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Abstract
The numerical solution of dynamic problems for porous fluid-saturated solids
is often performed with the use of simplified equations known as the 𝑢-𝑝
approximation. The simplification of the equations consists in neglecting some
acceleration terms, which is justified for a certain class of problems related, in
particular, to geomechanics and earthquake engineering. There exist two 𝑢-𝑝
approximations depending on how many acceleration terms are neglected. All
comparative studies of the exact and 𝑢-𝑝 formulations are focused on the ques-
tion of how well the 𝑢-𝑝 solutions approximate those obtained with the exact
equations. In this paper, the equations are compared from a different point of
view, addressing the question of well-posedness of boundary value problems.
The exact equations must be hyperbolic and satisfy the corresponding hyper-
bolicity conditions for the boundary value problems to be well posed. The 𝑢-𝑝
equations are not of the form to which the conventional definition of hyper-
bolicity applies. A slight extension of the approach makes it possible to derive
hyperbolicity conditions as necessary conditions for well-posedness for the 𝑢-𝑝
approximations. The hyperbolicity conditions derived in this paper for the 𝑢-𝑝
approximations are formulated in terms of the acoustic tensor of the skeleton.
They differ essentially from the hyperbolicity conditions for the exact equations.
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1 INTRODUCTION

The 𝑢-𝑝 approximation of the dynamic equations for porous fluid-saturated solids was proposed in the early 1980s in
geomechanics with the aim of reducing the number of variables and computational costs for the numerical solution of
earthquake-related problems.1,2 The approximation consists in neglecting some acceleration terms in the governing equa-
tions. This makes it possible to eliminate the fluid velocity from the equations and devise a finite-element scheme for
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2 OSINOV

the displacement of the solid skeleton, u, and the pore pressure 𝑝 (hence the name 𝑢-𝑝 approximation). Because of the
rapid increase in computer capacities during the last decades, the advantage of having less variables is nowadays not as
important as before. Nevertheless, the numerical implementation of the 𝑢-𝑝 approximation remains popular3–12 and even
extends beyond conventional finite-element techniques to modern mesh-free methods.13–16 Since the 𝑢-𝑝 formulation is
an approximation of the exact equations, an important question is how far the solution obtainedwith the 𝑢-𝑝 equations for
a particular problem of interest deviates from the solution obtained with the exact equations. The difference between the
two solutions depends primarily on the permeability of the porous medium and the frequency content of the motion.
Although the range of applicability of the 𝑢-𝑝 approximation was identified from the very beginning,1 the question of
validity of this formulation is still topical.17,18
Along with the accuracy of the 𝑢-𝑝 approximation with respect to the exact equations, another aspect of applicability

of the 𝑢-𝑝 equations – as well as any other differential equations – is well-posedness (correctness) of the boundary value
problems. A boundary value problem is said to be well posed if a solution exists, is unique and depends continuously on
the initial and boundary data. Otherwise, the problem is said to be ill-posed. Whether a boundary value problem is well-
posed depends on the equations themselves and on the form of initial and boundary conditions. Owing to the complexity
of boundary value problems for solids with sophisticated plasticity models, there are no proofs of well-posedness for such
problems. However, necessary conditions for well-posedness known for similar linear problems can be employed in a
more general context for nonlinear problems and serve as criteria for ill-posedness when they are violated. Specifically,
well-posedness of a dynamic boundary value problem for a solid with rate-independent constitutive behaviour requires
the system of equations to be hyperbolic. Analyses of the governing equations with plasticity models (in particular, for
geomaterials) revealed that the dynamic boundary value problems may become ill-posed due to loss of hyperbolicity.
This concerns both one-phase solids19–22 and porous fluid-saturated solids.23,24 Some general aspects of hyperbolicity for
anisotropic fluid-saturated solids were addressed recently in Refs [25, 26].
The above-mentioned papers23–26 on fluid-saturated solids deal with the full (exact) system of equations involving the

