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Two specific generalizations of the multidimensional Hilbert transform in Clifford anal-
ysis are constructed. It is shown that though in each of these generalizations some tra-
ditional properties of the Hilbert transform are inevitably lost, new bounded singular
operators emerge on Hilbert or Sobolev spaces of L2-functions
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1. Introduction

During the last fifty years, Clifford analysis has gradually developed to a comprehensive
theory offering a direct, elegant, and powerful generalization to higher dimension of the
theory of holomorphic functions in the complex plane. In its most simple but still useful
setting, flat m-dimensional Euclidean space, Clifford analysis focusses on the so-called
monogenic functions, that is, null solutions of the Clifford vector-valued Dirac operator

∂=
m∑

j=1

ej∂xj , (1.1)

where (e1, . . . ,em) forms an orthogonal basis for the quadratic space Rm underlying the
construction of the Clifford algebraR0,m. Monogenic functions have a special relationship
with harmonic functions of several variables in that they are refining their properties.
Note for instance that each harmonic function can be split into a so-called inner and
an outer monogenic function, and that a real harmonic function is always the real part
of a monogenic one, which does not need to be the case for a harmonic function of
several complex variables. The reason is that, as does the Cauchy-Riemann operator in
the complex plane, the rotation-invariant Dirac operator factorizes the m-dimensional
Laplace operator. This has, a.o., allowed for a nice study of Hardy spaces of monogenic
functions and the related multidimensional Cauchy and Hilbert transform, see [1, 11–
14, 23].
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2 Generalized multidimensional Hilbert transforms

The Hilbert transform on the real line, given for an appropriate function or distribu-
tion f by

�[ f ](x)= 1
π
Pv
∫ +∞

−∞
f (y)
x− y

dy (1.2)

was first generalized to m-dimensional Euclidean space by means of the Riesz transforms
Rj , given by

Rj[ f ](x)= lim
ε→0+

2
am+1

∫

Rm\B(x,ε)

xj − yj
|x− y|m+1

f (y)dV(y), j = 1, . . . ,m, (1.3)

where am+1 = 2π(m+1)/2/Γ((m+ 1)/2) denotes the area of the unit sphere Sm in Rm+1.
It was Horváth who, already in his paper [20], introduced the Clifford vector-valued

Hilbert operator:

�=
m∑

j=1

ejRj . (1.4)

The m-dimensional Hilbert transform in the Clifford analysis setting was taken up
again in the 1980’s and further studied in, for example, [15, 16, 18, 22, 27]. We recall its
alternative definition and main properties in Section 4.

In the early 2000’s, four broad families of specific distributions in Clifford analysis
were introduced and thoroughly studied (see [2, 9, 10]) and it was shown that the Hilbert
kernel is one of those distributions acting as a convolution operator (see also [5, 7]). The
definition of the normalizations of those distributions and a study of their convolvability
are given in Section 3.

In this paper, we treat two possible generalizations of the Hilbert transform in Rm,
making use of these families of Clifford distributions, and aiming at preserving in these
approaches as much traditional properties of the Hilbert transform as possible. It is
shown that in each case some of the properties—different ones—are inevitably lost. Nev-
ertheless, we twice obtain a new bounded singular integral operator on L2 or on appro-
priate Sobolev spaces.

In the first approach, the Hilbert transform is generalized by using other kernels for
the convolution, stemming from the families of distributions mentioned above. They
constitute a refinement of the generalized Hilbert kernels introduced by Horváth in [21],
who considered convolution kernels, homogeneous of degree (−m), of the form

K = Pv
S(ω)
rm

, r = |x|, (1.5)

where S(ω), ω ∈ Sm−1 is a surface spherical harmonic. We investigate generalized Hilbert
convolution kernels, which are homogeneous of degree (−m) as well, however, involv-
ing inner and outer spherical monogenics, that is, restrictions to the unit sphere Sm−1

of monogenic homogeneous polynomials in Rm, respectively, monogenic homogeneous
functions in the complement of the origin. The resulting generalized Hilbert transform
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will no longer be a unitary operator, yet it remains a bounded singular operator on
L2(Rm;R0,m).

The second approach is based on the intimate relationship between the Hilbert and the
Cauchy transform and starts with the construction of a generalized Cauchy transform in
Rm+1 involving a distribution from one of the above-mentioned families as a generalized
Cauchy kernel. A new generalized Hilbert transform in Rm is then defined as part of the
L2 or distributional boundary values of the generalized Cauchy transform considered,
and it is shown to be a bounded operator on Sobolev spaces Wn

2 .
Finally a connection is established between both generalizations, through the action

of a higher-order derivative of the Dirac operator.
In order to keep the paper self-contained, the necessary definitions and results of Clif-

ford analysis are given in the next section.

2. Clifford analysis

In this section, we briefly present the basic definitions and some results of Clifford analysis
which are necessary for our purpose. For an in-depth study of this higher-dimensional
function theory and its applications, we refer to, for example, [8, 17–19, 24–26].

Let R0,m be the real vector space Rm, endowed with a nondegenerate quadratic form
of signature (0,m), let (e1, . . . ,em) be an orthonormal basis for R0,m, and let R0,m be the
universal Clifford algebra constructed over R0,m.

