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Abstract. The prediction of local field statistics from effective properties is an open problem
in the field of micromechanics. Partial information on the local field statistics is accessible from
homogenization assumptions. In particular, exact phase-wise second moments of stresses can
be calculated analytically from the effective strain energy density. In recent years, full-field
calculations have become efficient enough to sample large ensembles of microstructures in the
plastic regime (e.g. Gehrig et. al [4]).

In the present work, the maximum entropy method known from statistical thermodynamics is
used to estimate first and second moments of local stresses from known eigenstrain distributions.
The simple and refined formulations of the maximum entropy method proposed by Kreher and
Pompe [9] are considered. While the simple method yields satisfactory results for a large amount
of material classes (cf. Krause and Böhlke [7]), we prove that it does not respect the linearity of
the eigenstrain problem. We further show that neither method corresponds to the exact second
moments of stresses known from the effective strain energy density. By incorporating additional
information, we find an improved maximum entropy method.

As an example, we analyze stress fluctuations in polycristalline titanium. For the exact
analytical solution and the maximum entropy methods, we use the singular approximation and
the Hashin-Shtrikman bounds. For comparison, we numerically approximate full-field statistics
using an FFT approach. In all methods, the stress fluctuations caused by the anisotropy of the
single crystal strongly influence the elastic-plastic transition.

1 SIMPLE MEM FOR POLYCRYSTALS

1.1 General Principle

The maximum entropy method (MEM) relies on Shannon’s information entropy, which can
be thought of as representing the possible information content of a set of discrete states. In
the context of statistical physics, Jaynes [5] extended the information entropy to continuous
probability distributions. For a probability distribution p of a vector of random variables x, the
amount of information is calculated using the information entropy functional

S = −

∫

V

p(x) ln(p(x)) dx (1)
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where the integration volume V is the entire domain of p. Maximizing the information entropy
maximizes the amount of information that is left to chance, which is equivalent to making no
implicit assumptions about the structure of the considered problem. Any assumptions that ought
to be made can be implemented into the entropy maximization problem as additional constraints.

In affine linear continuum micromechanics, the quantities of interest are the Cauchy stress σ

and the total strain ε. These are linked at every material point through the affine Hooke’s Law
using the stiffness tensor C and the thermal eigenstrain εθ as material constants

σ = C[ε− εθ]. (2)

The probability distribution of interest is the one-point joint probability distribution of local
strains and material properties p(ε,C, εθ), as described by Kreher and Pompe [9]. The inci-
dence probability of any given material property is assumed to be known, which is equivalent to
prescribing a one-point probability distribution of material properties

pC1 (C, ε
θ) =

∫

Sym

p(ε,C, εθ) dε. (3)

Effective (macroscopic) material properties and an effective load are prescribed using the
effective affine Hooke’s Law

σ̄ = C̄[ε̄− ε̄θ]. (4)

These effective quantities are defined using the ensemble average 〈·〉, leading to additional con-
straints to the optimization problem

ε̄ = 〈ε〉, σ̄ = 〈C[ε]〉. (5)

As the definition of effective material properties relies on the Hill-Mandel condition, that condi-
tion forms an additional optimization constraint

〈σ · ε〉 = 〈σ〉 · 〈ε〉. (6)

The Hill-Mandel condition holds for statistically homogeneous materials without pores or cracks
as long as specific boundary conditions are prescribed, for example periodic boundary conditions.
Then Equation 6 holds for any divergence-free field σ and any compatible field ε, without
requiring that the fields are connected by an elastic law. In a probabilistic single-point framework,
ergodicity is not required, as shown by Kreher [9].

1.2 Application to thermoelastic polycrystals

The constrained optimization problem previously specified can be solved analytically using a
Lagrange multiplier approach. By considering the elastic load and the thermal eigenstrains as
separate problems, the local fields are split into mechanical and thermal contributions

ε = εI + εII, (7)
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where the effective stress vanishes for the thermal contribution and the effective strain of the
mechanical problem equals the macroscopically applied strain. From this definition, effective
load constraints can be formulated for each of the split stress and strain fields. The Hill-Mandel
condition similarly yields constraints for each combination of the split stress and strain fields.
Each of these eight constraints gi = 0 as well as the function-valued material property constraint
of Equation 3 is multiplied with a Lagrange multiplier λ of the corresponding dual vector space,
leading to the modified optimization problem

max
p

S∗, S∗ = −

∫

V

p(ε,C, εθ) ln(p(ε,C, εθ)) dx+
9
∑

i=1

gi · λi. (8)

For single-phase thermoelastic polycrystals in particular, the local material properties depend
only on the lattice orientation Q. pC1 can be defined in terms of the orientation distribution
function (ODF) f(Q).