fluid velocity components as unknown variables.Well-posedness of the 𝑢-𝑝 approximation has not been studied so far and
is the subject of the present paper. A difficulty in studying the 𝑢-𝑝 equations is that they are not of the form to which the
definition of hyperbolicity applies. The system of equations is of a mixed hyperbolic-parabolic type and requires a special
approach. There exist two𝑢-𝑝 formulations depending onhowmany acceleration terms in the equations are neglected. For
each 𝑢-𝑝 formulation, hyperbolicity conditions similar to the conventional definition of hyperbolicity are introduced in
the present paper as necessary conditions for well-posedness. The constitutive relations for the solid skeleton are written
in the general incrementally linear anisotropic form with an arbitrary stiffness tensor without considering any specific
constitutive models. The hyperbolicity conditions for the two 𝑢-𝑝 formulations are expressed in terms of the acoustic
tensor of the skeleton. This allows the two conditions to be easily compared with the known hyperbolicity conditions for
dry and saturated solids expressed also in terms of the acoustic tensor.

2 GOVERNING EQUATIONS

2.1 Exact formulation

The equations in this paper are written in Cartesian coordinates 𝑥1, 𝑥2, 𝑥3 for small strains with the partial time derivatives
in place of thematerial ones neglecting the convective terms. The constitutive relations for a dry porous solid or a saturated
solid under fully drained conditions (no changes in the pore pressure) are assumed to be in the rate form

𝜕𝜎𝑗𝑖

𝜕𝑡
= 𝐶𝑗𝑖𝑘𝑙

𝜕𝑣𝑠𝑘
𝜕𝑥𝑙

, (1)

where 𝜎𝑗𝑖, 𝐶𝑗𝑖𝑘𝑙, 𝑣𝑠𝑘 are, respectively, the components of the stress tensor, the stiffness tensor and the velocity vector, and
𝑡 is time. The first subscript ‘s’ in 𝑣𝑠𝑘 stands for ‘solid’, whereas the second one indicates the component. The summa-
tion convention for repeated indices is used throughout the paper. The coefficients 𝐶𝑗𝑖𝑘𝑙 represent either the constant
anisotropic stiffness of a linearly elastic solid or the current incremental stiffness of a plastic solid. The stiffness tensor
defined by Equation (1) possesses the minor symmetries (the right minor symmetry follows from the fact that the stress
rate is independent of the skew-symmetric part of the velocity gradient). The major symmetry is not assumed.
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OSINOV 3

The dynamic deformation of the dry porous solid is described by the constitutive equations (1) and the equations of
motion

𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
= (1 − 𝑛)𝜚𝑠

𝜕𝑣𝑠𝑖
𝜕𝑡

, (2)

where 𝑛 is the porosity and 𝜚𝑠 is the density of the solid phase.
For a fluid-saturated porous solid, Equation (1) describes changes in the effective stresses defined as stresses which

depend on themacroscopic deformation of the skeleton and are independent of changes in the pore pressure. For a linearly
elastic skeleton, the effective stress components are27–29

𝜎𝑗𝑖 = 𝜎𝑡𝑜𝑡𝑎𝑙
𝑗𝑖

+

(
𝛿𝑗𝑖 −

𝐶𝑗𝑖𝑘𝑘

3𝐾𝑠

)
𝑝𝑓, (3)

where𝜎𝑡𝑜𝑡𝑎𝑙
𝑗𝑖

are the total stress components,𝑝𝑓 is the pore fluid pressure (positive for compression),𝐾𝑠 is the bulkmodulus
of the solid phase and 𝛿𝑗𝑖 is the Kronecker delta. Definition (3) is not applicable to plastic solids with a finite 𝐾𝑠 since the
coefficients 𝐶𝑗𝑖𝑘𝑘 are not constant in that case. If the solid phase may be considered incompressible compared with the
macroscopic stiffness of the skeleton, that is, if 𝐾𝑠 ≫ |𝐶𝑗𝑖𝑘𝑙|, the effective stresses (3) with 𝐾𝑠 → ∞ reduce to