The noncommutative multiplication in R0,m is governed by the rules

eie j + ejei =−2δi, j , i, j ∈ {1, . . . ,m}. (2.1)

For a set A= {i1, . . . , ih} ⊂ {1, . . . ,m} with 1≤ i1 < i2 < ··· < ih ≤m, let eA = ei1ei2 ···eih .
Moreover, we put e∅ = 1, the latter being the identity element. Then (eA : A⊂ {1, . . . ,m})
is a basis for the Clifford algebra R0,m. Any a∈R0,m may thus be written as a=∑A aAeA
with aA ∈ R or still as a =∑m

k=0[a]k, where [a]k =
∑
|A|=k aAeA is a so-called k-vector

(k = 0,1, . . . ,m). If we denote the space of k-vectors by Rk
0,m, then R0,m =

⊕m
k=0R

k
0,m.

We will also identify an element x = (x1, . . . ,xm) ∈ Rm with the one-vector (or vector
for short) x =∑m

j=1 xje j . The multiplication of any two vectors x and y is given by

xy =−〈x, y〉+ x∧ y (2.2)

with

〈x, y〉 =
m∑

j=1

xj y j =−1
2

(xy + yx),

x∧ y =
∑

i< j

ei j
(
xi y j − xj yi

)= 1
2

(xy− yx)

(2.3)

being a scalar and a 2-vector (also called bivector), respectively. In particular, x2 = −〈x,
x〉 = −|x|2 =−∑m

j=1 x
2
j .
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Conjugation in R0,m is defined as the anti-involution for which e j =−ej , j = 1, . . . ,m.
In particular for a vector x, we have x =−x.

The Dirac operator in Rm is the first-order vector-valued differential operator

∂=
m∑

j=1

ej∂xj , (2.4)

its fundamental solution being given by

E(x)= 1
am

x

|x|m . (2.5)

Considering functions defined in Rm and taking values in R0,m, we say that the function
f is left monogenic in the open region Ω of Rm if and only if f is continuously differ-
entiable in Ω and satisfies in Ω the equation ∂ f = 0. As ∂ f = f ∂=− f ∂, a function f is
left monogenic in Ω if and only if f is right monogenic in Ω. As, moreover, the Dirac
operator factorizes the Laplace operator Δ, −∂2 = ∂∂= ∂∂= Δ, a monogenic function in
Ω (as well as its components) is harmonic and hence C∞ in Ω.

Introducing spherical coordinates x = rω, r = |x|, ω ∈ Sm−1, the Dirac operator ∂ may
be written as

∂= ω∂r +
1
r
∂ω = ω

(
∂r − 1

r
ω∂ω

)
, (2.6)

while the Laplace operator takes the form

Δ= ∂2
r +

m− 1
r

∂r +
1
r2
Δ∗, (2.7)

Δ∗ being the Laplace-Beltrami operator.
In this paper, a fundamental role is played by the homogeneous polynomials Pp(x) of

degree p ∈ N which we take to be vector-valued and left (and hence also right) mono-
genic. Note that such kind of polynomials is easily obtained by considering Pp(x) =
∂Sp+1(x), where Sp+1(x) is a scalar-valued harmonic polynomial of degree (p + 1). By
spherical inversion, the functions Qp(x) = (x/|x|m+2p)Pp(x) are left monogenic homo-
geneous functions of degree (−m + 1− p) in the complement of the origin. By taking
restrictions to the unit sphere Sm−1, we obtain the so-called inner spherical monogenics
Pp(ω) and the so-called outer spherical monogenics Qp(ω)= ωPp(ω). For p = 0, we put
P0(x)= 1.

Finally, in this paper we adopt the following definition of the Fourier transform:

�
[
f (x)

]
(y)=

∫

Rm
f (x)exp

(− 2πi〈x, y〉)dV(x) (2.8)
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for which some well-known basic formulae hold:

�[∂ f ](y)= 2πiy�[ f ](y),

2πi �[x f ](y)=−∂�[ f ](y),

2πi�[ f x](y)=−�[ f ](y)∂,

�
[
δ(x)

]
(y)= 1,

�[1](y)= δ(y).

(2.9)

3. Four families of distributions

In [9, 10], four families of distributions in Euclidean space: Tλ,p, Uλ,p, Vλ,p, and Wλ,p,
depending on parameters λ∈ C and p ∈N0 = {0,1,2, . . .} were studied in the framework
of Clifford analysis. In this section, we first recall the definition of their normalizations
T∗λ,p, U∗

λ,p, V∗
λ,p, and W∗

λ,p, which is then followed by a convolvability study inside as well
as in between the T∗λ,p- and the U∗

λ,p-families of distributions. We have (see, e.g., [5])

T∗λ,p = π(λ+m)/2+p Tλ,p

Γ
(
(λ+m)/2 + p

) , λ �= −m− 2p− 2l,

T∗−m−2p−2l,p =
(−1)pl!πm/2−l

22p+2l(p+ l)!Γ(m/2 + p+ l)
Pp(x)∂2p+2lδ(x), l ∈N0,

(3.1)

U∗
λ,p = π(λ+m+1)/2+p Uλ,p

Γ
(
(λ+m+ 1)/2 + p

) , λ �= −m− 2p− 2l− 1,

U∗
−m−2p−2l−1,p =

(−1)p+1l!πm/2−l

22p+2l+1(p+ l)!Γ(m/2 + p+ l+ 1)

(
∂2p+2l+1δ(x)

)
Pp(x), l ∈N0,

(3.2)

V∗
λ,p = π(λ+m+1)/2+p Vλ,p

Γ
(
(λ+m+ 1)/2 + p

) , λ �= −m− 2p− 2l− 1,

V∗
−m−2p−2l−1,p =

(−1)p+1l!πm/2−l

22p+2l+1(p+ l)!Γ(m/2 + p+ l+ 1)
Pp(x)

(
∂2p+2l+1δ(x)

