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A B S T R A C T

Probabilistic solar forecasts may take the form of predictive probability distributions, ensembles, quantiles, or
interval forecasts. State-of-the-art approaches build on input from numerical weather prediction (NWP) models
and post-processing with statistical and machine learning methods. We propose a probabilistic benchmark
based on a deterministic forecast of clear-sky irradiance, introduce new methods for post-processing that merge
statistical techniques with modern neural networks, discuss methods for spatio-temporal scenario forecasts,
and illustrate the assessment of predictive ability via proper scoring rules and calibration checks. We expect
future solar forecasting efforts to be increasingly probabilistic, and encourage continuing close interaction
with operational weather prediction, where innovations based on sophisticated neural networks supplement
and challenge traditional approaches.
1. The case for probabilistic solar forecasting

The science of solar resource assessment and forecasting is flourish-
ing, with ‘‘hundreds, if not thousands of review papers’’ having been
published in these areas (Yang et al., 2022c, p. 1240) and further
growth being anticipated (Hong et al., 2020; Sweeney et al., 2020;
Yang et al., 2022a). Arguably, the most critical recent development
is a transition from single-valued deterministic to probabilistic fore-
casts (Gneiting and Katzfuss, 2014; van der Meer et al., 2018; Haupt
et al., 2019; Yang, 2019a). Probabilistic forecasts can be issued in the
form of probability distributions, ensembles, quantiles, or prediction in-
tervals (Lauret et al., 2019; Hong et al., 2020) that allow for uncertainty
quantification and provide crucial input to stochastic programming
problems, where optimal strategies for decision makers in the face of
uncertainty are sought (Appino et al., 2018; Beykirch et al., 2022),
both at individual sites and in the context of spatio-temporal trajectory
forecasts over multiple locations and time periods (van der Meer et al.,
2020).

A broad consensus has developed that solar forecasts – comprising
both solar irradiance and solar power – ought to rely on the output
from physics-based numerical weather prediction (NWP) models in
concert with post-processing using techniques of statistics and ma-
chine learning. Yang et al. (2022c) distinguish five major aspects of
solar forecasting, namely, forecasting methodology, post-processing,
irradiance-to-power conversion, verification, and materialization of val-
ues. We touch on essentially all of these facets, with emphasis on
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areas where the solar forecasting community might benefit from recent
advances in statistical theory and methodology.

Over the past few years, solar forecasting has undertaken major
steps towards reproducible science (Stodden et al., 2016; Yang, 2019a),
and we applaud the development of forecast contests (Hong et al.,
2016) and benchmark datasets (Yang, 2018; Yang et al., 2020b; Wang
et al., 2022). In this article, we draw on data and code from Yang et al.
(2022b) to illustrate concepts in forecast generation, post-processing,
and the assessment of predictive ability. Specifically, we consider day-
ahead forecasts of hourly irradiance at SURFRAD stations in the conti-
nental United States (Augustine et al., 2005), based on the operational
deterministic high-resolution NWP model run by the European Centre
for Medium-Range Weather Forecasts (ECMWF). Yang et al. (2022b)
apply the Analogue Ensemble (AnEn) method of Alessandrini et al.
(2015) to yield a post-processed 11-member ensemble forecast. Gener-
ally, an ensemble forecast with 𝑚 members corresponds to a probability
distribution that assigns mass 1∕𝑚 to each of the member values, and
the member values can be interpreted as quantiles at level 1∕(𝑚 +
1),… , 𝑚∕(𝑚+1), respectively. The range of the ensemble value yields an
equal-tailed prediction interval with nominal coverage (𝑚 − 1)∕(𝑚 + 1),
as illustrated in Fig. 1. We return to the benchmark setting from Yang
et al. (2022b) throughout the paper.

The discussion in the remainder of the article is methodological
in character, and applies to forecasts of both solar irradiance and
solar power, and both at intra-hour, intra-day, and day-ahead hori-
zons. In Section 2 we review recent advances in the development
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Fig. 1. Probabilistic forecasts of hourly solar irradiance on 10 July 2020 at station Bondville (BON) by the CSD-IDR benchmark of Section 2, the 11-member Analogue Ensemble
(AnEn) implemented by Yang et al. (2022b), and the Distributional Regression Network (DRN) and Bernstein Quantile Network (BQN) techniques of Section 3, in W/m2. The
orecasts are restricted to the hours of the day within the benchmark setting of Yang et al. (2022b). The blue bars show predictive quantiles at level 1∕12,… , 11∕12, so their range

forms a prediction interval with nominal coverage 10∕12 or 83.33%. The red bars represent the observed value of Global Horizontal Irradiance (GHI). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
of reference forecasts and propose the use of the Isotonic Distribu-
tional Regression (IDR) technique of Henzi et al. (2021) to generate
probabilistic benchmark forecasts from a deterministic forecast of clear-
sky irradiance. In Section 3 we adapt the distributional regression
network (DRN) and Bernstein quantile network (BQN) techniques,
which have been developed for weather prediction (Rasp and Lerch,
2018; Bremnes, 2020; Schulz and Lerch, 2022), to forecasts of solar
irradiance. Section 4 reviews recent progress in the evaluation of
probabilistic forecasts (Dimitriadis et al., 2021; Gneiting et al., 2023)
and illustrates the use of proper scoring rules and reliability diagrams
on a comparison of the mentioned probabilistic forecast techniques.
The paper closes with a discussion in Section 5, where we summarize
comments and suggestions and make predictions about the future of
probabilistic solar forecasting. For implementation details we refer to
the respective original literature and the accompanying replication
material for the paper (Schulz, 2022).