Due to the ensemble averages, each constraint contains integrals, leading to a depiction of S∗

as an integral over p ln(p) and constraint terms which are each linear in p. S∗ is extremal when
the partial derivative of the integrand by p is zero. This extremal point is a maximum according
to Jaynes [6] and corresponds to

p(ε,Q) =
f(Q)

n
exp

(

8
∑

α=1

∂fα

∂p
· λα

)

, (9)

where the functions fα are the interior parts of the ensemble averages within the constraints gα

and n is a constant normalization parameter. After a bijective transformation of the Lagrange
parameters, a Gaussian normal distribution emerges:

p(ε,Q) =f(Q)
1

√

(2π)6det(K)
exp

(

−
1

2
(ε− γ(Q)) ·K−1(Q)(ε− γ(Q))

)

. (10)

The mean γ and the covariance K are dependent on the local lattice orientation and some
macroscale constants. They can furthermore be specified separately for the I and II fields, in-
cluding some coupling terms between both fields. Due to limited space in this publication, the
interested reader is referred to Krause and Böhlke [7] for the full formulas.

1.3 Theoretical Inconsistencies

While the simple MEM derived above performs quite well, two theoretical inconsistencies are
evident in the formulas. The first inconsistency disappears in Kreher’s advanced MEM [8], while
solving the other is the main goal of this work.

First, much of micromechanics assumes a particular linearity between effective and local fields.
For the strain field, this is often expressed using strain localization tensors A and a, defined such
that

ε = A[ε̄] + a. (11)

While this notation is superficially similar to the split into I and II fields applied in the MEM,
the two are not equivalent. It is generally assumed that a contains all thermal contributions to
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the local strain, while A is caused solely by the stiffness contrasts of the material and therefore
does not depend of εθ. By a coefficient comparison respective to ε̄, equivalent terms to A and a

can be isolated from the MEM, where

AMEM =A
I +

1

w0

b(εθ)⊗ c(εθ), (12)

A
I =C

−1
C−(C+ − C−)

−1(C+ − C̄) + (C+ − C−)
−1(C̄− C−), (13)

b(εθ) =(εθ + (C−1
−

− C
−1
+ )−1[εs − εe]− (C+ − C−)

−1[C+[εs]− C−[εe]], (14)

c(εθ) =(C− − C̄)(C+ − C−)
−1

C+[εs − ε̄II]. (15)

Along with the purely stiffness-dependent conventional term A
I, thermal terms appear which

add an unexpected linear dependence of A on εθ. This inconsistency is addressed in section 2.1.
The second inconsistency arises in the covariance terms and must be treated separately from

the first one. If no thermal eigenstrains are present, deriving the effective strain energy by the
local stiffness yields the second statistical moment of strains

∂w̄

∂C(Q)
=

1

2
f(Q)〈ε⊗ ε〉Q. (16)

The MEM covariances yield a different result for the second statistical moment of strains:

〈ε⊗ ε〉Q = 〈ε〉Q ⊗ 〈ε〉Q +KMEM. (17)

In particular, the MEM covariance always has the same symmetry as local stiffness, which is not
generally true for real microstructures, as the real microstructure covariance also depends on the
direction of load. This inconsistency is addressed in section 2.2.

2 IMPROVED MEM FORMULATIONS

2.1 The Singular Approximation MEM

By incorporating the Eshelby assumption of ellipsoidal inclusions in a homogeneous reference
matrix, the MEM can be formulated equivalently to the Singular Approximation. This is ac-
complished by initially considering the entropy of the infinite-point probability distribution of a
displacement field u(x). In the immediate neighborhood of any given point, homogeneous prop-
erties are assumed, meaning that every point is within a spherical inclusion. A Green tensor is
defined equivalently to other Eshelby-based approaches. If spatial correlations can be neglected,
the non-singular part of the Green tensor vanishes, meaning that the Singular Approximation
due to Fokin [3] is recovered in the MEM setting.