)
,

(3.3)

W∗
λ,p = π(λ+m)/2+p Wλ,p

Γ
(
(λ+m)/2 + p

) , λ �= −m− 2p− 2l,

W∗
−m−2p−2l,p =

(−1)p+1l!πm/2−l

22p+2l+2(p+ l+ 1)!Γ(m/2 + p+ l+ 1)
xPp(x)x∂2p+2l+2δ(x),

(3.4)



6 Generalized multidimensional Hilbert transforms

the action of the original distributions Tλ,p, Uλ,p, Vλ,p and Wλ,p on a testing function φ
being given by

〈
Tλ,p,φ

〉= am
〈
Fpr

μ+pe
+ ,Σ(0)

p [φ]
〉

,

〈
Uλ,p,φ

〉= am
〈
Fpr

μ+pe
+ ,Σ(1)

p [φ]
〉

,

〈
Vλ,p,φ

〉= am
〈
Fpr

μ+pe
+ ,Σ(3)

p [φ]
〉

,

〈
Wλ,p,φ

〉= am
〈
Fpr

μ+pe
+ ,Σ(2)

p [φ]
〉
.

(3.5)

We explain the notations in the above expressions. First, the symbol Fp stands for the
well-known distribution “finite parts” on the real line, furthermore μ= λ+m− 1 and pe
denotes the “even part of p,” defined by pe = p if p is even and pe = p− 1 if p is odd.

Finally, Σ(0)
p , Σ(1)

p , Σ(2)
p , and Σ(3)

p are the generalized spherical mean operators defined on
scalar-valued testing functions φ by

Σ(0)
p [φ]= r p−peΣ(0)[Pp(ω)φ(x)

]= r p−pe

am

∫

Sm−1
Pp(ω)φ(x)dS(ω),

Σ(1)
p [φ]= r p−peΣ(0)[ωPp(ω)φ(x)

]= r p−pe

am

∫

Sm−1
ωPp(ω)φ(x)dS(ω),

Σ(2)
p [φ]= r p−peΣ(0)[ωPp(ω)ωφ(x)

]= r p−pe

am

∫

Sm−1
ωPp(ω)ωφ(x)dS(ω),

Σ(3)
p [φ]= r p−peΣ(0)[Pp(ω)ωφ(x)

]= r p−pe

am

∫

Sm−1
Pp(ω)ωφ(x)dS(ω),

(3.6)

where Pp(ω) is an inner spherical monogenic of degree p as defined in the previous sec-
tion.

For a detailed study of the intra- and interrelationships between these families of dis-
tributions, we refer to—in chronological order—[3, 5, 9, 10].

In [4], the convolvability of the distributions T∗λ,0 and U∗
λ,0 has been studied. Here we

proceed with this study by considering the convolution of arbitrary members of the T∗λ,p-
and/or the U∗

λ,p-family. First of all, we recall the most important results of [4, Section 4]
in the following lemma.

Lemma 3.1. For each couple (λ,μ)∈ C×C such that
(i) λ �= 2 j, μ �= 2k, and λ+μ �= −m+ 2l, j,k, l ∈N0, one has

T∗λ,0∗T∗μ,0 = cm(λ,μ)T∗λ+μ+m,0; (3.7)

(ii) λ �= 2 j, μ �= 2k+ 1, and λ+μ �= −m+ 2l+ 1, j,k, l ∈N0, one has

T∗λ,0∗U∗
μ,0 =U∗

μ,0∗T∗λ,0 = cm(λ,μ− 1)U∗
λ+μ+m,0; (3.8)
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(iii) λ �= 2 j + 1, μ �= 2k+ 1, and λ+μ �= −m+ 2l, j,k, l ∈N0, one has

U∗
λ,0∗U∗

μ,0 =
−2π

λ+μ+m
cm(λ− 1,μ− 1)T∗λ+μ+m,0, (3.9)

where the constants cm(λ,μ) are given by

cm(λ,μ)= πm/2 Γ
(− (λ+μ+m)/2

)

Γ(−(λ)/2
)
Γ(−μ/2)

. (3.10)

The formulae above, along with the respective conditions restraining their validity,
have to be elucidated through some additional comments, since they should be inter-
preted with care. Consider for instance the formula in (i) for the “convolution” of two
T∗-distributions, which apparently holds in the region

Ω̃= {(λ,μ)∈ C×C | λ �= 2 j, μ �= 2k, λ+μ �= −m+ 2l, j,k, l ∈N0
}

(3.11)

in C×C. However, only in a subset of Ω̃, the left-hand side exists as a genuine convolu-
tion. In the complementary subset, one defines the left-hand side by analytic continuation
as cm(λ,μ)T∗λ+μ+m,0, leading to a ∗-operator which, although not being the genuine con-
volution operator, still preserves its basic properties. Finally, notice that for the excluded
values of the couple (λ,μ) a simple pole occurs in at least one of the Γ-functions consti-
tuting the coefficient cm(λ,μ). Hence the formula in (i) cannot be given any meaning in
those cases. Similar remarks apply to (ii) and (iii); for more details, we refer to [4, Section
4].

Next the convolvability problem is tackled stepwise. First, in Lemma 3.2, a specific
relation between T∗λ,p and T∗λ+2p,0, respectively, between U∗

λ,p and U∗
λ+2p,0, is established,

by means of which we will be able to convert new convolutions into already known ones.
This lemma is then used to deal with convolutions within or in between the T∗λ,p- and
U∗

λ,p-families where, for one of the involved distributions, we still have p = 0. Finally the
main results are given in Proposition 3.4, completing the picture in the most general case,
where p �= 0 for both distributions involved.

