmed in the experiments [94]. For particle accelerators Landau damping was first
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studied for longitudinal instabilities in [95] and for transverse instabilities in [96] for a
coasting beam and in [97] for bunched beam. In the present time, Landau damping is
used or considered in many synchrotrons as a transverse instability mitigation measure.
The following explanation will largely follow the one from textbooks [43], [92]. To

explain the effect of Landau damping let us consider a simple analytical problem: a set
of harmonic oscillators (with natural frequencies ωi) driven by an external force Fext
with a frequency Ω

ẍ i +ω
2
i x i = AcosΩt, (2.77)

where ẍ i is the second derivative over time t; A is the amplitude of the driving force;
ωi is the eigenfrequency of the particle i; Ω is the frequency of the driving force. For a
single particle i, the general solutions is

x i = xinit cosωi t + ẋinit
sinωi t
ωi

+
A

ω2
i −Ω2

(cosΩt − cosωi t). (2.78)

For the discussion of Landau damping the initial conditions could be chosen to be xinit =
ẋinit = 0. We are interested in a beam offset 〈x〉, so we need to integrate over the
particle distribution by frequency Ψ(ω). Additionally, let us assume that all natural
frequencies ωi are close to the frequency of the driving force Ω (|∆ωi |= |ωi −Ω| � 1).
In a synchrotron it means that the frequency of the driving force will be close to the
frequency of the betatron oscillations. Then, one obtains:

〈x(t)〉= −A
2Ω

�
cos (Ωt)P.V.

∫
1− cos∆ωi t
∆ωi

dωi + sin (Ωt)

∫
sin∆ωi t
∆ωi

dωi

�
, (2.79)

where P.V. denotes that a principal value of the integral is taken. Figure 2.9 demonstrates
that the offset from Eq. (2.79) is stable.
On the left of Fig. 2.9 a function 1−cos∆ωi t

∆ωi
is plotted in blue. On the right – sin∆ωi t

∆ωi
in

orange. On a long timescale t −→∞, these functions have the following limits:

lim
t→∞

�
1− cos∆ωi t
∆ωi

�
= 1/∆ωi , (2.80)

lim
t→∞

�
sin∆ωi t
∆ωi

�
= πδD(∆ωi), (2.81)

where δd(ω) is Dirac delta function. In terms of the exponent the beam offset 〈x(t)〉 for
t −→∞ can be expressed as:

〈x(t)〉= −〈x(t)〉 Ãe jΩt

2Ω

∫
ρ(ωi)
ωi −Ωdωi , (2.82)
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where ℑΩ > 0 would indicate an instability. Thus, we conclude that the beam offset will
stay stable.
In order to answer why the beam offset stays stable in this system, we can look at two

particles: one with exactly the frequency of the driving force ωi = Ω; another with the
frequency close to Ω. In Fig. 2.10 single particle offsets are shown for three different
particles. Each has a frequency separated from the frequency of the driving force by
the values of {0.005,0.05,0.5}. The amplitude of the particles with frequency closest to
the driving force frequency grows linearly. Particles with larger frequency detuning may
grow linearly initially but afterwards their amplitudes decrease. In the long-term, only
the particles with exactly the frequency Ω will continue to grow in amplitude.
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Figure 2.11: Illustration of a stability boundary (blue curve) in the complex coherent
tune shift space. An example is given for a stable (orange dot, below the
stability boundary) and unstable (green dot, above the stability boundary)
coherent tune shift.

In a particle accelerator, for a wakefield driven instability we have a force proportional
to the beam offset: A= Ã〈x(t)〉. For a certain number of frequencies defined by a disper-
sion relation Eq. (2.82) the beam will stay stable. We can add that the crucial ingredient
of Landau damping is having the frequency of the coherent oscillations (oscillations of
the beam offset) inside the incoherent frequency spread of individual particles.
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The dispersion relation in a case of a coasting beam and frequency detuning with
transverse amplitudes (Jx , Jy) takes the following form:

∆Q−1 =
1
N

∫ ∂Ψ0

∂ Jy
JydJxdJydJz

Qcoh −Q y0
−∆Q⊥y (Jx , Jy)

. (2.83)

The dispersion relation in a case of a bunch with only a frequency detuning with
transverse amplitudes takes the following form:

∆Q−1 =
1
N

∫ ∂Ψ0

∂ Jy
JydJxdJydJz

Qcoh −Q y0
−∆Q⊥y (Jx , Jy)− lQs0

, (2.84)

where the normalisation is N =
∫ ∂Ψ0

∂ Jy
JydJxdJydJz . Both dispersion relations are sim-

ilar and describe the Landau damping from octupole magnets on the coherent beam
stability.
The solution to the dispersion relation can be represented as a stability diagram. Fig-

ure 2.11 describes a stability diagram due to Landau damping. The diagram is plotted
in the coordinates of the instability coherent tune shift in the absence of Landau damp-
ing (arb. units). The complex plane of coherent instability tune shifts is divided into a
stable and an unstable areas by a stability boundary (blue curve). The shape and size
of the stability boundary would depend on the betatron frequency detuning and on the
particle distribution function.
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3 Simulation framework

3.1 Macroparticle models and PyHEADTAIL computer code

The motion of a single particle in the transverse and longitudinal planes was described
in Chapter 2. Analytically, we can obtain information about the whole beam’s average
motion and the particle distribution’s statistical momenta. In the case of instabilities, the
most unstable modes can be obtained. Numerically, however, we can solve the single
particle equations of motion and obtain the particle coordinates in phase space at any
position s for each particle. Nevertheless, the number of particles in the accelerator is
large ≈ 1010 − 1013, and solving the differential equations for each particle in the beam
is impractical. Each turn in the accelerator can already involve many integration steps
for particle tracking through the accelerator lattice and collective effects. In addition to
the long computation time, this large number of particles could not be used due to the
memory limitations in modern computing systems. Instead, a macroparticle approach
can be used for numerical simulations.
The whole beam in the simulation is presented as an ensemble of Nm.p. macropar-

ticles, typically a much smaller number than Nparticles. Each macroparticle represent a
small ensemble of particles Nparticles/Nm.p. and has a charge of ZeNparticles/Nm.p. and mass
AmpNparticles/Nm.p.. The number of macroparticles relative to the number of particles in
a physical system is known as granularity. This is a purely numerical parameter, and, in
general, the physical results should not depend on the choice of this parameter. If the
results depend on the granularity, this is due to the numerical noise. When the numer-
ical noise does not affect the simulation results, the macroparticle number converges.
The number of macroparticles used for particular simulations is determined through a
convergence study.
In this work we have used PyHEADTAIL macroparticle tracking code [98], successor

of the HEADTAIL code [99]. PyHEADTAIL is an open-source tracking code specialising
in the simulation of collective effects. In recent years, this code was used to conduct or
verify many beam dynamics studies, for example, [34], [51], [100], [101]. In several
studies, it was benchmarked against other tracking codes; for example, bimbim [102],
and against other non tracking codes, for example, against a Vlasov solver DELPHI [83],
[93]. We would emphasise that PyHEADTAIL code was used for the recent studies on
Landau damping [71], [72], [80] with an RFQ. In this work, we have extended the
PyHEADTAIL code to include modules describing the influence of a PEL and a DC EL on
the beam. In the rest of this section, we will briefly summarise the relevant numerical
models in PyHEADTAIL.
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Figure 3.1: Schematic description of beam tracking in PyHEADTAIL code.

3.2 Wakefield models in PyHEADTAIL

Constant, dipolar and quadrupolar wakefields are implemented in the PyHEADTAIL
tracking code. The wakefield can be passed to PyHEADTAIL as the data from a file,
for example, obtained by a code calculating the wakefields or impedances Impedance-
Wake2D [83]. Alternatively, several analytical wakefields are implemented in the code,
for example, wakefield from a resistive wall or a resonator.

In order to properly simulate, without sacrificing computing efficiency, the wakefield
interaction along the bunch, the bunch is represented by longitudinal slices. A slice is
a collection of particles that are located between two longitudinal coordinates. Nearest
grid point interpolation assigns a given particle to a given slice each turn (due to the
synchrotron motion, the particles slowly rotate in the longitudinal phase space). Several
slicing options are present in PyHEADTAIL. However, in this work, we only use slicing
into uniform bins (equally spaced bins). If we count slices from tail to the head as
0,1, ..i, ..Nslices, the kick for the ith slice is

∆x ′i =
q2

p0c

Nslices∑
j=i+1

Nper sliceWx (z j)∆x j , (3.1)
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where Nper slice is the number of macroparticles per slice. Figure 3.2 illustrates an exam-
ple of a wakefield acting on the beam. The beam has a small transverse offset (orange
dot) and the wakefield kick is shown after several revolution turns in the PyHEADTAIL
simulations. Three numerical parameters need to be optimised by means of a conver-

Figure 3.2: A schematic example of a simulated wakefield kick (in blue) acting on the
beam (black dots) that has a small transverse offset.

gence study for the simulation of wakefields: the number of slices; the number of wake-
field kicks per turn; the number of macroparticles in each slice. The accurate number of
slices is necessary to resolve the intrabunch motion and its interaction with the wake-
field. For the number of wakefield kicks per turn in the models used in this work, we
always use only one wakefield kick per turn, using a total machine impedance. In the
real accelerator, the wakefield is distributed along the ring, and the kicks occur at dif-
ferent positions. The number of macroparticles in each slice should be high enough to
resolve the beam offset of each slice (in the case of a dipolar wakefield).
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Figure 3.3: Electric fields (simulated) from different electron distributions of the elec-
tron lens beam as a function of transverse coordinate. For the homogeneous
transverse electron distribution the electric field is depicted in blue. For the
Gaussian distribution – in red. For the parabolic distribution – in green. For
the PEL distribution used in this work – in dashed orange line.

3.3 Electron lens implementation

Electron lenses were not implemented in PyHEADTAIL, both PEL and DC EL were im-
plemented in the code as a part of this work. The force of an electron lens, acting on a
proton or heavy ion beam and assuming the beam centres coincide, is given by [77]

F(r⊥)∝ Er⊥(r⊥)∝
∫ r⊥

0 je(r ′⊥)r ′⊥dr ′⊥
r⊥

, (3.2)

where Er⊥(r⊥) the electric field; r⊥ =
p

x2 + y2 is the distance from the centre of the
beam; je(r⊥) is the electron current density. The electron current density depends on
the transverse distribution of the electron beam. The compact expressions for electric
fields for several transverse distributions can be found in [103], [104]. For a PEL, this
current is additionally pulsed to match some longitudinal profile.
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Figure 3.4: Kicks received by ion beam particles in the simulations from four different
electron lens configurations. On the top row, DC EL with homogeneous
transverse distribution (left) and Gaussian transverse distribution (right).
On the bottow row, PEL with homogeneous transverse distribution (left) and
Gaussian transverse distribution (right). The colour bar indicates magnitude
of longitudinal position of a particle in the bunch.

In PyHEADTAIL, several transverse distributions for electron beam profile have been
implemented: Gaussian, parabolic and homogeneous (Kapchinskij-Vladimirskij (KV)
distribution). Figure 3.3 illustrates the electric field generated by these electron dis-
tributions for the particles located in the (longitudinal) centre of the bunch. A PEL in
this work has a transverse distribution that covers the ion beam entirely. Hence, the
electric field is always linear with the transverse coordinate. The longitudinal pulsing is
achieved by dividing the bunch longitudinally into slices, similar to the wakefield. The
current is given as a function of the longitudinal positions of the particles.
Figure 3.4 demonstrates the kicks received by an ion beam from different electron

lenses in the PyHEADTAIL simulation after one revolution turn. The ion bunch has a
transversely and longitudinally Gaussian distribution. Four cases are presented with
a colour bar showing the longitudinal position of a particle inside the beam. The top
row shows results for a DC EL. On the left, a DC EL with a homogeneous transverse
distribution of electrons. On the right, with a transversely Gaussian distribution. The
bottom row shows these transverse distributions but for a PEL. A PEL transverse electron
distribution covers the ion beam entirely on the left. This is done to ensure that the
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kick of a PEL always depends on the transverse coordinate linearly, ensuring that a PEL
provides detuning only with longitudinal coordinates. On the right, a PEL transverse
distribution has an equal to ion distribution transverse rms beam size. In Fig. 3.4, 50
slices are used for electron lens kicks. From Fig. 3.4 one can observe that for a PEL, the
strength of the electric field depends on the longitudinal position. On the other hand,
for a DC EL, there is no such dependency.
In all simulations in this work electron lens kick was used only once per revolution

turn. Convergence studies showed no effect of increasing the number of kicks on Landau
damping.
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4 Experimental studies: Coasting beam
instabilities in SIS18 with a DC
electron lens

The experiments goal was to demonstrate and understand the influence of an electron
lens on the beam stability in SIS18 at the injection energy. The goals of the experiment
are helpful for understanding the effects of the proposed electron lens [35] in the SIS100
and of its prototype [59] to be installed in SIS18. The feasibility of Landau damping with
an electron lens was investigated along with the instabilities, possibly induced by the
electron lens. Throughout the experiments, an unbunched (coasting) 1 beam was used
because instabilities with an unbunched beam were observed before in SIS18 [105].