2. Reference forecasts

Regardless of application field, progress in forecasting techniques
needs to be demonstrated relative to reference methods. However,
as Hong et al. (2020, p. 382) note, ‘‘many papers avoid direct compar-
isons with classic, established, and state-of-the-art models. Some even
skip comparisons with naive models’’. We appreciate recent advances
in solar forecasting, where several authors have studied benchmark
forecasts (Yang, 2019a,b,c; Doubleday et al., 2020; Le Gal La Salle
et al., 2021; Yang and van der Meer, 2021). In particular, Yang (2019c)
proposed the Complete History Persistence Ensemble (CH-PeEn) as a
probabilistic benchmark forecast that is based on climatology, while
following the diurnal solar cycle — a technique similar in spirit to
the Extended Probabilistic Climatology (EPC) approach of Walz et al.
(2021) that follows the seasonal cycle of quantitative precipitation.
Recently, Le Gal La Salle et al. (2021) proposed Clear-Sky Dependent
Climatology (CSD-CLIM) as an alternative probabilistic benchmark. In
contrast to CH-PeEn, which stratifies by the time of the day, CSD-
CLIM stratifies by clear-sky irradiance values. Essentially, the method
uses historical data to bin observed irradiance (or power) values by
clear-sky irradiance, and takes the respective empirical distributions as
probabilistic forecasts.

Perhaps serendipitously, recent advances in statistical methodology
permit the implementation of a very similar technique that enjoys
the same desirable properties, while avoiding any binning and guar-
73

anteeing optimality on training data. Specifically, Henzi et al. (2021)
introduced Isotonic Distributional Regression (IDR), a nonparametric
technique that yields simple and flexible probabilistic forecasts based
on training data of deterministic predictor variables (e.g., clear-sky irra-
diance and/or smart persistence) and associated outcomes (irradiance
or power). The technique is illustrated in Fig. 2, where we use clear-
sky irradiance as the sole predictor variable and GHI observations as the
outcome. Described informally, IDR operates under the sole assumption
of isotonicity, namely, that higher values of the predictors generate
probabilistic forecasts that are stochastically larger, in the sense that
the graphs of the respective cumulative distribution functions (CDFs)
are nested from left to right. In the univariate case with a single
predictor variable, isotonicity refers to the linear order on the real line.
In the case of multiple predictor variables, a partial order, such as the
componentwise order, needs to be employed.

The constraint of isotonicity regularizes the computational solution
and is perfectly suited to solar forecasting; for example, we expect
higher values of clear-sky irradiance to yield probabilistic forecasts that
are stochastically larger. Subject to the constraint, IDR generates prob-
abilistic forecasts that on the historical data are simultaneously optimal
in terms of the continuous ranked probability score (CRPS), the Brier
score, and the pinball loss (Section 4, Eqs. (2), (3), and (5)) and many
other loss functions. When based on clear-sky irradiance and applied
to solar data, we refer to the resulting probabilistic reference forecast,
which is a discrete distribution concentrated on the outcomes in the
training set, as the Clear-Sky Dependent IDR (CSD-IDR) forecast, as
illustrated in Figs. 1 and 2. While here we use the clear-sky irradiance
provided with the benchmark data from Yang et al. (2022a), other types
of clear-sky models can be used and might be more appropriate choices
for real-time forecasting (Yang, 2020a).

As the CSD-IDR technique uses historical data only, it does not
require any implementation choices or parameter tuning, and has in-
sample guarantees of outperforming CSD-CLIM, hence it satisfies the
desirable properties of probabilistic benchmark forecasts listed in Table
1 of Le Gal La Salle et al. (2021). While we provide an initial evaluation
of CSD-IDR in Section 4 in this article, we encourage follow-up work
that includes direct comparisons to the CH-PeEn and CSD-CLIM bench-
marks, ideally with extensions to multivariate probabilistic forecast
distributions (van der Meer, 2021).

3. Post-processing

As noted, state-of-the-art solar forecasting relies on output from

either a single numerical weather prediction (NWP) model or – often,
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Fig. 2. Illustration of the Isotonic Distributional Regression (IDR) approach on training
data from 2017–2019 at station Bondville (BON). The IDR forecast distributions
for Global Horizontal Irradiance (GHI) as a function of clear-sky irradiance are
represented by predictive quantiles at level 1∕12,… , 11∕12, respectively. While the
quantile functions are non-crossing, they cluster at high levels, and thus we show
a close-up view at upper left. The black dots represent clear-sky irradiance and GHI
observations from the training archive. The close-up view also shows the diagonal.

but not necessarily – from ensembles consisting of multiple NWP model
runs (Gneiting and Raftery, 2005; Mathiesen and Kleissl, 2011; Bauer
et al., 2015; Sperati et al., 2016; Zhang et al., 2022). The generation of
the NWP ensemble can be tailored to solar applications in various ways,
including but not limited to perturbations of initial conditions, stochas-
tic perturbations, multi physics and multi model approaches (Kim et al.,
2022). In this context, the term post-processing refers to the conversion
and improvement of raw output from NWP models to skillful solar
forecasts, by using statistical and machine learning techniques. While
developments of this type were pioneered in weather prediction (Van-
nitsem et al., 2018, 2021), they are now commonly applied in solar
forecasting (Pinson and Messner, 2018; Yang and van der Meer, 2021).