Lemma 3.2. For each couple (λ, p)∈ C×N0, one has

(−2)p
Γ(−λ/2)

Γ(−λ/2− p)
T∗λ,p = T∗λ+2p,0Pp(∂), (3.12)

(−2)p
Γ
(− (λ− 1)/2

)

Γ
(− (λ− 1)/2− p

)U∗
λ,p =U∗

λ+2p,0Pp(∂). (3.13)

Proof. We only prove the first equality, the proof of the second one runs along similar
lines. From (3.1), one can derive that

T∗λ,p = πp Γ
(
(λ+m)/2

)

Γ
(
(λ+m)/2 + p

)T∗λ,0Pp(x) (3.14)
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for λ �= −m− 2l, l = 0,1, . . . , p− 1. Invoking

�
[
T∗λ,p

]= i−pT∗−λ−m−2p,p ∀(λ, p)∈ C×N0, (3.15)

see [3, Theorem 2], and some of the basic properties (2.9), we convert (3.14) to frequency
space, which leads to

i−pT∗−λ−m−2p,p = πp Γ
(
(λ+m)/2

)

Γ
(
(λ+m)/2 + p

) ip

(2π)p
T∗−λ−m,0Pp(∂). (3.16)

Replacing λ by −λ−m− 2p, we obtain

(−2)pT∗λ,p =
Γ(−λ/2− p)
Γ(−λ/2)

T∗λ+2p,0Pp(∂) (3.17)

for λ �= −2p + 2l, l = 0, . . . , p − 1. Finally, rewriting this equality in the form of (3.12)
reveals its validity for all couples (λ, p), since both sides reduce to 0 whenever λ takes one
of the values excluded above. �

As announced, the previous lemma gives rise to a first generalization of Lemma 3.1.

Lemma 3.3. For each triplet (λ,μ, p)∈ C×C×N such that
(i) λ �= 2 j, μ �= 2k, and λ+μ �= −m+ 2l, j,k, l ∈N0, one has

T∗λ,p∗T∗μ,0 = T∗μ,0∗T∗λ,p = cm(λ,μ)T∗λ+μ+m,p; (3.18)

(ii) λ �= 2 j, μ �= 2k+ 1, and λ+μ �= −m+ 2l+ 1, j,k, l ∈N0, one has

T∗λ,p∗U∗
μ,0 = cm(λ,μ− 1)V∗

λ+μ+m,p,

U∗
μ,0∗T∗λ,p = cm(λ,μ− 1)U∗

λ+μ+m,p;
(3.19)

(iii) λ �= 2 j + 1, μ �= 2k, and λ+μ �= −m+ 2l+ 1, j,k, l ∈N0, one has

U∗
λ,p∗T∗μ,0 = T∗μ,0∗U∗

λ,p = cm(λ− 1,μ)U∗
λ+μ+m,p; (3.20)

(iv) λ �= 2 j + 1, μ �= 2k+ 1, and λ+μ �= −m+ 2l, j,k, l ∈N0, one has

U∗
λ,p∗U∗

μ,0 =
2π

(λ+μ+ 2m+ 2p)(λ+μ+m)
cm(λ− 1,μ− 1)

× [(m− 2)T∗λ+μ+m,p + (λ+μ+m)W∗
λ+μ+m,p

]
if λ+μ �= −2m− 2p,

U∗
μ,0∗U∗

λ,p =
−2π

λ+μ+m
cm(λ− 1,μ− 1)T∗λ+μ+m,p.

(3.21)

Proof. We only treat the case of T∗λ,p∗T∗μ,0, the other cases being similar.
First, take λ �= −2p+ 2 j, j = 0,1, . . . , p− 1. In that case, (3.12) can be rewritten as

T∗λ,p =
(−1)p

2p

Γ(−λ/2− p)
Γ(−λ/2)

T∗λ+2p,0Pp(∂). (3.22)
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Then, from (3.22), it follows that

T∗λ,p∗T∗μ,0 =
(−1)p

2p

Γ(−λ/2− p)
Γ(−λ/2)

(
T∗λ+2p,0Pp(∂)∗T∗μ,0

)

= (−1)p

2p

Γ(−λ/2− p)
Γ(−λ/2)

Pp(∂)
(
T∗λ+2p,0∗T∗μ,0

)
.

(3.23)

In order for Lemma 3.1 to be applicable to the last expression, we need to assume, in
addition to the premised conditions of (i), that λ+ μ �= −m− 2p + 2l, l = 0,1, . . . , p− 1.
We are then lead to

T∗λ,p∗T∗μ,0 =
(−1)p

2p

Γ(−λ/2− p)
Γ(−λ/2)

cm(λ+ 2p,μ)Pp(∂)T∗λ+μ+m+2p,0 (3.24)

from which the desired formula is easily obtained again exploiting (3.22):

T∗λ,p∗T∗μ,0 =
Γ(−λ/2− p)Γ

(− (λ+μ+m)/2
)

Γ(−λ/2)Γ
(− (λ+μ+m)/2− p

) cm(λ+ 2p,μ)T∗λ+μ+m,p = cm(λ,μ)T∗λ+μ+m,p.

(3.25)

We now further examine the values λ=−2p+2 j and λ+μ=−m− 2p+2l, j, l=0,1, . . . , p−
1, which had to be excluded temporarily in the course of the proof. For these values, we
may writeT∗−2p+2 j,p = limλ→−2p+2 j T

∗
λ,p, respectively,T∗−μ−m−2p+2l,p = limλ→−μ−m−2p+2l T

∗
λ,p,

allowing us to repeat the procedure above, where we only effectuate the limit at the end
of the calculations. �

The previous lemma now leads, in a second step, to more general results for the con-
volution of arbitrary T∗λ,p- and/or U∗

λ,p-distributions, apart from some exceptional values
for the involved parameters which remain excluded.

