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Abstract

Since the discovery of cosmic rays during the first decade of the 20th century, many

experiments were designed to study them directly or by means of the extensive air

showers they generate when entering the Earth’s atmosphere. The largest observatory

designed to detect air showers is the Pierre Auger Observatory situated in Malargüe,

Argentina. Many questions related to astrophysics and particle physics are tackled

here. In particular, since cosmic rays cover energies far above those achievable in

man-made accelerators, they represent excellent and unique probes to study physical

properties at the highest energies.

As an extensive air shower develops in the atmosphere, the number of particles

that constitute it grows. At the same time, individual energies decrease until it is

more probable for particles to decay or be absorbed in the atmosphere, which dimin-

ishes the number of particles again. This means that there is a position of maximum

development Xmax. Hadronically interacting particles ultimately yield muons, which

can be measured at the ground. This number Nµ together with Xmax are observables

measured at the Pierre Auger Observatory that present a meaningful anticorrelation.

In the present work, this anticorrelation is studied. An analytical model is devel-

oped that explains the Xmax-Nµ anticorrelation as a function of parameters describing

the multiplicity of hadronically interacting particles, the fraction of energy that is taken

by these particles and the inelasticity of the first interaction and corresponding effective

macro-parameters representative of the whole shower. This model is then further im-

proved using neural networks trained with the values of the parameters and observables

obtained from simulations performed with CONEX. The resulting model is universal in

the sense that the performance does not depend on the high-energy interaction model

used during simulation. Finally, a model with a reduced set of parameters is applied to

a dataset from Auger. The distributions of the hadronic multiplicity of the first inter-

action, the hadronic energy fraction of the first interaction and the effective inelasticity

of the rest of the shower for the dataset are inferred. They reveal that the hadronic

multiplicity and the hadronic energy fraction of the first interaction are generally too

low in current high-energy interaction models used for simulations.

Keywords: EXTENSIVE AIR SHOWER, HIGH-ENERGY HADRONIC INTERAC-

TIONS, NEURAL NETWORKS
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Resumen

Desde el descubrimiento de los rayos cósmicos a principios del siglo XX se diseñaron

numerosos experimentos para estudiarlos de forma directa o mediante las lluvias at-

mosféricas que generan al entrar en la atmósfera terrestre. El observatorio más grande

diseñado para detectar estas lluvias es el Observatorio Pierre Auger ubicado en Ma-

largüe, Argentina. Aqúı se abordan muchas cuestiones relacionadas con la astrof́ısica

y la f́ısica de part́ıculas. En particular, dado que los rayos cósmicos alcanzan enerǵıas

superiores a las que son posibles en los aceleradores artificiales, representan objetos

excelentes y únicos para estudiar las propiedades f́ısicas a las más altas enerǵıas.

A medida que una lluvia avanza en la atmósfera, crece el número de part́ıculas

que la componen. Al mismo tiempo, las enerǵıas individuales disminuyen hasta que es

más probable que las part́ıculas decaigan o sean absorbidas por la atmósfera, lo que

vuelve a reducir su número. Esto significa que existe una posición de máximo desarrollo

Xmax. Las part́ıculas que interactúan hadrónicamente producen muones que se pueden

detectar a nivel del suelo. Este número Nµ junto con Xmax son observables medidos en

el Observatorio Pierre Auger que presentan una anticorrelación significativa.

En el presente trabajo se estudia esta anticorrelación. Se desarrolla un modelo

anaĺıtico que expresa la anticorrelación Xmax-Nµ como función de parámetros que des-

criben la multiplicidad de part́ıculas que interactúan hadrónicamente, la fracción de

enerǵıa que estas part́ıculas se llevan y la inelasticidad de la primera interacción y

correspondientes macroparámetros efectivos representativos de toda la lluvia. Luego

se mejora este modelo utilizando redes neuronales entrenadas con los valores de los

parámetros y observables obtenidos de simulaciones realizadas con CONEX. El mo-

delo resultante es universal en el sentido que no depende del modelo de interacciones

a altas enerǵıas utilizado durante las simulaciones. Finalmente, se aplica un modelo

con un conjunto reducido de parámetros a un conjunto de datos de Auger. Se infieren

para el conjunto de datos las distribuciones de la multiplicidad hadrónica de la primera

interacción, la fracción de enerǵıa hadrónica de la primera interacción y la inelasticidad

efectiva del resto de la lluvia. Estas revelan que la multiplicidad hadrónica y la fracción

de enerǵıa hadrónica de la primera interacción son generalmente demasiado bajas en

los modelos actuales de interacciones a altas enerǵıas utilizados en las simulaciones.

Palabras clave: LLUVIA ATMOSFÉRICA EXTENDIDA, INTERACCIONES

HADRÓNICAS A ALTAS ENERGÍAS, REDES NEURONALES
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Zusammenfassung

Seit der Entdeckung der kosmischen Strahlung Anfang des 20. Jahrhunderts wurden

viele Experimente entwickelt, um sie direkt oder anhand der Luftschauer zu studieren,

die sie beim Eintritt in die Erdatmosphäre erzeugen. Das größte Observatorium zur

Erfassung von Luftschauern ist das Pierre-Auger-Observatorium in Malargüe, Argenti-

nien. Hier werden viele Fragen der Astro- und Teilchenphysik behandelt. Da kosmische

Strahlung Energien abdeckt, die weit über denen liegen, die in künstlichen Beschleuni-

gern erreichbar sind, stellen sie hervorragende und einzigartige Objekete dar, an denen

man physikalische Eigenschaften bei höchsten Energien studieren kann.

Wenn ein Luftschauer die Atmosphäre durchquert, wächst die Anzahl der in ihm

enthaltenen Teilchen. Gleichzeitig nehmen ihre Energien ab. Wenn diese tief genug

sind, zerfallen die Teilchen oder werden in der Atmosphäre absorbiert, was die Zahl

der Teilchen wieder verringert. Dies ergibt eine Position maximaler Entwicklung Xmax.

Hadronisch wechselwirkende Teilchen bringen Myonen hervor, die am Boden gemessen

werden können. Diese Zahl Nµ zusammen mit Xmax sind Observablen, die in Auger

gemessen werden und eine aussagekräftige Antikorrelation aufweisen.

In der vorliegenden Arbeit wird diese Antikorrelation studiert. Es wird ein ana-

lytisches Modell entwickelt, das diese als Funktion von Parametern wiedergibt, die

die hadronische Multiplizität, den hadronischen Energieanteil und die Inelastizität der

ersten Interaktion beschreiben, zusammen mit entsprechenden effektiven Parametern,

die für den gesamten Schauer repräsentativ sind. Dieses Modell wird dann anhand

künstlicher neuronaler Netze weiter verbessert. Hierfür werden Werte der Parameter

und Observablen von Simulationen benutzt, die mit CONEX durchgeführt wurden.

Das resultierende Modell hängt nicht von dem während der Simulation verwendeten

Hochenergie-Wechselwirkungsmodell ab. Schließlich wird ein Modell mit reduziertem

Parametersatz auf einen Datensatz von Auger angewendet. Die Verteilungen der hadro-

nischen Multiplizität und des hadronischen Energieanteils der ersten Wechselwirkung

und die der effektiven Inelastizität werden diesem Datensatz entnommen. Sie zeigen,

dass die Multiplizität und der Energieanteil der ersten Wechselwirkung in aktuellen

Modellen, die für Simulationen verwendet werden, im Allgemeinen zu niedrig sind.

Stichwörter: LUFTSCHAUER, HADRONISCHE INTERAKTIONEN BEI HOHEN

ENERGIEN, KÜNSTLICHE NEURONALE NETZWERKE
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Chapter 1

Cosmic rays

“Yes, the cosmic rays, the shortest wavelength and most highly

penetrating of all vibratory forces. It has been known that they

beat unceasingly upon the Earth from outer space, cast forth

by the huge generators of the stars (...).”

— Edmond Hamilton, The man who evolved

At the beginning of the 20th century, it became clear that there is more to the uni-

verse than large structures like stars and smaller components like gas and dust: cosmic

rays were discovered. In contrast to gas and dust, cosmic rays are relativistic charged

particles impinging on the Earth’s atmosphere. Until the 1950s, they represented the

only probes of high-energy particles. This resulted in many discoveries in the area of

particle physics. With the advent of the particle accelerator era, the interest shifted

into more astrophysical questions concerning cosmic rays. Nonetheless, cosmic rays re-

main to date the only possibility to understand aspects of particle physics in energy

ranges beyond those achievable in particle accelerators. In this chapter, we summarize

discoveries and scientific results in cosmic ray physics, some of which are important to

the present work.

1.1. Historical development

Between 1911 and 1913, Victor Hess undertook the work that won him the Nobel

Prize in Physics in 1936. The assumption at the time was that radiation would decrease

with increasing distance from the Earth, the then assumed source of radiation. On the

contrary, Hess discovered, using radiation detectors on balloon flights (see figure 1.1,

left), that ionizing radiation increases with altitude [3]. He interpreted these results as

“likely to be explained by the assumption that radiation of very high penetrating power

enters from above into our atmosphere, and even in its lowest layers causes part of the

1



2 Cosmic rays

ionization observed in closed vessels.” He early ruled out the Sun as a possible source

because there was no decrease in the radiation either at night or during a solar eclipse.

In the late 20s, Skobeltsyn constructed a cloud chamber, which was in principle

destined for studies of electrons emitted in radioactive decays. He observed tracks that

were hardly deflected at all and didn’t fit the picture. These turned out to be the first

pictures of tracks left by high-energy cosmic rays [5]. At the same time, the Geiger-

Müller detector was invented. It made the detection of individual cosmic rays and the

precise determination of their arrival times possible. Bothe and Kolhörster coupled the

coincidence technique with the Geiger-Müller counter to study cosmic rays, marking

thus the start of cosmic ray research as a branch of physics [6].

By that time, the first major achievement in the area of relativistic quantum me-

chanics was Dirac’s discovery of the equation that bears his name [7]. It was intended

to describe free electrons, but had a problematic feature. For every positive-energy

solution it admitted a solution with negative energy. To rescue his equation, Dirac

postulated that the negative-energy states are filled by an infinite “sea” of electrons. A

“hole” in the sea would be experienced as an ordinary particle with positive energy and

positive charge. This cumbersome explanation turned out to be fruitful. A particle with

the required properties was indeed discovered by Anderson in 1933 [4]: the positron.

Its track was observed on a cloud chamber picture of cosmic radiation (see figure 1.1,

right).

This set the beginning of a series of discoveries of new particles in the products of

cosmic rays. Some of them were searched for, others came unexpected. For example,

Yukawa postulated some properties a mediator of the strong force, that binds pro-

tons and neutrons together in atomic nuclei, should possess, in order to account for

known features [8]. In 1937, Neddermeyer and Anderson discovered the muon in cloud-

chamber photographs [9], which, because of its appropriate mass, was at first wrongly

Figure 1.1: Left: Victor Hess, at the center, departing from Vienna about 1911, soon discovering
the penetrating ionizing radiation from outer space. Right: Anderson’s cloud chamber picture of
cosmic radiation from 1932, showing for the first time the existence of the positron (picture
taken from [4]). The particle enters from the bottom, strikes the lead plate in the middle and
loses energy, as can be interpreted from the more pronounced curvature of the upper part of the
track. The curvature was induced intentionally by a magnetic field.
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identified as this mediator. Later, the muon was correctly assigned as a member of the

lepton group of subatomic particles. Today, we know that the exchange particle for

the strong force between quarks is the gluon, discovered much later at the electron-

positron collider PETRA of DESY in 1979 [10]. When looking into the hierarchy of

scales governing the nucleon-nucleon interaction, the long distance region is domina-

ted by one-pion exchange, whereas the intermediate distance region is dominated by

two-pion exchange [11]. The first experimental hint of the neutral pion was observed in

the mixed cosmic ray showers observed by Chao [12] and Fretter [13], using the same

experimental technique as Neddermeyer and Anderson. On the other hand, charged

pions were found by the collaboration lead by Cecil Powell in 1947 [14]. They used

photographic emulsions that were exposed to cosmic rays for long periods of time in

sites located at high-altitude mountains.

Rochester and Butler reported in 1947 the discovery of forked particle tracks “of a

very striking character” in the form of “V”s, in cloud-chamber photographs of cosmic

ray showers [15]. The neutral particle that decays into the two particles rendering

the V-formed tracks, is now known as the K0. In a similar fashion, the Λ particle

was discovered by Anderson’s group in 1950 [16]. Being these particles and others

unexpectedly heavy, they came to be known collectively as “strange” particles, which

would give later the strange quark its name.

The discovery of the phenomenon that will be the main protagonist of the present

work was not straightforward. At the beginning, in 1934, Rossi observed correlated arri-

Figure 1.2: Simplified sketch of an extensive air shower generated by a cosmic ray. It can be
appreciated that the generation of new particles and subsequent subshowers quickly results in
a large number of particles. As the number of particles increases, the average individual energy
carried by them decreases. At some point, this energy is so low that these particles decay or are
absorbed, instead of contributing to multiplicative processes, i.e. creating new particles. Thus,
there is a depth in the atmosphere where the number of particles is maximum.
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vals of particles at widely-separated detectors [17]. Today, we understand that cosmic

rays interact with molecules in the atmosphere, setting off a succession of interactions

between the products of the cosmic ray and other molecules in the atmosphere. When

the cosmic ray, which we will call the primary particle in the present work, interacts

with some molecule in the atmosphere, new particles are created that themselves un-

dergo this process, after traveling a certain distance in the atmosphere. Today, we call

this cascading process an extensive air shower (see figure 1.2 for a simplified schematic

representation). In each interaction, energy is distributed among the newly created par-

ticles. At some point, this energy is so low that these particles decay or are absorbed,

instead of contributing to more multiplicative processes, i.e. creating new particles.

Thus, there is a depth in the atmosphere where the number of particles is maximum.

What Rossi observed for the first time were the product particles of one such event

arriving at the site of his measurements. This phenomenon was understood and stu-

died by Schmeiser and Bothe, who analyzed independently transition curves published

by Rossi himself [18]. After detailed studies, they already gave a first description of

different components of particles present in air showers.

On the other hand, Kolhörster and his group described in 1938 how the rate of

coincidences between a pair of Geiger-Müller counters develops as a function of sepa-

ration distance [19]. In addition, they already hypothesized that it should be possible

to use information about the arrival points of product particles at the ground to infer

the point of origin of the air shower that generated them, what we will call the depth

of the first interaction in this work. Even though we know much more today and have

collected huge amounts of data in different experiments, we have not yet worked out

how to do this inference on a shower-to-shower basis.

Pierre Auger and his collaborators calculated in 1939, using these coincidences,

the first estimates of energies carried by primary cosmic rays [20]. Their method was

based on the number of particles in the observed showers and on the assumption that

each particle at the ground would carry, on average, the critical energy. The concept

of critical energy will be used frequently in this work and defined in detail in section

3.4. The values obtained for the primary energies went up to 1015 eV. Due to these

high values, Auger theorized already back then that cosmic rays should “acquire their

energy along electric fields of a very great extension”. Both, the energy spectrum of

cosmic rays and processes of acceleration of cosmic rays, are present objects of study.

Luckily, by the time the idea of extensive air showers had settled, great advances

in quantum electrodynamics had already been done, not so much in fundamentals of

hadronic interactions. However, since a huge portion of cascading processes is electro-

magnetic in nature, advances in air shower physics could come into view, which itself

motivated more investigation in this area. Bethe and Heitler calculated in 1934 the pro-

babilities for pair production and bremsstrahlung, accounting here for the screening of
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the atomic field [21]. Carlson and Oppenheimer extended the theory in 1937, taking

into consideration the energy losses of electrons through ionization of the medium [22].

They also introduced diffusion equations to deal with the calculations. Using these,

they observed the following key features of extensive air showers:

the total number of electromagnetic particles (electrons, positrons, and photons)

at the shower maximum is proportional to the energy carried by the primary

cosmic ray that generated the shower,

the position of the shower maximum develops proportionally to the logarithm of

the primary energy.

The diffusive equations were expanded throughout the years to include more physical

aspects (such as multiple scattering) and variables of showers (such as lateral position)

[23, 24]. A good three dimensional description of electromagnetic subshowers of exten-

sive air showers was converged upon. Before going into more details on the description

of electromagnetic subshowers and also of hadronic processes in chapter 3, we will

go through the major applications of cosmic ray physics to astrophysics and particle

physics in the next few sections.

All these topics are investigated at the Pierre Auger Observatory, located at a vast

plain known as the Pampa Amarilla near Malargüe in Mendoza, Argentina [25, 26, 27].

This is the largest observatory up to date for the detection of extensive air showers

generated by cosmic rays. This observatory also stands out because it combines two

main independent detection techniques making it a so-called hybrid detector. An array

of surface detector stations and a collection of air fluorescence telescopes provide two

independent and complementary ways to measure air showers. The first method detects

charged particles through their interaction with the water contained in the surface

detector tanks, while the second one tracks the development of air showers by observing

the ultraviolet light emitted high in the Earth’s atmosphere.

1.2. Applications to astrophysics

1.2.1. Energy spectrum

Measuring the energy spectrum of cosmic rays at high precision is relevant for

understanding their origin and the mechanisms of cosmic ray acceleration and propa-

gation. Figure 1.3 shows the “all-particle” spectrum as a combination of the results of

several experiments. In order to be able to compare results from different observato-

ries, the differential energy spectrum is displayed. Furthermore, it has been multiplied

by a factor of E2.6 in order to highlight features of the spectrum that, because of its
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steepness, are difficult to discern otherwise. The spectrum can be described very well

by a power law with varying spectral index for the different regions between these

characteristic kinks. The so-called knee between 1015 eV and 1016 eV, the second knee

near 1017 eV, the ankle around 1018.5 eV and the flux suppression at the higher end of

the spectrum stand out and will be commented upon in the next paragraphs of this

section.

There are two viable candidate theories that explain the physical origin of the knee

feature [29]. The origin could be related to the way cosmic rays propagate. PeV cosmic

ray protons possess, in galactic magnetic fields of a strength of around 1µG, Larmor

radii of around 1 pc. The Larmor radius is the radius of the circular motion of a charged

particle in the presence of a uniform magnetic field. This means that the confinement

of cosmic rays of higher energies becomes significantly less efficient in our galactic disk,

causing thus a steepening of the cosmic ray spectrum. This scenario also requires the

existence of galactic cosmic ray sources that are capable of accelerating particles to

energies well beyond the knee energy, in the first place. An alternative explanation to

the knee feature is that the PeV energy scale actually is the highest energy achievable
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Figure 1.3: Cosmic ray differential energy spectrum reconstructed from air showers observed
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in galactic cosmic ray sources, which are thought to be supernova remnants. The Hillas

criterion can be used to study this possibility. It states that

Emax = η−1βshqBR (1.1)

is the maximum energy achievable by a particle of charge q at a source of characteristic

size R = l · Γ, surrounded by a magnetic field of strength B. l is the co-moving size

of the source and Γ the Lorentz factor of the motion. Assuming a shock acceleration

mechanism with velocity βsh in units of the speed of light, η represents the efficiency of

the acceleration. Otherwise, these two parameters do not enter the equation. Equation

(1.1) is obtained demanding the Larmor radius of the particle not to exceed the size of

the acceleration region. It shows that a considerable magnetic field is needed in order

to see feasible candidates in supernova remnants (see figure 1.4, left). If this situation

is met, remains unknown.

Since expression (1.1) depends on the charge of the accelerated particle, it is actually

an open question whether the energy region closely below the knee corresponds to

protons or if it is dominated by other masses. This is valid for the argument given

above, for either possible explanation of the knee feature. Assuming that cosmic rays

with energy closely below the knee are mainly protons implies that a similar feature

should happen approximately 100PeV above, for iron cosmic rays. This could indeed

be the explanation of the second knee [30].

Figure 1.4: Left: Hillas diagram. It shows typical characteristic sizes R and magnetic fields
B of different astrophysical sources [31]. Solid and dashed lines show for which values of B and
R confinement of protons (red) and iron nuclei (blue) with an energy of 1020 eV are possible.
Right: Source luminosity and number density of different astrophysical objects. Different black
lines correspond to different values of the cosmic ray luminosity LCR and the luminosity Lγ of
the sources in the wavelength studied. The vertical dashed gray line represents the lower limit for
the number density of sources necessary to be compatible with the analysis of arrival directions
of the cosmic rays of the highest energies, as detected at the Pierre Auger Observatory [32]. Both
diagrams are taken from [33].
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At energies just above that of the second knee, a steepening in the flux of heavy

primary particles was measured by the KASCADE-Grande experiment [34]. The sub-

sequent flattening of the spectrum means an onset of a new light component, which

needs to be of extra-galactic origin. The flux suppression at the highest energies in the

cosmic ray spectrum happens close to the energy threshold of about 6× 1019 eV, pre-

dicted by the GZK-effect. This theory states that cosmic rays with energies above this

limit lose energy when interacting with photons of the cosmic microwave background

to produce pions through the Λ resonance:

γCMB + p → Λ+ → p+ π0

or

γCMB + p → Λ+ → n+ π+.

However, a scenario solely based on the GZK-effect does not fit the flux measured at the

Pierre Auger Observatory [35]. The cut-off could instead be explained by a combination

of propagation effects and the maximum energy achievable at the source [36].

1.2.2. Origin of cosmic rays

Making use of the Hillas criterion given by equation (1.1), one can deduce which

combination of magnetic fields and source sizes are necessary in order to obtain certain

cosmic ray energies. The Hillas diagram in figure 1.4 (left, taken from [33]) summarizes

these values for different astrophysical sources. Solid and dashed lines show there for

which values of B and R confinement of protons (red) and iron nuclei (blue) with an

energy of 1020 eV are possible. Objects to the left of the lines do not satisfy the Hillas

criterion to be able to accelerate cosmic rays up to this energy [31].

In addition to certain sizes and magnetic fields, cosmic ray accelerators also need to

possess a specific energy budget in order to produce the ultra-high energy cosmic ray

flux we observe at Earth. The budget of a particular source type can be estimated from

the source luminosity and the number density of this source type. A summary of these

values, similar to the Hillas diagram, is shown in figure 1.4 (right, taken from [33]).

The energy budget corresponding to each combination of values is compared to the

ultra-high energy cosmic ray rate estimated in [38]. The regions to the left of the black

lines do not satisfy the energy budget condition, while each black line corresponds to

different values of the cosmic ray luminosity LCR and the luminosity Lγ of the sources

in the wavelength studied. The vertical dashed gray line represents the lower limit for

the number density of sources necessary to be compatible with the analysis of arrival

directions of the cosmic rays of the highest energies, as detected at the Pierre Auger

Observatory [32].
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1.2.3. Anisotropy

The search for concrete sources of cosmic rays of the highest energies motivates the

study of excesses in the flux of these cosmic rays. Considering the highest energies is

necessary in this pursuit, in order to deal with the fact that the propagation of charged

particles is affected by the extra-galactic and galactic magnetic fields. The rigidity

R =
pc

q

measures the resistance of a particle of charge q and momentum p to deflection by a

magnetic field. The higher its energy, the higher its resistance and the more accurately

this particle points to the source where it was created. It is therefore realistic to focus

on large angular scales for cosmic rays of 1019 eV and to look for a cumulative flux from

multiple close by objects. An anisotropy in the arrival directions was indeed detected

at a more than 5.2σ level of significance by the Pierre Auger Collaboration [37]. This

anisotropy can be described by a dipole, which is shown in figure 1.5. The direction of

the dipole indicates an extra-galactic origin of ultra-high energy particles.

The Pierre Auger Collaboration also performed searches at smaller angular scales

and correspondingly higher energies [39]. No statistically significant evidence of an-

isotropy was discovered, but some departure from isotropy was observed for cosmic

rays with energies above 58EeV, in a region around the Swift active galactic nucleus,

located at less than 130Mpc and around the direction of Centaurus A.

Figure 1.5: Smoothed cosmic ray flux for energies above 3EeV, in equatorial coordinates, as
measured at the Pierre Auger Observatory (figure taken from [37]). The dashed line follows the
galactic plane, while the star indicates the center of the galaxy. The region with no values is not
covered by the measurements from the Pierre Auger Observatory.
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1.2.4. Mass composition

We have already seen that, in order to understand the features in the energy spec-

trum, the mass of the cosmic ray needs to be known. One of the most robust mass

sensitive observables is the position Xmax in the atmosphere, at which an air shower

attains the maximum number of particles (see explanation to figure 1.2). In [40], Xmax

distributions of simulated proton, helium, nitrogen and iron initiated showers were

parameterized in various energy bins. They used simulations done with different ha-

dronic interaction models (QGSJETII-04, EPOS-LHC and SIBYLL-2.3). These models

are implemented in high-energy interaction generators used in frameworks for Monte

Carlo simulation of extensive air showers and will be explained in section 3.3. For dif-

ferent combinations of primary fractions in the cosmic ray flux, they obtain different

total Xmax distributions. Comparing these to the true Xmax distribution measured at

the Pierre Auger Observatory, they obtain a fit for the values of the different primary

fractions. For each high-energy interaction model used when simulating they obtain dif-

ferent fit values. Figure 1.6 shows the obtained fractions as a function of energy, for the

three high-energy interaction scenarios considered. The helium and nitrogen fractions

as a function of energy have a strong dependence on the particular hadronic interaction

Figure 1.6: Mass fraction fits obtained by the Pierre Auger Collaboration (figure taken from
[40]). The error bars indicate the statistic (smaller cap) and the systematic uncertainties (larger
cap). The bottom panel indicates the goodness of the fits (p-values).
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model used. However, the three models agree in the vanishing iron component between

1018.3 eV and 1019.4 eV.

