

Loss Tangent Measurement on synthetic crystalline diamond (SCD) samples

Francesco Mazzocchi - Institut für Angewandte Materialien - Angewandte Werkstoffphysik Hideaki Yamada – National Institute for Advanced Industrial Science and Technology

www.kit.edu

Outline

- Introduction ECRH&CD system CVD Diamond Windows SCD samples
- Experimental Setup
 Vertical resonator
 Double spherical resonator
 Hemispherical XY mapping resonator
- Results
- Conclusions

Electron Cyclotron Resonance Heating and Current Drive System

CVD Diamond Windows

Diamond windows are fixed installations of a nuclear reactor primary confinement system, containing a potentially flammable mixture if exposed to air.

Requirement for the windows assembly include:

- Ultra low loss microwave transmission
- No dead volumes to minimize the stagnation of tritium and the pumping time.
- Full range of monitoring diagnostics (Tritium detection, microwave leakage, pressure, arc detection, temperature)

Source: Iter Tritium handbook, Iter vacuum handbook

Single Crystalline Diamond

Why single crystalline diamonds?

Policrystalline CVD diamods \rightarrow bulk sp2 boundaries \rightarrow electrically conductive \rightarrow microwave absorption hotspots

Single crystal diamonds (SCD) \rightarrow sp3 bindings only \rightarrow improved transmissivity

AIST SCD samples

Commercially available SCD samples are too small for fusion applications, being in the 2-3 millimeter range, while polycristalline ones are available in up to 5 inches wafers.

Dr. Yamada at AIST (Osaka, JPN) proposed a technique to compose relatively small samples of SCD into a larger size area, with sufficient quality to fabricate freestanding wafers from it.

"Tiled SCD clones" technique samples in the cm range (20 mm²) are possible.

Images courtesy of Dr. Hideaki Yamada – National Institute for Advanced Industrial Sciences and Technology (Osaka, JPN)

Experimental Setup

Vertical Cavity Resonator

Setup consisted in three different kind of resonators, with sources at 90 – 100, 145 and 170 GHz. Beam profile is gaussian. The double spherical resonator has a resolution in the order of 10^{-6} , while the other two attain 10^{-5} .

- The DSR is capable of shifting the sample in the Z direction → estimation of bulk and surface losses.
- Change in the inverse cavity Q-factor (with and without sample) → Loss tangent values


```
Double Spherical Resonator (DSR)
```


Hemispherical XY mapping resonator

Iterative solution of the resonator equation \rightarrow Relative permittivity ϵ_r

Results: Loss Tangent

Four different AIST SCD samples where tested (thicknesses between 0.9 and 1.35 mm) and compared with a commercial policrystalline disc (PCD)

4-fold SCD reached the resolution limit of the XY mapping machine. Higher values towards the borders suggest diffraction as a cause of Q-factor degradation.

Thickness: 1.3 mm ε_r: 5.67 Frequency: 145.07 GHz

The commercial sample shows analogous results. It is worth to be noted that while the PCD disc is polished, the AIST 4-fold samples were polished only on the growing surface

Results: Loss Tangent

8-fold SCD unpolished \rightarrow higher losses in the central region \rightarrow boundary between different tiles lowers the quality

```
Thickness: 1.25 / 1.35 mm
ε<sub>r</sub>: 5.67
Frequency: 145.14 GHz
```


"Monodimensional" higher losses \rightarrow angular offset of the growing direction, (~ 3°) \rightarrow boundary perpendicular to the growth direction = good optical quality.

(cfr. S. Ohmagari et al. / Diamond & Related Materials 48 (2014) 19–23)

Results: Topography

Unpolished SCD sample topography

- ~ 200 µm wedge → low quality surface = bigger surface losses
- ~ 200 µm wedge → double spherical high resolution resonator measurements not good

Polished PCD sample central profile ~ $2\mu m$ max discrepancy \rightarrow low surface losses (less 10⁻⁶ as measured with DSR)

- SCD should be able to overcome the limitations imposed by PCD bulk losses (10⁻⁷)
- Tiled SCD clones technique seems to be a good way to obtain cm size samples
- Performances of the SCD samples seems to be heavily influenced by growing characteristics and surface quality

THANK YOU

francesco.mazzocchi@kit.edu

Backup Slide: Bulk & Surface Loss Tangent Calculation

$$\tan \delta = F_F(Q_1^{-1} - F_L \cdot Q_0^{-1})$$

- F_F = filling factor (effective portion of the dielectric in the resonator)
- F_L = loading factor (rescaling of stored and dissipated energy)
- Q₁ = cavity quality factor (with sample)
- Q₀ = cavity quality factor (without sample)
- N_{λ} = number of half wavelenghts in the sample

R. Heidinger et al., IEEE transactions on plasma science, vol. 30, no. 3, June 2002

Resonant condition = N_{λ} integer \rightarrow \rightarrow Node condition at the second surface \rightarrow minimum surface losses

Antiresonant condition = N_{λ} half integer \rightarrow antinode condition at the second surface \rightarrow maximum surface loss

CVD Cloned Samples preparation

- 1. HPHT SCD seed crystal \rightarrow PECVD growt of the tiles (source gas: 90% H₂ 10% CH₄)
- 2. Grown diamond layers are separated from the seed through lift-off process involving high speed ion beam injection. Repeating this process generates several "cloned wafers"
- 3. Finally, cloned tiles are put side by side in the CVD reactor. An SCD layer that connects the tiles is grown ant lifted-off, obtaining a large SCD sample.