𝜎𝑗𝑖 = 𝜎𝑡𝑜𝑡𝑎𝑙
𝑗𝑖

+ 𝛿𝑗𝑖𝑝𝑓. (4)

As distinct from Equation (3), definition (4) is valid for both elastic and plastic skeletons. (For the definition of effective
stresses in elastoplastic porous media with compressible solid phase, see Ref [30].)
For linearly elastic fluid-saturated solids, the evolution equation for the pore pressure is28,29

𝜕𝑝𝑓

𝜕𝑡
= −𝑄∗

(
𝛿𝑗𝑖 − 𝑛𝛿𝑗𝑖 −

𝐶𝑘𝑘𝑗𝑖

3𝐾𝑠

)
𝜕𝑣𝑠𝑗

𝜕𝑥𝑖
− 𝑄∗𝑛

𝜕𝑣𝑓𝑙

𝜕𝑥𝑙
, (5)

where

1

𝑄∗
=

𝑛

𝐾𝑓
+

1

𝐾𝑠

(
1 − 𝑛 −

𝐶𝑖𝑖𝑗𝑗

9𝐾𝑠

)
, (6)

𝑣𝑓𝑖 are the pore fluid velocity components (the first subscript ‘f’ stands for ‘fluid’, and the second one indicates the com-
ponent),𝐾𝑓 is the pore fluid bulk modulus and 𝑛 is the porosity. Equation (5) is written without convective terms, and the
porosity gradient is also neglected.
If the stiffness tensor of the skeleton is such that

𝐶𝑗𝑖𝑘𝑘 = 𝐶𝑘𝑘𝑗𝑖 = 3𝐾𝛿𝑗𝑖 (7)

with a scalar 𝐾, then the effective stresses (3) can be written as

𝜎𝑗𝑖 = 𝜎𝑡𝑜𝑡𝑎𝑙
𝑗𝑖

+ 𝛼𝑝𝑓𝛿𝑗𝑖, (8)

where

𝛼 = 1 −
𝐾

𝐾𝑠
. (9)

Accordingly, Equation (5) for the pore pressure becomes

𝜕𝑝𝑓

𝜕𝑡
= −𝑄(𝛼 − 𝑛)

𝜕𝑣𝑠𝑘
𝜕𝑥𝑘

− 𝑄𝑛
𝜕𝑣𝑓𝑘

𝜕𝑥𝑘
, (10)
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4 OSINOV

where

1

𝑄
=

𝑛

𝐾𝑓
+

𝛼 − 𝑛

𝐾𝑠
. (11)

Condition (7) is satisfied for an isotropic skeleton with the bulk modulus 𝐾, but is weaker than the condition of isotropy.
The presence of the stiffness components 𝐶𝑗𝑖𝑘𝑙 in Equations (3) and (5) not only complicates these equations, as com-

pared to Equations (8) and (10) with the scalar 𝛼, but also gives rise to additional tensor components in the equations of
motion for the solid phase. In applications, it may be reasonable to use Equations (8) and (10) with a scalar 𝛼 estimated
from𝐶𝑗𝑖𝑘𝑙 and𝐾𝑠 even though condition (7) is not satisfied exactly. Such an approximation of the equationswould simplify
them and yet allow one to investigate the influence of the compressibility of the solid phase.
In the present study, we use Equation (8) for the effective stresses and Equation (10) for the pore pressure with a scalar

𝛼. We also assume that 𝛼 > 𝑛, which is needed for the proof of certain propositions (for justification of this inequality for
elastic porous solids, see, e.g.,31–33 and references therein). This approach is applicable to

∙ plastic and elastic solids with incompressible solid phase (𝐾𝑠 ≫ |𝐶𝑗𝑖𝑘𝑙|, 𝛼 = 1),
∙ linearly elastic solids with compressible solid phase (𝛼 < 1) as a rigorous or approximate approach depending,
respectively, on whether Equation (7) is satisfied or not.