Another way of studying the mass composition is comparing the mean and the

standard deviation of the measured distribution of Xmax at different energies with the

corresponding values for sets of simulated proton showers and simulated iron showers,

separately [40]. The results obtained by the Pierre Auger Collaboration are summa-

rized in figure 1.7. The red and blue lines correspond to the values obtained from

simulations considering pure proton and pure iron fluxes, respectively. Full, dashed

and dashed-dotted lines correspond to the high-energy interaction models EPOS-LHC,

SIBYLL-2.3 and QGSJETTII-04, respectively. The evolution of the data points, as a

function of energy, is for energies below 1018.33 eV steeper than expected for a constant

mass composition (see figure 1.7, left), which indicates that the mean primary mass be-

comes lighter, as the primary energy increases. At higher energies, the slope is smaller

than expected for a constant mass composition and suggests a development to heavier

masses, when energy increases. This is confirmed by the development of the standard

deviation of Xmax (see figure 1.7, right).

1.3. Application to particle physics

The Large Hadron Collider is a superconducting hadron accelerator designed to

accelerate proton beams up to center-of-mass energies of almost 14TeV, being this

the highest energy achieved by man-made accelerators. Since cosmic rays arrive at our

atmosphere with energies some orders of magnitude above this value, they represent

excellent probes to study physical properties of interactions at ultra-high energies. One

Figure 1.7: Measurements of the mean (left) and the standard deviation (right) of the distri-
bution of Xmax at different energies. The red and blue lines correspond to the values obtained
from simulations considering pure proton and pure iron fluxes, respectively. Full, dashed and
dashed-dotted lines correspond to the high-energy interaction models EPOS-LHC, SIBYLL-2.3
and QGSJETTII-04, respectively. These models are implemented in the simulation frameworks
used and will be discussed in section 3.3. Both figures are taken from [40].
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such study was carried out at the Pierre Auger Observatory in order to measure the

proton-air cross-section [41]. This cross-section is of particular interest because it is not

measured for high energies at any accelerator and because it is needed to improve the

understanding of extensive air showers, where protons and heavier nuclei interact with

air molecules. This measurement is performed in two basic steps.

In a first step, an air shower observable sensitive to the cross-section is determined.

An analysis [42] with air shower simulations revealed that the slope Λη of the tail of

Xmax distributions is closely related to the hadronic inelastic cross-section used to si-

mulate them (see figure 1.8, left). This relation will be used in the second step as a

conversion function. The hadronic inelastic cross-section accounts for all interactions

that produce particles and thus contribute to the air shower development. It impli-

citly includes diffractive interactions, which are inelastic collisions with small energy

transfer between the interacting particles. The observable Λη was measured at the Pie-

rre Auger Observatory using an Xmax distribution that included a fraction η% of the

most deeply penetrating air showers. This is done to enhance the proton fraction in

the dataset used. We will use a similar method, which is presented in section 6.2. In

a second step, this observable is converted into an inelastic cross-section, using the

aforementioned relation. The result of this measurement is shown in figure 1.8 (right),

together with direct measurements and predictions obtained from simulations, perfor-

med using QGSJET-01c, QGSJETII-3, SIBYLL-2.1 and EPOS-1.99 [41]. Knowing this

cross-section is crucial for the present work.

Figure 1.8: Left: Xmax distribution together with the likelihood fit to obtain Λη, the slope
of the tail of this distribution. This observable can be converted into an inelastic cross-section
σinel. Right: Resulting cross-section σp−Air

inel for proton-air interactions (black point) compared to
measurements and predictions of simulations, using the aforementioned high-energy interaction
models. Both figures are taken from [41].



Chapter 2

The Pierre Auger Observatory

“Holmes and Watson are on a camping trip. In the middle

of the night Holmes wakes up and gives Dr. Watson a nudge.

Watson, he says, look up in the sky and tell me what you

see.”

— Sherlock Holmes, The Case-Book of Sherlock Holmes

At energies higher than 1015 eV, the flux of cosmic rays drops below one particle

per square meter per year [43]. At these energies, only indirect measurements can be

performed. Cosmic rays of these energies are studied by means of the extensive air

showers they originate in the Earth’s atmosphere. The Pierre Auger Observatory has

been designed to study extensive air showers generated by cosmic rays of energies above

1018 eV [25], employing a hybrid detection technique, which was briefly introduced in

section 1.1.

On the one hand, the Surface Detector (SD) [44] consists of an array of more

than 1660 water-Cherenkov Detectors (WCDs) that measure the energy deposited by

particles from air showers at the ground. In figure 2.1, each dot corresponds to one such

Figure 2.1: Layout of the Pie-
rre Auger Observatory in the
Pampa Amarilla near Malargüe
in Mendoza, Argentina. Each dot
corresponds to one of the 1660
surface detector stations. The
four fluorescence detector enclo-
sures are shown, each with the
30◦ field of view of its six teles-
copes. Also shown are the two la-
ser facilities CLF and XLF, near
the Observatory center, that are
used for the calibration of the
FD. This figure is obtained from
[25].

13



14 The Pierre Auger Observatory

detector station. On the other hand, the Fluorescence Detector (FD) [45] is composed

of 27 telescopes deployed at four different locations overlooking the SD. These are

symbolized in figure 2.1 by green lines. The telescopes measure the fluorescence light

emitted by particles as the shower develops in the atmosphere.

The low event rate of the highest energy cosmic rays requires an area large enough

to accumulate good statistics in a reasonable amount of time. The Pierre Auger Ob-

servatory covers a surface of around 3000 km2, making it thus an ideal detector for the

scarce ultra-high energy cosmic rays. Throughout the years, the detector was modified

to be able to measure lower energy cosmic rays as well.

2.1. The surface detector

The SD array follows a triangular spacing with a 1500m distance between stations.

For this distance between stations, the energy threshold at which the array becomes

fully efficient is 3× 1018 eV [46]. Each surface detector station consists of a cylindrical

polyethylene tank of about 3.6m in diameter that is filled with 12 tons of purified

water, up to a height of 1.2m. A picture (left) and a schematic representation (right)

are shown in figure 2.2 (taken from [26]). The inner surface of the tanks is covered by

a Tyvek bag, which is a highly reflective material. When relativistic charged particles

from extensive air showers pass through the water, they produce Cherenkov photons

that are collected by three 9-inch photo-multiplier tubes (PMTs) placed in transparent

windows at the inner top of the tank. These are symmetrically distributed at a distance

of 1.2m from the center of the tank and look downwards into the water. The inner

surface reflects diffusely, which enhances the probability for photons to arrive at the

photo-multiplier. Each surface detector station is autonomous because it is powered by

a solar power system and it contains an electronic package consisting of a processor, a

Figure 2.2: Left: Picture of a WCD. Right: Schematic representation of a WCD with its
different components (taken from [26]).
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GPS receiver, a radio transceiver and a power controller.

An approximate estimate of the arrival direction of a shower is obtained by fitting

the start times of the signals in individual SD stations to a plane front (see figure 2.3,

left). In case enough stations are triggered, this fit can be improved replacing the plane

front by a sphere that grows with the speed of light.

From this sample, an observable to estimate the shower size can be defined, too.

To avoid the large fluctuations in the signal integrated over all distances, caused by

fluctuations in the shower development, Hillas proposed to use the signal S(r) at a fixed

distance to determine the shower size [31]. In figure 2.3 (right), the lateral distribution

of the signals at the ground is depicted for an event produced by a cosmic ray of energy

(104± 11) EeV and zenith angle (25.1± 0.1) degrees [27]. The function employed to fit

the lateral distribution of the signals at the ground is a modified Nishimura-Kamata-

Greisen function [23, 47]:

S(r) = S(ropt)

(
r

ropt

)β (
r + r1

ropt + r1

)β+γ

,

where ropt is the optimal distance from the shower core for this calculation, r1 = 700m

and S(ropt) is an estimator of the shower size at ropt. At this optimal core distance,

the fluctuations in the expected signal S(ropt), due to a lack of knowledge of the exact

lateral distribution function, are minimized. The value for the optimal distance is ropt =

1000m [48].

The value of S(1000) varies with the zenith angle θ, due to the attenuation of the

shower particles and due to geometrical effects. A function fCIC(θ), that describes this

attenuation, can be used to convert S(1000) to a new expression [49]:

S38 =
S(1000)

fCIC(38◦)
.

Figure 2.3: Left: Schematic representation of the evolution of the shower front, taken into
account for the reconstruction of the shower geometry. Right: lateral distribution of the signals
at the ground for an event produced by a cosmic ray of energy (104± 11) EeV and zenith angle
(25.1± 0.1) degrees. Both figures are taken from [27].
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CIC stands for Constant Intensity Cut, which is the name of this procedure of describing

the attenuation with a function. This number can be regarded as the signal a particular

shower with size S(1000) would have produced, had it arrived at a median value of 38◦.

In order to obtain now an estimator of the energy of the primary particle as recorded

with the SD, advantage is taken from the hybrid property of the observatory. Events

that triggered the SD and the FD independently are used for cross-calibration [50].

The relation between S38 and the calorimetric measurement of the shower energy EFD

from the FD is well described by a single power-law function:

EFD = A (S38/VEM)B.

The parameters from the data fit are A = (1.9 ± 0.05)×1017 eV and B = (1.025 ±
0.007)×1017 eV. VEM stands for Vertical Equivalent Muon, the total deposited charge

of a muon that traverses a WCD vertically and through the center. The final estimator

of the energy calculated by the SD is then

ESD = A (S(1000)/fCIC(θ)/VEM)B.

2.2. The fluorescence detector

The basic FD consists of 24 telescopes that are situated at four locations overlooking

the SD: Los Leones, Los Morados, Loma Amarilla and Coihueco. At each site, there is

an FD building containing six fluorescence telescopes that cover a total field of view

of 180◦ in azimuth and 30◦ in elevation. A picture of such an FD building is shown

in figure 2.4 (left). Three additional telescopes, with an elevated field of view, were

Figure 2.4: Left: Picture of the FD building at Los Leones. Right: Schematic representation
of a fluorescence telescope with its different components (taken from [27]).
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deployed near the FD site at Coihueco. The so-called High Elevation Auger Telescopes

(HEAT) consist of similar telescopes that can be tilted up to a maximum angle of 60◦.

This extends the applicability of the Pierre Auger Observatory to the measurement

of shallower showers initiated by lower energy primaries [51]. While the standard set

of fluorescence telescopes measures in combination with the SD array (described in

section 2.1), which has a 1500m spacing, the HEAT detectors work together with a

denser sub-array of the SD, where the detector stations follow a triangular grid with a

750m spacing, the so-called SD-750 [27].

Charged particles from air showers excite nitrogen molecules during their passage

through the atmosphere. These molecules de-excite emitting fluorescence light in the

range of 300 nm to 400 nm. This emission is isotropical and can be measured by the

fluorescence telescopes (see figure 2.4). It enters the telescopes passing a UV transmit-

ting filter that reduces the background-light. This improves the signal-to-noise ratio

of the measured signal and protects the area between the aperture system and the

mirrors from the weather and dust. The light is then focused by a mirror (segmented

mirrors in figure 2.4, right) onto a camera. This camera is composed of a grid of 22×20

hexagonal PMTs, where each PMT represents a pixel. The observation of air showers

with the FD is, because of the high sensitivity of the cameras, only possible at night,

with good weather conditions and with only a limited presence of moonlight. With

these considerations, the duty cycle is estimated to be around 15%.

In the FD, air showers are detected as a sequence of triggered pixels in the camera.

The first step is to define the plane that contains the shower axis and the detector

that is closest to it, as depicted in figure 2.5 (left, taken from [44]). Next, the timing

information of the pixels is used to reconstruct the shower axis. There might be some

degeneracy in this calculation that can be broken using timing information of the SD

stations. This is called the hybrid reconstruction. Since the SD is not subject to any

restrictions, it has a duty cycle of 100% and, as a consequence, most events observed

Figure 2.5: Left: Illustration of the geometrical shower reconstruction from the observables of
the shower front. Right: Energy deposit profile as estimated using the FD. Both figures are taken
from [44].
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by the FD are actually hybrid events. A laser beam from the CLF (see figure 2.1),

whose direction is known with excellent accuracy, can be used to measure the accuracy

of the geometrical reconstruction.

Once the geometry of the shower has been determined, the light collected at the

aperture as a function of time can be converted to energy deposit as a function of

slant depth, a measure of the position in the atmosphere that will be explained in

section 3.1 (see figure 2.5, right). After estimating the attenuation from the shower

and disentangling all contributing light sources, one is left with the calorimetric energy

[52]. Integrating along the shower and correcting for the “invisible” energy carried away

by neutrinos and high-energy muons, one obtains an estimator of the primary energy of

the corresponding primary cosmic ray. Besides, from the energy deposit profile shown

in figure 2.5 (right), an estimate of the position Xmax of maximum development can be

obtained [53].

2.3. AugerPrime

As will be explained in section 3.5, there is a discrepancy between the number of

muons obtained from simulations, using present hadronic interaction models, and the

number of muons measured at the observatory. This means that there are uncertain-

ties in the hadronic interaction models that introduce uncertainties in all analyses. In

particular, the measurement of the mass composition of the cosmic ray flux, which is

important in order to understand the origin of ultra-high energy cosmic rays, is affec-

ted by this. AugerPrime is a collection of upgrades to the Pierre Auger Observatory

intended to improve the separation of the muonic and electromagnetic components,

when measurements are carried out [54]. The key element of the upgrade is the insta-

llation of a plastic scintillator on top of almost all existing SD stations. Furthermore,

enhanced SD electronics, addition of a small photomultiplier to the SD, installation of

the underground scintillator muon detector AMIGA and new techniques to increase

the duty cycle of the FD are part of this upgrade.

2.3.1. The Surface scintillator detector

Each surface scintillator detector (SSD) is a plate consisting of two modules of

around 2m2 [55, 54] (see figure 2.6). Each module consists of 24 fibers that are 1.6m

long. These wavelength-shifting optical fibers are embedded in scintillator bars, which

have an outer reflective layer of TiO2 intended to enhance reflectivity. These fibers

collect the scintillation light produced by shower particles and are bundled towards

a single PMT located in the central part of the module. One such detector is being

deployed on top of almost every SD station.
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The plastic scintillators and water-Cherenkov stations have different responses to

the muonic and electromagnetic components. Muons have larger energy deposits in

water than electromagnetic particles. At the same time, both components deposit, on

average, the same amount of energy in the scintillator. This means, that the WCD

is more sensitive to the muonic component, whereas the SSD is more sensitive to

the electromagnetic component of the shower. Given these different sensitivities, a

disentanglement of the electromagnetic and muonic components will be possible. This,

in turn, will provide information on the muon content on an event-by-event basis.

Furthermore, the position of Xmax will estimated with a duty cycle of 100%.

A so-called matrix formalism, as developed in [56] for a layered surface detector, can

be adapted to be applied to this new setting. The motivation for this formalism is to

relate intrinsic shower parameters at ground level, such as energy or particle fluxes, to

the detector signals via a matrix whose coefficients depend only on the shower geometry

but very little on the shower primary mass or on the interaction model used to describe

it. After processing the detector signals, the matrix can be inverted, in order to obtain

the fluxes of the muonic component and the electromagnetic energy.

2.3.2. The AMIGA muon detector

The Auger Muon Detector for the Infill Ground Array (AMIGA) was designed for

direct measurement of the muonic component of extensive air showers [58]. It consists

of an array of scintillators associated with the water-Cherenkov detectors from the

denser SD-750 array and the SD-433 array, for which the distances between detectors

are of 433m. At each position, three 10m2 modules are buried close to the stations at

a depth of around 2.3m. The overburden of earth above the AMIGA detectors serves

as a natural shielding of the electromagnetic particles of the shower and imposes a

cut-off for vertical muons of 1GeV [59]. A schematic overview of AMIGA is shown in

figure 2.7. Each module consists of 64 scintillator strips. Light collected at each strip is

guided, using wavelength shifting fibers, towards a 64 channel silicon photomultiplier

located in the middle of the module, where the signal is read.

The segmented structure of the scintillator module allows for a direct counting of the

muons [54]. Muon counters sample scintillator signals at a frequency of 320MHz, which

Figure 2.6: Left:
Picture of one upgra-
ded station. Right:
Layout of the surface
scintillator detector
showing its different
components. This
picture is taken from
[57].
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means that every 3.125 ns 64 bits are acquired. Each bit stores the digitized value (either

a “0” or a “1”, if the signal was below or above a predefined threshold, respectively)

associated to one scintillator bar. Muon counting and the digitization of the integrated

signal are implemented in the AMIGA electronics, including an FPGA with three main

functional blocks: counting, data codification, and external communications.

Comparing the measurements obtained by the surface detectors with those from a

small array of underground muon detectors should significantly improve the accuracy of

the AugerPrime results [55]. AMIGA will provide important direct muon measurements

of a sub-sample of showers. It will be possible to use these results for verification and

fine-tuning of the methods used to extract muon information from the SSD and WCD

measurements (see section 2.3.1).

Figure 2.7: General overview of an underground muon detector from AMIGA. Both surface
and underground detectors are shown in their arrangement during the prototype phase. In the
final design, the 30m2 detector is split into three 10m2 modules. This figure is taken from [55].



Chapter 3

Air shower physics

“If you wish to make an apple pie from scratch, you must

first invent the universe.”

— Carl Sagan

This chapter begins with a brief introduction to extensive air showers, which are the

object of study in the present thesis. This is followed by a description of the objective of

this work. Subsequently, the main tool used in this work is described: the Monte Carlo

simulation framework CONEX [60, 61, 62]. Afterwards, we move on to a more detailed

description of extensive air showers, following the semi-empirical model developed by

Heitler [63] and Matthews [64, 65]. Those works concentrate on showers of lower energy

than the ones we study. Therefore, whenever it is suitable, we take a closer look into

parameters and expressions in the context of extensive air showers generated by cosmic

rays with energies above the knee region. We study the performance of current models

using energies relevant to our work, in order to know where improvement is needed

(see chapter 4). Finally, the so-called muon puzzle [66] is presented, which is of utmost

importance in the area of high-energy and air shower physics. For the present work,

this issue needs to be kept in mind. Special attention is dedicated here to the related

work of Cazon et al. [67, 68, 68], which inspired part of the reasoning used in our

calculations.

3.1. Extensive air showers

Experimental evidence so far indicates that the vast majority of cosmic rays are

atomic nuclei [69, 70]. When such a nucleus reaches the Earth’s atmosphere, it sets off

an air shower through a hadronic interaction with a molecule or an atom in the upper

atmosphere. In this interaction, many new particles are created, which are subject to

the same kind of process. The set of all the particles created this way in successive

21



22 Air shower physics

interactions constitutes an extensive air shower. If the showering process is observed

as a function of the atmospheric depth, one obtains the longitudinal profile. The at-

mospheric depth, which is formally defined at the end of this section, measures the

position in the atmosphere by means of amount of matter traversed. The approximate

upper limit of the atmosphere corresponds to 0 g cm−2 and the sea level to 1030 g cm−2.

In figure 3.1, an example of such a longitudinal profile of a simulated shower is shown.

The numbers of particles are displayed separated into different components that we

now describe.

The hadronic component (full red line in figure 3.1), which mostly consists of pions,

grows until the energy of individual pions falls to the level where they are more likely

to decay before colliding again. The muonic component (full blue line in figure 3.1) is

predominantly composed of muons that are created in these decays. This component

decouples from the cascade because muons propagate to the ground with small energy

loss and deflection. Furthermore, their decay length is cτ = 7.8m [71], which becomes

of the order of a kilometer because of time dilation and the high energies involved.

Consequently, they are unlikely to decay before reaching the ground. For this reason,

they carry information about hadronic interactions in extensive air showers. In this

work, the total number of muons at the ground is used and denoted by Nµ. In figure

3.1, the ground level of the Pierre Auger Observatory is represented by the dashed

violet line at ∼ 880 g cm−2. This corresponds to an altitude of around 1400m.

In each hadronic interaction, around a third of the available energy is taken by

neutral pions, which instantly decay to a pair of gamma rays (their decay length is

cτ = 25.5 nm [71]). These photons originate electromagnetic subshowers. All these

subshowers together build up the electromagnetic component. Due to the short inter-

action length of electromagnetic particles [71], any information on the distribution of

the neutral pions is lost. In figure 3.1, the electromagnetic component is further sepa-

Figure 3.1: Longitudinal pro-
files of the hadrons, photons,
electrons and muons of a simu-
lated shower initiated by a verti-
cal proton of 1020 eV and simula-
ted using the high-energy inter-
action model EPOS-LHC. Some
components are scaled for visua-
lization purposes. The ground le-
vel represents the depth at which
the Pierre Auger Observatory is
situated: ∼ 880 g cm−2. The total
number of muons at this depth
will be called Nµ. At a depth of
around Xmax = 880 g cm−2, the
maximum development of this
particular shower is achieved.
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rated into a distribution of photons (full yellow line) and a distribution of electrons

and positrons (full green line). The latter are, from now on, collectively referred to

as electrons. Note that the vast majority of the particles in a shower are of electro-

magnetic nature. This component grows in number until the energy per particle is low

enough (∼ 85MeV) for these to be absorbed by the atmosphere. A maximum size of

the shower is thus reached at a certain depth in the atmosphere Xmax, which is also

object of study in this work.

The position of maximum development is given and the profiles in figure 3.1 are

displayed as a function of atmospheric depth. An extensive air shower is mainly driven

and determined by the successive interactions, and for these, what matters more than

distance completed, is the amount of matter traversed per unit area. This quantity is

the atmospheric depth X, also referred to as the overburden. It depends on the density

of the medium ρ through:

X(l) =

∫ ∞

l

ρ(l′)dl′,

where l′ describes the trajectory traversed [72]. For the case of a vertical trajectory and

the standard isothermal atmosphere, the following simple expression can be obtained:

X(h) = X0 · e−(h/hs). (3.1)

X0 ≃ 1030 g cm−2 is the depth at sea level X(h = 0), h is the height above sea level (in

meters) and hs is the mean scale height for the standard isothermal atmosphere. This

last value depends on temperature, and thus on altitude, and is approximately 8400m

at sea level. In this case, the barometric equation is given by

ρ(h) = ρ0 · e−(h/hs),

where ρ0 = 0.001 07 g cm−3 is the density at sea level.

3.2. Objective of this work

An anticorrelation between the depth of maximum development Xmax and the total

number of muons at the ground Nµ is observed in simulations (see figure 3.2) and in

real datasets. This anticorrelation can roughly and qualitatively be justified by the fact

that, if the energy is distributed along the shower in such a way that a higher fraction

stays in the hadronic channel, then more muons can be created, while less energy is

left to build up the electromagnetic component, giving a lower value of Xmax (and

vice versa). The fact that the anticorrelation spreads considerably sideways along the

slope means that, even having a specific distribution of the energy among the different
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components, there is another phenomenon not captured by the argument just given.

The physical motivation of the present work is to understand the Xmax-Nµ anti-

correlation. The work was driven by the question of how can its shape be explained

quantitatively. We saw in section 1.2.4 how the first two moments of the Xmax distribu-

tion can be used to study the cosmic ray mass composition. In section 3.6, we will show

how to make use of the fluctuations in the number of muons. These and many other

studies are being carried out, in which characteristics of Xmax or Nµ alone are used to

extract information about extensive air showers. The purpose of the present work is to

study the joint distribution of Xmax and Nµ. The fact that these two observables are

correlated means that analyzing their distributions simultaneously should render new

information, not accessible when considering them separately.

We begin by studying the Xmax-Nµ anticorrelation (see figure 3.2, left) for simula-

tions of vertical proton initiated showers with a primary energy of 1020 eV because the

anticorrelation is most pronounced in this setting. At a later stage, however, we will

consider other energies. Furthermore, at an initial phase, it makes sense to study the

distribution with Xmax replaced by ∆X = Xmax −X0, where X0 is the depth at which

the first interaction occurs (see figure 3.2, right). This removes the variability introdu-

ced by the randomness of the depth of the first interaction X0. This way, the ∆X-Nµ

distribution depends only on the processes inherent to the shower development. The

goal is to find parameters that are important for the development of the shower and

to elaborate a model that predicts Xmax and Nµ as a function of these parameters, in

Figure 3.2: Anticorrelation between the depth Xmax of maximum shower development and the
number Nµ of muons at the ground (left). Sets of 1000 showers generated by proton primaries
of 1020 eV are used. One set is generated using EPOS-LHC (red points) and the other one using
QGSJETII-04 (blue points). The anticorrelation is more pronounced when replacing Xmax by
∆X = Xmax − X0 (right), where X0 is the depth at which the first interaction occurs. It is
helpful to begin analyzing this last distribution, keeping out the variability introduced by the
point of the first interaction.
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a way that their anticorrelation is reproduced.

We also investigate the anticorrelation for different primary masses. As is shown

in figure 3.3 (using Xmax on the left and ∆X on the right) the distributions move to

the upper left corner as the primary mass increases. Furthermore, the anticorrelation

decreases for increasing primary mass. At a later stage of the work, when we are

interested in applying the newly gained knowledge to a dataset consisting of events

detected at the Pierre Auger Observatory, we will need to take care of the fact that

the cosmic ray flux comprises primaries ranging from protons to irons.

Every analysis of extensive air showers requires a detailed theoretical understanding

and modeling of the cascade that develops in the atmosphere after the primary cosmic

ray sets it off. This can be achieved combining knowledge on high-energy interactions

with Monte Carlo simulations. Before applying our model to data, we operate with

simulations carried out with the Monte Carlo framework CONEX [60, 61, 62]. Unless

stated otherwise, all simulations used and mentioned in this work are carried out by us.

As will be explained in section 3.3, these simulations can be performed using different

interaction models. We use the high-energy interaction models EPOS-LHC, QGSJETII-

04 and SIBYLL-2.3d.

