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Abstract

We consider lower probabilities on finite possibility spaces as models for the uncer-
tainty about the state. These generalizations of classical probabilities can have some
interesting properties; for example: k-monotonicity, avoiding sure loss, coherence,
permutation invariance. The sets formed by all the lower probabilities satisfying zero
or more of these properties are convex. We show how the extreme points and rays
of these sets – the extreme lower probabilities – can be calculated and we give an
illustration of our results.
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1 Introduction

We use and work on theories of imprecise probabilities. This means that we
use concepts such as lower (and upper) probabilities to represent uncertainty.
In this, lower probabilities serve the same purpose as classical probabilities,
which they encompass. They can be used to express a larger variety of states
of uncertainty, but generally at the cost of an increase in mathematical and
computational complexity.
? This paper presents research results of the Belgian Program on Interuniversity
Attraction Poles, initiated by the Belgian Federal Science Policy Office. The scientific
responsibility rests with its authors.
∗ Corresponding author.

Email addresses: Erik.Quaeghebeur@UGent.be (Erik Quaeghebeur),
Gert.deCooman@UGent.be (Gert de Cooman).
1 Research financed by a Ph.D. grant from the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

Please cite as: “Erik Quaeghebeur & Gert de Cooman (2008). Extreme lower prob-
abilities, Fuzzy Sets & Systems 159(16):2163–2175; doi: 10.1016/j.fss.2007.11.020.”

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55698045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.fss.2007.11.020


Usually, many different states of uncertainty – or, looking at it from another
viewpoint, states of knowledge – are compatible with a given set of rationality
criteria or any other property we want the state of uncertainty to satisfy. For
many interesting such properties, the compatible states of uncertainty, when
represented as lower probabilities, form convex sets. The extreme points of
these convex sets are what we call extreme lower probabilities.

We first got interested in extreme lower probabilities when we read a paper by
Maaß [11]. Apart from giving the theoretical basis and context for extreme lower
probabilities, he also identifies them in an interesting basic case; he does this by
hand and in an ad-hoc way. Both the theoretical basis as well as the example
piqued our interest: we reasoned that if we could let a computer calculate them
in a systematic way for less academic cases, then we could use them to our
advantage in some other research domain of ours.

So, as a result of the research that originated with that idea, we show in
this paper, for some important rationality criteria and a few other interesting
properties, how extreme lower probabilities can be calculated in a systematic
way. We do this for the case of a finite possibility space. In Section 2, we give a
description of our systematic approach. In Section 3 we look at the rationality
criteria and properties we have investigated (k-monotonicity, avoiding sure loss,
coherence, and permutation invariance) and derive the results necessary for
applying our systematic approach to these cases.

This paper also contains more practical results: in Section 4 we present and com-
ment on the extreme lower probabilities for a number of especially interesting
cases. Dealing with possibility spaces of cardinality 4 or less, these results are
admittedly still somewhat academic. This is mainly due to the computational
complexity of the problem for the most interesting properties (2-monotonicity
and coherence).

To get started, let us next clear up some terminology and introduce some basic
concepts, notation, and assumptions.

1.1 Basic concepts from imprecise probability theory and convex analysis

A lower probability P is a concept used in almost all the theories that make
up the field of imprecise probabilities; it generalizes the classical concept of a
probability P . Important examples of such theories are the ones described by
Dempster [7] and Shafer [15], Fine [8], Walley [18], and Weichselberger [19].

Although the definition and interpretation of a lower probability may differ
between the theories, the idea is similar. Like a probability, it is a real-valued set
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function defined on the set ℘(Ω) of all events (subsets A, B, C) of a possibility
space Ω of states. 2 We are uncertain about the state. As mentioned before, we
restrict ourselves to finite possibility spaces Ω of cardinality |Ω| = n ∈ N. 3

A probability P is

(i) positive: for any event A, P (A) ≥ 0,
(ii) normed: P (Ω) = 1, and
(iii) additive: for disjoint events B and C, P (B ∪ C) = P (B) + P (C).

These are the properties a classical probability has to satisfy: They are a
consequence of the typical rationality criteria when interpreted as a degree
of belief or of its interpretation as a frequency otherwise. Similarly, a lower
probability P must satisfy some properties, but they are weaker than those for
probabilities. A lower probability is usually required to be at least

(i) normed, and
(ii) super-additive: for disjoint events B and C, P (B ∪ C) ≥ P (B) + P (C).

In this paper, we do not assume a priori that a lower probability satisfies any
property (not even positivity).

A probability P dominates a lower probability P if P (A) ≤ P (A) for all
events A. A probability P is called degenerate when it assumes the value 1 on
a singleton.

The set of all lower probabilities defined on some possibility space can be seen
as a closed and convex subset of a finite dimensional space. This is also the
case for the set of all lower probabilities additionally satisfying some interesting
properties (as discussed further on). Any such closed convex set (that contains
no lines) is fully determined by its extreme points and extreme rays (directions),
and vice-versa [14, Thm 18.5]: all elements of the set can be written as a sum of

(i) a positive linear combination of extreme rays, and
(ii) a convex combination of extreme points.

The extreme points and extreme rays of a convex set of lower probabilities are
its extreme lower probabilities.