4.1 Experimental setup

For the purpose of the experiment, an existing SIS18 electron cooler was used as an elec-
tron lens. This dedicated setup was achieved with the help of GSI beam cooling group.
Figure 4.1 demonstrates the SIS18 lattice layout and some of the machine parameters.
During our beam time the following diagnostics equipment was used. Direct-current

current transformer (DCCT) was used to monitor the beam current during the experi-
ments. If the beam current is decreasing, we consider the beam losses to be observed.
Beam position monitor (BPM) was used to measure the beam offset. When the beam
offset is growing exponentially in time (linearly in the logarithmic scale), the beam ex-
periences an instability. BPM is four conducting plates, two in the vertical plane and
two in the horizontal plane. The difference of the signal between the two vertical plates
is a measure of the vertical beam offset. In SIS18 there are 12 BPM that were used
in our measurements. Ionisation Profile Monitor (IPM) was used to measure the beam
size. IPM in SIS18 consists of 64 wires and a microchannel plate in front of them. The
wires are spread out in the transverse plane. When a beam travels through an IPM
it ionises residual gas. The residual gas than hits the microchannel plate. The plane
emits electrons onto the wire array. The distribution of the electric charge on the wires
corresponds to the ion beam charge density in the transverse plane.
An electron cooler (magenta colour) is located in section 10. The experiment was

carried out with an unbunched (coasting) beam at the injection energy of 8.6022

1 With the RF cavities turned off the beam injected into SIS18 uniformly fills the ring.
2 This is lower than the nominal SIS18 injection energy of 11.4 MeV/nucleon due to technical reasons.
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Figure 4.1: Schematic representation of the SIS18 heavy ion synchrotron. The electron
cooler, used in our study as a non-linear electron lens, is located in section
10. The picture is adapted from [106].

MeV/nucleon. The beam was observed during the injection plateau for approximately
0.3 seconds. With the revolution frequency frev = 186 kHz this injection plateau cor-
responds to ≈ 55000 turns. Two different charge states of 40Ar were studied in two
separate experimental runs: one3 with 40Ar10+ and another4 with 40Ar18+. The beam
parameters during two experimental runs are summarised in Table 4.1.
Figure 4.2 demonstrates SIS18 cycle used in the experiments. An SIS18 cycle is a time

frame between the bunch injection and extraction. Four beam current measurements
of 40Ar18+ are demonstrated as an example. A region where the beam current stays
approximately constant, we will call a plateau. Grey lines indicate the injection plateau,
where a coasting beam is stored in the SIS18, to be later bunched and accelerated to top
energy. All measurements were done during the injection plateau with a coasting beam.
The length of the injection plateau is approximately ≈ 0.3 seconds.

3 Data taken on 14/06/2021 and on 15/06/2021.
4 Data taken on 12/06/2021.
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Ion Parameter Symbol Units Value
40Ar18+, 10+ Intensity Nb 109 ... 1010

40Ar18+, 10+ Revolution frequency frev kHz 186
40Ar18+, 10+ Injection energy Einj MeV/nucleon 8.602
40Ar18+, 10+ Tune Q x ,y 4.32, 3.27
40Ar18+, 10+ Chromaticity (natural) Q′x ,y −4.1, −5.6

40Ar18+ Horizontal rms emittance ϵx mm·mrad 25.7
40Ar18+ Vertical rms emittance ϵy mm·mrad 12.1
40Ar10+ Horizontal rms emittance ϵx mm·mrad 13.5
40Ar10+ Vertical rms emittance ϵy mm·mrad 6.1

Table 4.1: Ion beam parameters during the experiments with 40Ar18+ and 40Ar10+.
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Figure 4.2: SIS18 cycle that was used in the experiments. Several different shots (mea-
surements) are shown in different colours.

4.1.1 Electron cooler as a nonlinear lens

The parameters available from the electron cooler in SIS18 are summarised in Tab. 4.2.
Ue and βe are the electron beam kinetic energy and relativistic beta. fexp is an adiabatic
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expansion factor. The electron beam is assumed to be roundwith a radius a. The electron
beam size a in the interaction region is governed by this adiabatic expansion factor as:

fexp =
a2

a2
cath

=
Bgun

Bint
, (4.1)

where Bgun and Bint are the strengths of the magnetic field in the gun solenoid and in the
interaction region solenoid, acath is the electron beam size at the cathode. It determines
by how much the transverse size of the electron beam had increased compared to the
beam size on the cathode (electron gun). The adiabatic expansion is achieved via varying
strength of the solenoid magnetic field on the electron gun and in the interaction region
solenoid magnet.

Parameter Symbol Units Value
Kinetic energy Ue keV 6.6
Relativistic beta βe 0.16
Adiabatic expansion factor fexp 1 ... 3
Interaction region length Le m 2.8
Electron beam current Ie mA 0 ... 900
Horizontal Twiss beta at cooler location β̂x m 10.9
Vertical Twiss beta at cooler location β̂y m 15

Table 4.2: SIS18 Electron cooler parameters. (Courtesy of GSI beam cooling group.)

For the electron cooler setup as a nonlinear lens, we should also consider the effect
of residual gas ionisation and its interaction with the electron beam. This interaction
can result in a beam-drift instability [107], where a slight separation of electron and ion
beams will be exponentially amplified.

4.1.2 Accelerator and beam parameters during the experiment

Figure 4.3 demonstrates beam profiles measured with an IPM during the beam time with
40Ar18+. The beam profiles in Fig. 4.3 were averaged over the whole injection plateau.
The left part of the figure demonstrates the horizontal beam profile, and the right part —
the vertical beam profile. Two cases are demonstrated for each transverse profile: beam
profile with an electron cooler switched off and beam profile with an electron cooler
current of 200 mA. No beam losses were observed for this setting of the electron cooler.
The beam profiles for all four cases are fitted to a Gaussian to approximate the real
transverse distribution and obtain the rms beam sizes. Compared with a Gaussian beam
profile, the beam profile in SIS18 is not symmetric and has a longer “tail” on one side of
the distribution. We can conclude that the electron cooler does not significantly modify
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Parameter Units Value
Ion species 40Ar18+ 40Ar10+

∆β = βe − βi 0.02 0.02
γe 1.012 1.012
Ue keV 6.132 6.132
fexp 3 3
Ie mA 10 10

Table 4.3: Electron cooler parameters used to set it up as a non-linear electron lens.
With the present settings no cooling effect was observed during the beam
time. Identical settings of the electron cooler were used for two different
charge states of 40Ar.

Parameter Units IPM Average El. cooler
Ar18+ Ar10+ Ar18+ Ar10+ Ar18+ Ar10+

Hor. rms σx mm 12.7 9.2 16.6 12 9.9 14.2
Vert. rms σy mm 9.7 6.9 19.6 7.1 11.5 8.2
Hor. rms β̂x m 7.8 8.2 10.9
Vert. rms β̂y m 6.3 10.7 15

Table 4.4: Beam sizes on IPM, electron cooler and average in SIS18.

Figure 4.3: Horizontal (left) and vertical (right) measured beam profiles (solid lines)
and a Gaussian distribution fit (dashed lines). The distance between two
neighbouring wires is 2 mm. Two measurements were taken: 1) Electron
lens was off, 2) Electron lens was on with the current Ie = 200 mA.

the beam profile shape or the rms beam size. This observation is especially accurate for
the vertical transverse beam profile.
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For the beam time with 40Ar10+, no dedicated measurement with IPM was made. In-
stead, the IPM recorded each shot’s beam profiles. Then, the shots were sorted with
respect to the observed beam losses. The shots with no beam losses were fitted to a
Gaussian distribution to obtain an rms beam size. This way, more IPM data was stored
for different shots and various electron beam currents Ie.
The measured and calculated beam sizes at several positions in the ring are shown

in Table 4.4. The beam size on the IPM was measured. Than one can calculate rms
emittance from σx ,y =

q
εx ,y β̂x ,y . The values of the emittance are invariant, Twiss beta

function at the location of the IPM is known. The emittances were displayed in Table 4.1.
Knowing the average beta function and the beta function at the position of the electron
cooler, we can calculate the corresponding beam sizes.
Figure 4.4 demonstrates ion rms beam sizes on the injection plateau during the ex-

periments as a function of time, for 40Ar18+ on the left and for 40Ar10+ on the right. The
horizontal beam sizes are shown in blue and the vertical in orange. Different shots are
indicated with the marker shape of the scatter plot. Solid horizontal lines indicate the
average value over the injection plateau and over different shots. Figure 4.4 shows that
the rms beam size (especially vertical one) was consistent over the injection plateau and
shot-by-shot. Only the stable beam shots were considered for the beam size analysis.
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Figure 4.4: Ion beam sizes in the SIS18 during the injection plateau in experiments with
40Ar18+ (left) and 40Ar10+ (right). Vertical (orange colour) and horizontal
(blue colour) rms beam sizes are displayed. Different shots are indicated
via different markers (dots, triangles, squares, etc.). Only the shots with an
observed stable beamwere considered. The computed average values during
the experiments are shown in solid lines.

4.2 Results of the experiment

The main experimental results were obtained with a BPM. The BPM characterises the
beam envelope evolution during these losses, its growth time and the frequency of the
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transverse oscillations. The signals were recorded from all of them for the entire beam
time. During the postprocessing of the data, we identified that all of the BPMs yield
equivalent signals. Here only the results from BPM number 1 are presented.
Additionally, the difference signals for vertical and horizontal planes were equivalent

in the frequency domain. The signal from the BPM corresponded to a vertical instability,
and the vertical difference signal was always stronger. Therefore, we would show and
analyse only the vertical signals.

4.2.1 Results of the experiment with 40Ar18+

Shot Ie (mA) BPM Observation Q′y Q′x τ (ms) N
1.1 0 Stable beam −5.6 −4.1
1.2 0 Instability 0. 0. 92 11.5× 103

1.3 0 Instability 0. 0. 92 11.5× 103

1.4 0 Instability 0.2 0.15 68 8.5× 103

1.5 200 Stable beam 0.2 0.15
1.6 0 Instability 0.2 0.15 68 8.5× 103

1.7 200 Stable beam 0.2 0.15
1.8 100 Instability 0.2 0.15 68 8.5× 103

1.9 160 Instability 0.2 0.15 100 12.5× 103

Table 4.5: Instability observation and a reference observation of a stable beam for
40Ar18+ in our experiment. For each instability we give a current of the elec-
tron cooler beam and growth rates in ms and in number of turns.

In Table 4.6 the results for several instabilities observed for 40Ar18+ are summarised.
The instability growth times were obtained by an exponential fit to the BPM data. The
observed instabilities have growth times corresponding to ≈ 10 ... 100 ms. For 40Ar18+,
an electron cooler was used as an electron lens to stabilise the otherwise unstable beam.
Figure 4.5 demonstrates experimental data obtained from a BPM and the respective

signals of the spectrum. In Fig. 4.5, Shots 1.1, 1.2, 1.3 from Table 4.5 are presented.
The leftmost figures show the vertical difference signal obtained from the row data of
the BPM. The middle figures show a zoomed-in vertical difference signal for one or a
few revolution turns. The rightmost figure demonstrates a Fast Fourier transform (fft)
spectrum of the vertical difference signal.
The top row of three figures represents the reference signal with natural chromaticity

and electron cooler switched off. The amplitude of the difference signal from the BPM
does not grow, and the spectrum of the signal remains dominated by the noise. We
conclude that the beam remains stable during the injection plateau in the SIS18 at the
natural chromaticity.
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The two bottom figures demonstrate the same setting as the top row pictures, except
the vertical and horizontal chromaticities, are changed to zero. From the BPM signal,
one can conclude that the signal grows exponentially until turn number 20000. The
growth time of the instability in both Shot 1.2 and Shot 1.3 are identical and equal to
92 ms or 11500 revolution turns. Therefore, the instability was reproduced for several
shots. In the middle figures, we can observe that several oscillations occur within a
single revolution turn. The fft spectrum of the unstable signal reveals that the instability
has a broad spectrum of frequencies, including frequencies many times higher than the
revolution frequency. The most unstable modes of this instability correspond to the fast
waves of the coasting beam up to the 25th sideband of the revolution frequency.
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Figure 4.5: Experimental results from top to bottom of the image for Shots 1.1, 1.2, 1.3
(see Table 4.5). The electron cooler was switched off for all three shots.
Shot 1.1 was taken at the natural chromaticity. For Shots 1.2, 1.3 the chro-
maticity was set to Q′x ,y = 0 in the control system. (Left) Raw BPM data.
The delta signal for vertical plates is plotted in the logarithmic scale over the
injection plateau in revolution turns. (Middle) BPM signal displayed for 6
consecutive turns, starting at turn 12500 for the top plot, and at 10000 for
two bottom plots. (Right) FFT spectrum of the BPM signal. The dashed line
illustrate the modes of the coasting beam oscillations (see Section 2.3.7): in
purple fast waves, in green slow waves, in red (slow) backward waves.
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The tune spread is zero when the tune spreads from chromaticity and the slip factor
cancel each other. The chromaticity could be further changed (from zero) to correspond
to a zero tune spread. For SIS18 this values were calculated to be Q′x ,y = 0.15, 0.2. The
chromaticity in both vertical and horizontal planes is changed via sextupole magnets to
correspond to this optimal value from Shots 1.4-1.9. This change should lead to stronger
instability.
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Figure 4.6: Experimental results from top to bottom of the image for Shots 1.4, 1.5 (see
Table 4.5). (Left) Raw BPM data. (Middle) BPM signal showed for 6 consec-
utive turns from turn 12500 to turn 12506. (Right) FFT spectrum of the BPM
signal. The dashed line illustrate the modes of the coasting beam oscillations
(see Section 2.3.7): in purple fast waves, in green slow waves, in red (slow)
backward waves.