3.3. Monte Carlo simulations

We use the framework CONEX for the Monte Carlo simulations of extensive air

showers. Full Monte Carlo simulations, as the ones that can be performed with the

program CORSIKA, are not a viable option. Unreasonably large computing time would

Figure 3.3: Anticorrelation between the depth Xmax of maximum shower development and the
number Nµ of muons at the ground (left). Sets of 1000 vertical showers, generated by different
primaries of 1020 eV, are used. These simulations are carried out using the high-energy interaction
model EPOS-LHC. On the right, Xmax is replaced by ∆X = Xmax − X0. As the mass of the
primary increases, the anticorrelation becomes less pronounced.
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be required for the primary energies we are interested in. Even applying weighted

sampling algorithms included in the software, like the thinning method [73], are no

solution. Here, the computing time is reduced by treating only a small portion of

representative particles explicitly, assigning them weights to account for the particles

that are not tracked explicitly. The issue is that, at the energies of interest for us, the

required level of thinning would introduce artificial fluctuations in the observables we

need for our study [74].

In CONEX, this problem is solved combining explicit Monte Carlo simulation of the

highest energy portion of the air shower (first few interactions), with numerical expres-

sions for the lower energy part [75, 76, 77, 78, 79]. An energy-threshold Ethr needs to be

defined prior to simulation, below which the particles are organized in bins of energy to

be fed subsequently into the cascade equations, which are solved numerically. Including

the fluctuations, introduced through the highest energy interactions, ensures that one

obtains accurate results for the fluctuations in the extensive air shower characteristics.

Since the bulk of lower energy particles is large, particular characteristics are averaged

out and there is no loss when dealing with these particles in a deterministic way, using

cascade equations [62]. Thus, average extensive air shower parameters are accurate as

well [80].

CONEX does not simulate showers in four dimensions as CORSIKA does. Instead, it

simulates their longitudinal development along the shower axis. As an output, one gets

the longitudinal profiles of the number of charged particles, muons, electrons, photons

and hadrons, above predefined energy thresholds, and the energy deposit along the

shower axis. From the muon profile, we extract the total number of muons at the

ground Nµ, which we need for the present work. The depth of maximum development

Xmax we need for our study is calculated and output by CONEX, after performing a

fit of the Gaisser-Hillas function [81]

fGH(X) = Nmax

(
X −X1

Xmax −X1

)Xmax−X1
λ

exp

(
Xmax −X1

λ

)
, (3.2)

where λ = p1 + p2 ·X + p3 ·X2, to the longitudinal distribution of charged particles.

The feature that makes CONEX ideal for studying the effect of hadronic interactions

on the longitudinal shower properties is an extension that enables the output of ROOT

files [82] containing detailed information pertaining all the interactions and particles

with energy above Ethr, such as particle identities, their energy and momentum, etc.

From these files, we extract the information we need for our study. We are parti-

cularly interested in the first interaction, accessible via an interaction counter, which

associates to each interaction an increasing number, starting from 1 for the first in-

teraction. All particle identities, their energy and other properties can be accessed
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this way. It is also interesting to analyze the first leading interaction, which follows

the leading particle from the first interaction and can also be extracted from this list.

The leading particle is the secondary particle from the first interaction that holds the

highest amount of energy. The value of the point of the first interaction X0 can also

be obtained from CONEX simulations directly and should not be confused with the

X1-parameter from the Gaisser-Hillas function (equation (3.2)), which in the literature

is sometimes interpreted as the point of the first interaction. We will also calculate

effective parameters for the whole shower in the course of this work. The information

necessary for this calculation can also be obtained scanning over all the interactions

with energy above Ethr. Since it is expected that the interactions with higher energy

are the ones which contribute the most to the shower development, it is sufficient to use

only interactions above this energy threshold (as long as it is chosen appropriately).

The treatment of hadronic interactions below and above a threshold energy (typi-

cally around 100GeV) is handled by separate models. For low energies, we use URQMD

[83]. The need to describe interactions at energies beyond the reach of colliders and

the need to handle a variety of projectiles (nuclei, protons, charged pions and kaons)

and targets (nitrogen, oxygen and argon molecules in the atmosphere) is specific to

generators designed for high energies. In the first part of the work, we will analyze

showers generated using EPOS-LHC [84, 85, 86] and QGSJETTII-04 [87, 88, 89]. It is

interesting to use these two models because, as we shall see in later sections, distribu-

tions of certain physical parameters are noticeably different between these two models

and, as a consequence, the Xmax-Nµ distributions are visibly different as well (see figure

3.2). At a later stage, we will also include simulations performed using SIBYLL-2.3d

[90, 91, 92]. Even though associated results are quite similar to those obtained imple-

menting EPOS-LHC, the small differences make it an interesting alternative to use.

Each model describes physical processes in a different way.

The generators QGSJET and SIBYLL only implement phenomena that are impor-

tant for the shower development and need thus only a limited set of parameters (of the

order of tens of parameters). EPOS includes much more processes and has therefore

a broader applicability, responding also to the needs of the high-energy physics and

the heavy-ion collision communities. Its parameter set is larger (of the order of 100

parameters) and more datasets from collider experiments are used to constrain them.

The mean values of Xmax and the distributions of shower size and hadronic energy have

no significant difference between EPOS and QGSJET. On the counterpart, the muon

number is considerably higher for EPOS, which can be explained by its higher (anti-)

baryon production [93]. It is not clear, as of today, which model represents physical

processes at the highest energies more truthfully. Each modeling of the physical proces-

ses leads to slight differences in the parameter and observable distributions. Therefore,

it makes sense to use the three high-energy interaction models. Having different sce-
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narios from which to learn about the Xmax-Nµ anticorrelation helps covering different

possibilities and so understanding better the real relationships. For these reasons, we

incorporate all three scenarios into our more advanced stage of the work.

3.4. Semi-empirical model

When pioneering work on cosmic rays and their resulting showers was carried out,

the fact itself of performing simulations was problematic. Computers were, for a long

time, not ready to deal with the computing time and memory that are necessary to

simulate extensive air showers. For this reason, already at an early stage, effort was

put in the development of simple but predictive analytical models of extensive air sho-

wers. Even today, it is still imperative to have good models with different degrees of

complexity in order to understand the essence of the phenomenon. Monte Carlo pro-

grams such as CORSIKA and CONEX take into account so many different stochastic

processes that it is almost impossible to see, at first sight, the effect a given parameter

or particular process has on the final resulting air shower. Furthermore, when desig-

ning a structure for a neural network (see chapter 5), special care needs to be taken.

Since neural networks behave mostly in unpredictable ways, it is convenient to have a

good previous understanding of which information is important and should be used as

a feature, from which to learn, and which information is interesting and one wants to

predict, the so-called target. It is also favorable to know which properties of the target

variables are important and should be properly captured by the model. In this section,

we present the construction of a semi-empirical model, which was designed for these

purposes by Heitler [63] and Matthews [64, 65]. The calculations of formulas presented

in this section are reproduced from [64, 65, 1, 2].

Figure 3.4: Schematic repre-
sentation of the Heitler splitting
model of electromagnetic casca-
des [63]. e represents an elec-
tron or positron and ē the corres-
ponding anti-particle. An elec-
tromagnetic subshower is mainly
driven by electron-positron pair
production induced by photons
and bremsstrahlung experienced
by electrons.
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3.4.1. Electromagnetic showers

We begin with the Heitler splitting approximation of cascades initiated by an elec-

tromagnetic particle (see figure 3.4 for a representative diagram), before adding conti-

nuously more complexity to the model [63]. The initiating particle can be a photon or an

electron. In this model, particles are assumed to travel one splitting length Xr = λr ln 2,

where λr is the radiation length, and create then new particles. Photons produce an

electron-positron pair and electrons undergo bremsstrahlung (see figure 3.4). Since the

energy loss through radiation for electrons is described by E(X) = E0e
−X/λr , Xr is

the distance over which they lose half their energy through radiation. This way, the

number of particles in the shower grows, while the primary energy E0 is assumed to be

distributed equally among all particles. As soon as individual energies drop below the

electron critical energy ξec , electrons are more likely to lose energy through collisions

with the atmosphere than radiating photons. From this stage on, particles start being

absorbed by the atmosphere, so that at this depth the total number of particles reaches

a maximum. The values of the radiation length and the critical energy depend on the

medium where the electrons of interest propagate. In this context, the values for air

are needed, which are approximately λr = 37 g cm−2 and ξec = 85MeV.

If nγ is the total number of splitting lengths traversed until the critical energy is

reached, we obtain the maximum number of particles

Nγ
max = 2nγ =

E0

ξec
.

Consequently, the maximum number of generations can be expressed as

nγ =
ln (E0/ξ

e
c)

ln 2

and the depth at which the maximum number of particles is obtained is

Xγ
max = nγλr ln 2 = λr ln

(
E0

ξec

)
. (3.3)

The elongation rate Λ is defined as the rate at which Xmax changes with respect to the

primary energy E0:

Λ =
dXmax

dlog10E0

.

Inserting the concrete values for this setting, one obtains:

Λγ = λr ln 10.

Here, we recover the aforementioned qualitative properties that the total number of
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electromagnetic particles at the shower maximum is proportional to the energy carried

by the primary and that the position of this shower maximum develops proportionally

to the logarithm of the primary energy. On the counterpart, a considerable defect this

model has is that it predicts less photons than electrons, while in truth the number

of photons in any shower is much higher (as is shown, for example, in figure 3.1). In

practice, this model for showers initiated by electrons is mainly interesting as a descrip-

tion of the electromagnetic subshowers that build up the electromagnetic component of

showers generated by protons or heavier nuclei. These are tackled in the next section.

3.4.2. Proton initiated showers

A semi-empirical model of hadronic showers was presented by Matthews in 2001

[64, 65] (a schematic representation is shown in figure 3.5). The case for primary protons

has some similarities with electron induced showers. The interacting primary proton is

assumed to generate a set of charged and neutral pions that traverse a splitting length

XI = λI ln 2, where λI is the interaction length of strongly interacting particles (in [1],

it is discussed that it makes more sense to take XI = λI without the factor ln 2 because

λI already is the interaction length).

In this model, the primary proton and the subsequent charged pions generate new

generations of Nch charged and N0 neutral pions. The neutral pions almost immediately

decay to two photons that originate electromagnetic subshowers as the ones described

in previous paragraphs. Again, the number of particles increases at the same time as

individual energies, which are assumed to be distributed equally, decrease. When the

critical energy of the charged pions ξπc is reached, it is more probable for them to decay

than to interact. Then, they are all assumed to decay instantly to muons, which are

detected at the ground. In this model, the values λI = 120 g cm−2 and ξπc = 20GeV are

used for interactions in air. Besides, multiplicities are reduced to the constant values

Figure 3.5: Representative sche-
me of the model of an extensive air
shower generated by a proton [64,
65]. Hadronic interactions are sim-
plified and considered to genera-
te only neutral and charged pions.
The former decay almost immedia-
tely to a pair of photons that sub-
sequently generate electromagnetic
subshowers. The charged pions in-
teract again producing a new set of
pions. Full fermionic lines represent
charged pions and dotted fermionic
lines represent neutral pions. Only
a few evocative lines are shown.
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Nch = 10 and N0 = 5, which means that the fraction of charged particles out of the

total multiplicity Ntot is fch = 2/3. These constant values serve the purpose for a

range of primary energies covering the knee region of the energy spectrum (1014 eV

to 1017 eV). Whenever it is suitable, special attention will be dedicated to parameters

that in the corresponding literature are described for the knee region. In those cases,

we present an analysis in the context of the present work, which deals with the region

of the energy spectrum above 1017 eV.

If np is the number of generations of new particles until individual pion energies

Eind
π (np) reach the critical energy ξπc , then

ξπc = Eind
π (np) =

(fch)
np E0

(Nch)
np

. (3.4)

Here, (fch)
np is the fraction of the primary energy that stays within the group of charged

pions after np layers. This energy needs to be distributed among (Nch)
np particles in

the last generation, when all the charged pions decay to muons. As a consequence,

np =
ln (E0/ξ

π
c )

ln (Nch/fch)

and the number of muons at the ground is

Np
µ = Nπ(np) = (Nch)

np =

(
E0

ξπc

)β

, (3.5)

where

β =
ln (Nch)

ln (Nch/fch)
. (3.6)

This time, the depth Xp
max, at which the maximum number of particles is obtained,

needs to be calculated differently compared to what is done with the electromagnetic

subshowers because, in this scenario, different types of particles are present in the

shower. As can be intuited, for example from figure 3.1, the number of electromagnetic

particles is much higher than the number of pions. As a consequence,Xp
max must depend

heavily on the bulk of electromagnetic subshowers and, more specifically, on the most

influential ones. These are the ones initiated by the highest energy neutral pions, i.e.

by the group of neutral pions from the first interaction. Thus, a simple expression for

the maximum depth is

Xp
max = X0 + λr ln

(
E0/(3 · 2N0)

ξec

)
= X0 + λr ln

(
E0/(3 ·Nch)

ξec

)
, (3.7)

where X0 = λp
I (E0) ln 2 is the depth where the first interaction occurs and E0/(3 · 2N0)

represents the fact that in the first interaction one third of the primary energy stays
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among the neutral pions, which produce 2N0 photons. Furthermore, the maximum

number of electromagnetic particles is incorporated in the following expression, which

simply represents energy conservation:

E0 = ξecN
p
max + ξπcN

p
µ. (3.8)

The first addend is the energy that ends up in the electromagnetic component and

the second addend is the energy that stays in the hadronic component and is carried

by the muons after full development of the shower. Lastly, the elongation rate can be

expressed as a function of the one corresponding to electromagnetic showers of the

same energy:

Λp = Λγ +
d

d log10E0

(X0 − λr ln (3Nch)) . (3.9)

When calculating Xp
max this way, all the lower energy electromagnetic subshowers

are not taken into account, which causes an underestimation of the value. Furthermore,

this expression for Xp
max is very sensitive to the values of X0 and Nch, which fluctuate

from shower to shower, in particular because the most realistic value for Nch to be used

here is in fact the multiplicity of charged pions created in the first interaction. In the

next paragraph, we show that these values are immensely variable. Still, expression

(3.9) for the elongation rate captures results obtained from simulations quite well. One

point to make here is that, up to now, X0 and Nch are treated as constant values, but

they actually depend on energy: X0 decreases and Nch increases with increasing energy

Figure 3.6: Fractions of the principal groups of particles (charged pions, kaons, baryons, neutral
pions and electromagnetic particles) created in p-Air, π-Air and K-Air interactions at 1019 eV
using different high-energy interaction models (EPOS-LHC, QGSJETII-04, SiIBYLL-2.3c, re-
produced from [67]). The blue slices represent groups of particles that mainly contribute to the
hadronic channel. The red ones represent particles that mainly divert energy to the electromag-
netic component. Consequently, it makes sense to assign the former group to the number Nch

and the latter group to the number N0.
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[71]. This means that the elongation rate depends on physical properties of showers that

for high energies are not available from experiments. Thus, this property is important

for the interpretation of experimental results. It also reflects Linsley’s elongation rate

theorem, which states that the elongation rate for electromagnetic showers is an upper

limit to the elongation rate of hadronic showers [94].

We now explore the just presented parameters at energies relevant in the context of

the present work, using our sets of simulations. Concerning the values of the effective

multiplicities Nch and N0, it is most senseful to assign them geometric mean values.

The geometric mean of the numbers x1, x2, . . . , xn is

⟨(x1, x2, . . . , xn)⟩geom =

(
n∏

i=1

xi

) 1
n

and is used, instead of the usual arithmetic mean, when the values are meant to be

multiplied together or are exponential in nature. The former is the case here because

the cascade process is a multiplicative one. Numbers of particles are obtained by mul-

tiplying the values from the previous generations. Furthermore, extensive air showers,

in truth, contain much more particles than only charged and neutral pions. In figure

3.6, the fractions of charged pions, kaons, baryons, neutral pions and electromagnetic

particles are shown for different interactions and high-energy interaction models (repro-

duced from [67]). We need to define the multiplicities Nch and N0, taking into account

that there are particles other than pions, a fact that is not considered explicitly in the

literature. Pion fractions vary from only 44% up to 78%. All the other particles can

be assigned to the group of charged or to the group of neutral pions, depending on

their most probable decay products, i. e. depending on whether they divert energy to

the electromagnetic component or they keep energy in the hadronic channel.

Eta mesons (η) decay extremely rapidly, mainly to neutral pions or directly to

Figure 3.7: Distributions of the geometric mean of the numbers N0 (left) and Nch (right), as
defined in the text, for sets of 1000 showers initiated by vertical protons and simulated using the
high-energy interaction model EPOS-LHC and different primary energies.
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photons [71]. Therefore, we add them to the number N0. Kaons behave similarly to

pions. The decay lengths for charged (K±), short-lived (K0
S) and long-lived kaons (K0

L)

are cτ = 3.7m, cτ = 2.7 cm and cτ = 15.3m, respectively [71], while their most

numerous products are charged pions or directly muons. This means that the interplay

between interaction and decay happens differently than for charged pions, but their

contribution is similar. For simplicity, we add them to the number Nch. Baryons are

mostly protons and neutrons and some lambdas (Λ). Lambdas decay rather quickly

(cτ = 7.9 cm [71]) and mainly into protons, neutrons and pions. Nucleons, in turn,

interact creating all the types of particles already mentioned. As a result, we add

baryons to the number Nch.

In figure 3.7, distributions of the geometric mean of the numbers N0 (left) and Nch

(right) are shown for different energies of interest in the present work. In each case,

1000 simulations initiated by vertical protons are considered, where the high-energy

interaction model used was EPOS-LHC. The distribution’s mean grows with energy

(5.89, 6.02, 6.09, 6.07 for ⟨N0⟩geom and 11.64, 11.93, 12.08, 12.03 for ⟨Nch⟩geom), while the
peaks get narrower (standard deviations 0.4, 0.37, 0.33, 0.41 for ⟨N0⟩geom and 0.94, 0.82,

0.77, 0.94 for ⟨Nch⟩geom). Consequently, the values are a bit higher than those typically

used for the knee region (constant values 5 and 10 are used in [64]). This increase is

a consequence of the mean charged particle multiplicities in pion-air collisions. These

are shown, together with the ones from proton-air collisions, in figure 3.8, as calculated

with EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d (reproduced from [95]). In addition,

it becomes clear that within a shower the multiplicity varies heavily, depending on the

energy of the interaction. As a consequence, multiplicity varies noticeably along the

shower. A possible explanation for the slight decrease at the highest energy might be

that having higher multiplicities in the first interactions causes particles quickly to have

very low energy. This could lead then to very low multiplicities very soon.

Figure 3.8: Mean char-
ged particle multiplicity in
p-air and π-air collisions,
as calculated with EPOS-
LHC, QGSJETII-04 and
SIBYLL-2.3d, as a function
of energy in the laboratory
system (reproduced from
[95]). The differences in the
predicted secondary particle
multiplicities increase with
energy. The multiplicity of
neutral pions is closely lin-
ked to that of charged par-
ticles and hence shows qua-
litatively the same behavior.
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Figure 3.9: Correlation
between the geometric
means of N0 and Nch from
figure 3.7. The black line
represents y = 1.98x. The-
refore, in certain contexts,
it is safe to assume that
there are 2 times more
hadronically interacting se-
condaries than secondaries
delivering electromagnetic
particles.

The correlation between ⟨N0⟩geom and ⟨Nch⟩geom for the same sets of simulations

is shown in figure 3.9, where the black line represents y = 1.98x. Here, the factor

cch0 = 1.98 is the common best fitting value for each individual energy group. In this

sense, we can carry over the factor 2 from Heitler and Matthews to higher energies.

It is worth noting that, when comparing the multiplicities within individual showers,

like for the example shower in figure 3.10 (left), this factor cch0 can be different from

2. It is well known that, under the assumption of isospin invariance, the quark-parton

model predicts that the multiplicity of neutral pions is equal to the average of those of

positively and negatively charged pions [96]. This is a consequence of the assumption

that the probability for a certain quark to fragment into a π0 is equal to the average

of the probabilities for it to fragment into a π+ or a π− because the quark content of

Figure 3.10: Left: Relationship between the multiplicities N0 and Nch from all the interactions
(with energy above Ethr = 0.005 × E0) present in a typical proton initiated shower of E0 =
1018 eV, simulated using the high-energy interaction model EPOS-LHC. It has, on average, cch0 =
2.46 times more particles that contribute to the hadronic channel than particles that divert energy
to the electromagnetic channel. Right: Distributions of the factor cch0 for the different groups of
simulations also used in figure 3.7.



36 Air shower physics

the π0 is the same as the average of the contents of the π+ and the π−:

π0 =
1√
2

(
uū− dd̄

)
,

π+ = ud̄, π− = dū.

However, we are adding kaons and baryons to the charged pions in order to obtain

the number Nch, while N0 only includes η particles in addition to the neutral pions.

Consequently, considering that pions constitute the majority of the hadrons produced

in air showers, it is understandable that for the shower in figure 3.10 (left), when

inspecting the multiplicities N0 and Nch from all the interactions (above an energy

threshold of Ethr = 0.005× E0 for this set of showers), a factor of cch0 = 2.46 is found,

which is close to but higher than 2. When keeping only the lower energy interactions,

values closer to 2 are obtained. This is a consequence of the fact that for lower collision

energies the kaon-to-pion ratio is lower [97]. In figure 3.10 (right), the distributions

of the factor cch0 , obtained the same way as for figure 3.10 (left) for the showers used

in figure 3.7, are shown. The mean of this factor grows with energy (2.38, 2.43, 2.47,

2.50), as is expected from the behavior of the kaon-to-pion ratio, and its standard

deviation decreases (0.08, 0.06, 0.05, 0.04). Obtaining factors higher than 1.98 is in

no contradiction with the value we obtained when considering the geometric means

of the multiplicities because those represent values that correspond to lower energy

interactions where pions are dominant. Depending on the application, one might use

either the factor 1.98 from the previous paragraph or the energy-dependent factor

presented here.

Figure 3.11: Left: Distributions of the depth of the first interaction for vertical showers initia-
ted by protons, simulated using the high-energy interaction model EPOS-LHC and different
primary energies. Right: Proton- and pion-air inelastic cross section as a function of energy in
the laboratory system (reproduced from [95]). The inelastic cross section is defined as the cross
section of all collisions in which at least one new particle is produced. It can be written as
σinel = σtot − σel − σqel, where σtot is the total cross section and σel and σqel are the elastic and
quasi-elastic cross sections, respectively.
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Concerning the interaction length of strongly interacting particles, it is too sim-

plistic to use a constant value for it. To begin with, when looking at the depth of the

first interaction X0 = λp
I (E0) (figure 3.11, left), one sees that a large range of values is

possible for fixed values of primary energy and primary mass. But also the interaction

lengths along the development of the shower vary heavily. We can see in figure 3.11

(right) that the inelastic cross section of pion-air interactions can vary from around

200mb to almost 600mb, with small differences between the different high-energy in-

teraction models (reproduced from [95]). Using that the interaction length λI is related

to the particle inelastic cross-section σinel via the expression

λI =
⟨mair⟩
σinel

[98] and that the effective mass number of air is 14.8, we obtain that the interaction

length can vary from λI = 41 g cm−2 for the highest energies to λI = 124 g cm−2 for

the lowest energies considered in figure 3.11. This means that the mean interaction

length is noticeably different at different stages of the shower development. At the

same time, for each particular energy, taking into account that the interaction length

is exponentially distributed, a broad range of values can arise.

There is no unique way to estimate the critical energy ξπc because different degrees

of complexity can be considered. In Montanus’ work, energy dependent values of the

particle multiplicity and the interaction length are taken into consideration [1]:

Ntot(E) = 0.15 · (E/eV)0.18,

X0(E) = 145 g cm−2 − 2.3 g cm−2 · ln (E/eV),

λI(E) = 200 g cm−2 − 3.3 g cm−2 · ln (E/eV).

Considering that the energy after the i-th interaction point is

Ei =
Ei−1

Ntot(Ei−1)
,

an expression for the individual energies after the n-th generation can be obtained:

En = 6.7αn · Eβn

0 ,

where

αn =
1− 0.82n

1− 0.82
, βn = 0.82n.
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Then, the depth

Xn(E0) = X0(E0) +
n∑

i=1

λI(Ei), n ≥ 1

is where the (n+ 1)-th generation occurs.

Inverting expression (3.1), we get that the difference in height (in meters) between

the n-th and the (n+ 1)-th interaction is

∆h = hs ln

(
Xn(E0)

Xn−1(E0)

)
.

Assuming that the pions decay when the decay length is half the layer thickness leads

to

γcτπ± =
1

2
∆h.

Remembering that γ = En/mπ± , where γ is the Lorentz-boost, an expression solely

depending on E0 and n is obtained here. For each possible number of generations n̂,

after which the critical energy is obtained by individual pions, the corresponding value

of E0 can be calculated numerically from this expression. The critical energy is then

ξπc =
E0

(Ntot(E0))n̂
.

The results from [1] are shown in figure 3.12 (left). From left to right the dots corres-

pond to n̂ = 1, 2, 3, 4, 5. The decrease with energy makes sense because more energetic

primaries induce deeper showers. This means that particular individual pion energies

are obtained deeper in the atmosphere for higher E0. Deeper positions, in turn, imply

denser atmospheric layers, which means that the interaction probability gets higher.

Figure 3.12: Critical energy as a function of primary energy, as calculated in [1] for proton
and iron primaries (left), and as a function of primary energy and effective total multiplicity, as
calculated in [2] for proton primaries (right). The first approach is more detailed and complex
than the second one, but the results are quite similar when considering a fixed value of Ntot

around 15.
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Thus, in order to decay, more energy needs to be “lost” first.