2 An upper probability P can be defined using its so-called conjugate lower prob-
ability P : for any event A, P (A) = 1 − P (Ω \ A). Because ℘(Ω) is closed under
complementation, we can – and do so here – work with lower probabilities only.
3 Notation for number sets: N, Q, and R respectively denote the nonnegative integers,
the rationals, and the reals. To denote common subsets of these, we use predicates
as subscripts; e.g., R>0 = {r ∈ R|r > 0} denotes the strictly positive reals.
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If you can see that a triangle can be described by its three vertices, you have
understood the main idea behind extreme lower probabilities. Of course, we
will be talking about things that are a bit more complicated than triangles.

We will look at sets of lower probabilities satisfying some interesting properties;
for example 2-monotonicity, which is characterized by the following finite
number of constraints:

(i) for any two events B and C such that B ⊆ C, P (B) ≤ P (C), and
(ii) for any events B and C, P (B ∪ C) + P (B ∩ C) ≥ P (B) + P (C).

It turns out that for finite possibility spaces, not surprisingly, the number of
extreme points and extreme rays of the set of all lower probabilities that satisfy
one or more of these properties is finite.

In the next section, we will outline our approach to calculating extreme lower
probabilities: calculating a set of constraints, and using these to compute
extreme points. Then, we look at how we can obtain manageable sets of
constraints for the properties that are of interest to us.

2 On constraints and vertex enumeration

A (lower) probability can be required to satisfy a variety of interesting properties;
most can be expressed using sets of linear constraints. (We do not consider
requirements related to things like independence and conditioning, which
typically lead to nonlinear constraints.) In the Introduction we have already
seen three simple examples: additivity, super-additivity, and 2-monotonicity. In
general, the constraints for these properties are linear inequalities; equalities
are expressed using two inequalities.

Sometimes, not all constraints are necessary: a constraint can be implied by
another constraint, or a set of other constraints. Such a so-called redundant
constraint can be removed from the set of constraints. If a constraint makes
another one redundant, we call the former more stringent than the latter.

It is useful to look at this problem in a geometrical framework. Lower probabil-
ities can be viewed as points in a 2n-dimensional vector space – one dimension
per subset in ℘(Ω). A linear inequality then generally corresponds to a half-
space delimited by a hyperplane. With some property, there corresponds a
set of half-spaces, and the intersection of these is the convex set of all lower
probabilities satisfying that property.

The geometrical approach is illustrated in Figure 1 below using a toy example.
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We consider n = 1, so the dimension of the vector space is 2 (this is actually
the only one we can draw directly). The constraints are given using a set of
hyperplanes {hi|i = 1, . . . , 6}, the ‘hairs’ indicate the half-spaces the constraints
correspond to. Constraints h3 and h6 are redundant; the former because of h1
and h2, the latter because h5 is more stringent. The set of points satisfying the
constraints is filled.

P (∅)

P (Ω)

h1

h2

h5 h6h4h3

w
v

Fig. 1. Illustration of constraints and vertices.

Figure 1 also shows the vertices – v, for example – of the convex set defined
by the set of half-spaces (constraints). These are the geometrical equivalent of
what we call extreme lower probabilities.

In general, the vertex enumeration problem – finding the vertices corresponding
to a given set of half-spaces – is hard: no polynomial time algorithm (in
dimension, number of constraints, and number of vertices) is known [9]. To
get a feeling for the complexity, realize that not only all intersections of
nonredundant constraints have to be found, but we must also decide which of
these to discard (such as w in Figure 1).

To obtain the set of constraints for different cardinalities and for the various
properties we have looked at, we have written our own program, constraints
[13]. The properties in question will be described in the next section, where we
will also give the theorems that form the basis for this program.

We have used publicly available programs (redund, lrs, and cdd) to remove
redundant constraints and do vertex enumeration. These are maintained by
Avis [1] and Fukuda [10].

3 From properties to constraints

Although for some properties – such as avoiding sure loss (see below) and
additivity plus positivity plus normalization – it is possible to obtain the
corresponding extreme points directly, we were not able to do this for the
most interesting ones (k-monotonicity and coherence). For these, we use the
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vertex enumeration approach described in the previous section: generate the
constraints corresponding to the property of interest and then use vertex
enumeration to obtain the corresponding extreme lower probabilities. With
this approach it is also easy to combine properties; one just has to combine
the corresponding sets of constraints. The (big) downside is that it cannot be
used in practice for ‘large’ possibility spaces – large here means n ≥ 5. The
reasons for this are, first of all, as mentioned in the previous section, that vertex
enumeration is hard, and secondly, that the dimension of the space in which we
work rises exponentially with the cardinality of the possibility space, i.e., as 2n.

We will now look at how we can obtain the constraints for some interesting
properties. The typical definitions for these properties either give a lot of
redundant constraints or even an infinite number of constraints. We reformulate
them to reduce the number of redundant constraints and, if necessary, to ensure
that they generate only a finite number of constraints.

To start out with a clean slate, we assume nothing about lower probabilities
at this point beyond the fact that they are real-valued set functions defined
on ℘(Ω); we do not even assume that they are positive, normed, or super-
additive.