The equations of motion for the solid and fluid phases are2

𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
− (𝛼 − 𝑛)

𝜕𝑝𝑓

𝜕𝑥𝑖
+

𝑛2

𝑘
(𝑣𝑓𝑖 − 𝑣𝑠𝑖) = (1 − 𝑛)𝜚𝑠

𝜕𝑣𝑠𝑖
𝜕𝑡

, (12)

−𝑛
𝜕𝑝𝑓

𝜕𝑥𝑖
−

𝑛2

𝑘
(𝑣𝑓𝑖 − 𝑣𝑠𝑖) = 𝑛𝜚𝑓

𝜕𝑣𝑓𝑖

𝜕𝑡
, (13)

where 𝜚𝑠, 𝜚𝑓 are the densities of the solid and fluid phases. The permeability coefficient 𝑘 > 0 in Equations (12) and (13)
has the dimension [length3×time/mass] and is connected with the permeability 𝑘′ [length/time] conventionally used in
geomechanics (hydraulic conductivity) by the relation 𝑘 = 𝑘′∕(𝜚𝑓𝑔), where 𝑔 is the acceleration due to gravity.
The system of dynamic equations for a fluid-saturated solid studied here involves 13 unknown functions 𝑣𝑠𝑖, 𝑣𝑓𝑖, 𝜎𝑗𝑖, 𝑝𝑓

and 13 scalar equations: the constitutive equations (1) for the effective stresses, the evolution equation (10) for the
pore pressure, and the equations of motion (12), (13) for the solid and fluid phases. This system will be called the
exact formulation.

2.2 The u-p approximations

As mentioned in Introduction, there exist two 𝑢-𝑝 approximations. They have no special names in the literature and will
be referred to in this paper as UP1 and UP2.
In certain cases – for instance, during the earthquake-induced dynamic deformation of soil – the accelerations of the

solid and fluid phases calculated with the exact equations are close to each other. This observation led to the idea of
replacing the fluid acceleration 𝜕𝑣𝑓𝑖∕𝜕𝑡 in Equation (13)with the solid acceleration 𝜕𝑣𝑠𝑖∕𝜕𝑡.1 After this substitution, adding
Equations (12) and (13) gives the equations of motion for the whole continuum,

𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
− 𝛼

𝜕𝑝𝑓

𝜕𝑥𝑖
= 𝜚

𝜕𝑣𝑠𝑖
𝜕𝑡

, (14)

where

𝜚 = (1 − 𝑛)𝜚𝑠 + 𝑛𝜚𝑓. (15)

Equation (14) does not contain the fluid velocity and is the same as for a saturated solid under locally undrained conditions
(zero permeability). Equation (13) with 𝜕𝑣𝑠𝑖∕𝜕𝑡 in place of 𝜕𝑣𝑓𝑖∕𝜕𝑡 becomes

𝑛(𝑣𝑓𝑖 − 𝑣𝑠𝑖) = −𝑘

(
𝜚𝑓

𝜕𝑣𝑠𝑖
𝜕𝑡

+
𝜕𝑝𝑓

𝜕𝑥𝑖

)
. (16)
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OSINOV 5

Tab l e 1 Unknown functions and governing equations. 𝐯𝑠, 𝐯𝑓, 𝝈, 𝑝𝑓 are the solid and fluid velocity vectors, the effective stress tensor and
the pore pressure.