A less detailed approach is possible, where no numerical calculations are needed. In

the work of Kampert and Unger [2], the interaction and decay length are equalized:

λI = λdec. (3.10)

The decay length is

λdec = ρ(h)γcτπ± , (3.11)

where ρ is the height-dependent density of air and

γ =
E0/(Ntot)

n

mπ±
.

Here, the primary energy is merely equally divided among Ntot particles in each inter-

action. If θ is the angle of incidence, λI can be obtained from

cos (θ) =
ρ(h)hs

X
=

ρ(h)hs

nλI

. (3.12)

Combining (3.10), (3.11) and (3.12) leads to

nd(Ntot)
−nd =

hs

cτπ±

mπ±

E0

1

cos (θ)
,

where nd is the number of generations necessary for the individual pions to reach their

critical energy. Equivalently, we can write

−nd ln (Ntot)e
−nd ln (Ntot) = − hs

cτπ±

mπ±

E0

ln (Ntot)

cos (θ)
.

Finally, the number of generations nd can be expressed as:

nd = −
W−1

(
− hs

cτπ±

mπ±
E0

ln (Ntot)
cos (θ)

)
ln (Ntot)

,

where W−1 denotes the lower branch of the Lambert-W function [99].

The Lambert-W function is defined as the inverse function of f(x) = xex. This

mapping is not injective and has, therefore, no unique inverse. It is easy to see that the

Lambert-W function has two real branches. For the calculation of nd, the bottom branch

W−1 is chosen because it is defined in [−e−1, 0] and −nd ln (Ntot)e
−nd ln (Ntot) ∈ [−e−1, 0]

(since nd ln (Ntot) < end ln (Ntot)−1 = 1 + (nd ln (Ntot) − 1) + ...). The critical energy is

obtained as before via

ξπc =
E0

(Ntot)nd
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and shown in figure 3.12 (right) as a function of primary energy and effective total

multiplicity.

In this semi-empirical model it is assumed that in each interaction the energy is

divided equally among all secondaries. But, as is shown in figure 3.13 for extensive air

showers generated by vertical protons of different energies, this is not true. Since these

fractions are intended to be multiplied, in order to get the fraction fch,en that stays in

the hadronic channel, we calculate again a geometric mean. We have already seen that

approximately two thirds of the particles created in an interaction are hadronically

interacting particles. But significantly more than two thirds of the available energy are

taken by these particles (close to 0.77 for all primary energies with standard deviations

of 0.01, 0.01, 0.012 and 0.017 for decreasing energy). This fact will be taken into account

in our calculations of the critical energy in chapter 4, where a similar approach to that

of Kampert and Unger will be followed.

3.4.3. Hadronic showers

When a heavy nucleus enters the atmosphere, it interacts rather quickly. The median

of the depth of the first interaction for showers initiated by iron primaries is close to

7 g cm−2 for all energy groups (see figure 3.14, for proton showers this value is around

30 g cm−2, see figure 3.11, left). In this first collision, only some of the nucleons interact

inelastically with some nucleus in the air molecule, producing subshowers involving

pions. Several other nucleons and light nuclear fragments may be released, while there

will mostly be one heavy fragment. In order to generalize the model from section 3.4.2

to nuclear primaries with atomic number A > 1, the superposition model is applied,

where an even distribution of energy is assumed [64, 65]. As a result, the distribution

of the depth of the first interaction is supposed to be the same as if the nucleons had

entered the atmosphere separately. Even though this is a considerable simplification,

the model is adequate for many purposes. The assumption made is that a nucleus with

Figure 3.13: Distributions of the
geometric mean of the fractions of
energy fch,en taken by hadronically
interacting particles for the different
groups of simulations used for figure
3.7. More than two thirds of the avai-
lable energy is taken by these particles
in every energy group. This parameter
is needed in order to improve the cal-
culation of the critical energy in the
formalism given in [2].
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atomic number A and primary energy E0 behaves like A individual and independent

nucleons of energy E0/A. Hence, inserting in former formulas the energy E0/A and

summing up A showers, where it is suitable, the corresponding formulas for a nuclear

shower can be obtained:

XA
max(E0) = Xp

max(E0)− λr ln (A), (3.13)

NA
max(E0) = Np

max(E0), (3.14)

NA
µ (E0) = Np

µ(E0) · A1−β, (3.15)

ΛA(E0) = Λp(E0). (3.16)

We examine now the same parameters as in the previous section but for the case of

iron primaries, using our sets of simulations and our interpretation of the parameters.

The distributions of the geometric means of the multiplicities N0 and Nch are shown

in figure 3.15 (top and bottom). The mean values increase with energy, as happens for

proton primaries: 5.08, 5.61, 5.84, 5.94 for ⟨N0⟩geom and 10.02, 11.04, 11.53, 11.73 for

⟨Nch⟩geom. It is to be expected that the peak corresponding to 1020 eV is close to the

one corresponding to 1018 eV for proton primaries (see figure 3.7) because the shower

generated by the iron primary can be taken as 56 showers generated by nucleons of

(1020 eV)/56. An equivalent argument applies to the 1019 eV iron showers. In addition,

these distributions are narrower than the ones corresponding to proton showers because

having 56 lower energy showers induces an averaging effect on parameters. The relation

between the geometric means of the multiplicitiesN0 andNch gives for all energy groups

a factor of 1.97 times more hadronically interacting particles. This means that also here

the factor 2 from Heitler and Matthews can be carried over. The distributions of the

factor cch0 for iron showers are presented in figure 3.16. If a value more representative of

Figure 3.14: Distributions of the
depth of the first interaction for sets
of 1000 showers initiated by vertical
iron primaries and simulated using the
high-energy interaction model EPOS-
LHC and different primary energies.
Even though showers generated by lo-
wer energy particles have, on average,
a depth of the first interaction deeper
in the atmosphere, having 56 of them
counteracts this fact to the point that
iron induced showers start earlier in
the atmosphere than proton initiated
ones (of the same energy).
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individual showers is needed, the factor 1.97 should be replaced by the corresponding

median value of cch0 : 2.29, 2.36, 2.41 and 2.46 for log10 (E0/eV) = 17, 18, 19, 20 iron

showers, respectively. We suggest median values because of the skewness of the distri-

butions. Also here, the distributions are narrower than for proton primaries because of

the averaging effect of having 56 lower energy subshowers.

In figure 3.14, the distributions of the depth of the first interaction for showers

initiated by iron primaries of different energies are shown. The range of possible values is

smaller than for proton primaries but still considerable. Even though showers generated

by lower energy particles have, on average, a depth of the first interaction deeper in

the atmosphere, having 56 of them counteracts this fact to the point that iron induced

showers start earlier in the atmosphere than proton initiated ones.

The geometric means of the fractions of energy that stay in the hadronic channel

are very similar to the ones corresponding to proton primaries (see figure 3.17, all mean

Figure 3.15: Distributions of the geometric means of N0 (top) and Nch (bottom) for the
showers from figure 3.14. These values are calculated the same way as was done for figure 3.7.
It is, as for proton primaries, and in certain contexts, safe to assume that in iron showers there
are two times more hadronically interacting secondaries than secondaries contributing to the
electromagnetic component.
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Figure 3.16: Distributions of the factor cch0 for the different groups of simulations from figure
3.14, as calculated for figure 3.10. As for proton primaries, these values are slightly above 2 and
can be used when values representative of individual showers are needed.

values are close to 0.775). This means that also for iron primaries more than two thirds

of the energy stay in the hadronic channel. Finally, the critical energy for iron induced

showers, as calculated in [1], is shown in figure 3.12 (left). It makes sense that the

values are higher than for proton primaries because of the lower energy nucleons being

involved. In order to obtain values like in [2], one can use figure 3.12 and read the value

corresponding to E0/56.

We see in equation (3.13) that, according to Matthews’ model, Xmax is shifted up-

wards in the atmosphere by an amount of λr ln (A). On the other hand, the multiplicity

of the first interaction is higher for iron primaries than for proton primaries. This can

be deduced from the following expression [1]:

Ntot(E0) = A · 0.15 ·
(
E0

A

)0.18

= A0.82 · 0.15 · E0.18
0

Figure 3.17: Distri-
butions of the geometric
mean of the fractions of
energy fch,en taken by
hadronically interacting
particles for the simulations
from figure 3.14. Also for
iron primaries, more than
two thirds of the available
energy are taken by these
particles.
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and considering that A0.82 ≥ 1. Qualitatively expressed, both the smaller interaction

length and the larger multiplicity reduce the depth of maximum shower size with

respect to a proton initiated shower. In figure 3.18, the values of Xmax calculated for

proton and iron primaries of ultra-high energy (filled circles) are compared to the values

of Xmax obtained from our simulations done with CONEX (stars). We use expression

(3.7) for the calculation of Xp
max(E0). For each of the 1000 simulated showers in each

energy group, the corresponding geometric mean of the multiplicities in that shower

and the corresponding X0 value are inserted. The markers are the median values of

the respective distributions and the bars the standard deviations for the calculated

distributions. The agreement is quite good for some combinations of energy and primary

mass, but for others there is room for improvement. Furthermore, the elongation rate

differs between simulations and calculations, but is equal when comparing proton and

iron simulations, as predicted by expression (3.16). For visibility of this feature, fitted

lines are plotted as well. For proton primaries, the slope is 57.8 g cm−2 per decade of

energy, while for iron primaries it is 58.8 g cm−2 per decade of energy.

From equation (3.6) and since ln (fch) ≤ 0, we can conclude that 0 < β ≤ 1. So,

following equation (3.15), the number of muons is higher for higher atomic number

and fixed primary energy E0. This can also be observed in figure 3.19, where the muon

numbers at the ground, for our simulated showers and calculated using equation (3.5),

are shown. In addition to the individual effective multiplicities, this time, the critical

Figure 3.18: Comparison between Xmax calculated using Matthews’ model (filled circles) and
its values from our simulations (stars). Sets of 1000 simulations of vertical protons are used. The
dashed lines are fitted to the simulated median values. They make the elongation rate, which is
very similar among different primary types, visible.
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energy is needed, as well. We calculate it with the method from [2]. Qualitatively, the

observed behavior makes sense because, if the showers generated by each nucleon start

with less energy, the shower is fully developed after less generations and, thus, less

energy is “lost” to the electromagnetic component and more energy is available for

muon production. Quantitatively, the predictions are quite good but, as we shall see,

there is room for improvement.

According to Matthews’ model, Nmax is equal for different primaries of equal energy.

In figure 3.20, values calculated employing expression 3.8 are presented together with

values from our simulations. In this expression, ξπc is calculated again according to [2]

and the previously calculated values of Nµ (figure 3.18) are used. Effectively, values

from simulations and calculated values for different primary types carrying the same

energy are very close to one another. However, there is a gap of more than one order

of magnitude between values from simulations and calculated ones.

3.4.4. Leading particle effect

An important phenomenon that is not taken into account up to now is the leading

particle effect. In each interaction, one leading particle keeps a considerable amount of

the total energy, which is then not available for production of new particles. Instead,

this particle travels an interaction length, which means that its energy is at disposal just

Figure 3.19: Comparison between Nµ calculated using Matthews’ model (filled circles) and its
values from our simulations (stars). The same simulations as in figure 3.18 are used. According
to calculations, there are A1−β times more muons in showers generated by primaries with atomic
number A than in proton showers.
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at a later stage. The fraction of energy that is indeed directed into production of new

particles (in this case, charged and neutral pions) is the inelasticity κ, while the energy

that is carried by the leading particle is the elasticity. In this scenario, the energy is not

evenly distributed among particles belonging to the same generation. Instead, there are

groups of particles that are created by different combinations of leading particles and

“generic” ones. The mean elasticities in EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d

are summarized in figure 3.21 (reproduced from [95]) for a wide range of energies.

Considering that a fraction (1− κ) of the available energy E is kept by the leading

particle, 2
3
κE is distributed among Nch charged pions and the rest

(
1
3
κE
)
among N0

neutral pions, as a consequence, one gets a slightly modified expression for β:

β =
ln (1 +Nch)

ln
(
(1 +Nch)/(1− 1

3
κ)
) . (3.17)

This expression is obtained almost the same way as for (3.6) and can still be inserted in

expression (3.5) in order to get Np
µ. However, the number of generations is accordingly

modified:

nlp
p =

ln (E0/ξ
π
c )

ln
(
(1 +Nch)/(1− 1

3
κ)
) . (3.18)

Here, (1+Nch) is the number of charged pions with the addition of one leading particle.

The difference with how (3.6) is obtained is the fact that here the energy is not equally

distributed among the charged pions and the leading particle. This approximation for

Figure 3.20: Comparison between Nmax calculated using Matthews’ model (filled circles) and
its values from our simulations (stars). The same simulations as in figure 3.18 are used. According
to calculations, the maximum shower size does not depend on the primary mass.
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nlp
p is still adequate because simulations reveal that a considerable fraction of the low-

energy particles has similar energy. Obtaining new expressions for Xp
max and Np

max is, in

this context, not trivial. Now, less energy is at disposal for the group of highest energy

neutral pions, which would mean a smaller value of Xp
max as calculated earlier. But

having a leading particle means that a considerable amount of energy is at disposal at

a later stage, which could mean an important shift of Xp
max to higher depths. What

can be said concretely is that considering the leading particle effect means that κ < 1,

which raises both the values of β and nlp
p (see equations (3.17) and (3.18)). This implies

a deeper shower, but the number of muons is not automatically raised because ξπc is

higher for iron primaries.

3.5. The Muon Puzzle

Air shower simulations with state-of-the-art QCD models show a significant muon

deficit with respect to measurements. This has already been reported in the year 2000

by the HiRes/MIA collaboration [100] and it was first established by the Pierre Auger

Collaboration using nearly model-independent measurements of a set of air showers

at ultra-high energies, initiated by cosmic rays with zenith angles between 62◦ and

80◦ [101]. This open problem is called the Muon Puzzle and caused a re-analysis of

existing air shower data and oriented measurements. In order to compare results from

measurements carried out under different conditions (zenith angle of the air showers,

lateral distance of the muon density measurement, energy threshold of the muons that

Figure 3.21: Mean elasticity in proton-air and pion-air collisions, as predicted by EPOS-LHC,
QGSJETII-04 and SIBYLL-2.3.d (reproduced from [95]).



48 Air shower physics

are measured), the z-scale is introduced [66]:

z =
ln (Ndet

µ )− ln (Nµ
det
p )

ln (Nµ
det
Fe )− ln (Nµ

det
p )

.

Here, Ndet
µ is the muon density measured by the detector, while Nµ

det
p and Nµ

det
Fe are

the simulated muon densities for proton and iron initiated showers, where detector

effects are taken into account. If there was no discrepancy between real and simulated

showers, the z-scale for a certain mass composition would be given by

zmass =
⟨ln (A)⟩
ln (56)

[102].

In this case, the z-scale would vary from 0, for a pure proton-flux, to 1, if all the

showers were initiated by iron primaries. After applying cross-calibration, in order to

take any energy-scale offsets into account, the difference ∆z = z − zmass is studied in

[66]. Here, zmass is computed from the Global Spline Fit model [103]. In this model,

the cosmic ray flux is divided into four mass groups, which cover roughly equal ranges

in logarithmic mass ln (A). The differential flux of the leading element of each group

is parameterized by a modified spline curve. In this process, measurements of the

flux of individual elements in the low energy regime, carried out by satellites and

balloon experiments, are combined with indirect measurements of mass groups obtained

in air shower experiments. Subtracting zmass from z is expected to remove the effect

of the changing mass composition. The conclusion is that muon measurements seem

to be consistent with simulations, based on the latest hadronic interaction models,

up to about 1017 eV (see figure 3.22). However, at higher energies, a growing muon

deficit in the simulations becomes visible. It is noticeable that the results for different

experiments are fairly consistent in this behavior.

The two principal observables used to infer the mean logarithmic mass, ⟨ln (A)⟩,
are Xmax and Nµ. Xmax is mainly connected to the electromagnetic component. The

most important processes that build up this component are pair production, annihi-

lation, bremsstrahlung, Moeller, Bhabha and Compton scattering, which are well un-

derstood and can be calculated from first principles [98]. Indeed, no large discrepancies

are observed in the values of Xmax between measurements and simulations. But Nµ

stems directly from the hadronic cascade, which is mainly driven by relativistic heavy-

ion collisions with nitrogen and oxygen atoms under low momentum transfer in the

non-perturbative regime of quantum chromodynamics. Hadron production under these

conditions cannot be calculated directly from first principles. Consequently, effective

theories and phenomenology need to be used. The different high-energy interaction

models that are used in simulation frameworks implement different approaches. These
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are tuned to the newest available accelerator data, which do not cover all the energy

and phase-space regions needed. Hence, extrapolations are necessary. These are the

largest source of uncertainties. As a result, one of the dominant sources of systematics

in the inference of ⟨ln (A)⟩ originates from the uncertainty in the high-energy interac-

tion models. Furthermore, different astrophysical models predict a different evolution

of ⟨ln (A)⟩ with energy. As long as the uncertainty for the inferred value of ⟨ln (A)⟩ is
too large, many astrophysical theories can not be excluded.

Up to now, it was not possible to solve the Muon Puzzle by tweaking the parameters

in the high-energy interaction models. The necessary changes would either ruin the

consistency between simulations and other air shower observables, such as Xmax, or

violate constraints imposed by accelerator data. This suggests that some physical effect

is missing in the generators. Rare events do not influence air shower development and

are thus not interesting in this context.

On the one hand, the highest attainable energy for proton-proton collisions at the

Large Hadron Collider (LHC) is ∼ 13TeV, which corresponds to an incident cosmic

ray energy of almost 1017 eV. The cosmic ray energy spectrum extends at least three

orders of magnitude further. This means that for ultra-high energy cosmic rays the

first few interactions, which are the ones with the highest available energies, can not

Figure 3.22: ∆z = z−zmass for EPOS-LHC and different air shower experiments, after applying
cross-calibration (reproduced from [66]). A consistency between measurements and simulations
is observed up to about 1017 eV. At higher energies, a growing muon deficit in the simulations is
evident.
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be understood from accelerator data. The energy range where the muon deficit is

observable is only partially covered by experimental data, which suggests that the

origin of the Muon Puzzle is likely to be found in the first stages of the shower, where

the highest energies occur. This makes a non-exotic explanation plausible, in which a

relatively small change in the hadronic interactions at the highest energies propagates

throughout generations causing a considerable change in the final muon number.

However, for example for primary protons with E0 = 1015 eV, the most probable

energy of the grandmother particle of any muon arriving at the ground is within the

range of beam energies of fixed experiments [104]: about 100GeV for vertical showers

and several 100GeV for 60◦ inclined showers. The grandmother particle is the hadron

inducing the last hadronic interaction that leads to a meson called mother particle,

which decays into the corresponding muon. This means that the number of muons in

extensive air showers is sensitive to hadronic multiparticle production at low energy, as

well. This is confirmed in [105], where they show that even at ultra-high shower energies,

the predictions on the lateral distribution of shower particles, including muons, depend

strongly on the applied low-energy interaction model.

On the other hand, most experiments at the LHC are specialized in measuring in the

mid-rapidity region, where new heavy particles like the Higgs boson are best detected.

However, the air shower development is dominated by the subshowers generated by the

particles that carry the highest energies. Besides, muons in air showers heavily depend

on the development of these hadronic subshowers. Now, the highest energies are carried

by forward-produced particles. The relevant phase-space starts at pseudo-rapidities of

about η ≥ 5-6.

In addition, not all combinations of projectiles (nuclei, proton, charged pions and

kaons) and targets (nitrogen, oxygen, argon) interesting for air shower simulations are

represented in collider experiments. The theoretical approach that describes nuclear

collisions in EPOS-LHC and QGSJETII-04 is an extension of the Gribov-Regge Field

Theory [106]. In this approach, the nucleus-nucleus scattering amplitude is defined

by the sum of the contributions of the diagrams corresponding to multiple scattering

processes between parton constituents of the projectile and target nucleons. In SIBYLL-

2.3d, this is accomplished by means of the Semi-superposition Model [107]. This model

refines the already mentioned superposition model by treating a collision of a nucleus

with A nucleons on a nucleus with mass B as A proton-B collisions [108]. Here, the

primary energy is equally divided among nucleons, while the proton-B cross-section is

based on a Glauber calculation [109]. This means that the depth of the first interaction

for each nucleon is distributed along the trajectory of the shower axis. There is still

considerable theoretical uncertainty when extrapolating from proton-proton collisions

to proton-air interactions [110].

A first approach to address the Muon Puzzle is to investigate the relationship bet-
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ween important physical parameters and extensive air shower observables. A first con-

nection was shown in sections 3.4.1 to 3.4.4 with the support of the Heitler-Matthews

model. The inelastic cross-section σinel, the effective total multiplicity Ntot, the elasti-

city (1−κ) and the fraction of electromagnetically interacting particles (predominantly

neutral pions) fem = N0/Ntot turned out to be interesting parameters. Ulrich et al. in-

troduced an ad-hoc model for air shower simulations, in which these parametes are

modified after each individual interaction, and implemented it in the CONEX fra-

mework [112]. A particular high-energy interaction model is used as a baseline (for

example EPOS-LHC). The individual hadronic interaction features just mentioned are

altered by the factor

f(E, f19) = 1 + (f19 − 1)F (E),

which depends on the energy E of the colliding hadron in the frame where the target

Figure 3.23: Impact of changing individual hadronic interaction features on the means and
standard deviations of the logarithm of Nµ (top) and Xmax (bottom) (reproduced from [111]).
1019.5 eV proton showers simulated with CONEX using SIBYLL-2.1 as the baseline model are
used. In the left column, relative shifts to the mean values are shown. The curves serve the
purpose to help the eye. All values are shown as a function of f(E, f19), where f19 is varied,
evaluated at E =

√
SNN. This factor is extrapolated logarithmically towards higher energies.
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is at rest and where

F (E) =

 0 E ≤ 1PeV
log10 (E/1PeV)

log10 (10EeV/1PeV)
E > 1PeV.

The factor f(E, f19) is 1 below 1PeV, where the models are constrained by accelerator

data and thus no modifications are implemented. Above 1PeV, the modification F (E)

increases logarithmically with energy, which reflects the increasing uncertainty of the

extrapolations with energy. Finally, at 1019 eV, the value of f19 is reached, which governs

the size of the modification.

The effect of these modifications on the mean and standard deviation of the muon

number Nµ and the depth of shower maximum Xmax are presented in figure 3.23 (re-

produced from [111]). The values for proton showers are shown as a function of the

modification factor evaluated at the LHC energy scale of nucleon-nucleon collisions, at

13TeV. These results reveal that the most efficient way to increase the number of muons

is decreasing the fraction of neutral pions or increasing the total multiplicity. Reaso-

nable agreement between data and simulations is observed concerning the standard

deviation of the muon number and using EPOS-LHC, QGSJETII-04 and SIBYLL-

2.3d. This constrains the changes that can be applied to the elasticity, which is the

parameter with the biggest impact on σ(Nµ). Post-LHC models also give a consistent

description of Xmax. This means that parameter values that have a big repercussion on

the mean or the standard deviation of Xmax cannot deviate too much from those used

in current models. The cross-section is the most influential parameter on Xmax, which

indeed has already been measured very precisely.

The correlated impact of Ntot and the fraction of energy

fem,en =
Eem

Etot

that goes into the electromagnetic channel on Xmax and ln (Nµ) in full air shower

simulations is explored in [113]. The result for 1019 eV simulations performed using

EPOS-LHC in CONEX is presented in figure 3.24 (reproduced from [113]). Lines re-

present all possible resulting mean values of Xmax and ln (Nµ) for mass compositions of

cosmic rays between pure proton (bottom right end of lines) and pure iron compositions

(top left end of lines). Ad-hoc modifications on Ntot and fem,en by up to ±20% are also

shown. These are compared to a measurement done at the Pierre Auger Observatory

[101]. Changes in Ntot move the line almost horizontally. Thus, no answer regarding

the Muon Puzzle can be found here. However, a change in fem,en has a perpendicular

effect to the lines and suggests that a solution to the Muon Puzzle might be found in

the modification of this energy ratio.
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There are already glimpses of the solution to the puzzle. The ALICE experiment

observed an enhancement of strangeness production in high-multiplicity events at mid-

rapidity [115]. An increase in strangeness leads to a decrease in the pion yield, which

includes neutral pions. If this effect is also present in the forward region and in other

collision systems important for air shower development, the Muon Puzzle might be

solved. It has also been shown in [116] that the forward production of ρ0 mesons plays

an important role in increasing fch,en. Forward ρ0 production is namely an alternative to

the charge exchange reaction π−+p → π0+n+X. In this process, the leading π0 carries

a considerable amount of energy away from the hadronic channel. It is furthermore

known that an increased baryon production increases the number of interactions where

no leading π0 is produced [117]. As a consequence, more energy goes into hadronic

subshowers, leading to more hadronic generations and, in the end, to more muons. Yet,

there is a lack of data on both identified hadron spectra and on strangeness production

in the forward region.

Figure 3.24: Impact of modifying the hadronic multiplicity Ntot (dashed lines) and the elec-
tromagnetic energy ratio fem,en (dotted lines) in collisions at 13TeV on EPOS-LHC predictions
of the air shower observables Xmax and ln (Nµ). This result is reproduced from [113]. The datum
is from the Pierre Auger Observatory [114]. The model lines represent all values that can be
obtained for any combination of nuclei from a pure proton scenario (bottom right) to a pure iron
scenario (top left).
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3.6. Fluctuations of the muon content

The study presented in figure 3.24 focuses on the average muon content. Since the

parameters Ntot and fem,en are modified there for the whole shower, this suggests that

the average muon number depends on all processes that occur along the shower, in-

cluding the low-energy interactions. In an effort to understand the phenomenology of

the muon component, one can also take a closer look at its shower-to-shower distribu-

tions [67, 118, 68, 119, 120]. There are many arguments in favor of a close relationship

between the fluctuations of the muon content and the characteristics of the first inter-

action, which we summarize here.