Instead of specifying the effective properties C̄, εθ and w̄II, this Singular Approximation
Maximum Entropy Method (SA MEM) requires a reference stiffness C0 from which the effective
properties can be calculated as in the Singular Approximation. With Eshelby’s tensor P0(C0),
the effective stiffness can be written as by Walpole [14],

C̃0 =P
−1
0 (C0)− C0, (18)

C̄ =〈(C+ C̃0)
−1〉−1 − C̃0. (19)
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To recapitulate, if C0 equals the zeroth-order bounds (cf. Nadeau and Ferrari [11]), the
Hashin-Shtrikman-Bounds are recovered, while solving the nonlinear equation C0 = C̄(C0) yields
the self-consistent approximation.

The SA MEM yields means which are entirely consistent with the Singular Approximation
means, in particular,

A =(C+ C̃0)
−1(C̄+ C̃0), (20)

a =(C+ C̃0)
−1(C̃0[ε̄

θ] + C[εθ]). (21)

The SA MEM extends the Singular Approximation by approximating the covariances

〈K〉Q =
1

2
(dI + 2k + dII)C−1(C+ C̃0)

−1
P
−1
0 (C+ C̃0)

−1
C
−1. (22)

2.2 Exact Phasewise Covariances

If the effective strain energy density is given as an expression of arbitrarily anisotropic phase
stiffness tensors, phasewise second moments of strain can be recovered using a variational argu-
ment, assuming the Hill-Mandel condition holds. This relationship applies not only to polycrys-
tals but also heterogeneous materials with discrete phases, such as inclusion-matrix composites,
where with the phase index α,

∂w̄

∂Cα

=
1

2
cα〈ε⊗ ε〉α. (23)

To actually calculate this exact second moment, there exists the more practical effective
stiffness form

〈ε⊗ ε〉α =
1

cα

(

∂C̄

∂Cα

)TH

[ε̄⊗ ε̄], (24)

which in the case of the Singular Approximation can be further specified as

∂C̄

∂Cα

=
∂C̄

∂C0

∂C0

∂Cα

. (25)

The first term ∂C̄/∂C0 can be calculated analytically, though to the authors’ knowledge no
clear derivation has been published yet. ∂C0/∂Cα is a microstructure-specific parameter. This
parameter generally has a lower bound due to the positive definiteness of the covariance, but no
strict upper bound is known.

When ∂C0/∂Cα is known, the phasewise second moments can be prescribed as an additional
optimization constraint to the MEM. The result is a straightforward replacement of the MEM’s
usual elastic covariance by the prescribed value, resulting in

Kα =
1

vα

(

∂C̄

∂Cα

)TH
[

ε̄I ⊗ ε̄I
]

− 〈εI〉α ⊗ 〈εI〉α

+ (2k + dII)C−1(C+ C̃0)
−1

G
−1
0 (C+ C̃0)

−1
C
−1. (26)

Though the means and the elastic covariances are now given by the Singular Approximation,
the MEM still provides additional knowledge in the form of the thermal strain covariances.
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Figure 1: Probability density of σ11 in grains or-
thogonal to the loading direction (elastic)

50 75 100 125 150
σ11 in MPa

0.00

0.01

0.02

0.03

0.04

p
ro
b
a
b
il
it
y
d
en
si
ty

FFT

simple

SA MEM

Cov MEM

Figure 2: Overall probability density of σ11 for
MEM approaches compared to FFT (elastic)

3 EXAMPLE: POLYCRYSTALLINE TITANIUM

As an illustrative example, polycrystalline titanium is considered. The ODF of the material
is constant and the single crystals are spherical on average. The hexagonal single crystal stiffness
measured by Dryburgh et al [2] is used. A unidirectional stress load of 100MPa is applied.

Numerical full-field simulations are used for comparison. These are performed on a Laguerre
tesselation microstructure with 8000 grains on 2563 voxels using the Fast-Fourier-Transformation
(FFT) approach pioneered by Moulinec and Suquet [10]. The implementation used here is based
on the staggered grid discretization by Schneider et al [13], which reduces Gibbs oscillations.