Figure 4.6 demonstrates experimental data obtained for Shots 1.4, 1.5, top and bottom
row of Fig. 4.6 respectively. In the top row, the electron cooler is switched off, and we
observe an instability with a growth time of 68 ms. In the bottom row, only the setting
of the electron cooler current was changed. This plot corresponds to an electron beam
current of Ie = 200 mA. No instability is observed with an electron cooler turned on.
This indicates that the electron cooler suppressed the instability in this case. One way
an electron cooler can suppress the instability is via Landau damping.
Figure 4.7 demonstrates experimental data obtained for Shots 1.6-1.9. Shot 1.6 corre-

sponds to the settings of Shot 1.4. We have an instability with a growth time of 68 ms for
an optimal chromaticity setting Q′x ,y = 0.15, 0.2 and the electron cooler is switched off.
Shots 1.7, 1.8, 1.9 correspond to the same setting and gradual increase of the electron
beam current Ie = 100, 160, 200 mA. An increase in the electron beam current corre-
sponds to the increase of the betatron tune spread from an electron cooler, associated
with an increase in Landau damping. For the Shot 1.7 and Ie = 100 mA we observe the
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Figure 4.7: Experimental results from top to bottom of the image for
Shots 1.6, 1.7, 1.8, 1.9. (Left) Raw BPM data. (Middle) BPM signal
showed for 6 consecutive turns from turn 12500 to turn 12506. (Right)
fft spectrum of the BPM signal. The dashed line illustrate the modes of
the coasting beam oscillations (see Section 2.3.7): in purple fast waves, in
green slow waves, in red (slow) backward waves.

same instability with the growth time of 68 ms. For the Shot 1.6 and Ie = 160 mA the
instability has a lower growth time of 100 ms. The Shot 1.8 is taken under identical
conditions to the Shot 1.5. In this case, with the electron beam current of Ie = 200 mA,
the ion beam is considered stable during the injection plateau.

For all instabilities in Shots 1.4-1.9, we observe a similar broad frequency response to
Shots 1.2, 1.3. Additionally, the frequency of oscillations is shown to be higher than the
revolution frequency.
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In summary, we have observed in Fig. 4.5 that the 40Ar18+ coasting beam in the SIS18
can be made unstable via chromaticity correction. The observed instability, however,
does not correspond to a well-known slow wave mode of the coasting beam. Fig-
ures 4.6, 4.7 demonstrate faster instabilities for a different setting of the chromaticity
and the fact that this instabilities can be weakened (with Ie = 160 mA) or suppressed
by the electron cooler (with Ie = 200 mA). To the author’s knowledge, this is the first
experimental confirmation of instability mitigation via an electron lens (cooler).
Section 2.3.7 discussed that the wakefield-driven instabilities could only excite slow

wave coasting beam modes. Additionally, in [105], the resistive wall impedance of the
SIS18 beam pipe was identified by measuring unstable slow wave coasting beammodes.
In our case, a fast wave coasting mode is observed with a broad range of frequencies.
Therefore, we can assume that a wakefield does not drive these instabilities.

4.2.2 Results of the experiments for 40Ar10+

In Table 4.6 the results for several instabilities observed for 40Ar10+ are summarised.
Five shots with different settings are presented. For all shots the chromaticity was set
to Q′x ,y = −0.55, 1.25 in the control system. The electron beam current of the electron
cooler was varied for different shots.

Shot Ie (mA) BPM Observation τ (ms) N
2.1 <500 Stable beam
2.2 600 Slow instability 108 13500
2.3 700 Fast instability 2.6 324
2.4 600 Slow instability 120 15000
2.5 700 Fast instability 4.5 566

Table 4.6: Instability observation and a reference observation of a stable beam for
40Ar10+ in our experiment. For each instability we give a current of the elec-
tron cooler beam and growth rates in ms and in number of turns. All shots
were made at natural chromaticity of SIS18.

Figure 4.8 demonstrates Shots 2.1, 2.2, 2.3 corresponding to three different currents
of the electron beam Ie = 500, 600, 700 mA. Similarly to the results for 40Ar18+ in
Figs. 4.5, 4.6, 4.7 three figures are shown for each shot: the vertical difference sig-
nal for the whole injection plateau; the different signal for the selected few turns; the
difference signal spectrum obtained via a Fourier transform. For the Shot 2.1 and elec-
tron beam current Ie = 500 mA a stable beam is observed. The corresponding frequency
spectrum is dominated by noise and the strongest signal simply corresponds to a har-
monic of the revolution frequency.
For the electron beam current Ie = 600 mA in Shot 2.2, we observe an instability

with a growth time of 108 ms developing in the revolution turn range from 40000 to
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50000. The corresponding pattern over a few revolution turns is shown in the second
row’s middle plot. We observe 4 complete oscillations (or one complete oscillation with
the wavenumber 4) over ≈ 5.5 revolution turns.
In Section 2.3.7, the fast and slow wave modes of the coasting beams were discussed

with the corresponding angular frequencies. For the vertical plane, the betatron tune is
Q y = 3.27. The first slow wave corresponds to a wavenumber with the closest integer
above the betatron tune n = 4. The number for the full rotation of this mode is Nang =
1+Q y/(n−Q y)≈ 5.5.
In the frequency domain, in the rightmost picture, for the current of Ie = 600 mA

we also see that the frequency 1 −Q y is the strongest one, corresponding to the slow
wave mode of the coasting beam. Additionally, the higher harmonics are exponentially
weaker. This situation corresponds well with the instability induced by a resistive wall
impedance of the SIS18, also observed in [105].
For the Shot 2.3 and the electron beam current of Ie = 700 mA a different instability

is observed. The growth time of this instability is 2.6 ms or 324 revolution turns. The
instability occurs for several thousand turns starting from the revolution turn ≈ 20000.
This growth time is significantly shorter than the growth times observed for a resistive
wall induced instability in [105].
The pattern of oscillations is demonstrated in the middle plot. We observe that the

signal is very clear, and there are six complete oscillations within a single revolution
turn.
In the rightmost plot, the frequency spectrum is demonstrated to be dominated by

a fast wave mode closest to the revolution frequency harmonic 6. This corresponds to
a fast wave mode n = 3. The frequency spectrum can still be considered broadband,
although one mode is more potent than all others. This instability is similar to those
observed with the 40Ar18+ beam.
Figure 4.9 demonstrates results for the Shot 2.4. In the top row of the figure on

the left, there is a difference signal from a BPM ∆y plotted over the whole injection
plateau. On the right, ∆y is illustrated for several consecutive revolution turns. The left
figure in the bottom row of Fig. 4.9 demonstrates a frequency spectrum of the difference
signal. The right figure in the bottom row shows a spectrogram of the difference signal.
The spectrogram illustrates the evolution of the spectrum of the difference signal over
many revolution turns. We can observe that the most dominant mode corresponds to
the frequency of the first slow wave mode n −Q y with n being the first integer above
the integer part of the betatron tune.
In Shot 2.4, the electron beam current was set to Ie = 600 mA, and a slow wave

instability can be observed with a growth time of 120 ms. Similarly to Fig. 4.8, we
observe a slow wave mode n = 4 and a nearly perfect rotation of the wave during 5.48
revolution turns.
Figure 4.10 illustrates the experimental results for the Shot 2.5. The same subfigures

as for the Shot 2.4 are used here. The electron beam current Ie = 700 mA was used
in this shot. Instability can be observed after the turn of 20000 with a growth time
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Figure 4.8: Experimental results for Shots 2.1, 2.2, 2.3. (Left) Raw BPM data. (Middle)
BPM signal showed for 6 consecutive turns from turn 12500 to turn 12506.
(Right) FFT spectrum of the BPM signal. The dashed line illustrate the modes
of the coasting beam oscillations (see Section 2.3.7): in purple fast waves,
in green slow waves, in red (slow) backward waves.

of 4.5 ms. This instability corresponds to the same settings as in Shot 2.3. It is also
characterised as n = 3 fast wave instability with the most unstable mode being close to
harmonic 6 of the revolution frequency.

During the beam time with the 40Ar10+, the beam was only unstable with an electron
cooler turned on. The electron cooler’s current was significantly higher than in the
beam time with 40Ar18+. Two different instabilities were observed for different settings
of an electron cooler. One was characterised as a slow wave mode of coasting beam
with growth times ≈ 100 ms. Another was characterised as a fast wave mode of a
coasting beam. For a fast wave mode instability, the growth time was significantly larger
≈ 1ms. Slow wave mode instability can be related to the machine impedance. In SIS18,
specifically to the resistive wall impedance of the SIS18 beam pipe. In the previous study
[105] of coasting beam instabilities in SIS18, it was identified as the primary impedance
source. On the other hand, the fast wave mode instability cannot be caused by the beam
coupling impedance on the SIS18. The beam coupling impedance can only excite the
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Figure 4.9: Experimental results for Shot 2.4. (Top left) BPM difference signal between
vertical planes during the injection plateau. Exponential fit is shown in an
orange dashed curve. (Top right) BPM difference signal during a single revo-
lution turn. (Bottom left) Frequency spectrum of the BPM difference signal.
(Bottom right) Spectrogram of the frequency spectrum during the injection
plateau. The dashed line illustrate the modes of the coasting beam oscilla-
tions (see Section 2.3.7): in purple fast waves, in green slow waves, in red
(slow) backward waves.

slow wave modes of a coasting beam. Overall, the instabilities observed during the beam
time with 40Ar10+ had a single most unstable mode.

4.3 Interpretation of the results

For both 40Ar18+ and 40Ar10+, an Instability is observed. We can classify these instabili-
ties into two types: one has a broadband frequency spectrum centred at the frequency
several times higher than the revolution frequency and growth times in the range of
≈ 100 − 10000 revolution turns; another has a narrowband frequency spectrum cen-
tred around the revolution frequency with a growth time of ≈ 10000 turns. The first
instability occurs both for 40Ar18+ and 40Ar10+, with the electron cooler turned on or off.
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Figure 4.10: Experimental results for Shot 2.5. (Top left) BPM difference signal between
vertical planes during the injection plateau. Exponential fit is shown in an
orange dashed curve. (Top right) BPM difference signal during a single
revolution turn. (Bottom left) Frequency spectrum of the BPM difference
signal. (Bottom right) Spectrogram of the frequency spectrum during the
injection plateau. The dashed line illustrate the modes of the coasting beam
oscillations (see Section 2.3.7): in purple fast waves, in green slow waves,
in red (slow) backward waves.

The second type resembles previously studied instability in SIS18 [105]. In [105], it
was associated with a resistive wall impedance and compared with an analytical model.
The impedance inferred from the experimental data was ≈ 3 times higher than the
analytical one. This discrepancy is typical for most synchrotrons. In our experiment,
evident slow wave instability of the mode n = 4 with a frequency of oscillations of
(n − Q y)ω0 was observed in Shots 2.2, 2.4. The growth time of the instability was
determined to be 120 ms.
Equation (7) in [105] gives an analytical estimation for a growth time for a given

impedance

1
τ
=

Nione2Z2βr

8π2AmpγrRQ y
ℜZ⊥y , (4.2)
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where τ is the growth time; Nion is the intensity; Z , A charge and atomic number of the
ion (10 and 40 for Shots. 2.2, 2.4); e, mp electric charge and mass of the proton; R the
effective radius of the accelerator; Q y is the vertical betatron tune; ℜZ⊥y is the real part
of the transverse vertical (effective) impedance.
In [105] the vertical resistive wall impedance is estimated to beℜZ⊥y = 0.15MOhm/m

for SIS18, while the experiments of [105] suggest that the impedance is 3 times higher
at ℜZ⊥y = 0.45 MOhm/m.
From the data of our experiment (Shots 2.2, 2.4) and Eq. (4.2) we estimate that

for 40Ar10+ beam with the intensity of 1010 particles and a 120 ms instability, we have
ℜZ⊥y ≈ 1.5 MOhm/m. This value is 10 times higher than the impedance expected from a
resistive wall of SIS18 and 3 times higher than the impedance obtained from the previous
measurements. Therefore, even this slow wave mode instability is unlikely to be caused
by the machine impedance.
This calculation can be repeated for all presented shots. The results of the calculations

are presented in Table 4.7.

Shot τ (ms) Z⊥y (MOhm/m)
1.1 0
1.2 92 1.9
1.3 92 1.9
1.4 68 2.6
1.5 0
1.6 68 2.6
1.7 0
1.8 68 2.6
1.9 100 1.7
2.1 0
2.2 108 1.6
2.3 2.6 67
2.4 120 1.5
2.5 4.5 38.7

Table 4.7: Equivalent (to growth times observed in the experiments) effective
impedances calculated from Eq. (4.2). Effective impedances for stable shots
are simply noted as 0.

