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Studies of systematic uncertainty effects

1. Introduction

IceCube is a cubic-kilometer neutrino detector installed in ice at the geographic South Pole [1]
between the depths of 1450 m and 2450 m. Reconstruction of the direction, energy and flavor
of neutrinos relies on the optical detection of Cherenkov radiation emitted by secondary charged
particles produced in the interactions of neutrinos with the surrounding ice or the nearby bedrock.
The main body of the detector is a 3-D array of 5160 Digital Optical Modules (DOMs) that contain
the photomultipliers that detect the Cherenkov photons.

The real-time analysis framework [2] was implemented in 2017 with the aim of identifying
the sources of astrophysical neutrinos by detecting events in coincidence with electromagnetic
or gravitational waves. Part of this program comprises real-time alerts generated by IceCube:
identifying very-high-energy neutrinos with a high probability of being of astrophysical origin.
This framework was crucial in the identification of a high-event neutrino event, IC170922A, in
spatial and temporal coincidence with a gamma-ray flux from the blazar TXS 0506+056 with 3f
significance [3].

The pipeline works as follows: once a neutrino is detected, and if it passes the threshold to
become an IceCube alert [4], it is reconstructed at the South Pole using a computationally limited
reconstructionmethod included in the online processing and filtering system [1]. A first GCNNotice
is sent out with this information, including the statistical angular uncertainty on the localization.
Immediately after, a more robust and sophisticated reconstruction method is applied to the data. A
brute force scan of all possible directions is performed pixelwise in order to produce a likelihood
landscape, returning the best-fit position as the pixel with the minimum likelihood,L0. This method
allows us to obtain error contours that account for systematic uncertainties. The resulting direction
(including statistical and systematic errors) from the scan is sent out in a second GCN Notice and a
GCN Circular.

SinceWilks’ theorem does not apply, Monte Carlo simulations are needed to calibrate the error
contours derived from the likelihood landscape in order to account for statistical and systematic
uncertainties. A neutrino event is re-simulated and reconstructed to calculate the likelihood values
that correspond to a given containment. These correction values are applied to every IceCube alert
to scale the contours, regardless of topology of the track. The aim of this study is to verify this
scaling and create an array of correction values to choose from for each neutrino event. Section 2
introduces the reconstruction method considered in this analysis. In section 3 the calculation of the
currently used correction values is explained. In section 4 the simulation of new muons that are
used to study the validity of those values is discussed. Section 5 contains the status of this work.
Lastly, we present the future plans in section 6.

2. Reconstruction

Millipede is a reconstruction algorithm designed to infer muon energy losses from the deposited
light in the detector [5]. This method assumes that the light emission from a high-energy muon can
be described by a series of cascades whose energies (�8) can be estimated. The number of detected
photons : is expected to follow a Poisson distribution with the mean _ given by
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_ =
∑

sources 8

�8Λ8 + d, (1)

where Λ8 is the expected light yield in a particular DOM and time bin from cascade 8, and d is
the expected number of noise photons. Assuming a Poisson distribution, the resulting likelihood
summed over time bins 9 that has to be minimized to find the best-fit −→� is
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This method can also be used to reconstruct the direction of high-energy muons. Firstly, the
best-fit energy losses and the likelihood are calculated for a fixed direction. Secondly, the direction
and the reference location are varied and those parameters are re-calculated. These two steps can
be repeated until the global minimum likelihood is found.

In practice, this is done on a pixel grid using Hierarchical Equal Area isoLatitude Pixelation
of a sphere (healpix) [6]. In a typical scan, the full sky is divided into pixels of equal area, with
iteratively finer binning near the minimum. In this study, the scan is focused on a small area of the
likelihood landscape around the known true direction with the finest binning used in the real-time
program.

3. Current correction values

Monte Carlo re-simulations were done for the first time for the high-energy track IC160427A,
for which a possible counterpart supernova was found by Pan-STARRS [7]. Re-simulations consist
of simulating muons that are “similar” to one specific event, varying the parameters of the ice model
used to propagate particles. In this first analysis, similarity was defined as difference in the true
direction of ±2 degrees, distance to the original track below 50 m and ±20% of the charge deposited
in the detector by the photons. This choice ensured that every simulated event closely resembled
the original neutrino. The systematic uncertainties were included by sampling parameters from a
predefined ice model and varying them with a Gaussian distribution during the photon propagation.