In order to understand the shower-to-shower fluctuations of Nµ, one can start taking

into account that the multiplicity varies from interaction to interaction. This way, one

gets an expression slightly different from (3.5):

Nµ = Π
np

i=1N
i
ch,

where N i
ch is the average hadronic multiplicity of each generation. Note that the value

of np is not calculated as for expression (3.5) anymore because allowing for a varying

hadronic multiplicity changes the overall energy budget of each subshower, leading

to a different point where the critical energy is reached. Assuming that the hadronic

multiplicities of all interactions arise from a common probability distribution with mean

Nch and dispersion σ(Nch), the dispersions of N i
ch can be calculated as

σ(N i
ch) =

σ(Nch)√
Ni−1

,

where Ni−1 is the number of hadronically interacting particles in the previous genera-

tion. It becomes evident that the fluctuations of the average multiplicity decrease as the

shower develops, while the number Ni−1 increases. Consequently, the contributions to

the fluctuation of Nµ from later shower stages become smaller. This effect is amplified

by the fact that σ(Nch) actually decreases with energy [121].

Another fluctuation comes from the variability in how energy is shared among

particles emerging in each generation. The number of muons can be calculated taking

into account only those fluctuations that arise from the first interaction, by summing

the average number of muons of each of the N1
ch subshowers originating from the first

interaction:

N1
µ(E0) =

N1
ch∑

i=1

⟨Nµ(E
had
i )⟩ =

N1
ch∑

i=1

(
Ehad

i

ξπc

)β

, (3.19)

where Ehad
i is the energy of the ith hadronically interacting particle. The approximation

done here is that a subshower generated by a hadron from the first interaction, most
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probably a charged pion, behaves the same way as a proton initiated shower. Defining

the fraction xi = Ehad
i /E0, equation (3.19) can be rewritten as

N1
µ(E0) =

(
E0

ξπc

)β

·
N1

ch∑
i=1

(xi)
β = ⟨Nµ(E0)⟩ · α1.

In the last step, expression (3.5) is used and the parameter

α1 =

N1
ch∑

i=1

(xi)
β

defined.

Taking into account the fluctuations down to the second interaction results in

N2
µ(E0) =

N1
ch∑

i=1

(N2
ch)i∑

j=1

(
Ehad

ij

ξπc

)β

≈ N1
µ(E0) ·

N2
ch∑

j=1

(x̃j)
β = N1

µ(E0) · α2,

where Ehad
ij = E0xixij is the energy carried by the hadronically interacting particles

from the second generation and an equivalent parameter to α1, but for the second

generation, is defined. The interactions of the second generation are treated as equal,

in order to be able to extract the common factor N1
µ(E0). The interesting point here

is that there is no need to assume equipartition of energy. It is only assumed that the

(eventually) uneven way energy is distributed among particles is equal for all interac-

tions happening in that generation. If one defines αk as the sum of all energy fractions

of hadronically interacting particles from generation k (out of the energy they have

at their disposal), elevated to the value of β, repeats the reasoning and approxima-

tes the final muon number Nµ with the number of muons obtained from taking into

consideration all the hadronically interacting particles from generation np, one is left

with:

Nµ = ⟨Nµ(E0)⟩ · α1 · ... · αnp . (3.20)

Equation (3.20) shows that the number of muons is connected with a variable of

the first interaction, α1. The correlation is indeed strong, as is evident from figure

3.25, where a set of 5000 showers initiated by vertical protons of 1020 eV (left) and sets

of 1000 showers initiated by vertical protons of lower energies (right) are used. The

accumulation of events along the vertical line at α1 = 1 (best visible for the highest

energy simulations because there are more events and the α1-Nµ plane is zoomed in)

corresponds to quasi-elastic events. The correlation coefficient (ρX,Y = cov(X, Y )/(σX ·
σY )) is close to 0.8 for all cases.

The relative fluctuations of Nµ can be estimated through the quadratic sum of the
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Figure 3.25: Correlation between the number of muons and α1 for a set of 5000 showers
initiated by vertical protons of 1020 eV (left) and sets of 1000 showers initiated by vertical protons
of lower energies (right). All simulations were performed using the high-energy interaction model
EPOS-LHC. The accumulation of events along the vertical line at α1 = 1 corresponds to quasi-
elastic events. The correlation coefficient (ρX,Y = cov(X,Y )/(σX · σY )) is close to 0.8 for all
cases.

relative fluctuations of αk from the different generations k:(
σ(Nµ)

Nµ

)2

=

np∑
k=1

(
σ(αk)

αk

)2

.

The more advanced the shower is (higher value of k), the more interacting particles

there are. As a consequence, σ(αk) becomes smaller as k increases. This means that

the strongest contribution to the fluctuation in the number of muons comes from the

fluctuations that occur in the first interaction.

In this chapter we have seen a wide variety of parameters that are useful to describe

extensive air showers and simple expressions to relate them with different observables.

We will combine and expand some of these expressions in the next chapter in order to

describe the Xmax-Nµ anticorrelation. The parameters presented so far are not enough

to achieve this goal. When carrying out our calculations, new useful parameters will

be defined.



Chapter 4

Understanding the Xmax −Nµ

anticorrelation

“Forget this world and all its troubles and if possible its mul-

titudinous Charlatans - everything in short but the Enchan-

tress of Numbers.”

— Ada Lovelace

In order to comprehend the Xmax-Nµ anticorrelation, it is reasonable to begin exa-

mining Xmax and Nµ separately. In section 3.3, we explained how we obtain these two

observables and other parameters of interest from simulations. By examining Xmax

and Nµ separately, the link between these two observables may be detected as soon

as they depend on some parameter in common. In this pursuit, ideas based on the

semi-empirical model and related topics presented in section 3.4 are used as a basis.

The shift from constant values to shower-to-shower values is important to reproduce

Xmax-Nµ distributions instead of mean values. Since the achievable degree of simplicity

of the future model was not foreseeable at this stage, it made sense to start incorpora-

ting as much detail as possible, prioritizing a thorough understanding. The possibility

to break down the model and thus get more fundamental and simple expressions would

come at a later step. We conclude with a simple model that depends on a small set of

parameters that describes the Xmax-Nµ anticorrelation.

4.1. Initial approach

A first attempt to express Nµ as a function of physical features of the shower is

shown in figure 4.1 (left). Here, the number of muons is calculated as the sum of

the number of muons of each subshower that originated from a particle of the first

interaction that contributes to the hadronic channel, namely each particle that is not

57
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a π0, η or an electromagnetic particle:

Nµ =
∑
i

(
Ehad

i

ξπc

)β

.

This is very similar to the work of Cazon et al. that we presented in section 3.6. We

use expression (3.5) for the number of muons of each subshower and a constant value

of ξπc = 20GeV, which we discussed in section 3.4.2. Ehad
i is the energy of the ith

particle that contributes to the hadronic channel. For this part of the analysis, we

use simulated showers generated by vertical protons with primary energies of 1017 eV,

1018 eV, 1019 eV and 1020 eV. For each energy group, β can be chosen so that the errors

in the predictions are minimized. The obtained values are 0.861, 0.868, 0.872 and 0.881,

respectively, for increasing energy. They are a bit low, considering the more realistic

values that follow from equation (3.17), which are shown in figure 4.2, but they follow

the expected increasing behavior. One important comment to make here is that it is

once again confirmed (like in the works from Cazon et al., [67, 118, 68, 119, 120]) that

information about the first interaction is enough to get a good estimate of Nµ. It is

also worth noting that the aim here is not to test the semi-empirical model as it is,

but to see if, by reasonable modifications, Nµ (and Xmax in the next paragraph) can

be estimated from a certain set of features of the shower.

A similar approach in order to get an estimate of Xmax is to consider the electro-

magnetic subshowers generated by each particle of the first generation. Of course, in

Figure 4.1: Comparison between the true number of muons at the ground (left) and the true
values of ∆X = Xmax−X0 (right) with the corresponding calculated values. The true values are
extracted from showers simulated with CONEX using EPOS LHC. Vertical protons of different
energies are considered as primaries. The calculated values are computed using the corresponding
parameters from these same simulations as explained in the text.
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the case of a π0 or η, the assumption is that it decays immediately into 2 photons of half

the secondary’s energy. The value of Xmax of these subshowers is estimated through

expression (3.3), replacing E0 by Eem
j /2. Eem

j is the energy of the jth π0 or η. For all

the other secondaries, we also use expression (3.3) for the calculation of Xmax, with the

exception that E0 is replaced by Ehad
i /(2 ·N∗

tot). Here, N
∗
tot is an effective multiplicity

that differs between the different energy groups. It can be thought of as the number of

particles that carry enough energy to generate subshowers and have some observable

impact on the final complete shower. This parameter can be chosen so as to minimize

the errors of the predictions. For increasing energy, the values are 1, 2.5, 4.5 and 13.

There is no particular physical justification for these precise values, but again the fact

that these values grow with energy is in agreement with the fact that total multiplicities

grow with energy. Finally, we calculate the average of all the obtained individual Xmax

values corresponding to the electromagnetic subshowers, weighted by the energies of

the corresponding initiating secondaries. Since the individual subshowers are conside-

red to start at the point where the first interaction occurred, the calculated estimates

are compared to ∆X = Xmax −X0 in figure 4.1 (right).

In order to obtain deep showers, an energetic leading particle, that keeps a consi-

derable amount of energy in many successive interactions, is certainly necessary. The

deeper the shower, the less combinations there are to achieve that value of Xmax. Con-

versely, the smaller the depth, the more combinations of distribution of energy among

particles there are in order to reach that depth. Combining this reasoning with the fact

that the leading interaction is dominant in the prediction of Xmax in this approach,

it makes sense that the errors in the predictions are higher for smaller depths (within

each energy group). The accumulation of events on horizontal lines (in figure 4.1, right)

corresponds to particularly bad predictions that arise from quasi-elastic events, where

the information useful for this simple model actually would be found in the second

interaction.

Figure 4.2: β as a function of
the multiplicity Nch of hadroni-
cally interacting particles and the
inelasticity κ. Expression (3.17)
is used, which involves the lea-
ding particle effect.
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These predictions are still quite rudimentary. As we shall see, there is much room

for improvement. But, most importantly, the drawback in these approaches is that

we use very detailed information about the first interaction, namely the energy and

identity of each particle being created there, in order to assign it the correct role in the

model. It is crucial to shift to more simple parameters that represent this complexity

in a shower-to-shower manner. What can already be perceived is that the energy that

goes into the hadronic channel and the multiplicity N∗
tot might have a major role.

4.2. Improvement of the semi-empirical model

We go back now to the expressions for Xmax and Nµ presented in chapter 3, but

instead of using mean effective parameters, we insert ranges of realistic values. Thus, we

obtain ranges of ∆X and Nµ that can be compared to ranges covered by distributions

from simulations. This gives hints as to where improvement is needed in order to be

able to describe the ∆X-Nµ anticorrelation.

The most detailed but simple expressions for ∆X and Nµ so far include the leading

particle effect in the calculation of β and use the critical energy ξπc , as calculated by

Kampert and Unger, which only depends on the total multiplicity Ntot. We calculate

Nµ = (E0/ξ
π
c )

β with the corresponding expressions from chapter 3 for proton showers

of different energies. For the parameters needed, we insert realistic values spanning

intervals of the effective multiplicity Ntot and the effective inelasticity κ, motivated

by the corresponding simulated distributions shown in figures 3.7 and 4.3 (left). This

means that we use realistic values of ⟨N0⟩geom + ⟨Nch⟩geom to replace the effective total

multiplicityNtot. When looking into the distribution of κ from all interactions occurring

in a particular shower, a skewed distribution with a long tail can be observed. A

Figure 4.3: Distributions of the mode of the inelasticity κ (left) and the total multiplicity NFI
tot

of the first interaction (right) for sets of 1000 simulations done with CONEX using EPOS-LHC
with vertical protons of different energies as primaries.
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representative value for the shower is then the mode of these values (the most probable

value), rather than the ordinary mean, since it is not affected by how long the tail is.

Furthermore, since the product of the inelasticities has no interpretable meaning or use

in the model, it does not make sense to consider geometric means here. Thus, we use

values of mode(κ) to replace the effective inelasticity. The distribution of these values

is shown for showers of different primary energy in figure 4.3 (left).

We calculate ∆X = Xmax − X0 in two ways. First, Matthews’ approach is used.

No concrete expression was given by him for ∆X including the leading particle effect.

So, we follow the idea he uses for hadronic showers without considering this effect and

calculate Xmax for the bulk of subshowers that come from the first interaction (and

treat them as if they were all equal) with the following expression:

∆X = λr ln

(
(1− f̃FI

ch,en) κ
FIE0

2 (NFI
tot/3) ξ

e
c

)
, (4.1)

This expression, which requires three parameters that change from shower to shower,

is quite simplified because the inelasticity is not taken into account in subsequent

generations. κFI and NFI
tot are the inelasticity and the total multiplicity of the first

interaction, respectively. f̃ch,en is the fraction of the hadronic energy out of the energy

that is available for production of new particles, in contrast to fch,en, which was the

same fraction but out of the total energy of the interaction. Ranges of realistic values

for NFI
tot, κ

FI, f̃FI
ch,en are taken from figures 4.3 (right) and 4.4 (left and right). For

NFI
tot, we count explicitly how many particles are created in the first interaction of

Figure 4.4: Distributions of the inelasticity ⟨κ⟩w (left) and the hadronic energy fraction of
energy ⟨f̃ch,en⟩w (right). These weighted averages are computed for each shower taking into
account all the interactions that occur (down to the threshold Ethr). The respective weight is
the energy available for production of new particles in that interaction, i.e. the inelasticity times
the energy of the interaction. This means that the first interaction will dominate this weighted
average. Distributions shown here correspond to the same sets of simulations used to obtain the
plots in figure 4.3.
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each shower, disregarding electrons, photons and muons. They, most probably, will

not influence the development of the shower, considering that they typically take a

negligible amount of energy. We could also use the strict values from the first interaction

for the inelasticity and the hadronic energy fraction. Instead, we already present in this

context the weighted averages of the corresponding values over all interactions present

in that shower and denote it by ⟨·⟩w. The weight w for each interaction is the energy

that is available for production of new particles, i.e. inelasticity times the energy of the

interaction. These weighted averages will be used at a later point of the work and the

results at this stage don’t change substantially. Consequently, and in order to make

later sections easier to read, we introduce them now. In brief, we use realistic values of

NFI
tot, ⟨κ⟩w and ⟨f̃ch,en⟩w to be inserted in NFI

tot, κ
FI and f̃FI

ch,en, respectively. Note that,

since the highest weights w happen in the first few interactions, these weighted averages

will indeed be very correlated to the corresponding values of the first interaction.

Secondly, Kampert and Unger’s approach is tested. Even though, their calculations

are intended to follow the hadronic development of the shower and it is known that

Xmax stems from the electromagnetic component, one can argue that this component is

fed by neutral pions, which arise from the hadronic component. This motivates probing

∆X = nd(Ntot, (1− κFI)E0) · 120 g cm−2,

where Ntot is the effective multiplicity of the whole shower and κFI the inelasticity of

the first interaction. This expression means that we take the energy “left behind” by

the leading particle of the first interaction, which is why κFI is used in the expression,

and calculate then the ∆X value from the corresponding subshower. The effective

multiplicity Ntot is used because, once we have kept the inelastic energy from the first

interaction, the development is the same as in Kampert and Unger’s approach. Being

consistent with the calculations so far, we replace κFI and Ntot by reasonable values of

the weighted average ⟨κ⟩w and ⟨N0⟩geom+⟨Nch⟩geom, respectively. The interaction length

λI = 120 g cm−2 is used, as in Matthews’ work. We only vary the other parameters

because the effect of varying a multiplicative factor is easy to interpret.

Parameter Replacement 1017 eV 1018 eV 1019 eV 1020 eV
NFI

tot NFI
tot 1− 1000 1− 1250 1− 2000 1− 3250

Ntot ⟨N0⟩geom + ⟨Nch⟩geom 15.0− 20.0 15.25− 20.0 16.5− 20.0 16.5− 20.0
κFI mode(κ) 0.59− 0.7 0.6− 0.68 0.62− 0.67 0.62− 0.66
κ ⟨κ⟩w 0.62− 0.88 0.62− 0.88 0.62− 0.88 0.62− 0.88

f̃FI
ch,en ⟨f̃ch,en⟩w 0.6− 0.8 0.6− 0.8 0.6− 0.8 0.6− 0.8

Table 4.1: Current models and our model are tested on ranges of the parameters NFI
tot, Ntot,

κFI, κ and f̃FI
ch,en, instead of using constant mean values. The used ranges are summarized here

for the different primary energies considered and are motivated by previously presented plots, as
described in the text. In the second column, we also summarize how we interpret each parameter.



4.2 Improvement of the semi-empirical model 63

The concrete ranges we used to test the expressions from Matthews, Kampert and

Unger are summarized in table 4.1, while the results of our calculations are summa-

rized in table 4.2. The “parameter” column in table 4.1 refers to the parameters in

the expressions for ∆X, while the “replacement” column indicates how we interpret

these parameters and how we calculate them for each simulated shower. The resul-

ting calculated values of ∆X tend to be low for both approaches. Furthermore, only

small ranges of ∆X can be obtained with Kampert and Unger’s approach compared

to simulations, while Matthews’ approach covers the possible values quite well. With

regard to the muon number, values tend to be too high. We already got a hint in the

previous section that the first interaction plays a significant role and this is not taken

into account in these expressions yet. We propose now an improvement to this model

by adding details concerning the first interaction.

More concretely, we will improve these expressions by incorporating more para-

meters related to the first interaction in Kampert and Unger’s approach. We still use

that
ρ(h)hs

n cos (θ)
= λI = λdec = ρ(h)cτπ±γ, (4.2)

with the difference being in how

γ =
Eind

π

mπ±c2

is calculated. Eind
π is the energy of individual pions in the n-th generation. ng will be

the number of generations necessary for the individual pions to achieve their critical

energy, taking into account the effective hadronic multiplicity Nch, the effective fraction

of energy that stays in the hadronic channel f̃ch,en, the effective inelasticity κ and the

corresponding values of the first interaction NFI
ch , f̃

FI
ch,en and κFI, instead of only the

Observable 1017 eV 1018 eV 1019 eV 1020 eV
∆X - EPOS-LHC 571− 940 633− 885 698− 940 752− 996

∆X - M. 455− 749 532− 834 600− 920 667− 1005
∆X - K., U. 510− 624 610− 729 708− 812 805− 915

Nµ - EPOS-LHC 2.0e5− 8.7e5 1.5e6− 6.9e6 8.8e6− 5.6e7 1.6e8− 4.5e8
Nµ - M., K., U. 5.5e5− 8.7e5 5.1e6− 7.6e6 4.8e7− 6.8e7 4.4e8− 5.8e8

Table 4.2: The ranges of parameters presented in table 4.1 are inserted into the expressions
for ∆X and Nµ. The resulting ranges of calculated ∆X and Nµ values are compared to the
corresponding ranges obtained from simulations done with CONEX using EPOS-LHC and ver-
tical protons of different energies as primaries. Nµ is calculated combining the approaches from
Matthews, Kampert and Unger (M., K., U.). ∆X is calculated in two ways, using Matthews’
approach (M.) and using Kampert and Ungers’ approach (K., U.).
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total multiplicity Ntot:

ξπc =

(
1− (1− f̃FI

ch,en)κ
FI
)(

1− (1− f̃ch,en)κ
)ng−1

E0

(1 +NFI
ch ) (1 +Nch)

ng−1 . (4.3)

(
1− (1− f̃FI

ch,en)κ
FI
)(

1− (1− f̃ch,en)κ
)ng−1

is the fraction of the primary energy that

stays in the hadronic channel after ng interactions, including the leading particle.

(1 − f̃ch,en)κ is namely the energy that is “lost” to the electromagnetic component.

This way, we describe the shower that is composed of all the subshowers initiated by

the hadronically interacting particles from the first interaction. This energy is divided

among all the charged pions present at the ng-th interaction, which decay to

Nµ =
(
1 +NFI

ch

)
(1 +Nch)

ng−1 (4.4)

muons that reach the ground. The first interaction has been separated from the conse-

cutive ones, because the multiplicity NFI
ch of the first interaction is not only remarkably

higher than Nch, but also covers a wide range of possible values, which should have

a noticeable impact on the predictions. Separating
(
1− (1− f̃FI

ch,en)κ
FI
)
from the rest

of the fraction is worthwhile, as well, because even though there can be observed only

a small difference, it turns out to be very important when using neural networks in

the next chapter. In principle, the factors including the inelasticity and the hadronic

energy fraction can be summarized in one parameter each (one corresponding to the

first interaction and another one corresponding to the rest of the interactions), but

separating them into two interpretable parameters gives the opportunity to later test

the model in more detail.

Inserting our expression for the critical energy of charged pions (4.3) into equation

Figure 4.5: Distributions of the charged multiplicity NFI
ch of the first interaction (left) and of

the geometric mean ⟨f̃ch,en⟩geom of the hadronic energy fraction (right) for the sets of simulations
used in figure 4.3.
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(4.2), we obtain the following:

ρ(h)hs

ng cos (θ)
=

ρ(h)cτπ±ξπc
mπ±c2

⇒ hs

ng cos (θ)
=

cτπ±

mπ±c2

(
1− (1− f̃FI

ch,en)κ
FI
)(

1− (1− f̃ch,en)κ
)ng−1

E0

(1 +NFI
ch ) (1 +Nch)

ng−1

⇒ hs

cos (θ)

mπ±c2

cτπ±E0

1 +NFI
ch

1 +Nch

1− (1− f̃ch,en)κ

1− (1− f̃FI
ch,en)κ

FI
= ng

(
1− (1− f̃ch,en)κ

1 +Nch

)ng

= ng exp

(
ng ln

(
1− (1− f̃ch,en)κ

1 +Nch

))

⇒ ng = W−1

(
ln

(
1− (1− f̃ch,en)κ

1 +Nch

)
· hs

cos (θ)

mπ±c2

cτπ±E0

1 +NFI
ch

1 +Nch

1− (1− f̃ch,en)κ

1− (1− f̃FI
ch,en)κ

FI

)
/

ln

(
1− (1− f̃ch,en)κ

1 +Nch

)
. (4.5)

The first and second rows in figure 4.6 show the result from calculating ∆X, using

equation (4.1), and Nµ, using equations (4.4) and (4.5), for a primary energy of E0 =

1020 eV. The typical values for this primary energy are summarized in table 4.3 and

used to replace the parameters. The most noticeable variability happens when varying

the parameters that describe the first interaction. Therefore, for simplification, we use

fixed mean values for the three effective parameters that are representative for the

whole shower (see table 4.3). As a further simplification, we show the results for the

extreme values of κFI, while allowing for a variety of values of NFI
ch and f̃FI

ch,en. In order

to understand the effect of the parameters of the first interaction NFI
ch , f̃

FI
ch,en and κFI

on ∆X and Nµ, we show in the first row of figure 4.6 the result of varying NFI
ch and

f̃FI
ch,en for the extreme upper value κFI = 0.88, while the result for the extreme lower

value κFI = 0.62 is shown in the second row. For this, we need the distribution of NFI
ch ,

which is shown in figure 4.5 (left).

⟨Nch⟩geom and ⟨κ⟩w have already been inserted in the models from Matthews, Kam-

pert and Unger and we use here their mean values. The only new effective parameter

is f̃ch,en, for which we use the geometric mean ⟨f̃ch,en⟩geom, whose distribution is shown

in figure 4.5 (right). The product of the f̃ch,en values from consecutive interactions in

a shower is the fraction of energy that stays in the hadronic core, leaving the leading

particle of each interaction out. Therefore, the product has the same meaning as in-

dividual values of f̃ch,en, but for the whole shower. That is why the geometric mean is

used again.

We see that higher values of the inelasticity of the first interaction stretch the distri-

bution downwards to lower values of Nµ. This comes from the fact that the higher the
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inelasticity is, the more energy is available for the shower development. Consequently,

there are more combinations of how to distribute the energy. There are combinations

where more energy is “lost” to the electromagnetic component, which implies a lower

number of muons. One might think that this effect is artificial and that, if we took

into account what happens to the leading particles from all interactions, another ef-

fect might be observed. We will see in a moment that the inelasticity is indeed well

implemented in this model.