Yang and van der Meer (2021) propose a typology of deterministic-
to-deterministic (D2D), probabilistic-to-deterministic (P2D),
deterministic-to-probabilistic (D2P), and probabilistic-to-probabilistic
(P2P) post-processing. We focus on D2P post-processing, due to our
emphasis on probabilistic forecasts, and because a probabilistic forecast
can readily be converted to a deterministic one, by extracting the
desired summary, such as the mean or a quantile, of the distribu-
tion (Gneiting, 2011). The AnEn approach of Alessandrini et al. (2015)
is of this type; in a nutshell, it picks forecasts cases that are similar to
the one at hand from a historic database, and uses the collection of the
respective outcomes as an ensemble forecast.

Many if not most facets of P2P are analogous to those for D2P
post-processing. In particular, the commonly used P2P post-processing
techniques Bayesian Model Averaging (BMA: Raftery et al., 2005; Dou-
bleday et al., 2021) and Ensemble Model Output Statistics (EMOS:
Gneiting et al., 2005; Yagli et al., 2020; Yang, 2020b,c; Schulz et al.,
2021) nest D2P post-processing as special cases. The EMOS approach,
which is also known as nonhomogeneous regression, assumes that,
conditional on raw predictor variables 𝑥, the outcome of interest fol-
lows a distribution from a parametric family with parameter vector
𝜃 = 𝑔(𝑥), where the function 𝑔 is specified in parametric (e.g., linear)
form and commonly referred to as link function. The choice of the
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parametric families for the forecast distribution and the link function
depend on the outcome, with the simplest case arising under the normal
family (Gneiting et al., 2005). Recently, post-processing approaches
based on neural networks have gained considerable popularity (Wang
et al., 2019; Nielsen et al., 2020; Yagli et al., 2022). Here we introduce
the Distributional Regression Network (DRN: Rasp and Lerch, 2018)
and Bernstein Quantile Network (BQN: Bremnes, 2020; Schulz and
Lerch, 2022) approaches and adapt them from meteorological settings,
as in the original references, to solar forecasting.

The DRN approach of Rasp and Lerch (2018) builds on, and extends,
the framework of EMOS. In lieu of the typically linear, fixed form link
function that expresses the EMOS parameter vector in terms of input
predictors, the DRN technique uses modern neural networks to learn
flexible, nonlinear relations between predictor variables and parameter
vectors. Owing to the increased flexibility, the vector of predictor
variables may now include NWP forecasts for a range of weather
quantities well beyond irradiance. The output of the neural network
thus consists of the parameters of the forecast distribution, based on
the predictors at hand. The BQN technique introduced by Bremnes
(2020) is a fully nonparametric approach, where quantile functions are
expressed in terms of basis polynomials. The BQN forecast distribution
is defined by the basis coefficients, and the neural network is trained to
link the predictors to these coefficients, based on training data. For both
DRN and BQN, we adopt and adapt recent implementations by Schulz
and Lerch (2022), which differ from the original proposals in technical
detail, with the DRN forecast taking the form of a truncated normal
distribution, as documented in Schulz (2022). The DRN approach has
also been adapted to solar forecasting by Baran and Baran (2022),
who employ censored normal distributions and build exclusively on
predictor variables that derive from NWP ensemble forecasts of irradi-
ation. Fig. 1 provides an illustration in the benchmark setting of Yang
et al. (2022b), with the DRN and BQN forecast distributions being
more concentrated than the CSD-IDR and AnEn forecasts. The trun-
cated normal DRN forecast distributions are unimodal and (essentially)
symmetric, whereas the nonparametric CSD-IDR and BQN distributions
attain flexible shapes and tend to be skewed.

The discussed post-processing methods cover univariate settings
only, where a solar variable at a single location and a single lead
time is considered. In recent work, van der Meer et al. (2020) study
probabilistic forecasts of spatio-temporal trajectories that cover mul-
tiple locations and/or lead times. Not surprisingly, the handling of
spatial and/or temporal dependencies and interaction poses challenges,
and van der Meer et al. (2020, p. 12) conclude that the empirical
copula approach, which learns multivariate dependence structures from
historical spatio-temporal data, ‘‘is a favorable candidate for clear-sky
index space–time trajectory generation’’ from a collection of probabilis-
tic solar forecasts that have been post-processed in a univariate fashion.
Their findings echo experiences in hydrometeorological forecasting,
where a reordering technique called Schaake shuffle (Clark et al., 2004)
has been used for this purpose to much success. As Schefzik et al.
(2013) note, the use of the Schaake shuffle is equivalent to the em-
pirical copula approach. Schefzik et al. (2013) furthermore studied an
Ensemble Copula Coupling (ECC) approach that derives the empirical
copula from the ensemble forecast at hand, as opposed to historical
outcomes. For a recent comparison from a meteorological perspective
see Lerch et al. (2020). In solar applications, the usage of empirical
copula techniques remains underexplored, with the notable exception
of work by Alessandrini and McCandless (2020), and we encourage
follow-up studies.