These values are significantly larger than the SIS18 vertical impedance from [105] of
0.45 MOhm/m or to the analytical estimation for the resistive wall of 0.15 MOhm/m.
Therefore, the machine impedance cannot explain all of the observed instabilities.
We have also observed instabilities where fast wave modes are the most unstable.

This is evident, for example, in Shots 1.4, 2.3, 2.5. From Section 2.3.7, we know that
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a wakefield cannot drive the fast waves. Therefore, this second argument is that the
observed instabilities cannot be explained as a wakefield-driven instability.

Let us examine the possibility that we observe a two-stream instability. Two-stream
instabilities cover many different effects, but in all cases, two particle species are in-
volved. A two-stream instability can be caused by the interaction between an ion beam
and an electron beam in the cooler. Another possibility is an electron “beam” inside the
vacuum chamber, for example, from ionised residual gas and secondary yield emission.

Observations of similar two-stream instabilities have been made, for example, in
[108]–[110]. These observations have been summarised in [43] and, in more detail,
in [48] (references therein contain a few more examples of similar observations in dif-
ferent accelerators). An estimation of a bounce frequency of trapped electron was made
in [110] by the following expression

Qe = Ωeω0 =

√√2Z2N rec2

Aa2C
≈ 1 ... 10, (4.3)

where N is the intensity of ions (for this estimation we used a range of 109 ... 1010),
re =

1
4πε0

e2

me c2 is the classical electron radius, A, Z atomic mass number and charge
number, a is the radius of an ion beam, C , accelerator circumference. If the frequency of
the proton oscillations of the unstable beam matches this frequency of trapped electron,
then the beam is unstable due to coupled oscillation with the trapped electron beam. In
our observations, all of the instabilities had frequencies ranging from zeroth to twentieth
harmonics of the revolution frequency, with harmonics five and six being the strongest
ones. Therefore, the observed frequencies of the unstable beam match well with the
frequencies from an approximate formula Eq. (4.3).

The electron lenses (and electron cooler) are designed in a way to prevent this un-
desirable interaction of ion beam with electron beam in the lens (see Fig. 1.3). The
magnetic field of the solenoid magnet in the interaction region should be strong enough
to prevent oscillations of the electron beam of the electron lens. However, it is still pos-
sible that some of the instabilities reported here were either caused by the electron lens
or enhanced by it.

Specifically for Shots 1.4, 1.6, 1.8, the electron cooler was not powered. Instead,
the instability was achieved only by changing the chromaticity. This means that the
two-stream instability in SIS18 can be observed without the electron cooler. In fact, for
Shots 1.5, 1.7, the electron cooler was powered with a current of 200 mA (with other
settings being unchanged), and the beam was considered stable.

In conclusion, several transverse instabilities have been observed with a coasting beam
in SIS18. However, the beam-environment interaction driving the instability was not
identified with certainty. The instability is likely a two-stream instability. A possible
mitigation measure depends on the source of the instability. For example, suppose the
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instability is due to powering the electron cooler. The solenoidal field in the interaction
region should be increased in that case.
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5 Analytical studies: Vlasov formalism
with longitudinal and transverse
detuning

The majority of the analytical results presented in this chapter were published by the
author in [111]. In this chapter we discuss in detail the influence of a PEL on the co-
herent beam stability. At the end, new dispersion relations for analytical estimation of
Landau damping and beam stability are derived.

5.1 Pulsed electron lens as longitudinal detuning

The present derivation of a PEL detuning applies the general perturbation formalism pre-
sented in [43], [72], [92], [93]. Additionally, it expands to both transverse∆Q⊥y (Jx , Jy)
and longitudinal ∆Q‖y(Jz ,φ) detuning. At the end, new dispersion relations are derived
and two effects of a PEL on the coherent beam stability are discussed. For the longi-
tudinal detuning, the dependency on the longitudinal phase φ is included, because the
time scale of the head-tail instability development is the timescale of the synchrotron
motion, determined by the synchrotron tune Qs0 . The transverse detuning, on the con-
trary, can be averaged over significantly faster betatron motion Q x0,y0

�Qs0 . Therefore,
the transverse detuning is justified to be independent of the betatron phases θx , θy .
Using a perturbation method, let us assume that the distribution function Ψ has a

small (ε� 1) perturbation εΨ1:

Ψ = f0(Jx , Jy)g0(Jz) + εΨ1(Jx ,θx , Jy ,θy , Jz ,φ; t). (5.1)

Here we assume that the unperturbed distribution function is factorised into a longitu-
dinal g0(Jz) and a transverse distribution f0(Jx , Jy). Time t is taken in the revolution
turns and (Ju,θu) are action-angle variables, Ju is used for the single-particle amplitudes.
Vlasov equation with a dipolar wakeHwake and a PELHPEL contributions is

dΨ
dt
=
∂Ψ

∂ t
+ [H0 +HPEL + εHwake,Ψ] = 0, (5.2)

whereH0 =Q y0
Jy+Q x0

Jx−Qs0 Jz is the Hamiltonian of the unperturbed system, [H ,Ψ]
is a Poisson bracket notation.
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This study is limited to the instabilities driven by dipolar wakefields. The unperturbed

distribution has no dipolar moment, therefore Hwake =
Fwake(z,t)
ω0γr mv

q
2Jy β̂y sinθy is of the

order ε (β̂y is the average beta function). Thus, at the perturbation order ε, Vlasov
equation is

∂Ψ1

∂ t
+ [H0,Ψ1] + [HPEL,Ψ1] = −[Hwake,Ψ0]. (5.3)

Hamiltonians are normalised by the revolution frequency ω0 and by the particle mo-
mentum γmv . Let us consider a PEL with a homogeneous transverse profile (of the
electron beam) and a modulated current with a Gaussian longitudinal profile (z is the

longitudinal coordinate,σe‖ is the rms size of the electron beam) Ie(z) = Imaxe
−(z/p2σe‖ )2 ,

then

HPEL =∆QmaxJy e
−(z/p2σe‖ )2 , (5.4)

where ∆Qmax is listed in the Table 5.1.

If the ratio of transverse and longitudinal (geometrical) rms emittances satisfies
ϵy/ϵz � 1 then the only significant effect from a PEL is the longitudinal detuning

∆Q‖y(Jz ,φ) = ∂HPEL
∂ Jy

, the same holds for an RFQ as a longitudinal detuning device.
Additionally, all synchrobetatron resonances are considered to be weak. The same as-
sumptions are made for the head-tail instability theory in [92] that does not account for
either transverse or longitudinal detuning. From the Hamiltonian, we can find that a
PEL tune shift is:

∆Q‖y(Jz ,φ)/∆Qmax = I (e)0

 
Jz

2ϵz

σ2
z

σ2
e‖

!
︸ ︷︷ ︸

static

+2
∞∑
n=1

I (e)n

 
Jz

2ϵz

σ2
z

σ2
e‖

!
cos (2nφ)︸ ︷︷ ︸

dynamic

, (5.5)

where I (e)n (u) = e−u In(u) stands for the exponentially scaled modified Bessel function of
the first kind. This tune shift has two components. The static component is indepen-
dent of the longitudinal phase. It is similar to LO but depending on the longitudinal
amplitude instead of the transverse amplitudes. The dynamic component depends on
the even harmonics cos2nφ. It is closer to the linear chromaticity ξ(1), its average tune
shift over a synchrotron period is zero. A similar Fourier decomposition exists for any
longitudinal detuning ∆Q‖y(z,δ) because it is guaranteed to be periodic in φ (over a
synchrotron period). Chromatic tune shifts depend on the energy spread δn∝ sinnφ,
and longitudinal position based kicks (an RFQ or a PEL) depend on zn∝ cosnφ. Thus,
it is generally not accurate to consider tune shifts only varying with the longitudinal
amplitude ignoring their dependency on the phase φ.
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5.2 Landau damping from a combination of longitudinal and transverse
detuning

Assuming a dipolar motion only in the vertical plane in Eq. (5.3), the perturbed distri-
bution function has the following two terms

Ψ±1 (Jx ,θx , Jy ,θy , Jz ,φ, t) =ψ1(Jx , Jy , Jz ,φ)e± jθy e− jQcoh t . (5.6)

Knowing that the instability coherent tune shift is small Qcoh −Q y0
≈ 0, only one term

Ψ−1 ∝ e− jθy is significant. The result, after inserting the Hamiltonians and the perturbed
distribution function in Eq. (5.3) is a partial differential equation w.r.t φ only:

{Qcoh −Q y0
−∆Q⊥y (Jx , Jy)−∆Q‖y(Jz ,φ)− j[Qs0 +∆Qs(Jz ,φ)]∂φ}ψ1(Jx , Jy , Jz ,φ)

=
Ç

2Jy β̂y g0(Jz)
∂ f0(Jx , Jy)

∂ Jy

Fwake(z, t)
2ω0γr mv

, (5.7)

where the transverse detuning ∆Q⊥y (Jx , Jy) (e.g. LO) is introduced as a small addi-
tion to the betatron tune Q y0

. A small synchrotron detuning ∆Qs(Jz ,φ) � Qs0 is also
included here. Let us find the eigenfunction expansion of ψ1 =

∑
lψ

l
1(Jx , Jy , Jz ,φ)

and its eigenvalues Ql assuming periodic boundary conditions ψl
1(Jx , Jy , Jz ,φ = 0) =

ψl
1(Jx , Jy , Jz ,φ = 2π) and considering the differential operator on the left hand side of

Eq. (5.7)

Ql = −Qcoh +Q y0
+ lQs0 + 〈∆Q‖y〉φ(Jz) +∆Q⊥y (Jx , Jy) + l〈∆Qs〉φ(Jz), (5.8)

ψl
1(Jz ,φ) = Al(Jx , Jy , Jz)e

jlφe− jB(Jz ,φ), (5.9)

B(Jz ,φ) =

φ∫
0

�
∆Q‖y(Jz ,φ′)− 〈∆Q‖y〉φ′(Jz)

� dφ′
Qs

, (5.10)

where 〈∆Q‖y〉φ′(Jz) indicates averaging over a synchrotron period and thus depends only
on the longitudinal amplitude Jz . The function B(Jz ,φ) generalises the betatron phase
factor χ of the linear chromaticity ξ(1) (see Eq. (6.185, 6.187) in [92]) for arbitrary
longitudinal detuning. It has been modified w.r.t Eq. (20) in [72] and Eq. (9) in [112]
(where it is denoted as Λ) to include Qs(Jz ,φ) in the integral to account for ∆Qs(Jz ,φ)
detuning and its effect on the betatron phase factor. The function B specifies for a given
particle with an amplitude Jz and a phase φ, by how much it leads or trails the head
particle in the betatron phase. Figure 5.1 demonstrates the variation of the betatron
phase factor over a single synchrotron period: for the linear chromaticity ξ(1), there is a
phase difference between the head and the tail of the particle reflected by the B-function;
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Figure 5.1: Comparison between the betatron phase factors B(Jz ,φ) for a PEL, ξ(2) and
an RFQ. The PEL and the RFQ are matched to the rms bunch length, the
value of ξ(2) corresponds to the same rms tune spread, Jz = ϵz . The case of a
linear chromaticity ξ(1) is shown for reference. Curves obtained analytically
from Eq. (5.10).

for a PEL or the second order chromaticity ξ(2), bunch head and tail particles have the
same phase, but particles near bunch ends still have different phases. Specific formulae
for the betatron phase factor B(Jz ,φ) and tune shifts ∆Q y are given in Table 5.1 for a
PEL, an RFQ, a DC EL, and LO. One can observe that the B-function of a PEL and an RFQ
has only even harmonics of φ, and only the Jz dependency is different. For a PEL and for
an RFQ, the first even harmonic sin2φ is the strongest one, corresponding to the second
order chromaticity ξ(2) tune shift (see Eq. (33) in [72]). The B-function (see Fig. 5.1)
of a PEL is described well by the first two even φ harmonics. Figure 5.1 illustrates that
the B(Jz = ϵz ,φ)-function of a PEL is similar to that of the second order chromaticity for
σz = σe‖ (from Table 5.1) as well as to an RFQ when the wavelength is matched to the
bunch length.
Figure 5.2 demonstrates how strong each individual harmonic is for the same PEL

and RFQ settings as in Fig. 5.1. Only even harmonics are present for both devices in the
proposed setup, where the kick is symmetric w.r.t the bunch center. If, for example, an
RFQ is operated with asymmetric kick, there is no static component of the detuning (and
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Figure 5.2: First ten harmonics of φ for PEL (blue) and RFQ (orange) obtained from
formulae in Table 5.1 for B-function of Eq.(5.10).