3.1 k-Monotonicity

In the theory of Dempster [7] and Shafer [15] lower probabilities are completely
monotone. This is an extreme case of a mathematically interesting type of
property: k-monotonicity, where k ∈ N>0.

A formal definition (adapted from De Cooman et al. [5,6] and based on Cho-
quet [3]): 4

Definition 1 A lower probability P is k-monotone if and only if for all ` =
1, . . . , k, any event A and any `-tuple of events (Bi|i ∈ N<`), it holds that

∑
I⊆N<`(−1)|I|P (A ∩ ⋂i∈I Bi) ≥ 0.

In this definition, we used the convention ⋂
i∈∅Bi = Ω. You can see that a

k-monotone lower probability is also `-monotone, for ` = 1, . . . , k − 1. We have
seen the case k = 2 in the introduction (in a different, but equivalent form).

4 The relationships with other definitions in the literature are implicitly clarified by
the steps we take in the proof of Theorem 2.
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Monotonicity is the same as 1-monotonicity: P (B) ≤ P (A) for any event A
and all B ⊆ A. Completely monotone means k-monotone for all k ∈ N>0.

The above definition gives rise to a lot of redundant constraints. Many of them
are equivalent or are trivially satisfied. Removing them allows us to formulate
the following definition, leading to a more efficient program.

Theorem 2 (Constraints for k-monotonicity) A lower probability P is
called k-monotone if and only if it is monotone, and for all nonempty events
A and all sets of events A ⊆ ℘(A) \ {A, ∅} that satisfy

(i) 0 < |A| ≤ k,
(ii) ⋃B∈AB = A, and such that
(iii) no event C ∈ A exists for which C = ⋂

B∈AB,

it holds that P (A) +∑
B⊆A,B6=∅(−1)|B|P (⋂B∈B B) ≥ 0.

PROOF. We are going to start from the definition of k-monotonicity and
show that the characterization given in the theorem is equivalent.

A lower probability is P is k-monotone if and only if (Definition 1)

∀A ⊆ Ω, ∀` = 1, . . . , k, ∀(Bi|i ∈ N<`) ⊆ Ω`,∑
I⊆N<`(−1)|I|P (A ∩ ⋂i∈I Bi) ≥ 0,

where the convention ⋂i∈∅Bi = Ω is used. We call A the generating event.

First we observe that only intersections with A play any role in this definition.
So we only need to consider `-tuples (Bi|i ∈ N<`) of events in ℘(A). When, for
` > 1, there is a duplicate in the `-tuple, the corresponding constraint reduces
to a constraint for the (`− 1)-tuple formed by removing one of the duplicates.
To see this, assume without loss of generality that B`−1 = B`−2 and rewrite
the left-hand side of the constraint as follows (♦I stands for the expression
A ∩ ⋂i∈I Bi):∑

I⊆N<`(−1)|I|P (♦I) = ∑
I⊆N<`−2(−1)|I|

(
P (♦I)− P (B`−2 ∩ ♦I)

+ P (B`−2 ∩B`−1 ∩ ♦I)

− P (B`−1 ∩ ♦I)
)

= ∑
I⊆N<`−2(−1)|I|

(
P (♦I)− P (B`−2 ∩ ♦I)

)
= ∑

I⊆N<`−1(−1)|I|P (♦I).

So, rather than working with `-tuples of events for all ` = 1, . . . , k, we can also
work more efficiently with sets of events A ⊆ ℘(A) where 0 < |A| ≤ k. These
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observations lead us to the reformulated condition 5

∀A ⊆ Ω, ∀A ⊆ ℘(A) s. t. 0 < |A| ≤ k,
∑
B⊆A(−1)|B|P (⋂B∈B B) ≥ 0,

where now the convention ⋂B∈∅B = A is used.

Whenever A ∈ A, the resulting constraint

∑
B⊆A\{A}

(
(−1)|B|P (⋂B∈B B) + (−1)|B∪{A}|P (A ∩ ⋂B∈B B)

)
= 0 ≥ 0

is trivially satisfied. A special instance of this obtains when A = ∅ and therefore
A = {A}. So we can write the condition as

∀A ⊆ Ω s. t. A 6= ∅, ∀A ⊆ ℘(A) \ {A} s. t. 0 < |A| ≤ k,

P (A) +∑
B⊆A,B6=∅(−1)|B|P (⋂B∈B B) ≥ 0,

where we have written the case B = ∅ as a separate term.

To complete the proof, we must add two more considerations.

Consider monotonicity separately. Then for A such that ⋃B∈AB 6= A, the
corresponding constraint is implied by P (A) ≥ P (⋃B∈AB) (monotonicity) and
the constraint for ⋃B∈AB as the generating event.

Consider the case where C = ⋂
B∈AB ∈ A. Then, because of the binomial

theorem,

∑
B⊆A,C∈B(−1)|B|P (⋂B∈B B) = P (C)∑B⊆A,C∈B(−1)|B| = 0,

so this leads to the same constraint as when we use A \ {C} rather than A.
The situation ∅ ∈ A is a special case of this. 2

It may also be interesting to remark that k-monotonicity for any k ≥ n is
equivalent to complete monotonicity [2, Cor. 1]. Note that the conditions
P (∅) = 0 and P (Ω) = 1 are not included in our definition for k-monotonicity;
they are commonly added, however.