Unknown functions Governing equations
Exact formulation 𝐯𝑠, 𝐯𝑓, 𝝈, 𝑝𝑓 (1), (10), (12), (13)
𝑢-𝑝 approximation UP1 𝐯𝑠, 𝝈, 𝑝𝑓 (1), (14), (17)
𝑢-𝑝 approximation UP2 𝐯𝑠, 𝝈, 𝑝𝑓 (1), (14), (18)

The fluid velocity components can be eliminated from the set of unknown variables by substituting them fromEquation
(16) into Equation (10):

𝜕𝑝𝑓

𝜕𝑡
= −𝑄𝛼

𝜕𝑣𝑠𝑖
𝜕𝑥𝑖

+ 𝑄𝑘
𝜕

𝜕𝑥𝑖

(
𝜚𝑓

𝜕𝑣𝑠𝑖
𝜕𝑡

+
𝜕𝑝𝑓

𝜕𝑥𝑖

)
. (17)

In the derivation of Equation (17), the gradients of the permeability and porosity are neglected.
TheUP1 approximation involves 10 unknown functions 𝑣𝑠𝑖, 𝜎𝑗𝑖, 𝑝𝑓 and 10 scalar equations: the constitutive equations (1)

for the effective stresses, the equations of motion (14) for the whole continuum and the evolution equation (17) for the
pore pressure.
The UP1 equations correspond to what is called 𝑢-𝑝 approximation in tab. 2.1 of Ref[2]. However, close examination

of Ref. [2] and other sources reveals that a further simplification is often made to the equations at the stage of numerical
implementation, see, for example, Ref. [2], Equations (3.17) and (3.28) as compared to Equations (2.21) and (2.33). Namely,
after neglecting the relative fluid–solid acceleration and obtaining the equations of motion (14) for the whole continuum,
the acceleration terms in the Equation (17) for the pore pressure are omitted, which turns this equation into

𝜕𝑝𝑓

𝜕𝑡
= −𝑄𝛼

𝜕𝑣𝑠𝑖
𝜕𝑥𝑖

+ 𝑄𝑘
𝜕2𝑝𝑓

𝜕𝑥𝑖𝜕𝑥𝑖
. (18)

This leads to another version of the 𝑢-𝑝 approximation called here UP2. Omitting the acceleration terms in Equation (17)
is equivalent to using the equations of motion (14) for the whole continuum and the quasi-static Darcy law rather than
its dynamic version (13). The UP2 approximation, as compared to UP1, includes the same Equations (1) and (14) but a
different equation for the pore pressure, Equation (18) instead of Equation (17). The UP2 approximation, despite being
less accurate because of the additional simplification, is more popular than UP1 due to numerical convenience.
The unknown functions and the equations for the exact and 𝑢-𝑝 approximations are summarized in Table 1.

3 HYPERBOLICITY OF THE EXACT EQUATIONS

This section presents some results on hyperbolicity for dry and fluid-saturated solids for comparison with hyperbolicity
conditions that will be derived below for the 𝑢-𝑝 approximations.
Equations (1) and (2) for a dry solid and the exact Equations (1), (10), (12) and (13) for a saturated solid are of the form

𝜕𝑈

𝜕𝑡
+

3∑
𝑘=1

𝑀(𝑘) 𝜕𝑈

𝜕𝑥𝑘
= 𝐹, (19)

where 𝑈 is the column vector of dependent variables and 𝑀(𝑘) are real matrices. The dependent variables for dry and
saturated solids are, respectively, 𝑣𝑠𝑖, 𝜎𝑗𝑖 and 𝑣𝑠𝑖, 𝑣𝑓𝑖, 𝜎𝑗𝑖, 𝑝𝑓 . In the latter case, there is also a non-zero right-hand side 𝐹
as a function of the dependent variables 𝑣𝑠𝑖, 𝑣𝑓𝑖 .
System (19) is called hyperbolic if for any real 𝑛1, 𝑛2, 𝑛3 the eigenvalues of the matrix 𝑀 =

∑3

𝑘=1
𝑛𝑘𝑀

(𝑘) are real and
there is a complete set of linearly independent eigenvectors (Ref. [34], Section 7.3.1). Hyperbolicity defined in this way
is sometimes called strong, as distinct from weak hyperbolicity which does not require the existence of a complete set of
eigenvectors (Ref. [35], Section 3.3). The verification of hyperbolicity amounts to the analysis of the eigenvalue problem