Proposition 3.4. For each 4-tuple (λ,μ, p,q)∈ C×C×N×N such that
(i) λ �= 2 j and μ �= 2k, j,k ∈N0, one has

T∗λ,p∗T∗μ,q =
⎧
⎪⎨
⎪⎩

cm,q(λ,μ)T∗λ+μ+m+2q,pPq(∂) if λ+μ �= −m− 2q+ 2l, l ∈N0,

cm,p(λ,μ)Pp(∂)T∗λ+μ+m+2p,q if λ+μ �= −m− 2p+ 2l, l ∈N0;
(3.26)

(ii) λ �= 2 j + 1, μ �= 2k, and λ+μ �= −m− 2q+ 2l+ 1, j,k, l ∈N0, one has

U∗
λ,p∗T∗μ,q = cm,q(λ− 1,μ)U∗

λ+μ+m+2q,pPq(∂); (3.27)
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(iii) λ �= 2 j, μ �= 2k+ 1, and λ+μ �= −m− 2q+ 2l+ 1, j,k, l ∈N0, one has

T∗λ,p∗U∗
μ,q = cm,q(λ,μ− 1)V∗

λ+μ+m+2q,pPq(∂); (3.28)

(iv) λ �= 2 j + 1, μ �= 2k+ 1, and λ+μ �= −m− 2q+ 2l, j,k, l ∈N0, one has

U∗
λ,p∗U∗

μ,q =
2π

(λ+μ+ 2m+ 2p+ 2q)(λ+μ+m+ 2q)
cm,q(λ− 1,μ− 1)

× [(m− 2)T∗λ+μ+m+2q,p + (λ+μ+m+ 2q)W∗
λ+μ+m+2q,p

]
Pq(∂)

(3.29)

if moreover λ+μ �= −2m− 2p− 2q,
where the constants cm,p(λ,μ) are given by

cm,p(λ,μ)= (−1)p

2p πm/2 Γ
(− (λ+μ+m)/2− p

)

Γ(−λ/2)Γ(−μ/2)
(3.30)

with cm,0(λ,μ)≡ cm(λ,μ).

Proof. The proof directly follows from Lemmas 3.2 and 3.3. �

4. The classical Hilbert transform in Clifford analysis

In this section, we recall the definition and some important properties of the Hilbert
transform in Rm in the framework of Clifford analysis.

First we pass to (m+ 1)-dimensional space by introducing an additional basis vector
e0 which follows the usual multiplication rules, that is, e2

0 =−1 and it anticommutes with
the other basis vectors, viz e0ej + eje0 = 0, j = 1, . . . ,m. The variable x = (x0,x1, . . . ,xm)∈
Rm+1 is then identified with the vector x =∑m

j=0 ejxj in the Clifford algebra R0,m+1. Fur-
thermore, the Dirac operator in Rm+1 reads ∂= e0∂x0 + ∂.

For a suitable function or distribution f , its Hilbert transform in Rm is defined as

�[ f ](x)= ē0H(·)∗ f (·)(x) (4.1)

with H the convolution kernel given by

H(x)= 2
am+1

Pv
ω̄

rm
=− 2

am+1
U∗
−m,0, (4.2)

the last equality being shown in [10].
The corresponding Cauchy transform in Rm+1 is defined by the convolution

�[ f ]
(
x0,x

)= C
(
x0,·)∗ f (·)(x) (4.3)

with the Cauchy kernel

C(x)= C
(
x0,x

)= 1
am+1

x̄e0

|x|m+1
= 1

am+1

x0 + e0x∣∣x0 + e0x
∣∣m+1 (4.4)

which is the fundamental solution of the Cauchy-Riemann operator Dx = ē0∂ in Rm+1.
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Some important properties of the Hilbert transform (4.1) are
P(1) � is translation invariant, that is, �[ f (y− t)](x)=�[ f ](x− t) for all t ∈Rm;
P(2) H is a homogeneous distribution of degree (−m), which, for a convolution oper-

ator, is equivalent with its dilation invariance, that is, �[ f (ay)](x)=�[ f ](ax)
for all a > 0;

P(3) the Fourier symbol �[H](x)= (2i/am+1)ω is a bounded function, which is equiv-
alent with � being a bounded linear operator on L2(Rm;R0,m+1);

P(4) �2 = 1;
P(5) � is a unitary operator;
P(6) the Hilbert transform arises in a natural way by considering boundary values (in

L2 or in distributional sense) of the Cauchy transform in Rm+1 of an appropriate
function or distribution in Rm.

Clearly, property P(6) requires some more detailed explanation. Taking nontangential
limits for x0 → 0 and identifying Rm with the hyperplane {x0 = 0} in Rm+1, the following
distributions in Rm are obtained:

C(0+,x)= lim
x0→0+

C
(
x0,x

)
, C(0−,x) = lim

x0→0−
C
(
x0,x

)
. (4.5)

They satisfy the relations

C(0+,x)= 1
2
δ(x) + ē0

1
2
H(x),

C(0−,x)=−1
2
δ(x) + ē0

1
2
H(x),

(4.6)

which are equivalent with the well-known distributional limits

lim
x0→0±

1
am+1

2x0∣∣x0 + x
∣∣m+1 =±δ(x),

lim
x0→0±

1
am+1

2x
∣∣x0 + x

∣∣m+1 =
2

am+1
Pv

ω

rm
=H(x).