5 Note the close correspondence of this form with the definition given by Chateauneuf
and Jaffray [2].
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3.2 Avoiding sure loss

Avoiding sure loss is a property that is of central importance in Walley’s [18,
§2.4.1] behavioral theory. 6

Definition 3 A lower probability P avoids sure loss if and only if for all
B ⊆ ℘(Ω), and all λ ∈ (R≥0)B, it holds that∑

B∈B λBP (B) ≤ sup∑B∈B λBIB.

In this definition, IB is the indicator function of B, which is 1 for ω ∈ B and 0
elsewhere.

If we only require a lower probability to avoid sure loss, and nothing more, the
extreme lower probabilities can be determined almost directly: Because a lower
probability avoids sure loss if and only if it is dominated by some probability
[18, §3.3.3], the set of extreme lower probabilities consists of the degenerate
probabilities as extreme points and all negative main directions as extreme
rays.

If we want to use vertex enumeration to obtain the extreme lower probabilities,
the problem arises that Definition 3 gives an infinite number of constraints
(because λ can take on an infinite number of values). This is of course un-
manageable for any computer. Dealing with this infinite amount of constraints
becomes inevitable when, in addition to having to avoid sure loss, the lower
probabilities also have to be positive, something which is usually required.
Moreover, determining the extreme points and rays of the set of lower proba-
bilities that avoid sure loss using the vertex enumeration approach is a good
preparation for the next subsection about coherence.

Luckily – by removing redundant constraints –, we can reduce the set of
constraints for avoiding sure loss to a finite set. It was shown by Walley [18,
§A] that in Definition 3, to get the most stringent constraints, we only need to
consider

(i) B such that {IB|B ∈ B} is a linearly independent set and ⋃B∈B B = Ω,
and

(ii) λ such that the function on right-hand side is the constant function 1.

Walley [18, §A3] assumes positivity (P is in the first orthant), but mentions this
is not a substantive assumption. When we want to do the vertex enumeration

6 In Walley’s theory [18], lower previsions – expectation operators – play a central
role. Here, we restrict ourselves to the less general lower probabilities.
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approach without this assumption (as we do here), we need to add extra
constraints for the cases where some (or all) of the components of P are
negative. This can be done by taking every original constraint, and creating a
new one for each of the 22n possible orthants P can be located in. We do this
by setting the λB for which P (B) < 0 to 0. (More details can be found in the
proof of Theorem 4, which is based on Walley’s [18, §A] work, some of which
he left implicit.)

The above and some other, minor, changes result in the following theorem.

Theorem 4 (Constraints for avoiding sure loss) A lower probability P
avoids sure loss if and only if P (∅) ≤ 0, P (Ω) ≤ 1 and for all

(i) B ⊆ ℘(Ω)\{∅,Ω} such that ⋃B∈B B = Ω, {IΩ}∪{IB|B ∈ B} is a linearly
dependent set, and {IB|B ∈ B} is a linearly independent set,

(ii) λ ∈ (Q ∩ ]0, 1])B such that ∑B∈B λBIB = 1, 7 and
(iii) binary masks β ∈ {0, 1}B,

it holds that ∑B∈B βBλBP (B) ≤ 1.

PROOF. A lower probability P avoids sure loss if and only if (Definition 3)

∀B ⊆ ℘(Ω), ∀λ ∈ (R≥0)B,
∑
B∈B λBP (B) ≤ sup∑B∈B λBIB. (?)

First of all, we can restrict λ to (R>0)B; for if λB = 0 for some B ∈ B, the
condition reduces to one with a set B of lower cardinality.

Secondly, applying the definition with B = {∅} and B = {Ω} gives us P (∅) ≤ 0
and P (Ω) ≤ 1. By looking at how they affect the right-hand and left-hand side
of the constraint in (?), these constraints can be seen to make any constraint
for a B including ∅ or Ω redundant relative to the same constraint for which ∅
and Ω have been dropped from B.

Each of the resulting constraints can now be replaced by a set of constraints
written in some standard form.

First, we focus on the constraint’s right-hand side only. By renormalizing λ, the
right-hand side supremum can always be made to equal 1, causing λ to have
components in ]0, 1]. Additionally, by increasing λB for some B ∈ B, adding
some well-chosen C ∈ ℘(Ω) \ B to B (e.g., singletons not already in B), and
choosing λC appropriately, we can obtain ∑

B∈B λBIB = IΩ = 1. Moreover,

7 We use pointwise extension of common binary operators, e.g., IΩ = 1 is shorthand
for ∀ω ∈ Ω, IΩ(ω) = 1 and βP = (βBP (B)|B ∈ B).
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this procedure causes ⋃B∈B B = Ω and {IΩ} ∪ {IB|B ∈ B} to be a linearly
dependent set.