Since, when calculating ∆X, we don’t take into account electromagnetic showers

from later stages of the shower, this estimate tends to be low, as we already mentioned in

the previous section. This is corrected with a multiplicative factor of 1.11. The number

of muons is slightly overestimated, which we correct dividing by a factor of 1.15. Doing

this, a nice agreement between the simulations and our model is obtained. Furthermore,

when looking at the distribution of NFI
ch (left column) and ⟨f̃ch,en⟩w (right column) in

the ∆X-Nµ plane, we can observe that the true distribution from simulations is fairly

well reproduced (see figure 4.6, bottom, and figure 4.7, top, for comparison). The higher

Parameter Replacement Values New name Short description

NFI
ch NFI

ch 1− 2300 M0 = ln(NFI
ch + 1)

Hadronic multiplicity
of the first interaction

Nch ⟨Nch⟩geom 12.03 Meff

Effective multiplicity
of the rest of the sho-
wer

κFI ⟨κ⟩w 0.62, 0.88 K0

Inelasticity, mainly re-
presenting the first in-
teraction

κ mode(κ) 0.75 Keff

Effective inelasticity
of the rest of the
shower

f̃FI
ch,en ⟨f̃ch,en⟩w 0.3−0.8 F0

Hadronic energy frac-
tion, mainly represen-
tative of the first inter-
action

f̃ch,en ⟨f̃ch,en⟩geom 0.575 Feff

Effective hadronic
energy fraction of the
rest of the shower

Table 4.3: In the following, we test our model, which can be summarized with expressions (4.1),
(4.4) and (4.5) that depend on the six parameters NFI

ch , Nch, κ
FI, κ, f̃FI

ch,en and f̃ch,en. In this
table, we summarize how we calculate these parameters (second column), the values we obtain
from simulations of 1020 eV proton initiated showers (third column) and the new simpler name
we assign them for the next chapter on neural networks (fourth column). For NFI

ch and f̃FI
ch,en, we

are interested in ranges of values. For κFI, we will only consider the upper and lower extreme
values. For the other three effective parameters of the rest of the shower, we consider mean
values because their distributions are quite narrow. Furthermore, we redefine M0 as ln(NFI

ch +1),
which is the feature we will end up using when training neural networks. Finally, we give a short
description of each parameter (fifth column).
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the multiplicity NFI
ch (see left column of the first two rows in figure 4.6), the lower the

energy of individual particles. This way, the shower develops in less generations and

less energy is taken by the electromagnetic component, which lowers the value of ∆X.

Thus, also more energy is kept in the hadronic channel, resulting in a higher number

Figure 4.6: The first and second rows show the ∆X-Nµ distributions, as calculated using our
model given by expressions (4.1), (4.4) and (4.5) and inserting the values summarized in table
4.3 into the parameters. The first row is calculated with a fixed value of ⟨κ⟩w = 0.88, the second
row with ⟨κ⟩w = 0.62. In the last row, we compare the behavior of NFI

ch in the ∆X-Nµ plane for
the simulations, obtained using EPOS-LHC and vertical protons of 1020 eV as primaries (left),
with the distribution obtained through our model (right). Both distributions cover roughly the
same area, have a similar anticorrelation and the parameter NFI

ch presents the same behavior on
both distributions.
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of muons. This is also and more efficiently achieved by a higher fraction ⟨f̃ch,en⟩w (see

right column of the first two rows in figure 4.6).

The final step is to evaluate the model on a shower-to-shower basis. This is done

repeating the procedure applied to the grid of realistic values as presented in figure

4.6, but this time on individual showers from simulations. For each shower, the co-

rresponding values of the three parameters from the first interaction are inserted into

equations (4.1), (4.4) and (4.5). The same corrections as before are applied to the pre-

Figure 4.7: As in the last row of figure 4.6, we compare the behavior of the parameters ⟨f̃ch,en⟩w,
⟨κ⟩w and ⟨f̃ch,en⟩geom on the distributions from simulations (left) with that on the distributions
obtained using our model (right). The first two parameters show a remarkable coincidence.
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dictions of ∆X and Nµ. The only difference to the previous analysis is that we also

insert the individual values of ⟨f̃ch,en⟩geom, while for the other two effective parameters

mean values are used. Out of the three effective parameters, ⟨f̃ch,en⟩geom is the one with

the highest impact on the predicted values. So, we want to see how the model works

taking its individual values into consideration, as well.

The results are shown in figure 4.7 and the third row of figure 4.6. In each row, we

compare the behavior of a different parameter in the ∆X-Nµ plane for the simulations,

obtained using EPOS-LHC with vertical protons of 1020 eV (left), with the distribution

obtained through our model (right). The ∆X-Nµ distribution from our model covers

the same region as simulations and the anticorrelation is represented fairly well. The

fact that the distributions of the three parameters of the first interaction in the ∆X-

Nµ plane represent quite well those from simulations means that the behavior of these

parameters is qualitatively and even numerically well captured in the model. ⟨f̃ch,en⟩geom
follows the correct behavior for lower values only.

This model is adequate to describe the ∆X-Nµ anticorrelation as a function of

a few physical parameters. The results in figures 4.6 and 4.7 show that the hadronic

multiplicity and the inelasticity of the first interaction are correlated with ∆X and des-

cribe the anticorrelation moving horizontally. The hadronic energy fraction of the first

interaction, on the other hand, is more related to the number of muons and describes

the anticorrelation moving almost vertically. None of these parameters alone describes

the anticorrelation by itself. Instead, a combination of these parameters is needed to

describe the inclined axis that the anticorrelation follows. In chapter 5, we will extend

this model using neural networks and improve it even more.





Chapter 5

Construction of the model

“The laws of history are as absolute as the laws of physics,

and if the probabilities of error are greater, it is only because

history does not deal with as many humans as physics does

atoms, so that individual variations count for more.”

— Isaac Asimov, Foundation and Empire

In this chapter, we improve the model from section 4.2, which already gave good

results, using neural networks. For the code, we implement the functions provided by

the SciPy ecosystem [122] (Numpy and Matplotlib), Scikit-learn [123] and Keras [124,

125] using Tensorflow [126], all interpreted by Python 3.6 [127]. The objective is now

to reduce the number of features as much as possible, while still being able to develop

a neural network that captures all high-energy interaction scenarios simultaneously in

the form of a unified or universal model. We show that this is possible when keeping

M0, Keff and F0 as unknown features. After describing their distributions through

suitable expressions, we study the impact of changing the parameters that describe

these distributions on the final observables ⟨Xmax⟩, ⟨Nµ⟩, σ(Xmax) and σ(Nµ). We

conclude performing a χ2 fit using these observables to predict the unknown parameters

as a means of testing our model.

5.1. Neural network architecture

A neural network is an algorithm inspired by biological neural networks that en-

deavors to recognize underlying patterns in a set of data. Neural networks shine when

these are too complex to be understood using traditional approaches. Numerous tech-

niques were developed in the last decades and several quite recent breakthroughs in

computing power made these techniques computationally affordable. Many of these

and other machine learning techniques are nowadays extensively used in the physical

71
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sciences [128, 129]. In section 4.2, we developed a mathematical model for the Xmax-Nµ

anticorrelation based on the Heitler-splitting. It is a discrete model in the sense that

processes involved are described discretely. It is to be expected that a neural network

might identify other details not captured by the successive splitting, in which energy is

equally divided among particles belonging to the same group. In order to build neural

networks judiciously, the previous work is crucial. We have already understood which

parameters and which processes are important.

In regression tasks, like the one we are engaged in solving, one is interested in

predicting target numerical values as a function of a set of input features. In our work,

the targets are Xmax and Nµ. In our calculations, analyzing ∆X = Xmax −X0 instead

of Xmax came quite naturally and there was no obstacle when comparing it to the

corresponding values in simulations. When using CONEX, the exact value of the depth

of the first interaction is accessible. In air shower experiments, however, we have no

access to the value of X0 on a shower-to-shower basis. Since we want to apply our final

model to a dataset from the Pierre Auger Observatory, we need to cling to the value

of Xmax alone as one of the targets. Nµ, on the other hand, is the number of muons

at the ground (at a vertical atmospheric depth of 880 g cm−2), which corresponds to

the mean position of the Pierre Auger Observatory. CONEX outputs several different

longitudinal profiles. Among them is the profile of the total number of muons with

energy above some predefined threshold traversing each depth. The energy threshold

in our simulations is of 1GeV. Since we will implement supervised learning, the training

set that is fed to the algorithm will always include the desired and known solutions,

called labels.

We start right away taking into account the features that are suggested by our

model presented in section 4.2 and are summarized in table 4.3: M0, K0 and F0 and the

corresponding effective values Meff , Keff and Feff , representative for the whole shower.

Furthermore, we add the depth of the first interaction X0 to the set of features because

in our mathematical model it was implicitly involved in the value of ∆X and we

removed it from this expression of the target. Note that, from here on, we use ln(NFI
tot+1)

instead of NFI
tot as the feature we call M0 because we need to avoid distributions with

very long tails. When using neural networks, distributions concentrated in smaller

regions are preferred. This is, most of the times, easily achieved by using the logarithm

of the feature. When having only positive values, this compresses the values, while

keeping their order. The X0 distribution has a long tail, as well, but in this case the

original distribution tends to give better results. This can be explained by the fact that

this distribution has a much shorter tail than the NFI
tot distribution, which makes the

situation less problematic. In addition, the correlation is much higher between Xmax

and X0 than between Xmax and ln(X0). When looking into the relative importances of

the features (see section 5.2), when switching from X0 to ln(X0), indeed importance is
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“lost” to the other features (we will discuss the concept of importance in section 5.2).

We begin using these seven features, but will reduce the number of features and discuss

how and why in the next section.

The best way to analyze how well a model generalizes to new cases is splitting the

data into two sets, prior to training: the training set and the test set. The test set is

put aside until the model has taken its final form and is ready to be tested on it. In

order to be able to select the best and final model among several candidate models, one

needs a way to evaluate how well these perform. A common solution to this necessity,

that we use as well, is to subdivide the training set again. One fraction of it will be

the proper reduced training set and the rest will be the so-called validation set. Any

candidate model can be tested on the validation set. Furthermore, since the complete

process of training is repeated under many different conditions and in order to ensure

that the test set is never used for training, we set a random number generator’s seed

for the separation of the different sets. We use the commonly employed value of 20%

for the test set but only 10% out of the remaining set for the validation set, since

otherwise our training set would get too small.

It has been shown by Banko et al. that very different machine learning techniques,

including quite simple ones, performed almost identically well on a particular complex

problem, once they were given enough instances of data [130]. If the set is too small, one

might end up with unrepresentative data as a result of chance. In this situation, a neural

network might detect patterns in this noise that don’t generalize. In order to examine

the size of the dataset we need for accurate predictions, we started training neural

networks on the training set extracted from a complete dataset of 1000 simulations,

tested the resulting model on the validation set and analyzed if the model performed

better for bigger datasets of up to 5000 simulations. Since the predictions of the neural

networks did not change substantially, we continued working with datasets of 1000

instances from then on.

When separating the dataset into training, validation and test sets, another care

has to be taken. It is always favorable to use a training set that is representative of

all the cases one wants to generalize to, even those that are less probable. Our target

distributions of Xmax and Nµ have less values at the extreme upper and lower ends.

It is possible that, by chance, when creating the training set, not enough instances

representative of some of these extremes are chosen. In order to guarantee that the less

probable regions at the extremes of the Xmax and Nµ distributions can be understood

by the neural network, we use stratified sampling with respect to that feature that

helps the most cover these critical regions. This consists in separating the training set

in such a way that the distribution of the “most representative” feature is kept as close

as possible to the original one.

We will explain in section 5.2 how to obtain relative importances for each feature.
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For now, we use these values in order to decide with respect to which feature we will

use stratified sampling. In order to predict Xmax, the most important feature is X0

and then, to a lesser extent, M0. The disadvantage of X0, that follows an exponential

distribution, is the accumulation of values near zero. Thus, there is no guarantee that

enough low X0 values, corresponding to the lower end of the Xmax distribution, will

be kept in the training set. This problem is not present in the M0 distribution. We

confirmed with a few example networks that with the latter option better predictions

are obtained. Its distribution is shown in figure 5.1 (left). The most important feature

for predicting Nµ is F0, which is depicted in figure 5.1 (right). Both distributions ensure

having instances of extreme and less frequent values of M0 and F0 from which to learn

about these special air showers. Since for the two target observables it is justified to use

a different set for this procedure of stratified sampling, we decide to develop a separate

model for each of them, instead of developing a single model with a 2-dimensional

output.

Another aspect to take care of before training is that neural networks work best

when all the features have the same scale. We standardize the usual way by centering

and scaling to unit variance each feature independently. The advantage with respect

to min-max-scaling, where values are shifted and rescaled so that they end up ranging

from 0 to 1, is that standardization is less sensitive to outliers. With respect to the

target values, it suffices to divide them by appropriate constants so that they cover

similar ranges.

Nodes in neural networks are grouped in layers, with the first layer being the input

layer (see figure 5.2, blue circles), which introduces the values of the features. The last

Figure 5.1: Correlations between features and targets suggest that M0 (left) has the highest
impact on Xmax and F0 (right) on Nµ. Since the distribution of NFI

tot presents a very long tail,
which typically cannot be properly dealt with in neural networks, we use ln(NFI

tot + 1) for the
parameter we call M0 from now on. This distribution concentrates in a more compact region.
Because of the relevance of these features, when we sample the training set out of the total
dataset, we use stratified sampling with respect to these. Thus, we ensure that the original
distributions are retained and extreme and less frequent values of M0 and F0, which correspond
to the extreme ends of the Xmax and Nµ distributions, are present when learning.
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layer (red circle) returns the target value. All the layers in between (grey circles) are

the hidden layers. Each node from the hidden and output layers calculates a weighted

sum (weights are symbolized by connecting arrows) of all the inputs it gets from the

previous layer, adding a bias value (symbolized in figure 5.2 by the summatory). It then

evaluates a predefined activation function f on this sum and outputs the result to the

next layer. For example, for any node of the first hidden layer, this can be summarized

as:

f

(
n∑
i

wixi + b

)
.

We will train neural networks with fully connected or dense layers, which means that

all nodes of a layer are connected to all nodes from the adjacent layers.

Training a neural network means finding the values of the weights and biases (the

model’s parameters) for which the final nested function makes the most accurate pre-

dictions of the target values as a function of the features. This is done by means of

the backpropagation training algorithm. It is essentially gradient descent with respect

to the loss function that measures the error. The loss function can be any lk norm of

the difference between the vector of training instances and the vector of corresponding

present predictions. The higher the norm index, the more it focuses on large values and

neglects small ones, being so more sensitive to outliers. Since our Xmax-Nµ distribution

has quite some outliers, we decide to work with the l1 norm, which is also called mean

absolute error :

l1(ȳtrain, ȳpredict) =
1

m

m∑
i=1

∣∣y(i)train − y
(i)
predict

∣∣.
m is the number of instances in the training set. In order to minimize the error, weights

and biases are updated following the gradient of the network’s error with regard to every

single model parameter.

Neural networks quickly get a large number of parameters (in figure 5.2, each arrow

Figure 5.2: Outline of a neu-
ral network structure. The in-
put layer (blue circles) introdu-
ces the input features. Nodes in
hidden layers (grey circles) com-
pute weighted sums of the out-
puts from previous layers and
pass them on to the next layer th-
rough an activation function. Af-
ter calculating optimal values for
the weights and biases, this nes-
ted function is the model which
can associate to each combina-
tion of feature values a unique
output value (red circle).
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corresponds to a weight parameter, the biases are not shown there for simplicity, but

each one gives another set of parameters), which implies a lot of flexibility to fit the

training data. On the counterpart, it also means that the model runs the risk of over-

fitting. Constraining the model in order to make it simpler and thus reduce the risk

of overfitting is called regularization. Often, certain hyperparemeters have the role of

regularizing the model. A hyperparameter is a parameter of the learning algorithm

and not the model. Hyperparameters are defined prior to training and remain constant

during this process. Examples of hyperparameters in this context are the depth of the

neural network and the amount of nodes in each hidden layer. Our task is then to

define all hyperparameters in such a way that there is enough room for flexibility when

fitting, but that there are enough constraints to avoid overfitting [131]. In the next few

paragraphs, the choices regarding regularization techniques, which give good results in

the context of the present work, will be presented.

Regarding the backpropagation step, several decisions need to be made. Instead of

applying backpropagation to the complete training set, we decide to compute gradients

on small random sets of instances called mini-batches. In each epoch, the training set is

divided into mini-batches, which are used in the algorithm one by one. The advantage of

doing so is that the algorithm is much faster. Furthermore and even more importantly,

it can also be favorable for convergence of the loss function to a global minimum

[132]. Randomness usually helps escaping from local minima. Several different sizes

of mini-batches were tested and a value of 16 gives the best results for both neural

networks (for modeling Xmax and Nµ). In each backpropagation step, after calculating

the direction of the steepest descent, the weights and biases are updated through small

corrections. These corrections are the opposite of the gradient times the learning rate

hyperparameter. We chose a rather small value of 0.0005 for the learning rate, in order to

make sure that the solution will converge. As a way of avoiding that convergence is too

slow, we make use of momentum optimization. This method mimics friction by adding

a momentum vector to the update. This vector is scaled by another hyperparameter

that we set at a conservative value of 0.9. With respect to the number of epochs, we

give a rather high upper limit of 5000, which is never achieved because of another

regularization technique we describe next.

All neural networks presented in this work are trained using early stopping. This

means that after a predefined number of epochs with no improvement on the validation

set, training is stopped. After a few examples of neural networks under different con-

ditions, we set this number to 25. The weights and biases of the model that performed

best on the validation set before stopping are stored. That is why we have set the

number of epochs to a large value before. Training will be interrupted anyway, as soon

as there is no progress, and setting the number of epochs to a high value ensures that

training can continue until this optimal situation is reached.
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A typical phenomenon when training a deep neural network with classical settings

is that the gradients of the loss function decrease as the algorithm progresses down to

the lower layers (those close to the input). This means that, when updating the weights’

and biases’ values, the lowest layers are left almost unchanged and thus convergence to

a good solution is extremely slow. This could indeed be observed in our context. Glorot

and Bengio discovered a way to overcome this issue [133]. It was understood that, in

order to assign equal importance to all layers, the variance of the inputs of each layer

needs to be equal to the variance of its outputs and that the gradients need to have equal

variance before and after “flowing” through a layer during the backpropagation step.

This can be achieved by certain combinations of activation functions and initialization

strategies for the starting values of the weights. The combination that works best in

this work is the Relu function (short for Rectified Linear Activation Function) together

with the He initialization with a normal distribution. The Relu activation function is

defined as:

f(x) =

{
x if x ≥ 0

0 if x < 0.

He initialization with a normal distribution means that the starting weights are chosen

from a normal distribution with mean 0 and variance 2/nin, where nin is the number

of inputs of the corresponding node.

Another regularization technique we employ is l2 regularization. Here, a penalty of

the form α · (
∑

w2
i +

∑
b2j) is added to the loss function. It is intended to prevent the

parameters of the model from growing indiscriminately, which has empirically been

associated to model overfitting. The higher the value of α, the stronger the constraint.

We use α = 0.005 in all our models, which in combination with the configuration chosen

up to now has proven to give good results.

The configuration presented so far is chosen following suggested values from the

literature [134, 135, 136], keeping in mind what our goal is and the structure our data

has. The only decisions we leave open is the determination of the number of layers and

the number of nodes in each layer. For all the datasets we are interested in modeling,

we resort to randomized parameter optimization, a method that will be explained in

section 5.2. With this algorithm, we get a rough idea of promising architectures. Then,

we fine-tune by training neural networks using many combinations close to these values.

The first dataset we are interested in modeling is the set of simulations obtained for

vertical protons of 1020 eV as primaries. The anticorrelation between Xmax and Nµ is

strongest for this kind of primaries and we want to see if, using the features we decided

upon, we can describe it. We have a dataset of 1000 instances for each of the following

high-energy interaction models: EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d. As we

have seen in section 3.3, each model handles physical processes of hadronic particle pro-

duction at the highest energies differently. It is interesting to investigate to what extent
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it is possible to capture the differences between the high-energy interaction models in

the form of feature variables. One might think that, since the models differ only at the

highest energies, once those processes are summarized in the form of parameters, the

description of the rest of the shower should be common to all three models. To answer

this question, we first train neural networks for each dataset separately and then on a

joint ensemble of the three datastes.

When modeling Xmax, we obtained the best results with a common architecture of 4

layers with 36 nodes each, for all three high-energy interaction models. When modeling

Nµ, architectures need to be different in order to get the best results individually: 5

layers of 60 nodes, 4 layers of 36 nodes and 5 layers of 40 nodes are used for EPOS-LHC,

QGSJETII-04 and SIBYLL-2.3d, respectively. The learning curves for both models

describing the EPOS-LHC data are shown in figure 5.3. These are the loss functions

for the training and validation sets. As is usual, the model performs better on the

training set. The early stopping method prevents the gap between the two curves from

becoming too large. In figures 5.4 and 5.5, the predictions are compared to the real

values. The predictions of Xmax have absolute errors around 20 g cm−2. In the case of

Nµ, the relative errors vary more from model to model: 6.7%, 5.0%, and 5.9% for

EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d, respectively.

These small errors are evidence that Xmax and Nµ can be described very well by

the seven features chosen. It also becomes evident that there is a bit more difficulty in

describing the number of muons and that the high-energy interaction models are here

captured slightly differently well by the chosen features. The comparison between the

complete distributions is shown in figure 5.6. The anticorrelation is well reproduced for

each scenario. All the axes are fixed at the same values to serve as a guidance. The

differences in the high-energy interaction models lead to differently distributedXmax-Nµ

pairs. While EPOS-LHC and SIBYLL-2.3d have similar distributions, QGSJETII-04

presents a quite different arrangement. The anticorrelation is less pronounced and Xmax

Figure 5.3: Learning curves of the neural networks trained to predict Xmax (left) and Nµ

(right), respectively. These networks are trained on the dataset of vertical proton primaries of
1020 eV simulated with CONEX using EPOS-LHC.
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and Nµ reach lower values.

Ultimately, we are interested in obtaining a unified model that describes all sce-

narios simultaneously and thus is model-independent. This way, we can apply it to

data knowing that it is valid whatever scenario represents reality best. Of course, this

will only work if the real scenario is somewhat close to any of the three high-energy

interaction models considered in this work. Even though these models have some ca-

veats and inconsistencies, it is still to be expected that they represent the interactions

quite well. With these assumptions made, we proceed now to develop a neural network

that is trained on the joint ensemble consisting of the simulations done with all three

high-energy interaction models.

Since we want to apply our model to data and 1020 eV proton primaries are rather

rare, we also move on to another dataset in this step. We saw in section 1.2.4 that

Figure 5.4: Initially, we investigate how well neural networks perform on showers generated
by vertical protons of 1020 eV because the anticorrelation is strongest for this primary group and
it is desirable to see it explained through these models. The first approach is to consider the
datasets simulated using the different high-energy interaction models (EPOS-LHC, QGSJETII-
04 and SIBYLL-2.3d) separately. One neural network is trained on each of the training sets
corresponding to these high-energy interaction models in order to predict Xmax. The comparison
between the true values from simulations and the values obtained through each of the models is
shown for EPOS-LHC (top left), QGSJETII-04 (top right) and SIBYLL-2.3d (bottom left). The
black dashed lines representing y = x are added for visual guidance. Finally, the relative errors
between true values and predictions of each of the models are summarized in the histogram on the
bottom right. The absolute errors are of about 22 g cm−2, 19 g cm−2, and 22 g cm−2, respectively.
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mass composition depends on the primary energy and the high-energy interaction mo-

del considered. We want to avoid contamination of primaries other than protons as

much as possible because our reasoning was done considering proton primaries and we

don’t expect to be able to develop a model that is also completely independent of the

primary mass, without introducing some new features. It is reasonable to think that we

can deal with helium contamination though. The main problem with heavy primaries

is that their first interaction looks very different from that of proton primaries. A con-

siderable fraction of the primary energy is taken by individual nucleons that break off

from the primary, while other nucleons remain together in fragments until the second

interaction. In the case of helium primaries, this effect is the least pronounced. On

the other hand, showers generated by iron primaries have so many muons that their

Xmax−Nµ distributions almost don’t overlap with that of protons (see figure 3.3). The

aim is then to decide on an energy range where the nitrogen contamination is as low

as possible, compared to the proton fraction. At the same time, it should be feasible

Figure 5.5: As presented in figure 5.4, a neural network is trained on each training set simulated
using the different high-energy interaction models separately, but this time in order to predict
the number of muons Nµ. The comparison between the true values from simulations and the
values obtained through each of the models is shown for EPOS-LHC (top left), QGSJETII-04
(top right) and SIBYLL-2.3d (bottom left). The black dashed lines representing y = x are added
for visual guidance. Finally, the relative errors between true values and predictions of each of the
models are summarized in the histogram on the bottom right. The relative errors are of about
6.7%, 5.0%, and 5.9%, respectively.
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to obtain enough events in this energy range for which we can obtain Xmax and Nµ.

With that in mind, we decide on the energy range ln (E0) = 18.098 to 18.198 (see

figure 1.6). We will come back to the subject of composition at these energies, but for

now we concentrate on datasets with proton showers only. We simulate 1000 showers for

each high-energy interaction model and chose the primary energy from the distribution

E−a with spectral index a = 3.27 and in the chosen energy range. This time, we use

inclined showers with a zenith angle of 38◦. The only change we need to make here is

the addition of the primary energy as a new feature. The chosen energy interval seems

small, but we observed that the model improved considerably when distinguishing

between primary energies during the training step. Furthermore, this range in energy

may seem small, but a difference of 0.1 in log10(E) implies a difference of about 25%

in the number of muons. Thus, energy needs to be taken into account in the model.