(4.7)

If in particular f ∈ L2(Rm;R0,m+1), then �[ f ] belongs to the Hardy spaces H2(Rm+1± ;
R0,m+1), and its nontangential limits �±[ f ] for x0 → 0± satisfy the so-called Plemelj-
Sokhotzki formulae

�±[ f ](x)= lim
x0→0±

�[ f ]
(
x0,x

)=±1
2
f (x) +

1
2

�[ f ](x), for a.e. x ∈Rm. (4.8)
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5. Generalizations of the Hilbert transform

5.1. First generalization. We consider the following specific distributions:

T−m−p,p = Fp
1
rm

Pp(ω)= Pv
Pp(ω)

rm
,

U−m−p,p = Fp
1
rm

ωPp(ω)= Pv
ωPp(ω)

rm
,

V−m−p,p = Fp
1
rm

Pp(ω)ω = Pv
Pp(ω)ω

rm
,

W−m−p,p = Fp
1
rm

ωPp(ω)ω = Pv
ωPp(ω)ω

rm
,

Pv
Sp+1(ω)

rm
=− 1

2(p+ 1)

(
U−m−p,p +V−m−p,p

)
,

Pv
ωSp+1(ω)

rm
=− 1

2(p+ 1)

(
W−m−p,p−T−m−p,p

)
,

(5.1)

where Pp(x)=∂Sp+1(x), Sp+1(x) being a scalar-valued solid spherical harmonic and hence,
Pp(x) being a vector-valued solid spherical monogenic. These distributions are homoge-
neous of degree (−m) and the functions occurring in the numerator satisfy the cancella-
tion condition

∫

Sm−1
Ω(ω)dω = 0, (5.2)

Ω(ω) being either of Pp(ω), ωPp(ω), Pp(ω)ω, or ωPp(ω)ω.
Their Fourier symbols, given by (see [5])

�
[
T−m−p

]= i−pπm/2 Γ(p/2)
Γ
(
(m+ p)/2

)Pp(ω),

�
[
U−m−p

]= i−p−1πm/2 Γ
(
(p+ 1)/2

)

Γ
(
(m+ p+ 1)/2

)ωPp(ω),

�
[
V−m−p

]= i−p−1πm/2 Γ
(
(p+ 1)/2

)

Γ
(
(m+ p+ 1)/2

)Pp(ω)ω,

�
[
W−m−p

]= i−p−2πm/2 pΓ(p/2)
(m+ p)Γ

(
(m+ p)/2

)
(
ωPp(ω)ω− m− 2

p
Pp(ω)

)

(5.3)

are homogeneous of degree 0 and moreover are bounded functions, whence

T−m−p,p∗ f , U−m−p,p∗ f , V−m−p,p∗ f , W−m−p,p∗ f (5.4)

are bounded singular integral operators on L2(Rm;R0,m+1) which are direct generaliza-
tions of the Hilbert transform �, preserving (properly adapted analogues of the) proper-
ties P(1)–P(3).
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We now investigate whether these new operators will fulfil some appropriate analogues
of the remaining properties P(4)–P(6) as well. To this end we closely examine the kernel
T−m−p,p.

First, from Proposition 3.4 it follows that

T−m−p,p∗T−m−p,p = (−1)p

2p πm/2 Γ(m/2)
Γ(p)

[
Γ(p/2)

Γ
(
(m+ p)/2

)
]2

T−m,pPp(∂) (5.5)

which directly implies that the generalized Hilbert transform T−m−p,p∗ f does not satisfy
an analogue of property P(4).

Next, as it can easily be shown that the considered operator coincides with its adjoint—
up to a minus sign when p is even, we may also conclude, in view of (5.5), that it will not
be unitary.

Finally, we fail to establish an analogue of property P(6) as well, since it is not possible
to find a generalized Cauchy kernel inRm+1 \ {0}, for which a part of the boundary values
is precisely the generalized Hilbert kernel T−m−p,p. Similar conclusions hold for the other
generalized kernels used in (5.1).

5.2. Second generalization. Subsequent to the observations above, we now want to find
a type of generalized Hilbert kernel which actually preserves property P(6). To that end,
we define the function

Cp(x)= Cp(x0,x)= 1
am+1,p

x̄e0

|x|m+1+2p Pp(x)= 1
am+1,p

x0 + e0x∣∣x0 + x
∣∣m+1+2p Pp(x), (5.6)

where

am+1,p = (−1)p

2p

2π(m+1)/2

Γ
(
(m+ 1)/2 + p

) (5.7)

involving a homogeneous polynomial Pp(x) of degree p which we take to be vector valued
and monogenic (as defined in Section 2). In the next proposition, we show that these
functions Cp are good candidates for generalized Cauchy kernels.

Proposition 5.1. The function Cp satisfies the following properties:
(i) Cp ∈ Lloc

1 (Rm+1;R0,m+1) and lim|x|→∞Cp(x)= 0 for all p ∈N;
(ii) DxCp(x)= Pp(∂)δ(x) in distributional sense for all p ∈N;

(iii) for p = 0, C0 coincides with the traditional Cauchy kernel C.