What is the effect of this procedure on the constraint as a whole? We need to
ensure it results in a constraint that is either equivalent or more stringent. For P
that are nonnegative everywhere, the left-hand side increases by increasing
some λB, adding some C, and choosing λC , whereas the right-hand side remains
constant (i.e., equal to 1), so the constraint becomes more stringent. However,
when P has negative components, the left-hand side might decrease, leading
to a possibly less stringent constraint. To counter this, we use binary masks
β ∈ {0, 1}B to create a specific constraint for all possible orthants that P
can be located in. So we get a new collection of constraints; to wit, for every
β ∈ {0, 1}B, ∑

B∈B βBλBP (B) ≤ sup∑B∈B λBIB = 1.

Let us explain how these binary masks work: Whenever P (B) < 0 for some
B ∈ B, there is a constraint for which βB = 0, which will be more stringent than
the original constraint. We need to be cautious, however, because only when
β = 1 (suitable for P in the first orthant, with only nonnegative components)
we have a constraint that is of the form given by Equation (?). The others
might be too stringent, meaning that they are not implied by the criterion of
avoiding sure loss.

Luckily, however, these constraints turn out not to be too stringent: We can
show that the constraints for which β is not identically 1 are also implied by
the original definition of avoiding sure loss. This follows by replacing the λB
in the original definition by βBλB and realizing that sup∑B∈B βBλBIB ≤
sup∑B∈B λBIB = 1.

So we end up with a set of constraints for which the summation condition∑
B∈B λBIB = 1 holds. We can now use Lemma 5 with π = βP and r = 1 to find

that we only need to consider those B ∈ ℘(Ω) such that {IB − P (B)|B ∈ B}
is linearly independent; because all the components of λ are strictly positive,
the summation condition stays satisfied (possibly after a renormalization of
λ to ensure r = 1). Lemma 6 then shows that linear independence of {IB −
P (B)|B ∈ B} is equivalent to linear independence of {IB|B ∈ B}. This means∑
B∈B λBIB = 1 is a regular system of linear equations in λ having a unique

rational solution, which finishes the proof. 2

Lemma 5 (Inspired by Walley [18, §A1]) Given some π ∈ R℘(Ω), the set
of constraints defined by{

sup∑B∈B λB(IB − πB) ≥ 0|B ⊆ ℘(Ω),

λ ∈ (R6=0)B such that ∑B∈B λBIB = r
}
,
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where r is some real number, is equivalent to the set where only those B ⊆ ℘(Ω)
are considered for which the set {IB − πB|B ∈ B} is linearly independent, if
the value of r is allowed to change. Additionally, conditions on the signs of the
components of λ can be maintained.

PROOF. It suffices to prove that any constraint determined

(i) by some B ∈ ℘(Ω) for which {IB − πB|B ∈ B} is linearly dependent, and
(ii) by some λ ∈ (R6=0)B such that ∑B∈B λBIB = r, r ∈ R,

is equivalent to a constraint determined by some B′ ⊂ B for which the set
{IB − πB|B ∈ B′} is linearly independent, and by some λ′ ∈ (R 6=0)B

′ such that∑
B∈B′ λ

′
BIB = r′, r′ ∈ R, and for which it holds for all B ∈ B′ that λB and λ′B

have the same sign.

Linear dependence of the set {IB − πB|B ∈ B} means that there is some
µ ∈ RB \ {0}B such that ∑B∈B µB(IB − πB) = 0. So the constraint can be
rewritten as sup∑B∈B λB(1 + cµB

λB
)(IB − πB) ≥ 0, where c ∈ R can be freely

chosen. Choosing c = −λC
µC

, where C is an element of B such that µC 6= 0,
reduces the constraint to one not explicitly dependent on C, which can therefore
be excluded from B.

For all B ∈ B′, the sign of λB and λ′B = λB(1 + cµB
λB

) are the same when
0 ≤ 1 + cµB

λB
= 1− λC

µC

µB
λB

. This can be guaranteed by not only choosing C ∈ B
such that µC 6= 0, but moreover such that |λC

µC
| = minB∈B,µB 6=0|λBµB |.

To see that the new coefficients λ′ = λ+ cµ introduced above also satisfy the
summation condition ∑B∈B′ λ

′
BIB = r′ and discover the value of r′, first note

that λ′C = 0 by construction, so
∑
B∈B′ λ

′
BIB = ∑

B∈B λB(1 + cµB
λB

)IB
= ∑

B∈B(λBIB + cµBIB)
= r + c

∑
B∈B µBπB = r′,

where, to obtain the third equality, we used ∑B∈B µB(IB − πB) = 0.

Possibly after repeating this procedure, one eventually obtains a B′ ⊂ B for
which {IB − πB|B ∈ B′} is linearly independent. 2

Lemma 6 Consider B ⊆ ℘(Ω) and λ ∈ RB such that ∑B∈B λBIB = 1. Then
for any π ∈ RB it holds that {IB − πB|B ∈ B} is linearly (in)dependent if and
only if {IB|B ∈ B} is linearly (in)dependent.
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PROOF. Fix π.

First we prove that linear dependence of {IB − πB|B ∈ B} implies linear
dependence of {IB|B ∈ B}.