𝑀𝑈0 = 𝑐𝑈0 (20)
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6 OSINOV

with the matrix𝑀 defined above, where 𝑐 is the eigenvalue and 𝑈0 is the eigenvector. Without loss of generality, we take
𝑛1, 𝑛2, 𝑛3 in the definition of the matrix𝑀 to be the components of a unit vector n. In this case, the eigenvalues 𝑐 are the
characteristic speeds.
It is known that hyperbolicity of the equations for a one-phase solid is determined by the properties of the acoustic

tensor A with the components 𝐴𝑖𝑘 = 𝐶𝑗𝑖𝑘𝑙𝑛𝑗𝑛𝑙, where 𝑛𝑗 are the components of a unit vector n. We will make use of one
proposition that gives necessary and sufficient conditions for strong hyperbolicity of the dynamic equations for one-phase
solids.

Proposition 1. System (1), (2) for a one-phase solid is hyperbolic if and only if for each n, the eigenvalues of the acoustic
tensor A are real and positive with a complete set of eigenvectors.26

For saturated solids, the eigenvalue problem (20) for the exact formulation is

1

(1 − 𝑛)𝜚𝑠

[
−𝑛𝑗𝜎

0
𝑗𝑖
+ (𝛼 − 𝑛)𝑛𝑖𝑝

0
𝑓

]
= 𝑐𝑣0

𝑠𝑖
, (21)

1

𝜚𝑓
𝑛𝑖𝑝

0
𝑓
= 𝑐𝑣0

𝑓𝑖
, (22)

−𝐶𝑗𝑖𝑘𝑙𝑛𝑙𝑣
0
𝑠𝑘

= 𝑐𝜎0
𝑗𝑖
, (23)

𝑄(𝛼 − 𝑛)𝑛𝑘𝑣
0
𝑠𝑘
+ 𝑄𝑛𝑛𝑘𝑣

0
𝑓𝑘

= 𝑐𝑝0
𝑓
, (24)

where 𝑣0
𝑠𝑖
, 𝑣0

𝑓𝑖
, 𝜎0

𝑗𝑖
, 𝑝0

𝑓
are the components of the eigenvector 𝑈0. It is seen by inspection that there are five linearly

independent eigenvectors associated with 𝑐 = 0:

𝑣0
𝑠𝑖
= 0, 𝑣0

𝑓𝑖
= 0, 𝜎0

𝑗𝑖
= 𝑠𝑗𝑠𝑖, 𝑝0

𝑓
= 0, (25)

𝑣0
𝑠𝑖
= 0, 𝑣0

𝑓𝑖
= 0, 𝜎0

𝑗𝑖
= 𝑞𝑗𝑞𝑖, 𝑝0

𝑓
= 0, (26)

𝑣0
𝑠𝑖
= 0, 𝑣0

𝑓𝑖
= 0, 𝜎0

𝑗𝑖
= 𝑠𝑗𝑞𝑖 + 𝑠𝑖𝑞𝑗, 𝑝0

𝑓
= 0, (27)

𝑣0
𝑠𝑖
= 0, 𝑣0

𝑓𝑖
= 𝑠𝑖, 𝜎0

𝑗𝑖
= 0, 𝑝0

𝑓
= 0, (28)

𝑣0
𝑠𝑖
= 0, 𝑣0

𝑓𝑖
= 𝑞𝑖, 𝜎0

𝑗𝑖
= 0, 𝑝0

𝑓
= 0, (29)

where 𝑠𝑖, 𝑞𝑖 are the components of two non-zero vectors s,q orthogonal to each other and to the vector n. Since the eigen-
vectors (25)–(29) are linearly independent, the characteristic polynomial of the matrix of the eigenvalue problem (21)–(24)
can bewritten as 𝑐5𝑓(𝑐), where 𝑓(𝑐) is an 8th-degree polynomial in 𝑐. Another eight eigenvalues can be found by assuming
𝑐 ≠ 0 and substituting 𝜎0