Proof. The proof of (i) being straightforward, we focus on the proofs of (ii) and (iii).
First recall that in Rm the following formula holds for each couple (λ, p) ∈ C×N (see,
e.g., [5]):

∂U∗
λ,p =−2πT∗λ−1,p. (5.8)

Hence, passing to Rm+1, and using the tilde-notation for the corresponding families of
distributions there, we still have ∂Ũ∗

λ,p =−2πT̃∗λ−1,p. Applying this formula in the specific
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case where λ=−m− 2p, p ∈N, we get

∂Ũ∗
−m−2p,p =−2πT̃∗−m−2p−1,p (5.9)

which, invoking (3.1) and (3.2)—however with m being replaced by m+ 1, can be rewrit-
ten as

∂
(

π

Γ(1)
Ũ−m−2p,p

)
=−2π

(
π(m+1)/2

22p p!Γ
(
(m+ 1)/2 + p

) P̃p(x)Δpδ(x)

)
(5.10)

or as

∂
(

Ω

|x|m+2p P̃p(x)
)
=− 1

2p p!
am+1,pP̃p(x)∂2pδ(x) (5.11)

with x = |x|Ω, Ω∈ Sm. In particular, substituting P̃p(x)= e0Pp(x) in (5.11) yields

Dx

(
x̄e0

|x|m+1+2p Pp(x)
)
= 1

2p p!
am+1,pPp(x)∂2pδ(x). (5.12)

On the other hand, we know from [3, Proposition 2] that in Rm

Pp(x)∂2pδ(x)= 2p p!Pp(∂)δ(x) (5.13)

which can be rewritten in Rm+1 as P̃p(x)∂2pδ(x)= 2p p!P̃p(∂)δ(x). Again taking P̃p(x)=
e0Pp(x) then gives

Pp(x)∂2pδ(x)= 2p p!Pp(∂)δ(x). (5.14)

Finally, substitution of (5.14) in the right-hand side of (5.12) yields DxCp(x)= Pp(∂)δ(x).
Now, as for p = 0, we have P0(x)= 1 and am+1,0 = am+1, this implies

C0(x)= 1
am+1

x̄e0

|x|m+1
(5.15)

which is precisely the standard Cauchy kernel in Clifford analysis. �

As a nice additional result, using a similar method as in the previous proof, one also
can construct a generalized fundamental solution for the Dirac operator ∂ in Rm, viz

Ep(x)= 1
am,p

x̄Pp(x)

|x|m+2p =−
1

πam,p
U∗
−m−2p+1,p (5.16)

for which ∂Ep(x)= Pp(∂)δ(x) and E0 = E, the standard fundamental solution of the Dirac
operator (see Section 2).

In the next proposition, we calculate the nontangential distributional boundary values
for x0 → 0± of the generalized Cauchy kernels Cp(x0,x), p ∈ N0. To this end, we first
formulate an auxiliary result in the following lemma.
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Lemma 5.2. For p ∈N0, one has

lim
x0→0+

x0∣∣x0 + x
∣∣m+1+2p =

1
2p+1p!

am+1,p∂
2pδ(x). (5.17)

Proof. We will prove (5.17) by induction on p.
Clearly, for p = 0, (5.17) yields the following well-known distributional limit:

lim
x0→0+

x0∣∣x0 + x
∣∣m+1 =

1
2
am+1δ(x). (5.18)

Next, assume (5.17) to be valid for (p− 1), that is, we have

lim
x0→0+

x0∣∣x0 + x
∣∣m−1+2p =

1
2p(p− 1)!

am+1,p−1∂
2p−2δ(x). (5.19)

From the action of the Dirac operator on both sides of this equality, we obtain

lim
x0→0+

∂

(
x0∣∣x0 + x
∣∣m−1+2p

)
= 1

2p(p− 1)!
am+1,p−1∂

2p−1δ(x). (5.20)

On the other hand, one can directly calculate that

lim
x0→0+

∂

(
x0∣∣x0 + x
∣∣m−1+2p

)
=−(m− 1 + 2p) lim

x0→0+

x0x∣∣x0 + x
∣∣m+1+2p . (5.21)

Comparison between (5.20) and (5.21) leads to

1
2p(p− 1)!

am+1,p−1∂
2p−1δ(x)=−(m− 1 + 2p)x lim

x0→0+

x0∣∣x0 + x
∣∣m+1+2p . (5.22)

From [6, Lemma 3.1], we have x∂2pδ(x)= 2p∂2p−1δ(x). Thus (5.22) can be rewritten as

1
2p+1p!

am+1,p−1x∂
2pδ(x)=−(m− 1 + 2p)x lim

x0→0+

x0∣∣x0 + x
∣∣m+1+2p , (5.23)

leading to the desired result

lim
x0→0+

x0∣∣x0 + x
∣∣m+1+2p =

1
2p+1p!

am+1,p∂
2pδ(x) (5.24)

when we invoke the definition (5.7) of am+1,p. �

Proposition 5.3. For each p ∈N0, one has

Cp(0+,x)= lim
x0→0+

Cp
(
x0,x

)= 1
2
Pp(∂)δ(x) + ē0

1
2
Hp(x),

Cp(0−,x)= lim
x0→0−

Cp
(
x0,x

)=−1
2
Pp(∂)δ(x) + ē0

1
2
Hp(x),

(5.25)
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where

Hp(x)= 2
am+1,p

F p
ω̄Pp(ω)

rm+p =− 2
am+1,p

U∗
−m−2p,p. (5.26)

Proof. We only calculate Cp(0+,x), the computation for Cp(0−,x) runs along similar
lines. Multiplying both sides of (5.17) with Pp(x) and applying (5.13), already yields

lim
x0→0+

x0Pp(x)
∣∣x0 + x

∣∣m+1+2p =
1
2
am+1,pPp(∂)δ(x). (5.27)