If {IB − πB|B ∈ B} is linearly dependent, there is a µ ∈ RB \ {0}B such that∑
B∈B µBIB = ∑

B∈B µBπB. Define c(µ) = ∑
B∈B µBπB. Under the assumption

of the lemma, ∑B∈B c(µ)λBIB = ∑
B∈B µBπB. So with µ′ = µ− c(µ)λ we find

that ∑B∈B µ
′
BIB = 0, so {IB|B ∈ B} is linearly dependent.

Now we prove that linear independence of {IB − πB|B ∈ B} implies linear
independence of {IB|B ∈ B}.

If {IB − πB|B ∈ B} is linearly independent, then for all µ ∈ RB \ {0}B, it
holds that ∑B∈B µBIB 6= c(µ) = ∑

B∈B µBπB. Again using the assumption of
the lemma, we find that for all µ ∈ RB \ {0}B, ∑B∈B(µB − c(µ)λB)IB 6= 0. So
if for all µ′ ∈ RB \ {0}B there is a µ ∈ RB \ {0}B such that µ′ = µ− c(µ)λ, then
{IB|B ∈ B} is linearly independent and the lemma is proven.

To finish the proof, we have to show, under the given conditions on µ and µ′,
that the linear system µ′ = µ− c(µ)λ of equations in µ can always be solved
for µ when {IB − πB|B ∈ B} is linearly independent. Or, using the expression
for c(µ) and considering that µ = 0 implies µ′ = 0, it suffices to show that the
system’s coefficient matrix I− λπT has a nonzero determinant. To do this, we
create a well-chosen matrix, and rewrite it as two different products I λ

πT 1

 =

I λ

0 1


I− λπT 0

πT 1

 =

 I 0

πT 1


I λ

0 1− πTλ

 .
Taking the determinant gives∣∣∣∣∣∣∣

I λ

πT 1

∣∣∣∣∣∣∣ = |I− λπT | = 1− πTλ.

So |I − λπT | 6= 0 when 1 6= ∑
B∈B λBπB. Because of the assumption of the

lemma, we should have ∑B∈B λBIB 6=
∑
B∈B λBπB. This is satisfied because

{IB − πB|B ∈ B} is linearly independent. 2

3.3 Coherence

Coherent lower probabilities are at the core of Walley’s theory [18, §2.5.4].
Weichselberger [19] uses the term F-probability for the very closely related
concept (identical for finite spaces).

13



Definition 7 A lower probability P is coherent if and only if it avoids sure
loss and for all events A, all B ⊆ ℘(Ω) \ {A}, and all λ ∈ (R≥0){A}∪B, it holds
that ∑

B∈B λBP (B)− λAP (A) ≤ sup(∑B∈B λBIB − λAIA).

Coherence implies avoiding sure loss and monotonicity, but it does not imply
2-monotonicity.

The above definition is similar enough to the one for avoiding sure loss to
allow the same techniques for the removal of redundant constraints (implicit in
Walley [18, §A]) to be applied, up to some technicalities. Because coherence
implies positivity, there is no need to use binary masks. Working this out results
in the following theorem.

Theorem 8 (Constraints for coherence) A lower probability P is coherent
if and only if P (∅) = 0, P (Ω) = 1, and

(a) for all events A it holds that 0 ≤ P (A) ≤ 1;
(b) for all

(i) nonempty events A and B ⊆ ℘(A) \ {A, ∅} such that ⋃B∈B B = A,
{IA} ∪ {IB|B ∈ B} is a linearly dependent set, and {IB|B ∈ B} is a
linearly independent set, and

(ii) λ ∈ (Q ∩ ]0, 1])B such that ∑B∈B λBIB = IA,
it must hold that ∑B∈B λBP (B) ≤ P (A);

(c) for all
(i) events A different from ∅ and Ω and B ⊆ ℘(Ω) \ {A, ∅,Ω} such that⋃

B∈B B = Ω, {IA, IΩ}{IA} ∪ {IB|B ∈ B} is a linearly dependent set,
and {IA} ∪ {IB|B ∈ B} is a linearly independent set, and

(ii) λ ∈ (Q>0){A}∪B such that ∑B∈B λBIB − λAIA = 1,
it must hold that ∑B∈B λBP (B)− λAP (A) ≤ 1.

PROOF. A lower probability P is coherent if and only if (Definition 7) it
avoids sure loss and

∀A ⊆ Ω, ∀B ⊆ ℘(Ω) \ {A}, ∀λ ∈ (R≥0){A}∪B,∑
B∈B λBP (B)− λAP (A) ≤ sup(∑B∈B λBIB − λAIA).

First of all, we can restrict the B-components of λ to R>0; for if λB = 0 for
some B ∈ B, the condition reduces to one with a set B of lower cardinality.
The case λA = 0 is subsumed by avoiding sure loss. We will see that it can be
recuperated later and now assume λA > 0.

Secondly, let us look at two simple cases:
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(i) Taking B = ∅, we find P (A) ≥ inf IA, so P (Ω) ≥ 1 and for all A ⊂ Ω,
P (A) ≥ 0.

(ii) Taking λA = 0 and B = {B}, we find P (B) ≤ sup IB, so P (∅) ≤ 0 and
for all nonempty A ⊆ Ω, P (A) ≤ 1.