no Landau damping) but dynamic component will have odd harmonics of sin nφ. For
both a PEL and an RFQ the strongest harmonic is sin2φ and the effect of the B-function
vanishes for harmonic 6 and higher. One notable difference between a PEL and an RFQ
is significance of sin4φ harmonic for PEL. This harmonic is tilting the sine wave from
Fig. 5.1 of PEL. The contribution from higher harmonics is mostly negligible for the
parameters considered in this work.
Landau damping with the transverse detuning, in contrast, does not affect betatron

phase relation between the head and the tail of the bunch.
After substituting Ψ1 using the eigenfunction expansion of Eq. (5.9) into the Eq. (5.7)

it reduces to an expression for the function of the transverse and longitudinal amplitudes
Al(Jx , Jy , Jz):

∞∑
l′=−∞

Al′(Jx , Jy , Jz)q
2Jy β̂y

∂ f0(Jx ,Jy )
∂ Jy

e jl′φe− jB(Jz ,φ)Ql′ = − Fwake(Jz ,φ; t)
2ω0γr mv

g0(Jz). (5.11)

The right hand side of Eq. (5.11) does not depend on the transverse amplitudes {Jx , Jy},
thus the left hand side must be constant w.r.t. these coordinates. The amplitude de-
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∆Qmax ∝ ILO
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ϵx
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2π

qv2
p0ωRFQ

Z
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Ie
Ia

me
mp

g Le
4πϵnx

σ2
x
σ2

e

1±βeβi
βpβi

〈∆Q y/∆Qmax〉ϕ ay x
Jx
ϵx
+ ay y

Jy
ϵy

J0

�
σz
λRFQ

Ç
2 Jz

2ϵz

�
I (e)0

�
Jz

2ϵz

σ2
z

σ2
e‖

� ∫ 1

0

�
I (e)0

�
uky

�− I (e)1

�
uky

��
×I (e)0 (ukx ) du

∆Qrms/∆Qmax 0.24 0.2 0.14 0.16

B(Jz ,φ)/∆Qmax
Qs

0
∑∞

n=1 J2n

�
ωrfqσz
βrc

Ç
Jz
ϵz

�
sin (2nφ)

n

∑∞
n=1 I (e)n (

Jz
2ϵz

σ2
e‖
σ2

z
) sin (2nφ)

n 0

Hl(z(1), z(2), ..z(k)) j−l Jl(z(1)) ≈ j−l
∑∞

n=−∞ Jl+2n(z(1))Jn(z(2)) j−l Jl(z(1))

Table 5.1: Tune spreads, betatron phase factors B(Jz ,ϕ) and head-tail spectrum func-

tions H(z(1), z(2)) for electron lenses, an RFQ and LO. kx ,y =
Jx ,y

2ϵx ,y

σ2
x ,y

σ2
e⊥
.

pendency can be redefined as Al′(Jx , Jy , Jz) = Rl′(Jz)Il′(Qcoh)
q

2β̂y/Jy , where Rl′(Jz) is
the longitudinal mode. By substituting the expression for the amplitude dependency in
Eq. (5.11) we find the dispersion integrand

Il(Qcoh) =

∂ f0(Jx ,Jy )
∂ Jy

Jy

Qcoh −Q y0
−∆Q⊥y − 〈∆Q‖y〉φ − lQs

. (5.12)

This separation of pure longitudinal amplitude dependency Rl′(Jz) from Al′(Jx , Jy , Jz) is
only possible because we consider a specific combination of transverse and longitudinal
detuning ∆Q y = ∆Q‖y(Jz ,φ) + ∆Q⊥y (Jx , Jy) and not a more general case of detuning
∆Q y(Jx , Jy , Jz ,φ). In the latter case, one would need to solve an integral equation for
the amplitudes and the betatron phase factor B will also be a function of the amplitudes
Jx , Jy , Jz .

Now everything about the perturbed distribution function Ψ1 is known, except its
longitudinal modes Rl(Jz):

Ψ1 = e− jQcoh t e− jB(Jz ,φ)
∞∑

l=−∞
Rl(Jz)e

jlφe− jθy Il(Qcoh)
Ç

2β̂y/Jy . (5.13)

In order to find the longitudinal modes we need to solve the Vlasov equation perturbed
by a wakefield force, expressed as

Fwake =
q2Qs0ω0

Q y0
ηR

∞∑
p=−∞

Z⊥y (Qp)e
jQp

r
R cosφ

∞∑
l′=−∞

λl(Qp) (5.14)

(for comparison, see Eq. (6.173) in [92] with r =
q

2Jz β̂z , where β̂z is the longitudinal
beta function). The frequency of the impedance Qp = Q y0

+ lQs0 + p is normalized by

70 5 Analytical studies: Vlasov formalism with longitudinal and transverse detuning



the revolution frequency ω0, R = C/(2π) is the accelerator effective radius, η is the
slip factor, q is the ion charge. The line density of the dipolar moment λl(Qp) of the
distribution function Ψ for the azimuthal mode l in the frequency domain is

λl(Qp0
) =

∞∫
0

H p0
l (r)Rl(r)

�∫∫
Il(Qcoh)dJxdJy

�
rdr. (5.15)

H-functions have the physical meaning of an airbag bunch head-tail mode spectrum.
In general, the head-tail mode spectrum is |λl |2 and it depends on both the spectrum
functions H and the longitudinal distribution function g0. Integral representation of
H-functions was first defined by the authors of [72] in Eq. (22):

H p
l (Jz) =

2π∫
0

e− jQp
r
R cosφe− jBPEL e jlφ dφ

2π
. (5.16)

Using Jacobi-Anger expansion [113], we introduce a simpler sum representation, con-
sidering only the first even harmonic (∝ sin2φ) of BPEL (see Table 5.1), and the contri-
bution of the wakefield, and the linear chromaticity ξ(1) (∝ cosφ):

H p
l (z

(1), z(2)) = j−l
n=+∞∑
n=−∞

Jl+2n(z
(1))Jn(z

(2)), (5.17)

where Jn(x) is the Bessel function of the first kind [113]. The arguments of the H-
function are defined as

z(1) = (Qp −Q y0
ξ(1)/η)

2σz

R

√√ Jz

2ϵz
, (5.18)

z(2)PEL =
∆Qmax

Qs0

I e
1

 
Jz

2ϵz

σ2
z

σ2
e‖

!
, (5.19)

where z(1) stands for the first harmonic effects (wakefield and ξ(1)), and z(2)PEL describes
the second harmonic effects (from a PEL in Eq. (5.19), an RFQ or the second order
chromaticity ξ(2) have a similar formula). This expression can be extended to include
other higher harmonics as well. The sum representation in Eq. (5.17) has advantages
for faster numerical calculations and for understanding the effect of a PEL on the head-
tail mode spectrum. Indeed, if z(2) ≈ 0, only n = 0 term is nonzero, and we have a
known expression j−l Jl(z(1)) (for example, Eq. (6.177) and discussions therein in [92]).
As z(2) rises, n= ±1 components become significant and the mode spectrum mixes with
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Jl±2(z(1)) terms and Jn=0,1(z(2)) serve as the weight functions. Head-tail mode spectrum
distortion by a PEL, determined by z(2)PEL, scales with the parameter ∆Qmax/Qs0 . Addi-
tionally, like for the Bessel functions [113], from Eq. (5.17)

∑
l |H p

l (z
(1), z(2))|2 = 1 for

any p, z(1), z(2). Meaning that the second harmonic effect z(2) redistributes the energy
between different modes, modifying the shape of the mode spectrum by making some
modes stronger and others weaker. Distortion of the mode spectrum by the longitudinal
detuning is the origin of the effective impedance modification. An example for changes
in the mode spectrum is demonstrated in Fig. 5.3 (top plot) for a moderately strong PEL
∆Qmax/Qs0 = 0.5. The weak distortion of the zero mode is evident from Eq. (5.17), be-
cause the sum becomes symmetric for ±n terms and odd terms cancel each other. The
l-modes are no longer degenerate, the l = 1,2 modes becomeweaker, and the l = −1,−2
modes become stronger, see Fig. 5.3 (top plot). In Fig. 5.3 (bottom plot), we consider
two different frequencies and demonstrate how the mode spectrum at these frequencies
is modified depending on the strength of the longitudinal detuning ∆Qmax/Qs0 .

After inserting Eq. (5.14) into Eq. (5.11), multiplying both sides by e− jlφ and integrat-
ing over φ, a single mode l is determined by

Rl(Jz) = jK g0(Jz)
∞∑

p=−∞
Z⊥y (Qp)H

p†

l (Jz)
∞∑

l′=−∞
λl′(p), (5.20)

with K = q2Qs0/(2Q y0
EηT0) (1/Ohm), where E is the energy and T0 is the revolu-

tion period, H p†

l is the complex conjugate of H p
l function defined in Eqs. (5.16, 5.17).

This extends the Sacherer’s integral equation [44]. Using the Laclare’s approach
[114], an expression for λl(p0) is obtained by multiplying both sides of Eq. (5.20) by
H l

p0

�
Il(Qcoh)dJx dJy

�
rdr and integrating

λl(p0) = − jK
∞∑

p=−∞

∞∑
l′=−∞

λl′(p)Z⊥y (Qp)

×
∞∫
0

�
Il(Qcoh)dJx dJy

�
H p†

l (r)H
p0
l (r)g0(r)rdr. (5.21)

Consequently, this general integral equation simultaneously includes Landau damp-
ing with transverse and longitudinal detuning. If the transverse detuning is negligible
∆Q⊥y (Jx , Jy) = 0, the results of Eq. (23) in [72] are recovered. If the longitudinal de-

tuning is negligible 〈∆Q‖y〉φ(Jz) = 0, the results of the dispersion relation Eq. (1) in
[75] are recovered. Thus, our results for the linear combination of transverse and lon-
gitudinal detuning are general and in the limiting cases converge to the known results.
Equation (5.21) can be written in the matrix form, and the solutions to this eigenvalue
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Figure 5.3: (top) Head-tail mode spectrum |H p
l (z

(1), z(2))|2 for an airbag bunch, un-
perturbed (solid lines) and with the effect of a PEL (dashed lines) for
∆Qmax/Qs0 = 0.5. (bottom) Dependency of mode power spectrum on the
PEL strength ∆Qmax at points where modes |l| = {0,1} are near their max-
ima. Curves are obtained analytically from Eq. (5.15).

problemwould be the coherent tune shifts and the eigenmodes. Dedicated Vlasov solvers
are usually used to solve this type of an eigenvalue problem numerically [73], [115].
However, the present semi-analytical Vlasov solvers do not account for arbitrary longi-
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tudinal detuning. Under the assumption of a narrow band impedance (see [72]) and
only one excited azimuthal mode, we obtain the following dispersion relation:

∆Q−1 =
1
N1

∫ ∂Ψ0

∂ Jy
Jy |H p0

l (z
(1), z(2))|2dJzdJxdJy

Qcoh −Q y0
− 〈∆Q‖y〉φ(Jz)−∆Q⊥y (Jx , Jy)− l[Qs0 + 〈∆Qs〉φ(Jz)]

, (5.22)

where N1 =
∫ ∂Ψ0

∂ Jy
Jy |H p0

l (z
(1), z(2))|2dJxdJydJz is the normalisation found from no Lan-

dau damping case. ∆Q is the coherent tune shift in the absence of Landau damping
(〈∆Q‖y〉φ(Jz) = ∆Q⊥y (Jx , Jy) = 〈∆Qs〉φ(Jz) = 0). Qcoh is the coherent tune in the pres-
ence of Landau damping. This case corresponds to the static component of the tune
shifts being zero, but the normalisation N1 is still affected by the dynamic component of
the tune shift z(2) via H l

p0
function.

Linear chromaticity ξ(1) is a special case of the longitudinal detuning that has no static
component and, thus, no Landau damping. In this case the effective impedance changes
and the mode spectrum modification is a shift by the chromatic frequency Q y0

ξ(1)/η.
In Eq. (5.23), no assumptions about the machine impedance and the arguments of the
H-function are necessary for the case of the transverse detuning only.
If we assume a small first argument z(1) � 1 [Eq. (5.18)] of the H-function in

Eq. (5.17), this is a further assumption on the impedance, meaning that the frequency
of the narrow band impedance (shifted by the chromatic frequency) is much smaller
than the spread of frequencies in the bunch. Additionally, we assume a small second
argument z(2) � 1 (Eq. (5.19)) such that J0(z(2)) ≈ 1 and other weight functions in
Eq. (5.17) are approximately zero — the head-tail mode spectrum is unperturbed by the
longitudinal detuning. The dispersion relation simplifies to

∆Q−1 =
1
N2

∫ ∂Ψ0

∂ Jy
Jy J |l|z dJxdJydJz

Qcoh −Q y0
− 〈∆Q‖y〉φ(Jz)−∆Q⊥y (Jx , Jy)− l[Qs0 + 〈∆Qs〉φ(Jz)]

, (5.23)

where N2 =
∫∫∫ ∂Ψ0

∂ Jy
Jy J |l|z dJxdJydJz . This corresponds to Eq. (1, 2) of [75] if we set

either the longitudinal ∆Q‖y or the transverse detuning ∆Q⊥y to zero. Our results are
valid for arbitrary distributions Ψ0 = f0(Jx , Jy)g0(Jz), account for the dynamic part of the
longitudinal detuning ∆Q‖y(Jz ,φ) and quantify the head-tail mode spectrum distortion
by the longitudinal detuning.
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6 Numerical studies: Head-tail mode
zero

The majority of the numerical results presented in this chapter are published by the
author in [111] and in [79]. In this chapter, the rigid mode kick model reconstructs the
stability boundaries in the simulations. This model corresponds to a constant wake force
acting on the beam [a delta-function impedance Z⊥y ∝ δD(Q)] [73]. Therefore, it drives
a rigid mode oscillations with a specific coherent tune shift, corresponding to the zero
head-tail mode. A similar method was described and employed in a proof-of-principle
experiment in [85] using a transverse feedback system (as an antidamper) in the LHC
study and it agreed with the known stability boundaries for LO.