4. Forecast evaluation

Across application domains, improvements in forecast methods
hinge on our ability to compare competing forecasts, and to diagnose
their strengths and weaknesses. The science of forecast verification
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Table 1
Brief description of the CSD-IDR, AnEn, DRN, and BQN methods for probabilistic
forecasts of hourly solar irradiance, including acronym, full name, dependence (or not)
on numerical weather prediction (NWP) model output, and key reference.

Acronym Name NWP Reference

CSD-IDR Clear-Sky Dependent No Henzi et al. (2021)
Isotonic Distributional Regression

AnEn Analogue Ensemble Yes Alessandrini et al. (2015)
DRN Distributional Regression Network Yes Schulz and Lerch (2022)
BQN Bernstein Quantile Network Yes Bremnes (2020)

serves to address these needs, and recent reviews in the solar com-
munity cover both deterministic and probabilistic forecasts (Lauret
et al., 2019; Yang et al., 2020a). In solar forecasting, probabilistic
forecasts are issued in the form of probability distributions, ensembles,
quantiles, or prediction intervals (Hong et al., 2020), and we tend to
these settings now. A general principle is that probabilistic forecasts
ought to maximize sharpness – that is, be as focused and informative as
possible – subject to calibration, where the term calibration refers to the
statistical compatibility between the forecasts and the outcomes (Gneit-
ing and Raftery, 2007). The terms calibration and reliability are used
interchangeably.

Proper scoring rules are omnibus performance measures for com-
parative forecast evaluation (Gneiting and Raftery, 2007; Jordan et al.,
2019). Slightly informally, a scoring rule S is a function that assigns a
score or penalty S(𝐹 , 𝑦) based on a probabilistic forecast 𝐹 and the re-
spective outcome 𝑦, with smaller values being preferred. A scoring rule
is proper if it is designed such that forecasters minimize the expected
score or penalty if they issue forecasts that follow their true beliefs
about the uncertain outcome, in a well defined technical sense (Gneit-
ing and Raftery, 2007) that induces the closely related notion of a
consistent scoring function for deterministic forecasts (Gneiting, 2011).
Scores are then averaged across the forecast cases 𝑖 = 1,… , 𝑛 in the test
set, to yield a mean score of the form

S̄ = 1
𝑛

𝑛
∑

𝑖=1
S(𝐹𝑖, 𝑦𝑖), (1)

and the method with the lowest mean score S̄ is preferred. Often, skill
cores are employed, which equal one minus the ratio between the
ean score for the method at hand and the mean score for a refer-

nce forecast. Conditional on the reference forecast, this is simply an
ffine transformation to the skill scale, where positive values indicate
erformance better than the reference forecast, and negative values per-
ormance inferior to the reference forecast. Calibration can be checked
iagnostically using Probability Integral Transform (PIT) histograms
nd reliability diagrams, and sharpness is typically diagnosed via the
ean width of an equal-tailed prediction interval.

In what follows, we illustrate these concepts on the benchmark
ata from Yang et al. (2022b) and compare CSD-IDR, AnEN, DRN, and
QN one day-ahead forecasts of Global Horizontal Irradiance (GHI)
t the SURFRAD (Augustine et al., 2005) stations Bondville (BON),
esert Rock (DRA), Fort Peck (FPK), Goodwin Creek (GWN), Penn State

PSU), Sioux Falls (SXF), and Table Mountain (TBL) in the continental
nited States. Table 1 provides a succinct summary of the forecasting
ethods that we assess, based on the descriptions in earlier sections and

he original references. While the CSD-IDR reference does not depend
n NWP models, the AnEn, DRN, and BQN methods leverage output
rom the high resolution (HRES) model operated by the ECMWF, by
nvolving the solar zenith angle and ECMWF HRES forecasts of 2-m
emperature, surface pressure, relative humidity and GHI (via the clear-
ky index). We adopt the benchmark setting of Yang et al. (2022a) in
ll detail; in particular, we restrict the probabilistic forecasts and their
valuation to (essentially) daylight hours, and we aggregate across the
onsidered hours. Data from the years 2017–2019 are used for training,
75

hereas the evaluation period comprises calendar year 2020. F
Table 2
Mean CRPS for day-ahead probabilistic forecasts of hourly solar irradiance with the
CSD-IDR, AnEn, DRN, and BQN methods at SURFRAD stations in the benchmark setting
of Yang et al. (2022a), in W/m2.

Method BON DRA FPK GWN PSU SXF TBL

CSD-IDR 82.9 37.9 62.4 85.6 84.6 74.8 74.2
AnEn 56.2 31.5 49.2 59.9 59.5 54.4 61.3
DRN 52.5 28.9 45.5 55.2 55.9 52.5 57.5
BQN 50.8 28.3 44.2 53.9 55.1 50.4 55.6

4.1. Predictive probability distributions

In the most general and most powerful setting, probabilistic fore-
casts take the form of a fully specified probability distribution, 𝐹 . This
distribution 𝐹 could be parametric, such as the truncated normal dis-
tribution in the case of the DRN forecast, a nonparametric distribution
specified by a quantile function as for the BQN method, an ensemble
forecast as in the case of the AnEn technique, or a nonparametric
discrete distribution as for the CSD-IDR benchmark. Intermediate and
mixed types of forecast distributions can be employed as well.