This proves all the conditions up to and including (a); among which P (∅) = 0
and P (Ω) = 1, together with the fact that I∅ and IΩ are the constant functions 0
and 1, imply that any constraint for a B containing Ω or ∅ can be replaced by
an equivalent constraint where Ω and ∅ have been removed from B.

Each of the resulting constraints can now be replaced by a set of constraints
written in some standard form. The right-hand side supremum is either 0, or
– if this is not the case – equal to 1 or −1 (after normalizing λ). Even more,
by increasing λB for some B ∈ B, possibly decreasing λA (or even adding A
to B, which results in constraints subsumed by avoiding sure loss) and adding
some well-chosen C ∈ ℘(Ω) \ B to B (e.g., singletons not already in B ∪ {A}),
we can obtain ∑

B∈B λBIB − λAIA ∈ {0, 1,−1}. As we have already shown
that the components of P must be nonnegative, this procedure leads to either
equivalent or more stringent constraints (the left-hand side never decreases).
We investigate the three cases separately:

[0] This situation can only occur when ⋃
B∈B B = A. In this case we can

normalize λ such that λA = 1 and the B-components of λ are in ]0, 1] and
such that ∑B∈B λBIB = IA and thus that {IA} ∪ {IB|B ∈ B} is a linearly
dependent set. The constraint becomes ∑B∈B λBP (B) ≤ P (A). Note that
by replacing A by Ω, this case can be seen to encompass the constraints for
avoiding sure loss; we therefore drop the separate requirement of avoiding
sure loss and allow A to be Ω in this case.

We can use Lemma 5 – applied relative to A, i.e., with A taking the role
of Ω – with π = P and r = 1 to find that we only need to consider those
B ⊆ ℘(Ω)\{A} such that {IB−P (B)|B ∈ B} is linearly independent. As in
the proof for avoiding sure loss, we can (after applying the lemma) maintain
r = 1, as the strict positivity of the λB’s allows us to renormalize λ if
necessary. Lemma 6 – again applied relative to A – then shows that we only
need to consider those B for which {IB|B ∈ B} is linearly independent.
So for these B we know that ∑B∈B λBIB = IA has a unique (rational)
solution λ. This case gives rise to the conditions in (b).

[1] This situation can only occur when ⋃B∈B B = Ω. The λ ∈ (R>0){A}∪B must
be such that ∑B∈B λBIB − λAIA = 1 and therefore {IA, IΩ} ∪ {IB|B ∈ B}
is a linearly dependent set. The constraint becomes ∑B∈B λBP (B) −
λAP (A) ≤ 1.

With some minor renaming, we can use Lemma 5 with π = P and r = 1
to find that we only need to consider those A ⊆ Ω and B ∈ ℘(Ω) \ {A}
such that {IB − P (B)|B ∈ B} ∪ {IA − P (A)} is linearly independent. If,
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after applying the lemma and after renormalizing λ, r = 0 or r = −1, we
find ourselves in cases covered above and below. When, after renormalizing,
r = 1, Lemma 6 shows, again with some minor renaming, that we only
need to consider {IA} ∪ {IB|B ∈ B} that are linearly independent. This
implies that ∑B∈B λBIB−λAIA = 1 has a unique rational solution λ. This
case gives rise to the conditions in (c).

[−1] This situation can only occur when A = Ω, a choice which we have already
excluded. 2

3.4 Permutation invariance

As a last property, we look at (weak) permutation invariance (for detailed
discussion, see [4]). It is the odd one out; whereas all the previous properties
allow for lower probabilities that express a quite broad a range of uncertainty
models, permutation invariance restricts them to some very specific ones. We
mention it to show how easy it can be to add the constraints for another
property.

A lower probability is invariant under permutations of the elements of the
possibility space if and only if, for any event A and all events B resulting from
some permutation, P (A) = P (B). Let us give an example for n = 3: consider
the permutation (1→ 3, 2→ 1, 3→ 2), then A = {1, 2} becomes B = {1, 3}.

We can characterize permutation invariance, avoiding redundant constraints,
as follows (see also [19, §4.3.1]):

Theorem 9 (Constraints for permutation invariance) A lower probabil-
ity P is permutation invariant if and only if for all k = 1, . . . , n− 1, any one
event A such that |A| = k, and for all other events B with |B| = k, it holds
that P (B) = P (A).

4 Results

We are not the first to hunt for extreme lower probabilities. However, as far as
we know, we are as of yet the most systematic. ([13] contains a list of results.)

For n = 4, Shapley [16] gives a list with 37 of the 41 – he omits the 4 degenerate
probabilities – 2-monotone extreme lower probabilities. For n = 5, we have found
all 117 983 for this case. For n ≤ 4, we have found the extreme (permutation
invariant) k-monotone lower probabilities for all k.
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In an example, Maaß [11] mentions the 8 extreme coherent lower probabilities
for n = 3. We give a graphical representation of them in Figure 2 using
their corresponding credal sets. Let us clarify: The set of all probabilities that
dominate some lower probability is called its credal set (cfr. core in game
theory [16]). All probabilities can be represented as a point of the (n − 1)-
dimensional unit simplex – a regular triangle for n = 3 – and so coherent lower
probabilities can be represented by their credal set, which is a convex subset
of this unit simplex [18, §3.6.1]. The vertices of the simplex correspond to the
degenerate probabilities, so to the states – here a, b, and c.
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0
00

0
00

0
1

a

b

c

∞
3×

0
00

0
10

0
1 ∞

3×

0
10

0
11

0
1 2 	

1×

0
00

0
11

1
2

Fig. 2. The credal sets of the 8 extreme coherent lower probabilities for n = 3.