𝑗𝑖
and 𝑝0

𝑓
from Equations (23) and (24) into Equations (21) and (22). This leads to an eigenvalue

problem for the components 𝑣0
𝑠𝑖
, 𝑣0

𝑓𝑖
:

1

(1 − 𝑛)𝜚𝑠

[
𝐴𝑖𝑘𝑣

0
𝑠𝑘
+ 𝑄(𝛼 − 𝑛)2𝑛𝑖𝑛𝑘𝑣

0
𝑠𝑘
+ 𝑄(𝛼 − 𝑛)𝑛𝑛𝑖𝑛𝑘𝑣

0
𝑓𝑘

]
= 𝑐2𝑣0

𝑠𝑖
, (30)

1

𝜚𝑓
𝑄𝑛𝑖𝑛𝑘

[
(𝛼 − 𝑛)𝑣0

𝑠𝑘
+ 𝑛𝑣0

𝑓𝑘

]
= 𝑐2𝑣0

𝑓𝑖
, (31)

where 𝐴𝑖𝑘 = 𝐶𝑗𝑖𝑘𝑙𝑛𝑗𝑛𝑙 are the components of the acoustic tensor. Multiplying Equation (31) by 𝑛𝑖 with summation, the
eigenvalue problem (30), (31) can be further reduced to a 4 × 4 system for 𝑣0

𝑠1
, 𝑣0

𝑠2
, 𝑣0

𝑠3
, 𝑣0

𝑓
, where 𝑣0

𝑓
= 𝑛𝑖𝑣

0
𝑓𝑖
:

1

(1 − 𝑛)𝜚𝑠

[
𝐴𝑖𝑘𝑣

0
𝑠𝑘
+ 𝑄(𝛼 − 𝑛)2𝑛𝑖𝑛𝑘𝑣

0
𝑠𝑘
+ 𝑄(𝛼 − 𝑛)𝑛𝑛𝑖𝑣

0
𝑓

]
= 𝑐2𝑣0

𝑠𝑖
, (32)

1

𝜚𝑓
𝑄
[
(𝛼 − 𝑛)𝑛𝑘𝑣

0
𝑠𝑘
+ 𝑛𝑣0

𝑓

]
= 𝑐2𝑣0

𝑓
, (33)
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OSINOV 7

or, in matrix form,

𝑆𝑈0 = 𝑐2𝑈0, (34)

where 𝑈0 = (𝑣0
𝑠1
, 𝑣0

𝑠2
, 𝑣0

𝑠3
, 𝑣0

𝑓
)𝑇 is the eigenvector. The matrix 𝑆 is

𝑆 =

⎛⎜⎜⎜⎜⎝
1

(1 − 𝑛)𝜚𝑠
𝐴 +

(𝛼 − 𝑛)2𝑄

(1 − 𝑛)𝜚𝑠
𝑁𝑁𝑇 (𝛼 − 𝑛)𝑛𝑄

(1 − 𝑛)𝜚𝑠
𝑁

(𝛼 − 𝑛)𝑄

𝜚𝑓
𝑁𝑇 𝑛𝑄

𝜚𝑓

⎞⎟⎟⎟⎟⎠
, (35)

where 𝐴 is the matrix of the acoustic tensor, and 𝑁 = (𝑛1, 𝑛2, 𝑛3)
𝑇 denotes the column vector of the components of the

vectorn. The 4 × 4matrix 𝑆 of the eigenvalue problem (32), (33) will be referred to as the acousticmatrix of the exact formu-
lation. The eigenvalues of the acoustic matrix are the squared characteristic speeds. This fact establishes a correspondence
between the eigenvalues of the matrix𝑀 of system (1), (10), (12), (13) and the eigenvalues of the acoustic matrix 𝑆. Finding
the eigenvalues of 𝑆 suffices to verify hyperbolicity in the weak sense. For the characteristic speeds in the particular case
of an isotropic elastic skeleton, see, for example, Ref. [25], Section 6 and Ref. [36], Section 4.2.
In Propositions 2 and 3 below, adapted from Refs. [25, 26], hyperbolicity is understood in the strong sense.