In this setting, Lauret et al. (2019) recommend the use of the CRPS,
defined by

S(𝐹 , 𝑦) = ∫

∞

−∞
(𝐹 (𝑡) − 1{𝑦 ≤ 𝑡})2 d𝑡, (2)

here the probabilistic forecast 𝐹 is interpreted as a CDF, and we
upport the recommendation, due to the desirable properties of the
RPS listed in their Table 4. In particular, the CRPS is proper, it reduces
o the mean absolute error (MAE) for a deterministic forecast, and it is
eported in the same unit as the outcome. In Table 2 we return to the
enchmark setting of Yang et al. (2022a) and report the mean CRPS
n the unit of Watts per square meter (W/m2). At all seven stations,
here is a clear ordering: the BQN forecast has the lowest (best) mean
RPS, followed by the DRN, AnEn, and CSD-IDR forecasts. At station
ondville (BON), the AnEn, DRN, and BQN forecasts display CRPS skill
cores relative to the CSD-IDR benchmark of 0.32, 0.37, and 0.39,
espectively.

The PIT is simply the value that the CDF of the probabilistic forecast
ttains at the outcome. For a calibrated probabilistic forecast, the PIT
as a uniform distribution, and deviations from uniformity can be
nterpreted diagnostically (Gneiting et al., 2007). In Fig. 3 we show
istograms of PIT values at station Bondville in 12 equi-spaced bins,
choice that accommodates the 11-member AnEn ensemble forecast,
here the bins represent the rank of the outcome relative to the 11
nsemble member values. We note that, while the histograms for the
SD-IDR, AnEn, and BQN forecasts are nearly uniform, there are major
eviations for the DRN method, due to its truncated normal assumption
nd lack of flexibility in the shape of the predictive distributions.

.2. Probability forecasts

At any given threshold 𝑡, a probabilistic forecast in the form of a
DF reduces to a probability forecast 𝑝 = 𝐹 (𝑡) for the binary event of
he outcome being less than or equal to 𝑡. Probability forecasts are often
valuated using the Brier score,

(𝑝, 𝑦) = 𝑝2 1{𝑦 ≤ 𝑡} + (1 − 𝑝)2 1{𝑦 > 𝑡}, (3)

hich is proper. As can be seen from Eq. (2), the CRPS of a probabilistic
orecast 𝐹 equals the integral over the Brier score for the induced
robability forecasts. In Table 3 we compare the CSD-IDR, AnEn, DRN,
nd BQN forecasts in terms of the mean Brier score for probability
orecasts at the threshold of 250 W/m2.

To assess the calibration or reliability of a probability forecast, one
ypically uses reliability diagrams, where the observed nonexceedance
robability in the test set is plotted versus the forecast probability.

or a reliable forecast, the graph of this function lies on or near the
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Fig. 3. PIT histograms for day-ahead probabilistic forecasts of hourly solar irradiance with the CSD-IDR, AnEn, DRN, and BQN methods at station Bondville (BON).
Fig. 4. CORP reliability diagrams for day-ahead probability forecasts of the binary event of solar irradiance being less than or equal to 250 W/m2, as induced by the CSD-IDR,
AnEn, DRN, and BQN forecast CDFs at station Bondville (BON) station. The blue regions show 90% consistency bands under the hypothesis of reliable probability forecasts. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
f

Table 3
Mean Brier score for day-ahead probability forecasts of hourly solar irradiance being
less than or equal to 250 W/m2, as induced by the CSD-IDR, AnEn, DRN, and BQN
forecast CDFs at SURFRAD stations in the benchmark setting of Yang et al. (2022a).

Method BON DRA FPK GWN PSU SXF TBL

CSD-IDR 0.141 0.040 0.107 0.133 0.142 0.124 0.104
AnEn 0.093 0.031 0.086 0.087 0.088 0.085 0.083
DRN 0.086 0.030 0.078 0.082 0.083 0.080 0.079
BQN 0.084 0.028 0.077 0.079 0.083 0.078 0.077

diagonal. However, the usual binning-and-counting approach, where
forecast probabilities are binned, and the conditional nonexceedance
probability of the respective outcomes is plotted vs. the midpoint of
the bin, has serious drawbacks, such as instabilities under the choice
of bins. For these reasons, Dimitriadis et al. (2021) introduce a new
type of reliability diagram, which they call CORP, for Consistent,
Optimal, Reproducible, and Pool-adjacent-violators (PAV) algorithm
based, as shown in Fig. 4, along with consistency bands that show
variability under the hypothesis of a reliable probability forecast. The
CORP approach uses nonparametric isotonic regression and the PAV
algorithm (de Leeuw et al., 2009) to generate nondecreasing empirical
reliability curves that are optimal in mathematically well-defined ways.