6.1 Rigid mode kick method

The rigid mode of bunch oscillations is driven in the simulations by the following kick:

∆y ′ = ℑ∆Q y ′ +ℜ∆Q y/β̂y , (6.1)

where y, y ′ are the beam offset and its derivative; ℜ∆Q, ℑ∆Q are real and imaginary
parts of the coherent tune shift caused by the kick in the absence of Landau damping; β̂y
is the average beta function of the ring. The present implementation of the rigid mode
kick is only for the zero linear chromaticity ξ(1) = 0 case. Thus, the parameter z(1) = 0.
Using a weak longitudinal detuning ∆Qmax/Qs0 � 1, we ensure that the underlying
assumptions of the dispersion relation Eq. (5.23) are fulfilled.
In the simulations, 2D scans over the complex coherent tune shift are performed. All

2D scans are made with the same beam and machine parameters using 105 macroparti-
cles over 105 turns (≳ 150 synchrotron periods), only changing the source of the detun-
ing (a PEL, a DC EL, LO, an RFQ). In this section bunch particle distribution is Gaussian
transversely and longitudinally. Separating this 2D plane into a stable and an unstable
areas results in the reconstruction of the stability boundaries. We reconstruct stability
boundaries from the simulation data by identifying all points (on the coherent tune shift
complex plane) with exponentially growing beam offset and extrapolating their growth
rates to the zero growth rate isoline — obtained stability boundaries are defined using
the same criterion as the analytical ones.
In the simulations the instability develops from the numerical noise. The instability

growth rate is determined by an exponential fit to the envelope of beam offset evolution.
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Figure 6.1: Example of simulation results over several synchrotron periods. Simulations
were performed with the rigid mode kick set to produce the coherent tune
shift 0.11 in the absence of Landau damping. Beam offset y normalised by
the beam size at turn 0 σ0

y is displayed (blue) in the normal scale on the
left and in the logarithmic scale on the right). The envelope of the beam
oscillations is fitted to an exponential function (orange).

An example of the simulated data and of an exponential fit is presented in Fig. 6.1.
An example of reconstruction of the stability boundary procedure is demonstrated in
Fig. 6.2.

The tracking code PyHEADTAIL [98] is employed for the simulations. The imple-
mentations of LO and of an RFQ are identical to [72], both a DC EL and a PEL are
implemented as slice-by-slice localized kicks. For a DC EL, each particle of the ion beam
receives a kick from the field of a transversely Gaussian electron beam, with a con-
stant longitudinal profile. For a PEL, the electromagnetic field of the electron beam is
transversely homogeneous, and the kick amplitude is modulated along the bunch length
matching the ion beam profile.

6.2 Probing stability diagram with a rigid mode kick

First, our particle tracking simulations verify that a tune shift from a PEL leads to Landau
damping. Then we compare a PEL to the other means of Landau damping (LO, an RFQ,
a DC EL) using the same simulation framework, the same criteria for beam stability and
the same rms tune spread from all four devices. Finally, we demonstrate the stability
boundary from a combination of longitudinal detuning and transverse detuning, using
a PEL and LO as an example. These simulation results are used to verify our analytical
results from Section 5 and specifically the dispersion relation Eq. (5.23).
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Figure 6.2: The growth rate observed in the simulations (green dots) is plotted as a func-
tion of the imaginary part of the coherent tune shift in the absence of Landau
damping. In this example simulations, PEL strength was nonzero. Both axes
are normalised by the synchrotron tune. With the Random Sample Consen-
sus algorithm (RANSAC) regression algorithms outlier points are identified
(navy-blue points) and the linear regression fit (blue line) is plotted. The in-
tersection of it and the zero growth rate is an extrapolated stability boundary
estimation (black star).

6.2.1 Stability boundaries from either longitudinal or transverse detuning

Figure 6.3 (top) compares simulated (green histograms) tune distributions for LO (yel-
low), a DC EL (red), a PEL (blue), and an RFQ (light-blue) to the corresponding analyt-
ical distributions (coloured histograms). The vertical and horizontal tune spreads and
the complex coherent tune shift axes in Fig. 6.3 are normalised by the rms betatron tune
spread ∆Qrms. Using this normalisation allows to compare various tune spreads from a
PEL, LO, a DC EL and an RFQ.
Figure 6.3 (bottom) shows the reconstructed stability areas (solid green lines) of all

four devices together with the analytical results from Eq. (5.23) (colored lines). For
equal rms tune spreads, the stability area is roughly the same. An RFQ and LO tend to
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Figure 6.3: (top) Incoherent tune spreads and average tune shifts (green dot). Left to
right: LO (yellow), a DC EL (red), a PEL (dark-blue), an RFQ (light-blue).
(bottom) Stability boundaries for the head-tail mode l = 0 from Eq. (5.23)
compared to the results of the simulation scans with the rigid mode kick,
Eq. (6.1).

have a wider stability boundary. This is attributed to larger tails in the tune distribution
for LO and an RFQ. Tune shifts from a PEL are the same in the vertical and the horizontal
planes, but not for an RFQ. Thus, a PEL, contrary to an RFQ, ensures the same stability
area in both the horizontal and the vertical planes. An RFQ would require a two-family
scheme or a combination with LO (see [71]) because the instability coherent tune shift
is typically similar in both planes.

Figure 6.3 (bottom right) illustrates a near-perfect agreement with analytical stability
boundaries for the weak longitudinal detuning. Furthermore, comparisons with Landau
damping with the transverse detuning reveal that the stable area is roughly the same
for equal rms tune spreads. As a rule of thumb, ∆Qrms defines the stability boundary
‘height’, meaning that the fastest instability that is damped has a growth rate roughly
equal to the rms tune spread ≈ ∆Qrms. The full tune spread ∆Qfull ≈(4 ...6)∆Qrms
determines the ‘width’ of the stability boundary. The shape of the stability boundary is
related to the incoherent tune distribution.

In Fig. 6.4 analytical estimations are compared with our simulation results for the
transverse Gaussian distribution and a round electron beam for DC EL for several values
of the transverse beam size ratio r = σe⊥/σx0,y0

= {0.7,1.0,1.4, 1.8}. Similar ratios
were considered only analytically in [77]. Therefore, our simulation results confirm
that a DC EL has a possibility to slightly adjust the stability boundary depending on this
ratio.
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Figure 6.4: DC EL stability diagrams from Eq. (5.23) (red lines) for the head-tail mode
l = 0 depending on the electron to ion rms beam transverse size ratio r =
σe⊥/σx0,y0

. It is compared to the results of simulation scans (green lines)
with the rigid mode kick (defined in Eq. (6.1)).

6.2.2 Stability boundaries from a combination of DC EL and LO in the FCC-hh

In this section the results of [79] are briefly summarised with the focus on the reconstruc-
tion of stability boundaries. In [79] the author estimated stability boundaries for FCC-hh
from a combination of LO and a DC EL. This is a combination of two different sources of
transverse detuning. An earlier version of the stability boundary reconstruction method
was used in [79].

For the estimation of the stability boundary from tracking simulations two methods
are employed. The first method was employed throughout this section and described in
detail in Section 6.1. The second one is only different in how it separates the complex
plane of ℜ∆Q,ℑ∆Q into a stable and unstable regions. It is applying a score function to
the offset and emittance evolution for each pair ofℜ∆Q,ℑ∆Q. If the beam offset exceeds
a threshold value (5µm) and the offset envelope fits an exponential or emittance exceeds
10% of its initial value, we consider a beam unstable for the complex coherent tune shift

6.2 Probing stability diagram with a rigid mode kick 79



−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
<∆Qcoh/10−3

0.0

0.1

0.2

0.3

0.4

=∆
Q
co
h
/1
0−

3

Dispersion relation
Stability diagram(sim)

Stablepoints (sim)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
<∆Qcoh/10−3

0.0

0.1

0.2

0.3

0.4

=∆
Q
co
h
/1
0−

3

Dispersion relation
Stability diagram(sim)

Stablepoints (sim)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
<∆Qcoh/10−3

0.0

0.1

0.2

0.3

0.4

=∆
Q
co
h
/1
0−

3

Dispersion relation
Stability diagram(sim)

Stablepoints (sim)

Figure 6.5: Stability boundaries obtained from the simulation with zero chromaticity
ξ(1) = 0 and only mode l = 0 excited by the rigid mode kick Eq. (6.1).
On the left, LHC-like LO are the only source of detuning. On the right, a
DC EL with ∆Qe = 2×10−3 is the only source of detuning. On the bottom, a
combination of these LO with this DC EL is presented. The stability boundary
of Eq. 5.23 is shown in black colour. The results of the first reconstruction
methods in dark blue colour. And the results (stable area) of the second re-
construction methods are shown as orange dots.

ℜ∆Q,ℑ∆Q. Otherwise, the beam is considered stable and from the set of the stable
points stability boundary is visualised.
Figure 6.5 demonstrates results of particle tracking simulations and our stability

boundary reconstruction methods. The axes of this plot are not normalised, because
Fig. 6.5 presents results for a specific machine. Three different cases are presented.
First, on the left, the stability boundary only due to LO detuning. Second, on the right,
the stability boundary only due to DC EL detuning. And lastly, on the bottom, the sta-
bility boundary from their combination is demonstrated.
For the LHC-like octupoles the stability boundary obtained from the simulations is

predicted by the dispersion relation of Eq. 5.23. Both the score function (orange dots)
and growth rate interpolation methods (blue dotted curve) show a good agreement
between the two methods and with the analytical estimation. In the case of an electron
lens the simulations predict a slightly shifted stability area. For the combination of an
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electron lens and LHC-like octupoles we obtain a large stable area close to the analytical
estimation of Eq. 5.23.
Overall we observe a good agreement between the simulated stability boundaries and

the ones obtained from the dispersion relation. Additionally, one observes a clear ben-
efit (in terms of enlargement of a stable area) to combining two different sources of
transverse detuning with each other. This gives confidence in the dispersion relation
Eq. (5.23) for FCC-hh conditions.

6.2.3 Stability boundaries from longitudinal and transverse detuning
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Figure 6.6: Stability diagrams for the head-tail mode l = 0 from Eq. (5.23) for LO (trans-
verse detuning∆Q⊥y (Jx , Jy), light-yellow line), for a PEL (longitudinal detun-

ing 〈∆Q‖y(Jz)〉φ , light-blue line), and for the related combination (dark-blue
line). The corresponding simulation results for the device combination is
shown by the green curve.

In this work, the dispersion relations are generalised to include both transverse and
longitudinal detuning (see Chapter 5). To the best of our knowledge, this situation was
not treated analytically in the literature before. In this section, the results of Chapter 5
are confirmed by particle tracking simulations.
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Figure 6.7: Stability boundaries for combinations of a PEL with LO. Simulations (green)
are compared to analytical estimations (blue and yellow). The strength of
PEL is kept constant for all four subfigures. The strength and polarity of LO
are varied in the following way: (top left) weak LO (≈ .45 of the maximal
tune spread) with opposite polarity; (top right) weak LO; (bottom left) LO
strengths (1.0 of the maximal tune spread) matches Fig. 6.6 but the polarity
is switched; (bottom right) LO parameters match Fig. 6.6.

Figure 6.6 shows Landau damping from a combination of a PEL and LO from the
results of the simulation scans (green) and from the dispersion relation Eq. (5.23) (dark-
blue). The light-blue and the light-yellow lines show the stability diagram from the
dispersion relation for the cases with a PEL only and LO only. For both devices, the
same settings as in Fig. 6.3 are applied. The stability boundary (if compared to a PEL
one only) increases in the tails and becomes wider. This device combination helps to
mitigate instabilities for a broader range of real coherent tune shifts ℜ∆Qcoh but not the
instabilities with a higher growth rate ℑ∆Qcoh. In a comparison with the LO only case,
the device combination mitigates the instabilities with the nearly doubled growth rate,
and in the similar range for the real coherent tune shifts.

Figure 6.7 compares combinations of a PEL with LO for different strength and polarity
of LO. The results presented in these figures match our analytical calculations. Combin-
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ing a PEL with LO increases the stability boundary in all presented cases. The stability
boundary is increased in terms of stabilised real coherent tune shifts.
In summary, in this Chapter we have demonstrated Landau damping from several

sources of longitudinal and transverse detuning. The coherent properties of longitudinal
and transverse detuning were compared to each other and to the analytical estimations
presented in Chapter 5. New findings of Chapter 5 for a combination of transverse and
longitudinal detuning have been confirmed with particle tracking simulation approach.
For this, a combination of a PEL and LO was used. This combination is a possible option
to mitigate transverse instabilities in SIS100.
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7 Numerical studies: Nonzero head-tail
modes

The majority of the numerical results presented in this chapter are published by the
author in [111]. Some additional results are presented here either to support the con-
clusions of [111] or to provide more details on the methods.