We use the same setting as before, with the exception that we search again for the

best number of layers and nodes per layer. We obtain the best unified network for the

prediction of Xmax using 4 layers of 36 nodes each. The result is shown in figure 5.7. The

absolute errors are slightly higher than for the separately trained networks, but have

similar distributions. For the network predicting Nµ, 4 layers of 45 nodes each gave the

Figure 5.6: The results shown in figures 5.4 and 5.5 are combined in order to compare theXmax-
Nµ distributions from simulations (black dots) to the distributions obtained through our models
(colored dots), for each high-energy interaction model. The anticorrelation is well reproduced in
all cases. All the axes are fixed at the same values to serve as a guidance.
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best result (see figure 5.8). Also here, the relative errors are in general slightly higher

than before, but also distributed very similarly. Only a small bias for EPOS-LHC and

QGSJETTII-04 in opposite directions can be observed. The increase in the errors with

respect to the previous models means that some compromise needs to be made in order

to get a unified model. However, in this context, these errors are small enough. Most

importantly, the similarity in the error distributions means that the differences between

the high-energy interaction models are captured by the features we used. If this was

not the case, the model would need to compensate the missing ingredient. Since we

are training with an ensemble that integrates all three high-energy interaction models,

this would result in an intermediate model. For the prediction of Nµ, this is mildly

observed in the form of small and opposite biases. The fact that these are small means

Figure 5.7: We now use the complete dataset of simulated showers generated by protons of
primary energy between ln (E0) = 1018.098 eV and 1018.198 eV, comprising all three high-energy
interaction models. The goal is to obtain a model that predicts the Xmax-Nµ anticorrelation
independently of the high-energy interaction model used when simulating. This is done shuffling
the ensemble of all three datasets and using the result as the new dataset. Thus, the neural
network is able to learn the structures that are common to the three scenarios. Since we now have
a small interval of possible primary energies, it turns out to be fruitful to incorporate E0 as a new
feature. The neural network trained to obtain Xmax is then tested on each subdataset separately
and the results are shown here. The absolute errors are slightly higher than for the neural
networks trained on each dataset separately: 27 g cm−2, 26 g cm−2 and 32 g cm−2 for EPOS-
LHC, QGSJETII-04 and SIBYLL-2.3d, respectively. Errors are simultaneously centered at zero
for all three scenarios and no relative bias is observed. From this, we conclude that the goal to
capture all three scenarios in one single and unified model is achieved.
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that the model we obtained is independent of the high-energy interaction model used.

Finally, we compare the complete Xmax-Nµ distributions from simulations to the

distributions obtained through our unified model (see figure 5.9). The overlapping is

very good. All structures present in these distributions are well covered. As for 1020 eV

protons, the QGSJETII-04 distribution stands out with its lower Xmax and Nµ values.

For these primary energies, the EPOS-LHC and SIBYLL-2.3d distributions differ more

noticeably. The SIBYLL-2.3d distribution is a bit pointier at the highest Nµ values

and is generally slightly shifted upwards. In order to come closer to a model suitable

for application to data, however, we need to reduce the number of features.

5.2. Feature selection

In the previous section, we used seven features and included then the primary energy

as an input to our model and obtained a very good predictability. However, we know

that real data is affected by uncertainties in the measurement and the reconstruction.

Figure 5.8: The same procedure as presented in figure 5.7 is carried out with Nµ as the target.
The relative errors are again slightly higher (except for SIBYLL-2.3d) than for separately trained
models: 7.4%, 6.3% and 5.1% for EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d, respectively.
However, these errors are lower than typical errors involved when measuring or predicting the
number of muons in other ways. The goal to capture all three scenarios in one single and unified
model is achieved. A slight bias in the distributions of the relative errors for EPOS-LHC and
QGSJETII-04 and in opposite directions can be observed.
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Furthermore, the cosmic ray flux comprises all types of primaries ranging from proton

to iron. Since, as of today, we are not able to infer the primary mass on a shower-to-

shower basis, we will need to consider this mixed composition scenario in our model. For

now, it becomes clear that it is unrealistic to expect our model to be able to associate,

under these conditions, to each combination of Xmax and Nµ a specific combination of

physical parameters, even if we were able to reduce the set of features to two elements

(in order to avoid any ambiguity). The already mentioned uncertainties, together with

the fluctuations in the shower not taken into account by the reduced set of features,

would make individual predictions very unreliable. It is more realistic to consider the

complete distributions as our object of study and we will show that this indeed gives

the desired result. This is by no means disappointing. If we were able to deduce the

values of the physical parameters under study on a shower-to-shower basis, they by

themselves would carry no information about the physical processes involved. We would

still analyze their distributions to extract physical parameters anyway.

Concerning the further training and model construction, nothing has changed. We

only need to keep in mind that with the final model we will analyze the relationship

Figure 5.9: The results shown in figures 5.7 and 5.8 are combined in order to compare the
Xmax-Nµ distributions from simulations (black dots) to the distributions obtained through our
unified model (colored dots), for each high-energy interaction model. Also for this energy group
and using a single model to capture all three high-energy scenarios, the anticorrelation is well
reproduced in each case. All the axes are fixed at the same values to serve as a guidance.
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between the distributions of the features and those of the targets. In order to charac-

terize these distributions, we will need many parameters. Note that even though we

are not able to measure individual values of X0 at the Pierre Auger Observatory, its

distribution is well known and therefore we can keep it in our model “for free”. No-

netheless, we still have too many features and need to reduce their number. One way

to decide, which features to discard, is using random forests, which can indicate the

relative importance of each attribute for making accurate predictions with this method.

Even though we use neural networks to develop our model, this is an appropriate tool

to analyze the importance of each feature in a systematic way.

Decision trees are a supervised learning method used for classification and regression

tasks [125, 137]. The goal is to create a model that predicts the value of a target

variable by learning simple if-then-else decision rules inferred from the data features. A

trained tree can be thought of as a piecewise constant approximation. In each region,

the predicted value is the average target value of the instances in that region. The

algorithm splits, during the training process, each region in such a way that makes

most training instances as close as possible to the predicted mean value. Decision trees

are prone to overfitting on data because they are very sensitive to small variations in

the training data.

A way to improve the algorithm substantially is by considering an ensemble of

decision trees. The algorithm, in which each decision tree is trained on a different

subset of the training set and in which then all the predictions are combined into a

mean value as the final prediction, is called a random forest. The multiple subsets are

formed making bootstrap replicates of the training set, i.e. they are samples extracted

from the training set with replacement. Despite its simplicity, this is a very powerful

machine learning algorithm [138, 139]. In essence due to the law of large numbers, this

type of combined predictors achieves a better generalization than the best predictor in

the ensemble [138].

In order to use the attribute from the random forest regressor that gives the relative

importance of each feature, we need to fit this regressor to our data. In order to do so,

many hyperparameters need to be tuned. We are interested in tuning the number of

decision trees that will constitute the forest, the maximum depth of the trees (number

of consecutive if-then-else decision rules), the number of features to be considered

when looking for the best split (these features are randomly chosen among the possible

ones) and the minimum number of samples required to split an internal node (if a low

number is allowed, very detailed predictions that are only valid for a small region might

be obtained, which leads to overfitting). In order to find the optimal hyperparameters,

we resort to randomized parameter optimization. From a grid of possible parameter

settings that we propose, a predefined amount of combinations is randomly sampled.

It has been shown empirically and theoretically that randomly chosen trials are more
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efficient for hyperparameter optimization than trials on a complete grid [140]. Then,K-

fold-cross-validation is used to evaluate these combinations of hyperparameter values.

Here, the complete training set is separated in each evaluation into K subsets. Each

subset is used as a validation set after having trained the random forest on the rest of

the subsets all together. The performance of each hyperparameter combination is the

mean of the performances of each of the K models on the corresponding validation set.

Individual performances are measured via the mean squared errors in the corresponding

validation set. For the hyperparameter combination that performs best, we obtain the

relative importance of each feature. These are measured with the Gini importance,

which counts the times a feature is used to split a node, weighted by the number

of instances that are associated with the split. The higher this value, the higher its

importance.

We search 250 times among {50, 100, 500, 750, 1000, 1200}, {4, 5, 6, 8, 10, 12, 15,
20, 25}, {1, 2, 3, 4, 5, 6, 7} and {5, 10, 15, 20, 25, 30} for the number of decision trees,

the maximum depth of the trees, the number of features to be considered when looking

for the best split and the minimum number of samples required to split an internal

node, respectively. After performing 5-fold-cross-validation, we obtain that the most

important parameter for the prediction of Xmax is X0 with a Gini importance of 0.43,

followed by M0, F0 and K0 with importances 0.25, 0.14 and 0.07, respectively. For the

prediction of Nµ, the most important features are F0, M0 and K0 with importances

0.68, 0.11 and 0.06, respectively. From analyzing the correlations, we already had a few

ideas of which are the most important features for each model and those are confirmed

here. We now know in addition which features are the next most important. It is an

interesting result by itself to see that the three features inherent to the first interaction

are the most important ones (taking X0 out of the discussion, since it will be treated

as known). This is not only valid for the number of muons, which has already been

discussed in the literature [67], but also for the depth of maximum development.

Since the next step will be to generate distributions of the features varying the

parameters that describe them, the fact thatK0 is correlated withM0 is a disadvantage.

Apart from needing parameters to describe the distributions themselves, we would need

more parameters to describe the dependence, as well. The first attempt is to leave

this feature out and keep the other most important features. For the reduced set of

features comprising E0, X0,M0 and F0, a large variety of neural network architectures

is evaluated for the Nµ prediction. Just as a reminder, M0 is the hadronic multiplicity

of the first interaction and F0 the hadronic energy fraction of the first interaction.

To make sure that the best neural network possible is obtained, combinations varying

all the hyperparameters are put to the test, performing again a randomized search:

combinations of 2 to 10 layers, 8 to 50 nodes per layer, learning rates between 0.001

and 0.0001, hyperparameters of l2-regularization between 0.001 and 0.01 and patience
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hyperparameters between 10 and 25 epochs are tested. After this broad search, another

more localized randomized search is performed.

Figure 5.10: Relative errors
for the Nµ prediction from a neu-
ral network trained using the sa-
me basic configuration as descri-
bed in section 5.1, combined with
4 layers of 50 nodes each. The
features used are E0, X0,M0 and
F0. These are only close to suffi-
cient to capture all the differen-
ces between the high-energy in-
teraction models. There is some
mechanism missing in this redu-
ced number of features that takes
energy from the hadronic channel
in QGSJETII-04 or that keeps
energy in it for the other two mo-
dels (or that does both).

Figure 5.11: The same dataset of simulated showers as in figure 5.7 is used here. This time, a
reduced set of features comprising E0, X0,M0, F0 and Keff is implemented. The neural network
trained to obtain Xmax is then tested on each subdataset and the result is shown here. The
absolute errors are slightly higher than for the unified neural network trained using the complete
feature set: 30 g cm−2, 31 g cm−2 and 37 g cm−2 for EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d,
respectively. However, the errors are still small enough and the neural network makes predictions
in a model independent way, as is needed.
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When analyzing the relative errors between the real values and the predictions

of Nµ, the result is always qualitatively similar to the distributions shown in figure

5.10, which correspond to one particular case. The muon number is overestimated in

showers generated with QGSJETII-04 and underestimated in showers generated with

EPOS-LHC and SIBYLL-2.3d, by a very similar magnitude. This means that there is

some mechanism missing in this reduced number of features that takes energy from the

hadronic channel in QGSJETII-04 or that keeps energy in it for the other two models

(or that does both to some extent). The best the neural network can do is find an

“intermediate” model, which has simultaneously for all high-energy interaction models

the smallest loss value. We will show in the next few paragraphs how to solve this issue.

The next attempt is to add one of the lesser important features to the feature set.

When including Meff or Feff to model Nµ, the missing mechanism is still not covered

and results very similar to those observed in figure 5.10 are obtained. The issue is solved

when including Keff , which represents the effective inelasticity of the whole shower as

a feature. Indeed, M0, F0 and Keff are not correlated.

The original basic architecture described in section 5.1, together with 4 layers of 32

Figure 5.12: The same dataset of simulated showers and the same reduced set of features as
implemented in figure 5.11 are used to model the number of muons. The relative errors are slightly
higher than for the unified neural network trained on the complete feature set: 7.7%, 6.5% and
5.4% for EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d, respectively. However, the errors are still
low and the neural network makes predictions in a model independent way, as is needed.
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nodes each, gives the best result for predicting Xmax. The results are shown in figure

5.11. The absolute errors are around 30 g cm−2, 31 g cm−2 and 37 g cm−2 for EPOS-

LHC, QGSJETII-04 and SIBYLL-2.3d, respectively. They are a bit higher than the

errors obtained when using the complete feature set, which is expected because leaving

features out can lead to some ambiguity. However, these errors are still small enough

and the neural network gives predictions in a model independent way, as is needed.

Figure 5.13: Comparison between the original distributions of Xmax (left) and Nµ (right) and
the distributions of the corresponding predictions obtained via the neural networks discussed in
figures 5.11 and 5.12. The residuals for all the combinations are shown, as well.
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For the neural network predicting Nµ, the basic architecture described in section 5.1

also gives very good results. The best one is obtained using a neural network of 4 layers

with 50 nodes each. The results are shown in figure 5.12. The relative errors are slightly

higher than for the unified neural network trained using the complete feature set: 7.7%,

6.5% and 5.4% for EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d, respectively. It is

interesting to note here that in the three settings for which we developed models for

Xmax and Nµ (based on neural networks), more nodes were required when modeling the

number of muons and, even then, their predictions were always less accurate than when

predicting Xmax. This can be a symptom of the processes that build up the number of

muons being more intricate than the combination of processes that lead to the value of

Xmax. After all, the main contribution to the electromagnetic channel comes from the

neutral pions, while the muons not only descend from charged pions and kaons, which

already behave differently because of their different mean lifetimes, but also from other

particles. Figure 5.12 also shows that the distributions of the relative errors are quite

centered, which means that we have indeed obtained a model for Nµ that is universal.

The ultimate goal is to compare the mean values and standard deviations of Xmax

and Nµ between distributions of interest and distributions obtained after inserting

different possible distributions of the features from the reduced set into the neural net-

works presented in figures 5.11 and 5.12. Having that in mind, we compare in figure

5.13 the original Xmax and Nµ distributions, corresponding to each high-energy interac-

tion model (full lines), with the Xmax and Nµ distributions obtained from inserting the

corresponding original distributions of the features into these neural networks (dashed

lines). The distributions are quite well represented. The mean value of Xmax is through

our predictions off by around 1 g cm−2, in all cases. The dispersion of Xmax is generally

underestimated by around 1 g cm−2. The mean value of the number of muons is very

accurate for SIBYLL-2.3d. For EPOS-LHC it is underestimated by about 1.3% and

for QGSJETII-04 overestimated by a around 1.2%. The dispersion is quite accurate

for all cases and only high by about 0.4% for QGSJETII-04.

The neural networks we trained in this section use a low enough number of features

and give remarkably good results, when comparing the predicted final observables with

the true ones from simulations. As a consequence, this model can be used for further

analysis.

5.3. Description of the features

In the previous section, we trained neural networks to predict Xmax and Nµ for a

shower with specific values of E0, X0, F0, M0 and Keff . M0 is the hadronic multiplicity

of the first interaction, F0 the energy fraction taken by the hadronically interacting

particles of the first interaction and Keff the effective multiplicity of the rest of the
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shower. We now switch to thinking of this designation as one between distributions

(see the depiction in figure 5.14). If we insert in our neural networks the distributions

of the features, we obtain as an output distributions of Xmax and Nµ. The distribution

of E0 can be obtained directly from the dataset of interest itself and is also already

described (see section 1.2.1). As was reviewed in section 1.3, the distribution of X0 is

well known and thus the same for all three high-energy model scenarios. For the small

interval of energies we are using, it can be described by the exponential distribution

f(x) = λe−λx

(for x ≥ 0 and zero otherwise) with a common value of λ = 47 g cm−2, for all three

high-energy interaction models (see figure 5.15, left).

The distributions of F0, M0 and Keff differ between high-energy interaction models

and are unknown. We will see in this section that each of these features can be described

with a known probability distribution function (pdf) that depends on two parameters:

a location parameter denoting the position of the maximum of the distribution and a

scale parameter describing the width of the distribution. We will refer to these with

superscripts “loc” and “scale”, respectively. At this stage, the fact that the three featu-

res F0, M0 and Keff are not correlated presents a clear advantage. We can use the pdfs

that we define in the next paragraph to generate these distributions, without the need

to force a correlation in some way. Furthermore, at a later stage, when we generate

distributions with slightly different basic (location and scale) parameters, it would be

impossible to know which relation between such new parameters is the correct one.

Figure 5.14: Depiction of our method. In sections 5.1 and 5.2, we developed a neural network
that yields, on a shower-to-shower basis, Xmax as a function of E0, X0, F0, M0 and Keff and
another network that returns Nµ. Even though the model was trained on individual instances, we
now switch to thinking of this designation as one between distributions. For given distributions
of the features used to train the neural networks, we obtain distributions of the outputs Xmax

and Nµ. Therefore, we need to describe the distributions of the features next.
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F0 and M0 can be described using the Gumbel minimum distribution with pdf given

by

f(x) =
1

b
e

x−a
b e−e

x−a
b ,

where a is the location parameter and b is the scale parameter. For the multiplicity

M0, it turns out that the scale parameter is very close to 1.05 for all three high-energy

interaction models. Because of this accordance and because of the small impact this

parameter has on the observables that we will use (see explanation to figure 5.17), we

will fix it at this mean value: M scale
0 = 1.05. Fitting the Gumbel distribution (see figure

5.15, right), with the scale parameter fixed, gives M loc
0 (E) = 5.32, M loc

0 (Q) = 5.78 and

M loc
0 (S) = 5.40 (E, Q and S in the parenthesis stand for EPOS-LHC, QGSJETII-04

and SIBYLL-2.3d, respectively). In the case of the hadronic energy fraction F0, there

are no coincidences, so we need to leave both parameters free. The fitting parameters

we obtain are F loc
0 (E) = 0.725, F loc

0 (Q) = 0.708, F loc
0 (S) = 0.714, F scale

0 (E) = 0.066,

F scale
0 (Q) = 0.058 and F scale

0 (S) = 0.068 (see figure 5.16, left). Keff follows approxima-

Figure 5.15: Distributions ofX0 (left) andM0 (right). The depth of the first interaction follows
an exponential distribution with λ = 47 g cm−2. The hadronic multiplicity can be described with
the pdf of the Gumbel minimum distribution. The scale parameter is very close to 1.05 for all
three high-energy interaction models and is therefore fixed at this value.
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tely a normal distribution (see figure 5.16, right) whose width is very similar among all

high-energy interaction models and is thus fixed at the mean value Kscale
eff = 0.024. In

figure 5.17, it becomes evident that changing this parameter has no significant effect

on the observables. The mean values we obtain are K loc
eff (E) = 0.752, K loc

eff (Q) = 0.813

and K loc
eff (S) = 0.732.

We have just seen that the three features with unknown distributions can be ap-

proximately described using six parameters, two of which we have fixed at their mean

values. It is interesting to investigate the impact of changing these basic parameters on

the observables we will use. Just like in [112], we vary these parameters by multiplying

them by a factor. We do this for each parameter, while leaving the other five parame-

ters fixed at their values of the corresponding high-energy interaction model. We then

generate distributions based on these altered parameters and feed them into our neural

networks (like depicted in 5.14) to obtain the corresponding distributions of Xmax and

Nµ, from which we calculate their mean values and standard deviations. The changes

Figure 5.16: Distributions of F0 (left) and Keff (right). The hadronic energy fraction can
be described with the probability distribution function of the Gumbel minimum distribution.
The location and scale parameters vary for the hadronic interaction models considered and are
thus left free. The distribution of Keff can be approximated by a normal distribution with fixed
standard deviation.
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in the basic parameters are applied in such a way that the resulting “artificial” dis-

tributions of the features have some overlap with the region the original distributions

covered and where the networks were trained.

We also show the true values of the corresponding observables as dashed black ho-

rizontal lines and the 1σ error in the measurement of the values as dashed grey lines.

These estimates are calculated using the Bootstrap Method [141]. This method is a sta-

tistical technique for estimating quantities about a population by averaging estimates

from multiple small data samples. Data samples are extracted with replacement from

the original dataset, in our case from the distributions of Xmax and Nµ, respectively.

From these distributions, we extract the means and standard deviations of Xmax and

Nµ. Repeating this process, we obtain distributions of these observables, from which

the mean values and standard deviations are extracted and represented by black and

grey lines, respectively.

The results are shown in figures 5.17, 5.18 and 5.19 for the different high-energy

Figure 5.17: Impact of changing the basic parameters, used to describe the distributions of
the features, on the means and standard deviations of Xmax and Nµ for EPOS-LHC.
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interaction models. Each circle is the mean value of the corresponding observable, after

repeating 15 times the procedure of generating the distributions of the features and

extracting the observables. Each repetition consists of a set of 15000 showers. This

way, we make sure that the prediction is very accurate. There are slight shifts between

the values obtained using the proper original distributions and the fitted distributions

(corresponding to f = 1). This comes from the fact that the distributions don’t fit

perfectly.

It is directly visible that changing Kscale
eff (purple circles) has almost no effect on any

of the observables, which justifies fixing it at the constant mean value of the correspon-

ding values from the different hadronic interaction models. Even though M scale
0 (yellow

circles) shows influence on σ(Xmax), it is the one parameter that has the least impact

of all, after Kscale
eff . Furthermore, the true values for the different hadronic interaction

models are very close. If we vary this parameter, keeping it close to the realistic values,

the effect on σ(Xmax) is very small.

Figure 5.18: Impact of changing the basic parameters on the means and standard deviations
of Xmax and Nµ for QGSJETII-04.



96 Construction of the model

The location parameter of the charged multiplicityM0 (red circles) has the strongest

impact on ⟨Xmax⟩. For a higher value of M loc
0 , the distribution of M0 is shifted to higher

values. For higher M0 values, the energy is distributed among more particles in the first

interaction. This generates more subshowers of less energy, which develop quicker in

the atmosphere and finally give a smaller overall value of Xmax. At the same time, more

energy is kept in the hadronic channel resulting in a higher number of muons, visible as

an increasing value of ⟨Nµ⟩ as a function of the factor f . The effect on σ(Xmax) is more

intricate, as can be deduced from the fact that it varies between high-energy interaction

models. It might depend on other factors, such as the value of F0. For QGSJETII-04,

the distribution of F0 is narrower. Having less variability in the energy that is available

for the hadronically interacting particles of the first interaction might lead to less ways

to distribute energy among particles anyway, leading to a more or less constant value

of σ(Xmax) in this case. At the same time, for EPOS-LHC and SIBYLL-2.3d, which

have wider distributions of F0, an increasing value of σ(Xmax) with f can be observed.

Figure 5.19: Impact of changing the basic parameters on the means and standard deviations
of Xmax and Nµ for SIBYLL-2.3d.
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An increasing value of the scale parameter of the charged multiplicity M0 makes its

distribution wider. Having more options for the hadronic multiplicity leads directly to

more variability in the value of Xmax and thus to a higher value of σ(Xmax).

The hadronic energy fraction F0 has a similar effect on ⟨Xmax⟩ and ⟨Nµ⟩ as the

multiplicity M0, the difference being that the impact on the latter is stronger. The

higher this fraction (obtained through a higher value of F loc
0 , green circles), the more

energy is kept in the hadronic channel, leading to a higher number of muons. At the

same time, the electromagnetic channel has less energy and gives a lower value of

Xmax. An increasing value of F loc
0 also leads to more variability as to how energy is

distributed in the hadronic channel and thus to a higher value of σ(Nµ). σ(Xmax), on

the other hand, has a parabolic shape with a minimum. The decreasing behavior might

be associated with the fact that with increasing value of F0 less energy is diverted to the

electromagnetic channel and, thus, there are less ways to distribute it among neutral

pions and η particles in the first few interactions. From a certain point however, having

a higher fraction in the hadronic channel of the first interactions also leads to more

variability in the electromagnetic component that descends from this group of particles

and σ(Xmax) increases again. An increasing value of the scale parameter of the fraction

F0 (blue circles), which widens its distribution, leads to a higher variability in both

observables.

The inelasticity Keff has a more intricate behavior. Its location parameter (pink

circles) has, in general, a similar effect on ⟨Xmax⟩ and σ(Xmax) as the location parameter

of F0, which is also in accordance with figure 3.16, even though our feature Keff is a

constant effective value, while in [112], the elasticity is adapted in each interaction

individually. It becomes evident that the leading particles of each interaction drive the

bulk of electromagnetic particles deeper into the atmosphere. The effect on the number

of muons is less pronounced. Evidently, this number depends more on the fraction of

energy which indeed ends up in the hadronic channel.

It is particularly interesting to notice that by increasing the location parameter of

the F0 distribution, one quickly obtains a higher number of muons. This is important

because we are interested in extracting the best fitting parameters for a dataset from

the Pierre Auger Observatory and, as was discussed in section 3.5, it is well known

that the observed number of muons is significantly higher than the number obtained

in simulations.

5.4. Performance of the model

We now proceed to perform a χ2-analysis, comparing the observables ⟨Xmax⟩, ⟨Nµ⟩,
σ(Xmax) and σ(Nµ) in a 4-dimensional grid of possible values for the parameters M loc

0 ,

K loc
eff , F

loc
0 and F scale

0 . We do this for each high-energy interaction model, in order to test
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Figure 5.20: Logarithm of the 4-dimensional χ2-function, calculated to get the unknown para-
meters M loc

0 , K loc
eff , F loc

0 and F scale
0 . The real values for EPOS-LHC, QGSJETII-04 and SIBYLL-

2.3d are shown as red, blue and yellow markers, respectively. In each figure, the corresponding
value that is being fitted is marked with a star, while the values for the other hadronic interaction
models are put for comparison and represented with filled circles. In this χ2-analysis, 4 observa-
bles are compared: ⟨Xmax⟩, ⟨Nµ⟩, σ(Xmax) and σ(Nµ). Since we are interested in minimizing the
χ2-function, we show here 2-dimensional slices of the 4-dimensional space where the minimum
occurs. We fix the values of F loc

0 and F scale
0 to where the minimum is obtained and show the

logarithm of the χ2 as a function of M loc
0 and K loc

eff (left). Equivalently, the χ2 as a function of
F loc
0 and F scale

0 is shown on the right. In each case, the minimum is achieved very close to the
position of the corresponding real value. The logarithm of the χ2-function is used here only to
make the position of the minimum more visible.
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the performance of our model in predicting the unknown parameters and, in particular,

to test how well our model can distinguish between the high-energy interaction models.