The CORP approach of Dimitriadis et al. (2021) also generates a
new type of score decomposition that expresses the mean Brier score,

S̄ = MCB − DSC + UNC (4)

in terms of miscalibration (MCB), discrimination (DSC), and uncer-
tainty (UNC) components, as given in the top-left corner of the CORP
reliability diagrams in Fig. 4. The UNC component is simply the mean
Brier score for a simple reference forecast that equals the unconditional
nonexceedance probability in the test set. Thus, the UNC component
does not depend on the forecast considered. The MSC component is
76

i

the difference of the mean Brier score for the method at hand in its
original form, and the mean score after recalibration based on the CORP
reliability curve. The DSC component is the difference of the mean Brier
score for the recalibrated probabilities and the mean score constant
reference forecast.

While in principle the decomposition in (4) is classical, the novelty
of the CORP approach lies in its judicious use of the PAV algorithm,
which guarantees stability and ensures both nondecreasing reliability
diagrams and nonnegative score components (Dimitriadis et al., 2021).
From Fig. 4 we see, not surprisingly, that the probability forecasts in-
duced by the DRN and BQN techniques have the highest discrimination
ability, which is a proxy for sharpness in the binary case, followed by
the AnEn and CSD-IDR methods. However, the DRN forecast is the least
reliable.

4.3. Quantile forecasts

Forecasts in the form of quantiles enjoy increasing prominence, and
can readily be deduced from fully probabilistic forecasts. For the com-
parative evaluation of quantile forecasts, consistent scoring functions
ought to be used, just as proper scoring rules ought to be used for
fully probabilistic forecasts, and we refer to Gneiting (2011), Ehm et al.
(2016), Yang et al. (2020a, Section 2.1.1), and Yang and van der Meer
(2021, Section 3.1.1) for technical discussion. The most widely used
consistent scoring function for the quantile at level 𝛼 is the asymmetric
piecewise linear scoring function or pinball loss that assigns a penalty
of

S𝛼(𝑥, 𝑦) = (1{𝑦 ≤ 𝑥} − 𝛼) (𝑥 − 𝑦) =
{

(1 − 𝛼) (𝑥 − 𝑦), 𝑦 ≤ 𝑥,
𝛼 (𝑦 − 𝑥), 𝑦 ≥ 𝑥,

(5)

or a quantile forecast 𝑥 and outcome 𝑦, with an obvious interpretation

n the unit of the outcome.
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Fig. 5. CORP reliability diagrams for day-ahead quantile forecasts at the 8.33%- and 91.67%-level, as induced by the CSD-IDR, AnEn, DRN, and BQN forecast CDFs at station
Bondville (BON). The blue regions show 90% consistency bands under the hypothesis of reliable quantile forecasts. The scatter diagrams show the respective quantile forecasts
and outcomes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Mean pinball loss for day-ahead quantile forecasts of hourly solar irradiance at the
1∕12 or 8.33%-level, and 11∕12 or 91.67%-level, as induced by the CSD-IDR, AnEn,
DRN, and BQN methods at SURFRAD stations in the benchmark setting of Yang et al.
(2022a), in W/m2.

Method BON DRA FPK GWN PSU SXF TBL

8.33%

CSD-IDR 23.9 21.0 22.1 24.7 22.1 24.1 26.1
AnEn 19.9 15.2 18.2 20.5 18.4 20.7 22.8
DRN 19.3 12.8 17.4 19.7 17.4 21.2 21.2
BQN 16.8 12.7 15.6 17.4 15.7 17.3 19.5

91.67%

CSD-IDR 13.5 6.1 10.0 13.9 15.6 11.8 11.9
AnEn 12.3 6.6 10.3 13.2 14.8 10.9 12.4
DRN 12.1 6.2 10.5 13.3 14.6 11.8 13.0
BQN 11.3 5.8 9.3 12.1 13.5 10.6 11.2

In Table 4 we compare quantile forecasts derived from the CSD-IDR,
AnEn, DRN, and BQN distributions at level 𝛼 = 1∕12 and 𝛼 = 11∕12,
respectively. The levels have been chosen such that they correspond to
the smallest and the largest of the 11 members of the AnEn ensemble.
Generally, we see the familiar pattern, in that the BQN forecast is supe-
rior, followed by the DRN, AnEn, and CSD-IDR methods. Interestingly,
at some stations, the CSD-IDR reference outperforms the AnEn and DRN
quantile forecasts at the higher level.