7.1 Resistive wall impedance model

With the modes from Section 6.1 we can only consider head-tail mode zero. In order to
investigate the Landau damping of higher order head-tail modes we will use a resistive
wall impedance model (see Subsection 2.3.5). The resistive wall impedance of the beam
pipe is one of the major sources of impedance and is present in many synchrotrons. The
value of the chromaticity determines which head-tail mode is the most unstable (with
a fastest growth rate). We will scan different chromaticities to find several head-tail

Figure 7.1: Scan of the head-tail instability growth rate vs (linear) chromaticity. Each
point on the plot corresponds to a tracking simulation.
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ξ(1) l ℜ∆Qinst/Qs0 ℑ∆Qinst/Qs0 Machine Parameters
-0.02 0 -0.530 0.017 η 3.45× 10−4

0.1 -1 -0.052 0.017 Qs0 1.74× 10−3

0.5 -2 -0.017 0.009 Nmacro/Nturns 105/105

Table 7.1: Simulation and machine parameters for the wakefield driven instability sim-
ulations. The coherent tune shifts are for the case with no Landau damping.

instabilities of different order. Then, the instabilities with similar growth rates will be
chosen to study Landau damping of higher order head-tail modes.
Figure 7.1 displays a simulation scan of transverse instability for different chromaticity

values. All other beam and machine parameters are kept constant. The slip factor η is
positive, meaning that the beam energy is above the transition energy. The simulations
were performed for over 150 synchrotron periods. We observe a high growth rate for
negative chromaticity values, corresponding to mode l = 0. For positive chromaticities,
ξ(1) < 0.4 we observe mode |l|= 1. When 0.4< ξ(1) < 0.8 the mode |l|= 2 is observed.
The beam is stable for zero chromaticity ξ(1) = 0. This plot represents the convolution
between the beam coupling impedance and the head-tail mode spectrum.
This section investigates the Landau damping of wakefield driven instabilities from a

PEL, with the focus on nonzero head-tail modes. Thresholds of the instability suppres-
sion of a PEL are compared with the ones for LO, a DC EL and an RFQ. The resistive
wall impedance Z⊥y ∝ 1/

Æ
Qp, relevant for many hadron accelerators (e.g. [42], [79]),

is used in this section.
Relevant machine and beam parameters for the simulation results of this section are

summarised in Table 7.1. The bunch distribution Gaussian transversely and longitu-
dinally. A linear RF bucket is used in the simulations, thus the synchrotron frequency
detuning is not taken into account. We identify several linear chromaticity settings where
the head-tail modes l = {0,−1,−2} are unstable. The instability coherent tune shifts and
chromaticity settings are given in Table 7.1. Frequency spectra and characteristic intra-
bunch motion of these instabilities are illustrated in Fig. 7.2.
The mode spectra maxima are near the related synchrotron sidebands, indicating the

azimuthal mode number l for each mode. A characteristic head-tail pattern with the |l|
number of nodes in the offset trace plots is observed. Each instability has an exponential
growth of the transverse offset. The instability parameters are chosen to be well below
the threshold of the Transverse Mode Coupling Instability (TMCI), an instability due to
coupling between different modes.

7.2 Landau damping of wakefield driven head-tail instabilities

Our particle tracking simulation results (solid lines) for Landau damping of head-tail
modes l = {0,−1,−2} are demonstrated in Figs. 7.3, 7.4, 7.5, where we compare it to
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Figure 7.2: Spectra and the trace plots of the centroid motion for head-tail instabilities
for three head-tail modes l = 0 (red lines), l = −1 (yellow lines), l = −2
(green lines) observed in the simulations. These are the instabilities when
both the longitudinal and the transverse detuning are zero.
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Figure 7.3: Instability growth rate (in simulations) dependency on the strength of Lan-
dau damping ∆Qrms/Qs0 for head-tail mode l = 0. A PEL (dark-blue), LO
(yellow), a DC EL (red), an RFQ (light-blue) simulation results are compared
with respective dispersion relations Eq. (5.23).
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(yellow), a DC EL (red), an RFQ (light-blue) simulation results are compared
with respective dispersion relations Eq. (5.23).
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Figure 7.5: Instability growth rate (in simulations) dependency on the strength of Lan-
dau damping ∆Qrms/Qs0 for head-tail mode l = −2. A PEL (dark-blue), LO
(yellow), a DC EL (red), an RFQ (light-blue) simulation results are compared
with respective dispersion relations Eq. (5.23).
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the analytical predictions (dashed lines) of Eq. (5.23). It does not account for the ef-
fective impedance modification by the longitudinal detuning. Therefore, if this effect is
significant for the head-tail modes of a Gaussian bunch, we will observe a disagreement
between Eq. (5.23) and the simulation results. Also, four betatron frequency detuning
devices are compared to each other: a PEL (dark-blue), an RFQ (light-blue), a DC EL
(red), LO (yellow). For our particle tracking scans, we iteratively increase the strength of
Landau damping for each identified head-tail mode setting from Table 7.1. The strength
of Landau damping is expressed by the rms betatron tune spread ∆Qrms to allow a com-
parison between the devices. It is normalised by the synchrotron tune Qs0 . Because this
is proportional to the scaling parameter of the betatron phase factor from Eq. (5.10). The
instability growth rate is normalised by its value in the absence of betatron frequency
detuning ℑ∆Qinst (see Table 7.1).
The simulation results for the head-tail mode l = 0 are presented in Fig. 7.3. One

observes a good agreement with Eq. (5.23) both for the stability threshold and for the
evolution of the instability growth rate. No significant effective impedance modification
due to the longitudinal detuning (a PEL, an RFQ) is observed for the zero head-tail
mode.
Figures 7.4, 7.5 demonstrate particle tracking results for head-tail modes l = {−1,−2}.

For the transverse detuning (LO, a DC EL) the threshold for the instability suppression
agrees with the dispersion relation Eq. (5.23). For the longitudinal detuning (a PEL,
an RFQ), in the simulation the threshold of the instability suppression is higher than
expected from Eq. (5.23). For example, for a PEL the threshold of ∆Qrms/Qs0 ≈ 0.2 is
observed in the simulation, whereas analytically we expect a lower value ∆Qrms/Qs0 ≈
0.05. This indicates that there is a destabilising effect from a PEL and an RFQ for the
head-tail modes l = {−1,−2}. In Section 5 this was identified as the effective impedance
modification due to the longitudinal detuning. The stronger effective impedance mod-
ification for nonzero head-tail modes was already indicated by Fig. 5.3. In contrast,
transverse detuning from LO or a DC EL agrees with the dispersion relation Eq. (5.23)
regardless of the head-tail mode number and its longitudinal structure.
The interplay between the effective impedance modification and Landau damping for

the head-tail mode l = −1 is illustrated in Fig. 7.6. The same instability parameters
as in Fig. 7.4 were used. This illustrates two effects: first, stability boundary (solid
and dashed lines for Eqs. (5.22, 5.23) respectively) is increasing due to Landau damp-
ing; second, the instability coherent tune shift from Eq. (5.21) gets further away from
this boundary due to the effective impedance modification. In the calculation we used
airbag bunch head-tail mode spectrum as an approximation. In Fig. 7.6 two PEL rms
tune spread values are presented. First, at ∆Qrms/Qs0 = 0.05 (magenta colour), is the
stability threshold estimated from Eqs. (5.22, 5.23). In this situation, the instability co-
herent tune shift, without the head-tail mode spectrummodification by a PEL, lies inside
the stability boundary. Unlike the coherent tune shift from Eq. (5.21) which account for
head-tail mode modification. New stability threshold (cyan colour) is then at the PEL
rms tune spread of∆Qrms/Qs0 = 0.07. In this situation the effective impedancemodifica-
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Figure 7.6: Stability boundaries for several PEL strengths for the mode l = −1 (solid
lines) from Eqs. (5.22, 5.23) and respective coherent tune shifts of the insta-
bility (dots) from Eq. (5.21). Machine and beam parameters are the same
as in Fig. 7.4. Two Landau damping strength ∆Qrms/Qs0 = {0.05,0.07} are
considered (magenta and cyan colours respectively).

tion, illustrated as a shift of the coherent frequency, is ≈ 86%. At the same PEL strength,
albeit for the head-tail mode l = 0 it is ≈ 1%. The instability suppression threshold for
the head-tail mode l = −1 in the simulation is significantly higher at ∆Qrms/Qs0 ≈ 0.2.
This discrepancy could be due to several approximations that were made. First, we
approximated the head-tail mode spectrum with the one of an airbag bunch. Second,
dispersion relations Eqs. (5.22, 5.23) were derived for a delta-function like narrow band
impedance. However, the resistive wall impedance is inversely proportional to the fre-
quency∝ 1/

Æ
Qp. It has a delta-function like behaviour only approximately.

7.3 Stability boundaries from a combination of a PEL and the transverse
detuning

A combination of transverse and longitudinal detuning can also be studied using the
wakefield driven instability.
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Figure 7.7: Landau damping of head-tail mode l = 0 with a combination of a PEL and
LO in the simulations. The growth rate of the instability is plotted against
the strength of a PEL, expressed as the rms tune spread normalised by the
synchrotron tune. Landau damping from only a PEL (blue) is compared to its
combination with several LO for several strength of the LO (green curves).

In Fig. 7.7 the influence of combining a PEL with LO on Landau damping of head-tail
mode l = 0 is demonstrated. For the l = 0 mode coherent tune shift (see Table 7.1), the
threshold for instability suppression stays constant for different strength of LO. There-
fore, for this particular instability there is no benefit in adding LO to a PEL.

Figure 7.8 demonstrates Landau damping of head-tail mode l = −1 for several com-
binations of a PEL and LO. The effective impedance modification comes solely from the
dynamic part of the longitudinal detuning (see Eqs. (5.10, 5.16)). Landau damping in
this case is improved, like in the case of zero head-tail mode in Fig. 6.6. Similarly to the
case of only longitudinal detuning in Fig. 7.4, 7.5, with increasing rms tune spread the
beam is stabilised. Figure 7.8 demonstrates that it could be beneficial to combine a PEL
with LO for Landau damping of higher-order head-tail modes. However, the effective
impedance modification should be carefully taken into account.

One of the questions that was left open in Chapter 5 is a combination of transverse
and longitudinal detuning in a single device. This would mean that the tune shifts due to
this device are expressed as ∆Q(Jx , Jy , Jz ,φ) and Eqs.( 5.22, 5.23) are no longer valid.
This tune shift can be achieved practically by pulsing the current of a DC EL with a
transversely nonlinear electron beam (Gaussian-like distribution, for example). Such a
device is a combination of a PEL and a DC EL.

Figure 7.9 demonstrates particle tracking simulation results for this hypothetical de-
vice in comparison to a DC EL, a PEL, LO and an RFQ. Beam and machine parameters
close to that of Table 7.1 were used in the simulations. The results for a transversely
Gaussian PEL are demonstrated in green.
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Figure 7.8: Landau damping of head-tail mode l = −1 with a combination of a PEL and
LO in the simulations. The growth rate of the instability is plotted against
the strength of a PEL, expressed as the rms tune spread normalised by the
synchrotron tune. Landau damping from only a PEL (blue) is compared to
its combination with LO for several strengths of the LO (green curves).
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Figure 7.9: Instability growth rate (in simulations) dependency on the strength of Lan-
dau damping∆Qrms/Qs0 for head-tail mode l = −1 (left) and l = −2 (right).
A PEL with homogeneous transverse distribution of electron beam(dark-
blue), LO (yellow), a DC EL (red), an RFQ (light-blue), a PEL with Gaussian
transverse distribution of electron beam results are compared with respec-
tive dispersion relations Eq. (5.23).
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From these results, we can preliminary conclude that a PELwith an electron beamwith
a Gaussian transverse distribution has approximately the same threshold as a DC EL.
No destabilising or stabilising effect on the effective impedance is observed. This can
be, preliminary, explained due to a modification of B-function (see Eq. (5.10)). For a
PEL with homogeneous transverse distribution of electrons, B(Jz ,φ), all particles with
a longitudinal amplitude Jz have the same dynamic part of the tune shift. On the other
hand, for an electron beamwith a Gaussian transverse distribution, B(Jx , Jy , Jz ,φ), all of
the particles with a longitudinal amplitude Jz have a different dynamic part of the tune
shift. The resulting difference in dynamic tunes between particles then is presumably
negligible.
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8 Conclusions and Outlook
The PEL as a source of the longitudinal detuning has been introduced. Its effects on
transverse beam stability have been demonstrated. A Vlasov formalism was used to
derive new dispersion relations Eqs. (5.22, 5.23) for a linear combination of the trans-
verse and the longitudinal detuning. There are two distinct effects of the PEL (or other
longitudinal detuning) on the transverse beam stability: Landau damping due to the
static component of the detuning; and the head-tail mode distortion due to the dynamic
component of the detuning, see Eq. (5.5).
The head-tail mode distortion is the origin of the effective impedance modification