Next one can show that in distributional sense,

lim
x0→0+

e0
xPp(x)

∣∣x0 + x
∣∣m+1+2p = e0Fp

ωPp(ω)

rm+p . (5.28)

Expressions (5.27) and (5.28) then result into the following distributional limit:

Cp(0+,x)= lim
x0→0+

1
am+1,p

x0Pp(x)
∣∣x0 + x

∣∣m+1+2p + lim
x0→0+

1
am+1,p

e0xPp(x)
∣∣x0 + x

∣∣m+1+2p

= 1
2
Pp(∂)δ(x) +

1
am+1,p

e0Fp
ωPp(ω)

rm+p ,

(5.29)

which had to be proved. �

The distribution Hp arising in the previous proposition allows for the definition of a
generalized Hilbert transform �p, given by

�p[ f ]= ē0Hp∗ f . (5.30)

The Fourier symbol

�[Hp]=− 2
am+1,p

i−p−1U∗
0,p (5.31)

of the kernel Hp not being a bounded function, the operator �p will not be bounded on
L2(Rm;R0,m+1). However, the Fourier symbol is polynomial of degree p, implying that �p

is a bounded operator between the Sobolev spaces Wn
2 (Rm;R0,m+1)→W

n−p
2 (Rm;R0,m+1),

for n≥ p. This is also confirmed in Corollary 5.5.

Proposition 5.4. The generalized Cauchy transform �p maps the Sobolev space Wn
2 (Rm;

R0,m+1) into the Hardy space H2(Rm+1
+ ;R0,m+1), for each natural number n≥ p.

Proof. First of all, we notice that the Hardy spaces H2(Rm+1
+ ;R0,m+1) and H2(Rm;R0,m+1)

are isomorphic; each element of the latter space can be identified with the nontangen-
tial limit limx0→0+F(x0,x), with F ∈H2(Rm+1

+ ;R0,m+1). Moreover, H2(Rm;R0,m+1) can be
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characterized as follows:

g ∈H2(Rm;R0,m+1
)⇐⇒

⎧
⎪⎨
⎪⎩

(C1) g ∈ L2
(
Rm;R0,m+1

)
,

(C2) �[g]= g.
(5.32)

So, it is necessary and sufficient to prove that

lim
x0→0+

�p[ f ]
(
x0,x

)= 1
2
Pp(∂) f +

1
2

�p[ f ] (5.33)

satisfies conditions (C1) and (C2) for each f ∈Wn
2 , n≥ p.

For such a function f we immediately have that Pp(∂) f ∈W
n−p
2 ⊂ L2. For the second

term on the right-hand side of (5.33) we apply Lebesgue’s dominated convergence the-
orem, which yields Hp ∈ L1. Then, from Young’s inequality, it follows that �p[ f ] ∈ L2,
fulfilling condition (C1).

Now we examine whether condition (C2) is satisfied as well, that is, we check if

�
[

lim
x0→0+

�p[ f ]
(
x0,x

)]= lim
x0→0+

�p[ f ]
(
x0,x

)
. (5.34)

Successively invoking Lemmas 3.1 and 3.2, we find

�
[
Pp(∂) f

]= ē0
−2
am+1

U∗
−m∗Pp(∂) f = ē0

−2
am+1,p

U∗
−m−2p,p∗ f =�p[ f ], (5.35)

�
[
�p[ f ]

]= 2
am+1

2
am+1,p

U∗
−m,0∗

(
U∗
−m−2p,p∗ f

)

= 2
am+1

Γ((m+ 1)/2)
π(m+1)/2

(
U∗
−m,0∗U∗

−m,0

)∗Pp(∂) f = Pp(∂) f

(5.36)

which completes the proof. �

Corollary 5.5. The generalized Hilbert transform �p is a bounded linear operator between

the Sobolev spaces Wn
2 (Rm;R0,m+1) and W

n−p
2 (Rm;R0,m+1) for each natural number n≥ p.

Proof. The previous proposition learns that �p[ f ]=�[Pp(∂) f ], for each function f ∈
Wn

2 , with n≥ p. As � is a bounded operator on L2 and Pp(∂) f ∈W
n−p
2 ⊂ L2, this ensures

that �p[ f ]∈ L2. Moreover, relying on �[∂xi f ]= ∂yi�[ f ], i= 1, . . . ,m, we have a fortiori

that �p[ f ]∈W
n−p
2 . �

Comparing further the properties of �p with those of the standard Hilbert transform
� in Clifford analysis learns that the main objective for this second generalization is ful-
filled on account of Proposition 5.3: Hp pops up as a part of the boundary values of a
generalized Cauchy kernel Cp, an analogue of the “classical” property P(6). However, the
kernel Hp is a homogeneous distribution of degree (−m− p), meaning that �p is not
dilation invariant. Finally, a link with the first type of generalized Hilbert transforms is
established below.
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Remark 5.6. Hp can be written as a higher-order Dirac derivative, say ∂p, of the general-
ized Hilbert kernels of the first kind T−m−p,p and U−m−p,p, depending on the parity of p.
More specifically, for a suitable function f and a natural number p, one has

�p[ f ]= ē0Hp∗ f

= ē0

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1
2(p+1)/2(p− 2)!!

Γ
(
(m+ p)/2

)

Γ
(
(m+ 2p+ 1)/2

)∂pT−m−p,p∗ f if p is odd,

1
2p/2(p− 1)!!

Γ
(
(m+ p+ 1)/2

)

Γ
(
(m+ 2p+ 1)/2

)∂pU−m−p,p∗ f if p is even.

(5.37)
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