Subsequently, the muons were reconstructed using the Millipede reconstruction method. The
ratio between the likelihood of the best fit (L0) and the Monte Carlo truth (simulated direc-
tion) (Lsim) can be used to construct a histogram from which one can extract the correction
values. Figure 1 shows this distribution for 250 events similar to IC160427A. The correction
values are the −2 (logL0 − logLsim) values that correspond to 50%/90% containment. In this
case, they are 22.2 and 64.2, respectively. These are currently used to convert the likelihood
landscape of the Millipede scans to error contours for every alert by searching for the pixels that
satisfy −2

(
logL0 − logLpixel

)
= 22.2(64.2).

With the analysis presented here, we investigate if this single set of correction values is enough
to represent all the possible neutrino events that are detected in IceCube, i.e. if the impact of the ice
systematic uncertainties on the resolution of the reconstruction is the same throughout the detector.
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Figure 1: Distribution of the difference between the likelihood of the Millipede scan best fit (L0) and the
likelihood of the true direction (Lsim) for 250 re-simulations of the IceCube’s neutrino alert IC160427A.
The 50% (90%) containment is marked with a green (magenta) dashed line and the value is included in the
legend. The j2 distribution that the data would follow according to Wilks’ theorem is also shown (blue solid
line), along with its corresponding 50% and 90% containment (dotted lines).

4. Simulation

Since our first goal was to determine the validity of the correction values calculated with
IC160427A, simple categories of muons that represent the majority of alerts are defined. All of
these neutrino-candidate events are categorized as through-going tracks with energies close to the
median energy of IceCube’s alerts (150 TeV). Two main classes exist: Horizontal (\ = 90 degrees,
see Figure 2) and Upgoing (\ = 130 degrees) muons. Due to the filters in the event selection,
most neutrino alerts have zenith angles between 80 and 140 degrees. The impact of stochasticity is
studied by choosing a Smoothmuon (with continuous energy losses along the track) and a Stochastic
muon (at least one big stochastic energy loss in the track) for each main category. The distinction
is based on the calculation of the highest energy loss divided by the median energy loss along the
track. For the Horizontal class two depths in the detector were selected to account for differences
in ice properties, one in the upper half at I = 200 m (Shallow) and the other in the lower half at
I = −400 m (Deep). That leaves us with a total of 6 types of muons (Figure 3 for event views).

100 muons for each of the categories defined above are simulated. The photon propagation
step is repeated utilising a novel simulation tool called SnowStorm [8] resulting in varying ice
systematics between muons. This differs from the previous analysis in two ways: firstly, SnowStorm
has a more robust treatment of systematic uncertainties than what was done previously. Secondly,
the direction and deposited charge are fixed, which allows us to better understand the impact of the
ice model parameters on the reconstruction angular uncertainty.

5. Current status

The first result obtained is shown in Figure 4, where the cumulative distribution of the difference
in likelihood between the best-fit positions and the simulated directions of the Horizontal muons is
plotted. One can visually see that stochasticity does not play an important role in the calibration
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Figure 2: The IceCube coordinate system, centered 1948 m below the surface of the glacier.

(a) Horizontal Shallow Smooth (b) Horizontal Deep Smooth (c) Upgoing Smooth

(d) Horizontal Shallow Stochastic (e) Horizontal Deep Stochastic (f) Upgoing Stochastic

Figure 3: Event views of the 6 types of re-simulations.

of the reconstruction for these categories. A Kolmogorov-Smirnov test was conducted to check the
compatibility of the distributions resulting in a p-value of 0.67 (0.65) for the Smooth (Stochastic)
muons. Therefore, the categories are merged into Horizontal Shallow and Horizontal Deep.

In Figure 5, the cumulative distribution of the difference in likelihood between the best-fit
positions and the simulated directions for the four selected categories is shown. Table 1 shows the
correction values and the number of reconstructed events. Despite a difference in the number of
re-simulations, one can clearly see that each class has a unique set of values; the impact of systematic
uncertainties depends on the position and shape of the track in the detector. This strongly implies
that it is not ideal to calculate the error contours using the re-simulations of IC160427A for every
neutrino alert.