As Gneiting et al. (2023) demonstrate, concepts of reliability for
quantile forecasts are more subtle than commonly assumed. In par-
ticular, unconditional and conditional quantile calibration can be dis-
tinguished. For outcomes with continuous distributions, unconditional
quantile reliability posits that the fraction of forecast cases in which
the outcome is less than or equal to the 𝛼-quantile forecast ought
to be (𝛼 × 100)%. For example, the diagrams in Lauret et al. (2019,
Figure 4) address unconditional quantile calibration in this form. Mat-
ters get more complicated when outcomes or forecasts have discrete
components, as nonnegligible fractions of data that coincide with the
quantile forecast require care and re-interpretation. For details we refer
to Section 2.2 of Gneiting et al. (2023).
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Conditional quantile calibration is a stronger notion; in a nutshell,
the conditional notion posits that, conditional on the quantile forecast
attaining a certain value, the distribution of the outcome ought to have
said value as its conditional quantile. For diagnostic checks, Gneiting
et al. (2023) recommend the use of CORP reliability diagrams for
quantiles, as illustrated on the CSD-IDR, AnEn, DRN, and BQN forecasts
in Fig. 5. Following the lead of Dimitriadis et al. (2021) and Gneiting
and Resin (2021), and now applying to quantiles, rather than prob-
abilities, the CORP approach uses nonparametric isotonic regression
and the PAV algorithm to estimate conditional quantiles. The CORP
reliability curve shows, conditional on the value of the 𝛼-quantile
forecast on the horizontal axis, the estimated value of the 𝛼-quantile for
the outcome distribution. For a forecast that is conditionally calibrated,
the respective graph lies at or near the diagonal. Deviations from the
diagonal indicate miscalibration.

The CORP approach also generates a decomposition of the type in
(4) that now applies to the mean pinball loss. The respective miscalibra-
tion (MCB), discrimination (DSC), and uncertainty (UNC) components
are shown in the bottom-right resp. top-left corner of the quantile relia-
bility diagrams in Fig. 5. The components are computed and interpreted
in ways analogous to those for the Brier score, and they enjoy the same
appealing properties. The quantile forecasts induced by the DRN and
BQN techniques have the highest discrimination ability, which again is
a proxy for sharpness, followed by the AnEn and CSD-IDR methods. An
interesting observation applies to the reliability diagram for the CSD-
IDR reference forecast for 𝛼 = 1∕12. While the reliability curve deviates
quite strongly from the diagonal, the miscalibration (MCB) component
remains very small, owing to the fact that the CSD-IDR forecast has
very few forecast values in the respective range from about 300 to 700
W/m2. In contrast, the deviations for the DRN forecast occur in regions
with very many forecast values, for a much higher MCB component.
The BQN quantile forecasts are well calibrated and superior in both
the DSC component and the total score.

4.4. Interval forecasts

The most natural and most persuasive way of deriving an interval
forecast from a predictive distribution is to consider the equal-tailed,
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Table 5
Mean width of equal-tailed interval forecasts of hourly solar irradiance at the 10∕12 or
83.33%-level, as induced by the CSD-IDR, AnEn, DRN, and BQN methods at SURFRAD
stations in the benchmark setting of Yang et al. (2022a), in W/m2.

Method BON DRA FPK GWN PSU SXF TBL

CSD-IDR 387.8 233.0 324.6 414.0 401.6 386.6 398.4
AnEn 271.9 161.2 249.1 290.6 282.5 265.1 312.7
DRN 214.7 106.7 198.0 226.3 234.3 204.4 255.8
BQN 245.6 144.5 218.2 263.4 251.6 239.0 294.3

or central, (1 − 𝛼) × 100% prediction interval, whose lower and upper
endpoints are given by the predictive quantile at level 𝛼

2 and 1 − 𝛼
2 ,

respectively. The prediction intervals shown in Fig. 1 use 𝛼 = 10∕12.
Issuing an interval forecast of this type is the same as issuing two

quantile forecasts. Thus, to derive a proper scoring rule 𝑆𝛼(𝑙, 𝑢; 𝑥) for
interval forecasts, where 𝑙 and 𝑢 represent the 𝛼

2 and 1 − 𝛼
2 quantile

orecast, a natural approach is to add up the respective pinball losses
rom (5). After rescaling and reshuffling terms, we obtain the interval
core (Gneiting and Raftery, 2007; van der Meer et al., 2018; Yang and
an der Meer, 2021),

int
𝛼 (𝑙, 𝑢; 𝑦) = (𝑢 − 𝑙) + 2

𝛼
(𝑙 − 𝑦)1{𝑦 < 𝑙} + 2

𝛼
(𝑦 − 𝑢)1{𝑦 > 𝑢}, (6)

which is proper and again reported in the unit of the outcome.
As Bracher et al. (2021) note, the interval score has three intuitively
meaningful, nonnegative components, namely, the width 𝑢 − 𝑙 of the
interval, which quantifies sharpness, the undershoot penalty term 2

𝛼 (𝑙−
)1(𝑦 < 𝑙) for outcomes 𝑦 below the lower endpoint 𝑙, and an analogous
vershoot penalty term 2

𝛼 (𝑦 − 𝑢)1(𝑦 > 𝑢) for outcomes that exceed the
upper endpoint 𝑢. Thus, the mean pinball loss decomposes into the
respective mean components. Alternatively, the aforementioned CORP
decomposition can be applied to each of the pinball losses, and terms
can be added up, to yield a decomposition of the form in (4). Either
approach is meaningful, and we invite the solar forecasting community
to experiment with them, to see which one fits best, to yield the
decomposition that Lauret et al. (2019, Table 4) have sought.

To assess calibration or reliability the prediction interval coverage
probability (PICP: van der Meer et al., 2018, equation (2.38)) is fre-
quently reported. In the present case of the equal-tailed interval with
nominal coverage 10∕12, the PICP can be read off the PIT histograms in
Fig. 3, namely, as the proportion of the area of the inner 10 bins relative
to the total area. Similarly, PICPs at other nominal levels can be read
off from PIT histograms. However, nominal PICP alone is insufficient
to judge reliability for an equal-tailed interval, as both endpoints could
be biased in the same direction — a behavior that can be diagnosed in
calibration checks for the endpoints, when viewed as quantile forecasts.
The mean width of the prediction interval serves to quantify sharpness,
as exemplified in Table 5.