[72], as it is explained in Chapter 5, see Fig. 5.3 and Eqs. (5.10, 5.17). In contrast,
for a transverse detuning there is no effective impedance modification and only Landau
damping is affected. These analytical results were confirmed for a Gaussian bunch with
particle tracking in Chapters 6, 7 for three different head-tail modes and compared to
the stability boundaries of LO, a DC EL, an RFQ.
The betatron phase factor was demonstrated to vary along the bunch in the presence

of the longitudinal detuning, see Eq. (5.10) and Fig. 5.1. This variation relates the PEL
dynamic longitudinal detuning to the dynamic longitudinal detuning due to higher-order
chromaticity [72] and the RFQ [71].
Figure 5.3 displays how the head-tail mode spectrum is affected depending on the

strength of the longitudinal detuning from a PEL. The sum in Eq. (5.17) describes the
head-tail modes in the presence of the longitudinal detuning; a similar sum representa-
tion exists for any longitudinal detuning.
The ratio ∆Qmax/Qs0 determines the strength of the effective impedance modifica-

tion by the longitudinal detuning. In the weak regime ∆Qmax/Qs0 ≲ 1, only the zero
head-tail mode is described well by the dispersion relation Eq. (5.23), see Fig. 7.3. The
rigid mode kick model was shown to reconstruct the shape and the magnitude of the
stability boundaries, see Fig. 6.3. For the zero head-tail mode, Landau damping either
with transverse or longitudinal detuning is equally effective for a given rms tune spread
∆Qrms, see Fig. 6.3. The simulation results for the zero head-tail mode (see Fig. 6.4)
indicate that with a DC EL it is possible to adjust the stability boundary by changing the
electron to ion beam size ratio.
The nonzero head-tail modes are described by Eqs. (5.21, 5.22) which include

the effective impedance modification, leading to the instability amplification, see
Figs. 5.3, 7.4. This is a significant effect for nonzero modes, neglected by Eq. (5.23).
The instability becomes stronger because some modes are getting weaker and other
modes are amplified; see Fig. 5.3. For the nonzero head-tail modes Landau damping
with longitudinal detuning requires rms tune spreads ∆Qrms up to 2-5 times larger than
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predicted by the dispersion relation Eq. (5.23) due to the destabilising effect of the ef-
fective impedance modification (see Figs. 7.4, 7.5). Landau damping with transverse
detuning, on the contrary, does not have this effect and is described by the dispersion
relation Eq. (5.23).
In the strong lens regime ∆Qmax/Qs0 � 1, the instability is shifted towards higher-

order modes with a smaller growth rate, see Fig. 5.3. This is the regime foreseen for a
PEL in the SIS100 as a space-charge compensation device [35]. Due to the large mode
spectrum modification by PEL, expressions of Eq. (5.21, 5.22) should be used instead of
Eq. (5.23). Landau damping is stronger for a larger rms tune spread. Therefore, both
Landau damping and the effective impedance modification from a PEL are stabilising in
this regime.
The complex interplay between a PEL and space-charge is beyond the scope of the

present work. In [116], the feasibility of Landau damping with a DC EL in space-charge
dominated beams was demonstrated. For a PEL, the same argumentation should be
valid for the static component of the detuning; while the dynamic component of the
detuning should lead to a weaker head-tail instability, see Fig. 5.3 (bottom).
Combinations of transverse and longitudinal detuning devices are expected in several

hadron accelerators. SIS100 is foreseen [52] to have both, a PEL and LO. For the LHC,
a combination of LO and an RFQ was recently proposed [76]. We have derived new
integral equations Eqs. (5.20, 5.21) and dispersion relations Eqs. (5.22, 5.23) for the
combinations of transverse and longitudinal detuning and for arbitrary bunch profiles.
Those dispersion relations are an extension of Eq. (31) in [72], where the transverse
detuning is not included. Our dispersion relation Eq. (5.22) simplifies to Eq. (5.23)
for a situation with the assumptions discussed at the end of Section 5. Finally, our
dispersion relation Eq. (5.23) reduces to the Eqs. (1, 2) from [75] for either longitudinal
or transverse detuning. Stability boundaries due to a PEL, LO and their combination
are given and verified with simulation results, see Figs. 6.3, 6.6. A transversely non-
linear PEL is not covered in this contribution, see Section 5, Eq. (5.11) and discussion
therein. One can presume that Landau damping will stay approximately the same for
equivalent rms tune spreads regardless of whether the lens is pulsed. However, the
effective impedance modification of head-tail modes is not trivial in this case. Nonlinear
synchrotron oscillations were not taken into account in this contribution but could be
relevant for SIS100 operation with longer bunches.
Additionally, SIS18 experiments on coherent beam stability of coasting (unbunched)

beam were performed during two dedicated beam time slots. During the experiments,
an existing SIS18 electron cooler was used as a DC EL. Using this electron cooler as a
PEL is not possible. 40Ar18+ and 40Ar10+ beams were used with the highest available
intensity. First, with 40Ar18+ an instability was observed and reproduced for a specific
(linear) chromaticity. Then it was demonstrated that this instability can be suppressed
by increasing the current of a DC EL. Second, with 40Ar10+ beam, two different insta-
bilities were observed and reproduced for different currents of a DC EL. The observed
instabilities in both cases are suspected to be two-stream instabilities.
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These experiments need to be repeated when a PEL prototype and higher beam in-
tensities will be available in the SIS18. Suppose the two-stream instability was caused
by a DC EL. In that case, its threshold needs to be studied for the parameters of PEL
prototype. This is a potential limiting factor for the electron beam current in a single
PEL. A potential cure of the instability, if caused by a PEL, is increasing the strength of
the magnetic field in the main solenoid of the lens. These studies with the prototype
lens are also necessary to understand the complex interaction with space charge and
possible incoherent losses.
In summary, we presented an analytical description of Landau damping due to a linear

combination of transverse and longitudinal detuning. Coherent properties of longitudi-
nal detuning and transverse detuning, and Landau damping due to four devices (PEL,
DC EL, LO, RFQ), were compared in detail. The feasibility of a DC EL for Landau damp-
ing was demonstrated experimentally. Additionally, a potential limiting factor for a
DC EL and for a PEL in SIS18/SIS100 operation was discussed. The application of a
PEL in different settings for Landau damping was demonstrated. We showed that the
effective impedance due to longitudinal detuning significantly affects the beam stability,
especially for nonzero head-tail modes. The results from analytical considerations are
verified using particle tracking simulations.
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AC Alternating current

APPA Atomic, Plasma Physics and Applications
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BPM Beam position monitor

CBM Compressed barionic matter

CERN European Organization for Nuclear Research

DC EL DC Electron Lens

DC Direct current

DCCT Direct-current current transformer

ERL Energy Recovery Linac

FAIR Facility for Antiproton and Ion Research in Europe GmbH

FCC-hh Future Circular Collider (hadron-hadron option)

FEL Free Electron Laser

FFAG Fixed Field Alternating Gradient accelerator

FODO Focusing - drift space - Defocusing - drift space

FNAL Fermi National Accelerator Laboratory, Batavia IL
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GSI Helmholtzzentrum für Schwerionenforschung GmbH

IPM Ionisation Profile Monitor

LHC Large Hadron Collider

LO Landau Octupoles

NUSTAR Nuclear Structure, Astrophysics and Reactions

NuPECC The Nuclear Physics European Collaboration Committee

KV Kapchinskij-Vladimirskij

PANDA Antiproton Anihilation at Darmstadt

PEL Pulsed Electron Lens
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P.V. Principal value

RANSAC Random Sample Consensus algorithm

RFQ Radio Frequency Quadrupole Cavity

RF Radio Frequency

RHIC Relativistic Heavy Ion Collider

SIS100 Schwerionensynchrotron 100 (ger. for heavy ion synchrotron 100)
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linac Linear Accelerator

p-linac Proton Linear Accelerator

rms Root Mean Squared
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Nomenclature
ψβ̂x ,y

(s) Horizontal and vertical betatron phase advance

α(n)c Higher order momentum compaction factor

αc Momentum compaction factor (linear)

η,η(1) Slip factor (linear)

η(n) Higher order slip factor

γt Relativistic gamma for the transition energy

α̂x ,y Twiss alpha function

β̂z Longitudinal (Twiss) beta function

β̂x ,y Twiss beta function

γ̂x ,y Twiss gamma function

Ωs Synchrotron frequency

ψs Synchronous phase

ξ, ξ(1) Linear chromaticity

ξ(2) 2nd order chromaticity

ξ(n) nth order chromaticity

Bρ Beam rigidity

C Accelerator circumference

Einj Injection energy

frev Revolution frequency

hRF RF harmonic
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Kx (s) Horizontal focusing function

Ky(s) Vertical focusing function

Q′x ,y Not normalised linear chromaticity

Qs,s0
Synchrotron tune

Q x0,y0
Horizontal and vertical betatron tune

R Effective radius of the accelerator

V0 Maximum RF cavity voltage

VRF RF Voltage

λ(ω) Beam oscillation mode

ω0 Angular revolution frequency

ϕ Longitudinal phase

ψβ̂x ,y
Betatron phase (horizontal, vertical)

σz rms bunch length

τ Arrival time

θβ̂x ,y
Betatron phase offset

ϵz Longitudinal (geometrical) rms emittance

ϵx ,y Transverse (geometrical) rms emittance

Ax ,y Horizontal and vertical particle amplitudes

E0 Reference particle energy

Ncycle Intensity in ions per cycle

p0 Reference particle momentum

q Charge of the reference particle

r⊥ Transverse distance to the reference particle trajectory

v0 Reference particle velocity
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wx ,y(s) Horizontal and vertical envelope functions

Z Charge number of the ion

Ψ Distribution function (in phase space)

Rl Radial function of the mode l

δ Particle momentum deviation from the reference particle

θx ,y Angle variable, conjugate variable to action-variable

φ Longitudinal angle variable

X⃗ (s) 6D vector of particle coordinates in phase space

Jz Longitudinal action variable

Jx ,y Action-variables, invariant of motion

p0 Projection of particle momentum on y-axis

px Projection of particle momentum on x-axis

s Location in the accelerator

x ′ Horizontal particle momentum in the moving frame

x Horizontal particle coordinate in the moving frame

y ′ Vertical particle momentum in the moving frame

y Vertical particle coordinate in the moving frame

z Longitudinal particle coordinate in the moving frame

βe Relativistic beta of electrons in electron cooler

∆Qmax Maximal betatron tune shift due to electron lens

σe Rms electron beam size

σe‖ Electron current pulse rms length

σe⊥ Transverse rms electron beam size

Bgun Magnetic field on the electron gun
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Bint Magnetic field in the interaction region

fexp =
Bgun
Bint

Adiabatic expansion factor

Imax Maximal current of the electron beam

je Electron current density

Ue Electron kinetic energy in electron cooler

χ Betatron phase factor for linear chromaticity

∆Q‖ Longitudinal detuning, betatron tune shift with longitudinal coordinates

∆Q⊥ Transverse detuning, betatron tune shift with transverse amplitudes

∆Qcoh Coherent tune shift

∆Q x ,y Betatron tune shift

∆y Maximum vertical amplitude

ε Order of the perturbation

ℑx Imaginary part of some complex quantity x

λl Dipolar moment of the head-tail mode l

H Hamiltonian of longitudinal and transverse particle motion

H‖ Hamiltonian of the longitudinal motion

HPEL PEL interaction part of the Hamiltonian

Hwake Wakefield interaction part of the Hamiltonian

Ψ1(Jx ,θx , Jy ,θy , Jz ,φ, t) Perturbation part of the distribution function

ℜx Real part of some complex quantity x

Al Amplitude of oscillations of mode l

ax x ,x y,y x ,y y Octupole detuning coefficients

B(Jz ,φ) Generalised betatron phase factor

B′u Gradient of the magnetic field
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H p
l Airbag bunch head-tail modes

H p†

l Complex conjugate of airbag bunch head-tail modes

L Length of the reference particle orbit

N , Nparticles Number of particles in a beam

Nm.p. Number of macroparticles

Nper slice Number of macroparticles per slice

Nslices Number of slices

O3 Strength of the octupole magnets

T0 Revolution period

V0 Maximal RF voltage

vi Speed of the particle

H⊥ Hamiltonian of the transverse motion

ε0 Permittivity of the free space

µ0 Permeability of the free space

c Speed of light

e Elementary electric charge

me Mass of the electron

mp Mass of the proton

q Electric charge

re Classical electron radius

rp Classical proton radius

∆p⃗ Momentum change due to the wakefield

∆p⃗⊥ (Transverse projection) momentum change due to the wakefield

δskin Skin depth
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ρ Conductivity of the beam pipe material

b Radius of the beam pipe

L Length of the beam pipe

Mm mth multipole moment of the source particle

W ′m Longitudinal wake function of azimuthal m

Wm Transverse wake function of azimuthal m

Z‖m Longitudinal beam coupling impedance of the azimuth m

Z⊥m Transverse beam coupling impedance of the azimuth m

Zeff Effective impedance

Zmachine Machine (beam coupling) impedance
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