In Figure 2, we only give the border of the credal sets and show only one element
of each permutation class. At the top right, we indicate the following: the total
number of elements of the permutation class (e.g., 4×), if it is permutation
invariant (	), and k-monotonicity for k ∈ N>1 (∞ for complete monotonicity,
2 for 2-monotonicity). Along the simplex’s left edge, we give a vector that is
proportional to the extreme coherent lower probability (component order: ∅
{a}{b}{c} {a, b}{a, c}{b, c} Ω). Remember that P (Ω) = 1.

As convex combinations preserve monotonicity, we can immediately see from
Figure 2 that for n = 3, all coherent lower probabilities are 2-monotone. This was
already known [17, bottom of p. 58], but it illustrates how these computational
results can help in finding theoretical results. (For n = 2, all are completely
monotone.)

Once we implemented our program, finding all 402 extreme coherent lower
probabilities for n = 4 was easy. 8 Figure 3 shows the corresponding credal
sets, as well as those for the 16 extreme 3-monotone lower probabilities, in
the same way we did for n = 3 in Figure 2. The unit simplex is now a regular
tetrahedron, so we had to use a projection from three dimensions to two.

Take Ω = {a, b, c, d}. In this case, the component order we use is ∅ {a}{b}{c}{d}
{a, b}{a, c}{a, d}{b, c}{b, d}{c, d} {a, b, c}{a, b, d}{a, c, d}{b, c, d} Ω.

With Figure 3 as a guide, we can give some observations and results.

Using results from Choquet [3, Ch. 7], it can be proven that the extreme
8 For n = 5, we know 1 743 093 of the extreme coherent lower probabilities. These
have been found by a computer in our lab, after some months of vertex enumeration.
A hardware failure cut this gargantuan task short.
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Fig. 3. The credal sets for n = 4 of the extreme coherent lower probabilities (all
except last of top row) and extreme 3-monotone lower probabilities (top row).
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completely monotone lower probabilities are the vacuous lower probabilities
(cfr. unanimity games in game theory) with respect to events: P is vacuous
with respect to A if P (B) = 1 for A ⊆ B and 0 otherwise. 9 These correspond
to the first three (Figure 2) and first four (Figure 3) permutation classes shown.
The last of these classes corresponds to the degenerate probabilities, which are
all the extreme (classical) probabilities.

We have observed that the extreme completely monotone probabilities are
always included in the extreme coherent probabilities. This is not the case for
all of the extreme k-monotone and permutation invariant lower probabilities.
An example for n = 4 is the only non-completely monotone lower probability
of the extreme 3-monotone lower probabilities (shown in Figure 3).

Notice that, except for the degenerate probabilities, all credal sets touch all
tetrahedron faces. This is so because it can be shown that the degenerate
probabilities are the only extreme coherent lower probabilities that can be
nonzero in singletons.

5 Conclusions

Obtaining sets of extreme lower probabilities for many cases and formulating a
systematic approach to calculating them are the main results of the research
presented in this paper.

Our results also give a partial answer to an open problem formulated by
Maaß [11,12]. He showed, in a much more general setting than ours, so, roughly
speaking, that lower probabilities satisfying whatever property expressible using
linear inequality constraints, can also be expressed as a convex combination of
extreme lower probabilities, which are to be determined. His open problem was:
what are these extreme lower probabilities for coherence and k-monotonicity?
We obtained them, for small possibility spaces.

Even though our initial interest in extreme lower probabilities was kindled by
the hope of using them in a more practical application – finding conservative
approximations for lower and upper probabilities, to be precise –, at this
moment we know of no concrete way to use them in a practical application.
The main reason for this is that there are so many of them even for small
possibility spaces: For a possibility space of cardinality 5 there are already
too many extreme coherent lower previsions to practically enumerate, so the

9 In general (when Ω can be infinite), the extreme completely monotone lower
probabilities are those that take the value 1 on a proper filter of sets and are 0
elsewhere.
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almost self-evident idea of using them for interpolation purposes also becomes
impractical. For approximation purposes, we would need an efficient algorithm
to find the most important terms in the (not necessarily unique) decomposition
of a lower prevision in terms of the many extreme lower previsions. We are not
aware of any such algorithm.

So, at the moment of writing, the relevance of our results is mainly theoretical,
although they also have their pedagogical importance: This topic also allows
one to become familiar with different ways of looking at lower probabilities and
their properties. A lower probability can be seen as a set function satisfying
some properties, as a convex combination of some special set functions (extreme
lower probabilities), as a point of a convex subset of a vector space, and – for
coherent ones – as a credal set. They can be k-monotone, avoid sure loss, be
coherent, be permutation invariant, etc.

And last but not least, this topic can lead to beautiful figures.
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