Not surprisingly, the verification results echo those for fully prob-
abilistic, probability, and quantile forecasts. Generally, DRN and BQN
outperform AnEn and CSD-IDR interval forecasts. At every station con-
sidered, the DRN forecast is sharpest, but also is underdispersed, with
a PICP below the nominal level of 83.3%, except at station TBL. The
BQN forecast is less sharp, but well calibrated due to the flexible shape
of the forecast distribution that is not bound to parametric assumptions
such as a truncated normal distribution. Thus, BQN excels in terms of
maximizing sharpness subject to calibration and achieves the lowest
mean score at every station.

5. Discussion

In recent years, the solar community has embraced advances in
the multidisciplinary science of forecasting, by leveraging cumulative
progress in numerical weather prediction (NWP), developing post-
processing techniques, furthering probabilistic forecasting, and address-
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ing the compelling case for reproducibility, benchmark data, forecast
contests, and theoretically principled, both comparative and diagnostic
forecast evaluation. Our goal in this article was to draw attention
to recent advances in statistical and machine learning methodology
that may yield or facilitate further progress. Documented code for the
reproduction of our results is available in R (R Core Team, 2022;
Schulz, 2022) and can readily be adapted to other settings, for experi-
mentation and comparative evaluation of the proposed CSD-IDR, DRN,
and BQN techniques for probabilistic solar forecasting. Furthermore,
we encourage the use of proper scoring rules, PIT histograms and CORP
reliability diagrams in the assessment of predictive performance.

Not surprisingly, avenues for further research abound. While we
have proposed the use of Isotonic Distribution Regression (IDR: Henzi
et al., 2021) to generate a probabilistic benchmark technique based
on clear-sky irradiance (CSD-IDR), the IDR technique can be applied
for post-processing as well. For example, IDR can be applied based on
clear-sky irradiance and the irradiance forecast from the NWP model
jointly. In the benchmark setting of Yang et al. (2022a), such an
approach underperforms the DRN and BQN forecasts, but is on a par
with the AnEn approach (Schulz, 2022).

Turning to forecast verification, we have illustrated the recently de-
veloped CORP approach that yields improved reliability diagrams, and
decomposes the mean Brier score and the mean pinball loss into mis-
calibration (MCB), discrimination (DSC), and uncertainty components.
Similar types of score decompositions for the CRPS pose technical
challenges. As Lauret et al. (2019, Appendic C) note, the CRPS can be
written as an integral over Brier scores, as in our Eq. (2), and so it
can be decomposed into the aforementioned three terms, by integrating
over the respective components of the Brier score. However, the CRPS
can also be written as an integral over pinball losses (Gneiting and
Ranjan, 2011), and so it can also be decomposed by integrating over
the respective components for the pinball loss. This raises the question
which of the alternatives, amongst other options, ought to be pursued
in practice.

Many applied settings call for genuinely multivariate probabilistic
forecasts that honor inter-variable, spatial, temporal, and/or spatio-
temporal dependence structures, and we have encouraged the use of
empirical copula techniques for this purpose. While methods for the
verification of multivariate probabilistic forecasts have been developed
over the years (Gneiting et al., 2008; Scheuerer and Hamill, 2015;
Golestaneh et al., 2016; Thorarinsdottir et al., 2016), progress has been
slow and much remains to be done.

Ideally, comparative forecast evaluation ought to be based on a
direct assessment of the costs or benefits incurred by the use of compet-
ing probabilistic forecast methods (van der Meer et al., 2018, Section
5). Perhaps surprisingly, from a theoretical perspective, an economic
assessment of this type is equivalent to the use of proper scoring
rules. Stated informally, as shown by Grünwald and Dawid (2004)
and reviewed by Brehmer and Gneiting (2020), if one considers the
actual cost–loss structure in an applied problem, finds an action that
minimizes the expected cost under the probabilistic forecast distribu-
tion at hand, computes the actual loss based on said action and the
outcome, and averages monetary results over a test set, the approach
is equivalent to using the mean score under a proper scoring rule.

We end the paper by encouraging continued close interaction with
the community in operational weather prediction, where at this time
we are witnessing vigorous development and progress, particularly in
innovative uses of sophisticated neural networks that have the po-
tential to supplement or supersede physics-based models, as reviewed
by Schultz et al. (2021). While approaches of this type continue to
depend on gridded initial conditions from real time data assimilation,
as provided by operational weather centers, they promise improved
predictive performance at substantially lower cost and generation time
than presently used models (Pathak et al., 2022; Keisler, 2022; Bi et al.,
2022), and allow for adaptation and tailoring with particular emphasis
on solar variables. In all these efforts, in addition to the linkage to
weather prediction, a stark emphasis on probabilistic forecasts, compar-
isons to probabilistic reference techniques, and the use of theoretically
principled methods for comparative and diagnostic forecast verification

will remain critical to progress in solar forecasting.
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