More in detail, we define

χ2(θ̄) = (ˆ̄x− µ̄)TV −1(ˆ̄x− µ̄), (5.1)

where θ̄ is the vector of the parameter values that are tested for M loc
0 , K loc

eff , F
loc
0 and

F scale
0 . ˆ̄x is the array containing the true values of the observables ⟨Xmax⟩, ⟨Nµ⟩, σ(Xmax)

and σ(Nµ). These are the values calculated using the bootstrap method. The vector µ̄

contains the values of the observables corresponding to the particular combination of

parameters θ̄. This vector is obtained after evaluating our model on this combination

of parameters θ̄. We include the contributions due to statistical and systematic errors:

V = Vstat + Vsyst,

as suggested in [143, 144]. Since their measurements are correlated, the covariance ma-

trix (Vstat)ij = cov[x̂i, x̂j] needs to be used here [145]. For the systematic errors, we use

Vsyst = s̄s̄T, where s contains the difference between the real values of the observables

and the values predicted when using the parameters from the real distributions of M0,

Keff and F0. These matrices are also obtained using the bootstrap method. The mini-

mum of the χ2-function in equation (5.1) defines the least-squares estimators ˆ̄θ we are

looking for.

The results for the 4-dimensional χ2-function are shown in figure 5.20, for all high-

energy interaction models. Since it is not possible to deal with 4 dimensions visually,

we only show there the slices corresponding to the regions where the minimum χ2-value

is achieved. We fix the values of F loc
0 and F scale

0 at the values where the minimum is

Figure 5.21: For our analysis,
we need the Xmax value that is
observed by the fluorescence te-
lescopes of the Pierre Auger Ob-
servatory. In this plot, the Xmax

resolution as a function of energy
is shown (reproduced from [142]).
Bands denote the estimated sys-
tematic uncertainties. Contribu-
tions due to the performance of
the detector system (including
the atmosphere itself) and due to
the fluctuations of the night sky
background, as well as the time-
variability of the aerosol content,
are shown together with the total
contribution.
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obtained and show the logarithm of the χ2 as a function of M loc
0 and K loc

eff on the left.

Similarly, we show the χ2 as a function of F loc
0 and F scale

0 on the right. In each case, the

minimum is achieved very close to the position of the corresponding real value. The

logarithm of the χ2-function is used here only to make the position of the minimum

more visible.

Fitting the χ2-function, as presented in figure 5.20, by a quadratic function in each

two-dimensional slice and searching for the minimum gives the predictions (stars in

figure 5.22) for the four parameters M loc
0 , K loc

eff , F
loc
0 and F scale

0 , for EPOS-LHC (red),

QGSJETII-04 (blue) and SIBYLL-2.3d (yellow). The 1σ (full lines) and 2σ (dashed

lines) contours in figure 5.22 correspond to χ2
min + 4.72 and χ2

min + 9.7, respectively.

These are the values that need to be used in the case of 4 dimensions [146]. Comparing

the real values (filled circles) with the predictions, one can see thatM loc
0 ,K loc

eff and F scale
0

are remarkably well reproduced and contained within a 1σ error. F loc
0 for QGSJETII-04

is the only parameter that falls on the 2σ contour line. The prediction of this parameter

for EPOS-LHC and SIBYLL-2.3d is better and close to the 1σ contour line. A feature

of particular importance is that our model is capable of differentiating the three high-

energy scenarios.

Before moving on to the dataset from the Pierre Auger Observatory in the final

chapter, we can test the performance of our models including the effect of the resolu-

tion of the measurements. As is shown in figure 5.21 (reproduced from [142]), for the

showers in the small energy range we used for our simulations, an absolute value of

around 24 g cm−2 is present. For the number of muons, it is usual to assume a value of

20%, which is considered quite conservative. We include these effects by smearing the

Xmax values according to a normal distribution centered at the true value and with a

standard deviation of 24 g cm−2. The Nµ values are also spread according to a normal

distribution centered at the true value, but with a standard deviation equal to 0.2

times the real muon number. We do this with the original distributions simulated with

EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d and with the ones that are created for

the χ2-analysis. For each combination of possible values of the parameters M loc
0 , K loc

eff ,

F loc
0 and F scale

0 under study, the values of Xmax and Nµ that are obtained from our neu-

ral networks are also subject to these modifications. When repeating the χ2-analysis

the same way as was done for figure 5.22 but with these modified distributions, very si-

milar and remarkably good results are obtained. These are summarized in figure 5.23.

The predictions are slightly biased compared to the performance without including

the effect of the resolution of the measurements, especially regarding the prediction of

F loc
0 for EPOS-LHC. Nevertheless, the three high-energy interaction models are well

distinguished and the rest of the predictions are within a 1σ or 2σ range.
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Figure 5.22: Minimum χ2 fit to obtain the predictions (stars) of the four parameters M loc
0 ,

K loc
eff , F loc

0 and F scale
0 for EPOS-LHC (red), QGSJETII-04 (blue) and SIBYLL-2.3d (yellow). The

χ2-function shown in figure 5.20 is used for the fit. The 1σ (full lines) and 2σ (dashed lines)
contours correspond to χ2

min + 4.72 and χ2
min + 9.7, respectively. These are the values to be used

in the case of 4 dimensions. The filled circles are the real values.
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Figure 5.23: Minimum χ2 fit to obtain the predictions (stars) of the four parameters M loc
0 ,

K loc
eff , F loc

0 and F scale
0 for EPOS-LHC (red), QGSJETII-04 (blue) and SIBYLL-2.3d (yellow), as

calculated for figure 5.22. The difference is that for this analysis we performed modifications on
the Xmax-Nµ distributions in order to include the effect of the resolution of the measurements.



Chapter 6

Application to Auger data

“El que para no avanza.”

— Gustavo Eber Gonzalez

In this final chapter, we adapt our formalism in order to apply it to a dataset

from the Pierre Auger Observatory. For this purpose, the mixed composition in the

cosmic ray flux is taken into account [40]. However, having primaries other than protons

introduces a difficulty because our neural networks were trained on pure proton fluxes.

A solution to this issue is proposed. Finally, we apply our formalism to a dataset from

Auger that meets all the requirements we need. As a final result, we are able to infer

the distributions of M0, F0 and Keff for this dataset. These reveal hints as to how the

Muon Puzzle could be solved.

6.1. Dataset

The final goal of this work is to apply our formalism to a dataset from the Pierre

Auger Observatory. For this purpose, we need a dataset that contains unbiased values

of the depth of maximum development Xmax and the total number of muons at the

ground Nµ for vertical showers (θ < 60◦). In [147], a model-independent calibration

method based on the concept of Universality is applied to a dataset of hybrid events.

On the one hand, having hybrid events ensures unbiased measurements of Xmax. On the

other hand, this calibration renders the number of muons we need, as we will explain

later in this section. In [147], it is stated that an unbiased value of Nµ can be obtained,

if one corrects for the fact that the muon number for 1019 eV showers is systematically

overestimated by around 14%. Furthermore, showers with zenith angle up to 60◦ are

considered in this dataset. As a consequence, the conditions needed are met and we can

apply our formalism to this dataset. The hybrid events considered here are from the

time period between 2005 and 2012, which gives a total of 7145 events. The estimated

103
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primary energy E0, angle of incidence θ and value of Xmax, together with the estimator

used to infer Nµ, are at our disposal. This calibration method has not been applied to

events detected since then by the Pierre Auger Observatory. Nevertheless, the validity

of the method remains solid.

The dataset contains Xmax estimations from the SD and the FD, which are essen-

tially equal because the SD estimations are constrained by those from the FD. The

muon number is determined through the universality method in a model-independent

way. The concept of air shower universality states that, to a high degree of precision, ex-

tensive air showers can be characterized by a set of only three parameters: the primary

energy E0, the depth of shower maximum Xmax and the overall normalization of the

muon component Nn
µ . Once these values are known, the electromagnetic ground signal

and the evolution of the muon signal are understood and can be used to parameterize

the total signal at the ground:

S(E0, θ) = Sem(E0, θ, ⟨Xmax⟩) +Nn
µ(E0) · Sµ(θ, ⟨Xmax⟩).

Sµ is a fixed mean muon reference signal for proton showers of 1019 eV simulated

using QGSJETII-03. Consequently, Nn
µ(E0) is the relative muon normalization needed

to obtain the signal for a primary energy of E0. Here, E0 and Nn
µ(E0) are the only

unknowns and are calculated in [147].

The factor Nn
µ(E0) can be used to obtain an estimation of the number of muons at

the ground for a shower of primary energy E0. For that, we need to know the mean

number of muons at the ground given a primary energy and zenith angle, for showers

generated using QGSJETII-03 (see figure 6.1). This mean number times Nn
µ(E0), which

is the value stored for the calibration dataset, gives the number of muons at the ground

that we are looking for. From the dataset, we keep those events with primary energy

Figure 6.1: Mean number of
muons at the ground log10(Nµ)
as a function of primary energy
for different zenith angles, ob-
tained from simulations perfor-
med using QGSJETII-03. Kno-
wing the primary energy and
angle of incidence of an event,
we can extract the corresponding
number of muons from the rela-
tions presented here. The corres-
ponding value times the norma-
lization factor Nn

µ(E0) (given for
the dataset) gives the experimen-
tal number of muons we need.
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between log10(E0/eV) = 18.098 and 18.198, the energy range covered by the simulations

used to train the final model. With respect to the zenith angle, our simulations are done

for θ = 38◦. In order to not change the conditions significantly, we keep those showers

with zenith angle between θ = 34◦ and 40◦. Discarding in addition events for which

the calibration did not converge properly, we end up with a dataset comprising 263

events. The corresponding distributions of Xmax and Nµ are displayed in figure 6.2. The

distributions obtained for pure proton simulations, using EPOS-LHC with the same

energies and θ = 38◦, are added for comparison.

6.2. Mixed composition

Now that we are ready to apply this formalism to a dataset from Auger, apart

from including the resolution of the measurements as we have already done in section

5.4, we need to take into account the mixed composition present in the cosmic ray

flux (see section 1.2.4). We chose the small energy interval log10(E0/eV) = 18.098

- 18.198 because contamination by particles other than protons is minimized here,

as is visible in figure 1.6 [40, 148]. We chose a small interval because the fractions

of the different elements quickly change when varying the energy and for our study

we need a more or less fixed combination of fractions. In order to involve a mixed

composition into our analysis, we repeat the calculations done in section 5.4. This time,

we create Xmax-Nµ distributions for simulations respecting the fractions of primaries

valid at the energy range under study. In addition, we apply the smearing, as done in

section 5.4. The resulting distributions are shown in figure 6.3. The distribution for

QGSJETII-04 has only a small fraction of helium with respect to proton. For EPOS-

LHC, the “contamination” through nitrogen is more pronounced, while the distribution

for SIBYLL-2.3d is the most affected by helium as well as nitrogen.

Figure 6.2: Xmax and Nµ distributions for the Auger dataset. The corresponding distributions
for EPOS-LHC simulations of proton primaries with θ = 38◦ and log10(E0/eV) between 18.098
and 18.198 are added for comparison.
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Since the neural networks developed in chapter 5 were trained with simulations of

showers generated by primary protons and the reasoning that led to the election of

features used there was also focused on primary protons (see section 4.2), we expect

the presence of other primaries to worsen the predictions obtained at the end of section

5.4. Our neural network has not “learned” from instances other than those coming from

protons. Furthermore, we don’t expect to be able to build a unified model independent

of primary mass with this set of features, besides from already being independent from

the hadronic interaction model used. Showers generated by heavy primaries behave

in the first interaction very differently from proton initiated ones. The inelasticity for

example, as used in the mathematical expressions in section 4.2, does not make sense

for showers generated by heavy primaries. In those showers a considerable fraction of

the primary energy is taken by individual nucleons that break off from the primary,

while other nucleons remain together in fragments until the second interaction occurs.

In the case of helium primaries, this effect is the least pronounced.

Consequently, we need to apply a cut on the distributions, in order to get rid of the

Figure 6.3: Xmax-Nµ distributions for EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d, after
applying an artificial smear in order to mimic the measurement resolution, as described in section
5.4, together with the Auger dataset. The mixed composition is also taken into account for the
simulated distributions. For each high-energy interaction model, the fractions of proton (red
dots), helium (yellow), nitrogen (green) and iron from [40] are used. The tilted line sets the limit
for the cut we use in the rest of the study. The objective is to keep a sample of events with a
high fraction of protons, while keeping as many events as possible.
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most “contaminated” areas in the Xmax-Nµ plane. We choose to do this by keeping a

certain percentage of the “tail” of the Xmax-Nµ distribution. We use an inclined line to

separate a predefined percentage of the events we discard from those we keep (tilted

lines in figure 6.3). Considering only the events below the cut enhances the contribution

of protons in the sample. The lower the line representing the cut, the higher the fraction

of protons in the sample. However, this also reduces the number of events available for

the analysis. Since no hadronic interaction model is preferred, a cut with respect to

Figure 6.4: Xmax distribution for different primaries present in the cosmic ray flux, using
the fractions calculated in [40] for the different high-energy interaction models, before (left) and
after (right) performing the cut defined in figure 6.3. The axes are fixed at equal values in this
comparison, in order to see which portion of the events is selected out when performing the cut.
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a common percentage needs to be applied to all distributions in an equal way. We

perform this cut on the distributions of interest from which we wish to infer the values

of the basic parameters (the distributions for all three high-energy interaction models

and the Auger dataset) and on the distributions generated by each combination of

parameters θ, with which they will be compared in the χ2-analysis.

For the definition of the cut, we test the values of 40%, 30% and 20%. These

values ensure having a high enough fraction of protons. Using a value of 30%, we

obtain the best results. For 40% and 20%, the predictions of the parameters for the

Figure 6.5: Nµ distribution for different primaries present in the cosmic ray flux, using the
fractions calculated in [40] for the different high-energy interaction models, before (left) and
after (right) performing the cut defined in figure 6.3. The axes are fixed at equal values in this
comparison, in order to see which portion of the events is selected out when performing the cut.
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simulated distributions have a stronger bias than for the cut corresponding to 30%.

In figures 6.4 and 6.5, we show on the left the complete distributions of Xmax and

Nµ, respectively. Each color corresponds to a different primary type present for the

high-energy interaction model considered (only protons, helium, nitrogen and iron are

displayed). The fraction of each particle type is obtained from [40]. On the right, we

present the corresponding distributions after performing the cut. We leave all axes fixed

so that the distributions can be compared. After performing the cut, a considerable

amount of “undesired” primaries is left out for EPOS-LHC and QGSJETII-04. For

SIBYLL-2.3d, the presence of primaries other than proton is the highest.

As already mentioned, we don’t expect to be able to develop a model that is inde-

pendent of the primary mass using just the three features kept until now. Nonetheless,

we retrain our neural networks using the architecture presented in section 5.2 on a joint

ensemble of the distributions described in this chapter: distributions obtained with the

three high-energy interaction models, including the effect of measurement resolution

and the effect of having a mixed composition and subjected to the cut corresponding

to 30%. We thus allow for the neural network to understand, at least partially, this

Figure 6.6: Minimum χ2 fit to obtain the estimated values (stars) of the parameters M loc
0

and K loc
eff for EPOS-LHC (red), QGSJETII-04 (blue) and SIBYLL-2.3d (yellow), as calculated

for figure 5.22. In this analysis, we include the effect of having a mixed composition in the cosmic
ray flux. In this setting, it is possible to include the estimated values for the Auger dataset (black
star). The ellipses correspond to a 1σ region.
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new setting where showers generated by other primaries are present. Performing a χ2-

analysis as in section 5.4, using these updated neural networks and applying it to the

tails of the distributions as defined in figure 6.3, we obtain the results presented in

figures 6.6 and 6.7.

Despite the difficulty introduced by the incorporation of the effect of a mixed com-

position, the predicted values are very close to the real ones. For EPOS-LHC, all predic-

tions are within the 1σ region. For the predictions of M loc
0 and F scale

0 for QSGJETII-04

and SIBYLL-2.3d, this is also the case. The rest of the predictions are within the 2σ

region (not shown in figures 6.6 and 6.7). The 1σ region corresponding to the estima-

tion of the parameters for the Auger dataset is smaller than for the different hadronic

interaction scenarios because for the dataset we do not know the true values of the

parameters. Consequently, we do not have the matrix Vsyst at our disposal. Taking into

account the size of the 1σ region for the simulations, one can get a notion of which size

this region would have, if the systematic errors were included.

The inferred values of the unknown parameters are M loc
0 = 5.99, K loc

eff = 0.73,

F loc
0 = 0.77 and F scale

0 = 0.058. The distributions of M0, F0, Keff and NFI
ch obtained

Figure 6.7: Minimum χ2 fit to obtain the estimated values (stars) of the parameters F loc
0 and

F scale
0 for EPOS-LHC (red), QGSJETII-04 (blue) and SIBYLL-2.3d (yellow), as calculated for

figure 5.22. In this analysis, we include the effect of having a mixed composition in the cosmic
ray flux. In this setting, it is possible to include the estimated values for the Auger dataset (black
star). The ellipses correspond to a 1σ region.
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from these values are presented in figure 6.8, together with those corresponding to

EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d. The distributions of NFI
ch for the different

cases are included here because the multiplicity is typically presented this way in the

literature.

The hadronic multiplicity of the first interaction M0 tends to be higher for the

dataset than for any of the high-energy interaction models used in the simulations.

This makes sense because having a higher hadronic multiplicity at the first interaction

implies having more subshowers of less energy. Thus, the overall shower develops in less

generations, keeping more energy in the hadronic channel, which eventually means a

higher number of muons. This also occurs when the hadronic energy fraction of the first

interaction F0 is higher, as happens for the Auger dataset. Having a higher value of F
loc
0

than for any high-energy interaction scenario shifts its distribution to higher values.

Having a small value of F scale
0 concentrates the peak around these higher values. The

Keff distribution for the dataset is quite close to those corresponding to SIBYLL-2.3d

and EPOS-LHC.

These final results reveal which conditions need to be met in order to solve the Muon

Figure 6.8: Predicted distributions of the unknown features M0, N
FI
ch , F0 and Keff for the

Auger dataset, obtained using the predicted basic parameters (see figures 6.6 and 6.7). The
hadronic multiplicity M0 tends to be higher than for any of the models used in the simulations.
This is in accordance with having more muons in the dataset compared to simulations. This
discrepancy can also be associated with a higher hadronic energy fraction F0, as happens for the
Auger dataset. Having a higher value of F loc

0 than for any high-energy interaction scenario shifts
its distribution to higher values. Having a small value of F scale

0 concentrates the peak around
these higher values. The Keff distribution for the dataset is quite close to those corresponding to
SIBYLL-2.3d and EPOS-LHC.
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Puzzle. The energy fraction of hadronically interacting particles of the first interaction

needs to be higher than for current high-energy interaction models. Furthermore, its

distribution needs to be narrower. An increase in the hadronic energy fraction could

be obtained implementing the core-corona model [149]. The basic idea is that a certain

fraction of the volume of an interaction behaves like a quark-gluon plasma and decays

according to statistical hadronization (core), while the other part produces particles

via string fragmentation (corona). The existence of such a core would increase the value

of F0 because statistical hadronization produces more heavy particles and less pions

compared to string fragmentation [150, 151].



Chapter 7

Conclusions

Cosmic rays of the highest energies are excellent probes to study physical properties

at energies beyond those achievable in man-made accelerators. Many studies are being

carried out in which characteristics of Xmax or Nµ alone are used to extract information

about extensive air showers. The purpose of the present work is the study of the joint

distribution of Xmax and Nµ. The fact that these two observables are correlated means

that analyzing their distributions simultaneously should render new information not

accessible when considering them separately.

During the first part of the work, we study the anticorrelation by developing a

model that describes Xmax and Nµ as functions of certain parameters. The main result

is a model, which is based on a combination of the semi-empirical model developed

by Heitler and Matthews and the expression of the critical energy as calculated by

Kampert and Unger. Considerable improvement is achieved when modeling the first

interaction separately from the rest of the shower. This separation is not only reflected

in the mathematical equations but also in the set of parameters used to predict Xmax

and Nµ. These are the multiplicity of hadronically interacting particles of the first

interaction M0, a parameter K0 describing the inelasticity of the first interaction and

a parameter F0 describing the fraction of energy that is taken by the hadronically

interacting particles of the first interaction, together with three effective versions of

these parameters representative for the rest of the shower, Meff , Keff and Feff .

The ∆X-Nµ distribution is represented very well with this model, not only qua-

litatively but also quantitatively, which is remarkable for a relatively simple discrete

model. In particular, the anticorrelation is very visible in the predicted distribution. In

order to make sure that this behavior is no coincidence, the distributions of all used

parameters are compared between the original anticorrelation and the predicted one.

The three parameters related to the first interaction, which are the most important

ones, show good coincidence in their behavior. The three effective parameters related

to the rest of the shower have the role of introducing a scale around which these values

113
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are to be expected. These values from simulations are indeed very concentrated in small

regions and show little variability. The hadronic multiplicity M0 and the inelasticity

K0 of the first interaction are correlated with ∆X and describe the anticorrelation

moving horizontally. The hadronic energy fraction F0 of the first interaction, on the

other hand, is more related to the number of muons and describes the anticorrelation

moving almost vertically. None of these parameters alone describes the anticorrelation.

Instead, a combination of these parameters is needed to describe the inclined axis that

the anticorrelation follows.

In the second part of the work, we use the fact that we know which parameters are

important to describe the Xmax-Nµ anticorrelation, in order to develop a model using

neural networks. The versatility of neural networks is expected to allow for a model

that captures more details than the equations from the analytical model. The principal

model is trained on a reduced set of features. From the parameter set introduced

previously, the multiplicity of hadronically interacting particles of the first interaction

M0, the parameter F0 describing the fraction of energy that is taken by the hadronically

interacting particles of the first interaction and the effective inelasticity Keff of the rest

of the shower are sufficient to use as features in neural networks that predict Xmax and

Nµ, separately. A joint mixed ensemble of simulations performed with CONEX using

the high-energy interaction models EPOS-LHC, QGSJETII-04 and SIBYLL-2.3d is

used for training.

A particular characteristic that is attained for this main model is that of universa-

lity: predictions of Xmax and Nµ are calculated by this network essentially equally well

for all three high-energy interaction models considered, which is a very valuable quality.

This means that the differences between the hadronic interaction models are captured

in the parameters that we kept, while the behavior that is common to all three models

is included in the final neural network. Furthermore, the errors in the predictions of

Xmax and Nµ are for all high-energy interaction scenarios below 36.6 g cm−2 and 7.7%,

respectively.

The performance of this model is tested emulating the process that is applied at a

final stage to a dataset from Auger. The distributions of the features used for training

are described through suitable distributions. Four parameters M loc
0 , K loc

eff , F
loc
0 and

F scale
0 are sufficient to describe the unknown distributions. A χ2-analysis is carried out

where ⟨Xmax⟩, ⟨Nµ⟩, σ(Xmax) and σ(Nµ) from the true distributions from simulations

are compared to those generated by our model for a grid of possible values of the

parameters M loc
0 , K loc

eff , F
loc
0 and F scale

0 . Remarkably good results are obtained for the

predicted values of the parameters. The predictions of M loc
0 , K loc

eff and F scale
0 are well

within a 1σ error from the corresponding true values. In the case of the position of the

peak F loc
0 , the prediction is between 1σ and 2σ away from the true value. In particular,

the model is clearly able to distinguish between the scenarios from different theories.
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Finally, this process is applied to a hybrid dataset from Auger in which the number

of muons at the ground is provided making use of the concept of universality. Since

in a realistic scenario, the cosmic ray flux presents a mixed composition, this needs to

be taken into account in the process. This introduces a difficulty because our model

is, in principle, not designed to deal with primaries other than protons. However, this

issue is solved performing a cut on the distributions, in order to obtain samples with

a high proton fraction. Furthermore, the model is retrained on the sets of simulations

that respect the estimated fractions of proton, helium, nitrogen and iron. This way, it

is possible to obtain predictions of the parameters M loc
0 , K loc

eff , F
loc
0 and F scale

0 for the

Auger dataset and these are sufficient to deduce the distributions of M0, F0 and Keff .

It would be interesting to repeat this analysis considering other small ranges of

primary energy, which are associated with other combinations of primary fractions. One

would need to have simulations in every energy interval of interest, train different neural

networks with these sets of simulations because the feature distributions change with

energy. Finally, the χ2-analysis would need to be performed considering the resolution

of the measurements and the combination of fractions of different primaries for the

corresponding primary energy. Furthermore, it will be an excellent opportunity in the

near future to apply our formalism to data obtained with AugerPrime. This upgrade

of the Pierre Auger Observatory will provide a complementary measurement of the

showers, allowing the reconstruction of muons and electromagnetic particles.

In this work, the distributions of the hadronic energy fraction of the first interac-

tion, the hadronic multiplicity of the first interaction and the effective inelasticity are

inferred for a preliminary dataset from the Pierre Auger Observatory. The first two

distributions represent highly interesting properties related to high-energy hadronic

interactions that cannot be studied at accelerators. It is the first time that such dis-

tributions are inferred that show hadronic properties at energies 10 times higher than

the highest ones achievable at the LHC (in the laboratory frame). The differences with

the hadronic interaction models give hints as to how the Muon Puzzle could be solved.

The obtained distribution of the hadronic energy fraction of the first interaction is sig-

nificantly different from the ones obtained using current hadronic interaction models.

F0 is generally higher for the dataset compared to simulations. This result suggests

that mechanisms that increase the hadronic energy fraction F0 should be implemented

in the high-energy interaction models used in simulations.
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