The analytical approach is based on the Singular Approximation, where the reference stiffness
is chosen as the Voigt stiffness. This results in an effective stiffness which lies inside the Hashin-
Shtrikman bounds and deviates less than 0.5% from the numerical stiffness obtained from the
FFT simulations.

For grains oriented orthogonally to the loading direction, the probability distribution of stress
is shown in Figure 1. As can be seen, all three MEM methods roughly agree on the mean and
covariance. No reference full-field distribution is given because only a few grains of an appropriate
orientation can be found in the present microstructure. The statistics of a small number of
grains are influenced strongly by neighborhood effects and are therefore not representative for
all grains of the same orientation. A large ensemble calculation averaging out these effects has
been compared to the MEM by Gehrig et al. A preprint of that work is available at [4].

Overall probability distributions were calculated by integrating the MEM grain distributions
over SO(3) with a Monte-Carlo approach. The results are shown in Figure 2 and compared to
full-field results. As can be seen, the simple and SA MEM results are almost normally distributed,
as are the full-field results. Based on these results, no clear recommendation of the simple or
advanced MEM can be made. The improved MEM considering the exact covariances performs
significantly worse, yielding a slightly skewed probability distribution. A possible explanation
for this discrepancy lies in the reference stiffness derivative ∂C0/∂Cα, which appears to be too
dissimilar to the corresponding value in the FFT simulation. A homogenization approach which
is well-chosen in regards to the effective stiffness parameter does not necessarily yield an accurate
effective stiffness derivative. The sensitivity of the MEM to this additional parameter means that
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Figure 3: Probability density of σ11 in grains or-
thogonal to the loading direction (thermoelastic)
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Figure 4: Overall probability density of σ11 for
MEM compared to FFT (thermoelastic)

it can be used to describe microstructures which do not conform well to the simple or SA MEM
approaches.

As an example for local stress fluctuations caused by eigenstrains, thermal eigenstrains were
considered by using the anisotropic thermal expansion coefficients measured by Pawar and Desh-
pande [12]. An approximate guess for the reference temperature below which the local stress
fluctuations start to develop during the cooling process is given by the stress relief treatment
temperature of 480 ◦C given by Donachie [1].

For grains oriented orthogonally to the loading direction, the probability distribution of stress
is given in Figure 3. The covariances are now substantially higher than in the purely mechanical
case as thermal contributions dominate. The advanced and exact covariance methods therefore
almost coincide. In the overall distributions given in Figure 4, it can be seen that the simple
MEM approach again matches the FFT results most closely. The SA MEM, despite its theoretical
soundness regarding the coupling of elastic and thermal terms, appears to perform worse in a
context where this coupling becomes relevant. Again it should be noted that these results are true
for a particular type of polycrystal microstructure. Kreher and Pompe [9] report better results
with the SA MEM that the simple MEM for matrix-inclusion two-phase composites particularly
as the elastic phase contrast increases.

4 CONCLUSIONS

Of the three variants of the MEM used to investigate titanium polycrystals, each is found to
have different strengths and weaknesses. Kreher’s simple MEM [9] performs particularly well for
polycrystals with an isotropic orientation distribution function and roughly spherical grains. Its
weaknesses lie in two theoretical shortcomings, a spurious dependence of the elastic localization
on thermal quantities and a not generally expected proportionality of the covariance to the local
stiffness.

The first shortcoming is solved in Kreher’s advanced MEM [8] which is compatible to the
Singular Approximation [3] and extends it by covariance terms. In the particular case considered
here, the advanced MEM is less accurate than the simple MEM, particularly when thermal eigen-
strains are considered. These results are not an indication of how these performance discrepancies
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manifest in other use-cases such as matrix-inclusion microstructures.
The second shortcoming is solved by incorporating micromechanical exact covariance relations

into the advanced MEM. Again, these improvements leads to larger differences to full-field results
than the simple MEM approach in the case considered here. As the exact covariance relations
introduce an additional microstructural parameter, a careful choice of this parameter might lead
to more accurate results. The increased skew of the overall probability distributions suggest that
this approach might be capable of modeling microstructures to which the simple MEM is not
well-suited.
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