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1. Introduction

As the era of multimessenger astrophysics dawns, the observation of high-energy neutrinos
coincident with a flaring blazar [1] and a tidal disruption event [2] underscore the key role these
particles will play in the discovery of the source of ultrahigh energy cosmic rays. The origin of
ultrahigh energy cosmic rays (UHECRs, � & 1018 eV = 1 EeV) remains an open question in as-
troparticle physics but it is well-established that these particles will produce secondary gamma-rays
and neutrinos as they propagate through the environment surrounding their source and through
extragalactic space. By combining the observations of cosmic rays, gamma-rays, and neutrinos sig-
nificant progress can bemade in determining the sources of UHECRs, their astrophysical properties,
and the relation between UHECRs and astrophysical neutrinos.

Here we employ a multimessenger analysis using the flexible, realistic phenomenological
model of UHECR source environments first developed in [3] by Unger, Farrar, and Anchordoqui
(UFA15). We have elaborated this model to include interactions with gas, in addition to ambient
photons, in the source environment. Further, we have improved the modeling of the CR escape
time to account for both the transition from diffusive to quasi-ballistic diffusion regimes and the
finite size of sources. Throughout this work we consider two hadronic interaction models for both
calculating secondaries from hadronic interactions in the source environment and to interpret air
shower observables: EPOS-LHC [4] and Sibyll2.3c [5].

Here we investigate the following questions:

• Can current multimessenger data distinguish gas-dominated and photon-dominated sources?

• To what extent can multimessenger data probe the acceleration mechanism producing UHE-
CRs?

• To what extent can UHECR sources account for the flux of astrophysical neutrinos?

• What astrophysical properties (and source types) are favored by multimessenger data to
explain UHECR data alone or simultaneously with some portion of the astrophysical neutrino
spectrum?

We study these questions by fitting the UFA15 CR source model to UHECR spectrum and
composition data from the Pierre Auger Observatory [6–12] shifted by +20% in the energy scale
and −11 g/cm2 in 〈-max〉 on average. Models are excluded based on their UHECR predictions
if they produce a fit more than 2.58f from the best-fit, defining the number of sigma from the
best-fit as # ′f = (−1

√
j2

model − j
2
min, where ( =

√
j2

min/#dof [13, 14]. In addition, we compare
the model’s secondary neutrino and gamma-ray flux predictions to upper-bounds from IceCube
[15, 16] and observations from the Fermi-Large Area Telescope (LAT) [17]. Models are then
excluded if they violate these upper-bounds. Specifically, we exclude models predicting more
than 4.74 neutrinos above 1015.9 eV (where none have yet been observed), or a gamma-ray flux
greater than the measured extragalactic gamma-ray background (EGB) plus one error bar (assuming
Galactic foreground model B [17]) in any given energy bin.

In order to study the ability of UHECR sources to account for the astrophysical neutrino flux,
we compare the predicted neutrino flux to the IceCube Cascades data set [18] and the differential
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flux measurements from the Glashow event paper [16]. The goodness-of-fit is calculated using a j2

to the data points with an additional 2=8 penalty for energy bins with upper-bounds, where =8 is the
predicted number of events in energy bin 8 [19]. UHECR source model parameters are not tuned
to obtain the optimal goodness-of-fit to the astrophysical neutrino data. Since there is no a priori
reason to assume the entire astrophysical neutrino flux should be produced by UHECR sources, we
allow for a non-UHECR originating neutrino component parametrized as a single power law with
an exponential cutoff. This introduces three free parameters (the power-law index, cutoff energy,
and normalization) which are tuned to optimize the goodness-of-fit.

2. Results

A summary of our results, as were presented at the conference, follows below. For a detailed
discussion of this work see [20, 21].

When considering UHECR data alone, both photon- and gas-dominated source environments
are able to fit the spectrum and composition. Overall though, the quality of fit is worse for gas-
dominated source environments – particularly when the EPOS-LHC hadronic interaction model is
assumed, in which case they are mostly excluded (see Fig. 1, where Aesc ≡ 〈# ref

int 〉 is the average
number of interactions before escape and A6W ≡ 〈# ref

W 〉/〈# ref
6 〉 is the ratio of the average number of

photohadronic and hadronic interactions for the reference nucleus 10 EeV 56Fe). Gas-dominated
source environments are in tension with constraints from high-energy neutrinos, regardless of the
hadronic interaction model considered. By contrast, gamma-ray data is only constraining when
CRs undergo a large number of interactions on average before escaping the source environment. In
all cases, we find that gamma-ray constraints on UHECR sources are weaker, and fully captured
by, constraints from high-energy neutrino bounds. For this reason and for simplicity, we set aside
gamma-ray constraints throughout the remainder of this proceeding.
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Figure 1: # ′f , the number of standard deviations the local UHECR best-fit is from the global UHECR
best-fit. Contours mark 99% CL exclusions based on UHECR data (white), non-observation of neutrinos
above 1015.9 eV (gray), and the upper-bound on the extragalactic gamma-ray flux (cyan).
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Our results show that gas-dominated sources can explain UHECR data when the accelerator is
assumed to produce a spectrum ∝ �Winj even as soft as Winj . −2 if Sibyll2.3c is assumed (see Fig.
2). Soft spectral indices such as these are predicted for conventional acceleration processes using
diffusive shock acceleration. However, such soft spectral indices are in tension with constraints on
neutrinos above 1015.9 eV. Precise measurement of the astrophysical neutrino flux at ∼ 10 PeV will
thus probe both the acceleration mechanism of UHECR sources, the nature of UHECR interactions
near the source (photohadronic or hadronic), and possibly hadronic interactions at energies above
the LHC.
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Figure 2: Spectral index Winj of CRs injected into the source environment, � ∝ �Winj . Contours mark 99%
CL exclusions based on UHECR data (white) and non-observation of neutrinos above 1015.9 eV (gray).