To measure the performance of this method, we study the coverage of the contours by dividing
the events within each category into two sets: one to calculate the correction values and the other to
evaluate them. The evaluation set is used to obtain the amount of events whose simulated direction

5



P
o
S
(
I
C
R
C
2
0
2
1
)
1
0
4
5

Studies of systematic uncertainty effects

Figure 4: Cumulative distribution of the difference between the likelihood of theMillipede scan best fit (L0)
and the likelihood of the true direction (Lsim) for the Horizontal muons. The two Smooth and Stochastic
classes are visually compatible, which is confirmed with a Kolmogorov-Smirnov test.

Figure 5: Cumulative distribution of the difference between the likelihood of the Millipede scan best fit
(L0) and the likelihood of the true direction (Lsim) for four selected categories of simulated muons including
systematic uncertainties. For comparison, the cumulative distribution for IC160427A is included in gray.

is inside the error contours calculated with the values from the calculation set. This is repeated by
randomly dividing the re-simulations to find the average 50% and 90% coverage (Figure 6a). To
compare the performance of the original correction values, the coverage is evaluated again using
the contours calculated with the IC160427A re-simulations (Figure 6b). In both cases, accurate
contours correspond to the localisation of blue (orange) dots around the blue (orange) dashed line.

Lastly, the error contours calculated using IC160427A (black) and the new re-simulations (red)
for a random event of each category are shown in Figure 7. This expresses that the area of the
contour ultimately depends on the steepness and shape of the likelihood landscape, so the scaling
will have a different impact for each alert. It also means that, while we now know that using the
same parameters is not correct, on average it is a good approximation to our new, more reliable error
contours. It must be noted that it is not possible to calculate "true" error contours that would account
for all existing systematic uncertainties because some of them are known but not implemented in
the simulation software whereas some are completely unknown.
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Category 50% containment 90% containment Number of events
Horizontal Shallow 4.5 12.5 158
Horizontal Deep 31.9 83.2 129
Upgoing Smooth 51.8 193.8 80
Upgoing Stochastic 88.9 301.7 80
IC160427A 22.2 64.2 250

Table 1: The correction values for the selected categories, along with the number of reconstructed events at
the time of writing this proceeding. Some of the simulated events are not included as they have not yet been
reconstructed at the time of writing. For comparison, the values from the IC160427A re-simulations are also
shown.

(a) (b)

Figure 6: Study of the coverage of the contours calculated with the re-simulations of each category (6a)
and with the IC160427A correction values (6b). The dashed lines indicate that for 50% (90%) of the
reconstructed events the simulated direction lies within the 50% (90%) error contour. The dots represent the
actual percentage of events that satisfy this condition.

6. Conclusion and outlook

This on-going analysis has studied the validity of the correction values currently used in
IceCube’s real-time program to derive the angular uncertainty of alerts, arriving to the conclusion
that a more robust treatment of the systematic uncertainties is needed. The first step to solving this
problem was to create simple categories of muons that represent most real-time neutrino alerts. 100
muons of each class were re-simulated varying the ice model parameters with a novel simulation
tool. The re-simulations were then reconstructed using a complex and robust reconstruction method
called Millipede. The resulting scans containing likelihood landscapes were used to obtain new
correction values that are used to derive error contours with the expected coverage in future real-time
alerts.

Moving forwardwith this analysis, more re-simulationswill be prepared. The current categories
will continue to be scanned in order to reach enough statistics (O(100) re-simulations) and new
classes will be defined to cover all possible tracks, including but not limited to various zenith
angles, energy losses, initial neutrino energies and depths of the track in the detector. The aim is
to apply specific correction values to each new neutrino alert by interpolating between the different
categories.

Lastly, the re-simulations will be reconstructed using other reconstruction methods (like those
described in [9]) that are faster, simpler and less computationally expensive. This will enable us
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Figure 7: Results of the Millipede scan for one random event of each category. The black star represents
the scan best fit and the red star is the true direction. The black line is the 90% contour calculated with the
IC160427A correction values (currently used for every IceCube’s real-time alert) and the red line is the 90%
contour calculated with the correction values of the event’s category (see Table 1).

to compare their performance on high-energy neutrinos and eventually decide whether Millipede
should continue to be used in the real-time program.
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