We also investigated to what extent a common origin between UHECRs and astrophysical
neutrinos is compatible with multimessenger data. We find that UHECR sources can explain the
astrophysical neutrino flux above ∼ 1 PeV while simultaneously giving a good fit to UHECR data
and remaining compatible with gamma-ray and high-energy neutrino data (see Fig. 3). Importantly,
however, it is not possible for UHECR sources to explain the entire astrophysical neutrino spectrum
while remaining compatible with multimessenger data. Tantalizingly, the region of parameter
space which best-fits the astrophysical neutrino flux corresponds to the best-fit region to UHECR
data when assuming Sibyll2.3c, as shown in Fig. 4a. By contrast, when assuming EPOS-LHC
these regions are quite distinct, making it harder to simultaneously reconcile both the high-energy
astrophysical neutrino spectrum and UHECR data.

A full Markov chain Monte Carlo exploration of the parameter space of our model was con-
ducted to obtain preferred parameter values in order to explain UHECR data alone or simultaneously
with astrophysical neutrino data – all while remaining consistent with multimessenger constraints.
The parameters of our model can be mapped onto astrophysical properties of the source environ-
ment (as is shown in [21]), the preferred values for which are shown in Fig. 5a. In particular
our analysis determines preferred relationship between the magnetic field strength � and effective
size ! of the source environment surrounding the accelerator. Fig. 5b shows the region of � and
! giving the best-fit to both UHECR and astrophysical neutrino data. The approximate size and
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Figure 3: Predictions of the UHECR source model producing the best description of the astrophysical
neutrino flux for Sibyll2.3c. Left: The CR predictions for spectrum (top) and composition (bottom). The
red and blue solid lines show the 〈-max〉 and f(-max) predictions of Sibyll2.3c for pure proton and iron
models. Right: The neutrino and gamma-ray predictions for this model (solid and dashed lines, respectively).
The neutrino flux contributions from non-UHECR sources and UHECR propagation interactions are shown
separately with dot-dot-dashed, dot-dashed, and dotted dark magenta lines.
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Figure 4: Reduced j2
a of UHECR model predictions of the neutrino flux. Contours mark best-fitting region

to CR data (dashed white) and 99% CL exclusions based on UHECR data (solid white) and non-observation
of neutrinos above 1015.9 eV (gray).
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Figure 5: Left: Mode and 16th/84th percentiles of posterior distribution for various parameters fitting CR
data alone (upward triangle) or simultaneously with astrophysical neutrino data (downward triangle). Right:
The effective size, !, and magnetic field strength, �, of the source environment when simultaneously fitting
to the UHECR spectrum and composition of Auger and the astrophysical neutrino flux of IceCube. Bands
give the 1, 2, and 3f regions (darkest to lightest grey, respectively) of the joint posterior distribution. For
reference, the Hillas criterion is shown for the mode and 16th/84th percentiles (solid and dashed black lines,
respectively) of the posterior distribution for log10 'max. The indicated size and magnetic field strengths of
various potential source types, taken from [2, 22–25], are approximate and serve as a guide.

magnetic field strengths of several candidate source types taken from the literature are also plotted
and serve as a guide. These results, while still preliminary, suggest that smaller, . 10 pc, source
environments with stronger magnetic field strengths & 1 mG are better able to explain both UHECR
and astrophysical neutrino data. If so, source types like active galactic nuclei (AGN) and tidal
disruption events (TDEs) appear to be favored over galaxy clusters and typical galaxies. Similar
results are found when performing the MCMC analysis fitting UHECR data alone.

3. Conclusion

We have conducted a fully consistent multimessenger analysis of UHECR sources, their astro-
physical properties, and their potential to explain the astrophysical neutrino flux. Our main findings
can be summarized as follows:

• CurrentUHECRdata can be explained by both photon- and gas-dominated source environents.
However, gas-dominated environment produce a lower quality fit and are in tension with
bounds on high-energy neutrinos.

• Accurate measurement of the high-energy neutrino flux, especially around ∼ 1 PeV, will be
vital to determining the viability of conventional acceleration mechanisms using diffusive
shock acceleration, to explain UHECR data while remaining consistent with multimessenger
data.
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• UHECR sources cannot explain the entire astrophysical neutrino flux while also remaining
consistent with multimessenger data. However, UHECR source can explain the flux of
astrophysical neutrinos above ∼ 1 PeV, and, when assuming Sibyll2.3c, the region of
parameter space which best-fits the astrophysical neutrino flux also gives the best-fit to
UHECR data.

• Small source environments, . 10 pc, with strong magnetic fields, & 1 mG, are preferred by
UHECR and astrophysical neutrino data and are consistent with multimessenger constraints.
This favors candidate source types like AGN and TDEs over galaxy clusters and typical
galaxies.
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