Proposition 2. System (1), (10), (12), (13) of the exact formulation is hyperbolic if and only if for each n, the eigenvalues of
the acoustic matrix 𝑆 are real and positive with a complete set of eigenvectors.

Proposition 2 provides necessary and sufficient conditions for hyperbolicity in terms of the acousticmatrix 𝑆. The propo-
sition is proved in Ref. [26] for incompressible solid phase with 𝛼 = 1, but the proof applies to the equations with 𝛼 > 𝑛

as well. In general, there is no correspondence between hyperbolicity for a dry solid determined by the eigenvalues of
the acoustic tensor A, and hyperbolicity for the same but saturated solid determined by the eigenvalues of the acoustic
matrix 𝑆. The dynamic equations for the dry solidmay be hyperbolic, while the equations for the saturated solidmay not.24
The following proposition in combination with Proposition 1 shows that there are special cases in which hyperbolicity is
guaranteed for both the dry and saturated solids.

Proposition 3. System (1), (10), (12), (13) of the exact formulation is hyperbolic if for each n, the acoustic tensor A of the
skeleton is symmetric and positive definite.*

Proposition 3 proved in Ref. [25] provides sufficient conditions for hyperbolicity for the saturated solid in terms of the
acoustic tensor of the skeleton. As follows from Proposition 1, these conditions – the symmetry and positive definiteness of
the acoustic tensor – also guarantee hyperbolicity for the dry solid, so both systems of equations are hyperbolic in this case.

4 HYPERBOLICITY CONDITIONS FOR THE U-P APPROXIMATIONS

Replacing 𝜕𝑣𝑓𝑖∕𝜕𝑡 with 𝜕𝑣𝑠𝑖∕𝜕𝑡 in Equation (13) gives immediately the UP1 approximation as a first-order system for the
functions 𝑣𝑠𝑖, 𝑣𝑓𝑖, 𝜎𝑗𝑖, 𝑝𝑓 . This system is, however, not of the form (19), as it does not contain the time derivatives of the
fluid velocity, so that the definition of hyperbolicity given in Section 3 for system (19) is not applicable. Reducing the set
of unknown functions to 𝑣𝑠𝑖, 𝜎𝑗𝑖, 𝑝𝑓 leads to system (1), (14), (17). The definition of hyperbolicity is not applicable to this
system either, because Equation (17) is second order. It is nevertheless possible to derive a hyperbolicity condition for the
UP1 equations based on the notion of characteristics. This can be done for either of the two systems (first or second order)
in essentially the same way leading eventually to the same result. We proceed with the second-order system (1), (14), (17).
For our purposes, we will first reduce the system to a more tractable first-order system in one space variable.
Hyperbolicity of the system

𝜕𝑈

𝜕𝑡
+𝑀

𝜕𝑈

𝜕𝑥
= 𝐹 (36)

* For the symmetry of the acoustic tensor, see Appendix.
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8 OSINOV

in one space variable 𝑥 is defined by imposing the same conditions on the eigenvalues and eigenvectors of thematrix𝑀 as
for system (19). Let 𝑛𝑖, 𝑖 = 1, 2, 3, be the components of a unit vector n. For plane wave solutions of system (19) of the form
𝑈(𝑥, 𝑡), where 𝑥 = 𝑛𝑖𝑥𝑖 , system (19) reduces to system (36) with thematrix𝑀 =

∑3

𝑘=1
𝑛𝑘𝑀

(𝑘). This shows the well-known
connection between hyperbolicity of the spatially three-dimensional system (19) and hyperbolicity of the one-dimensional
system (36) that describes plane wave solutions: the hyperbolicity condition for system (19) requires system (36) for plane
wave solutions to be hyperbolic for all directions n.
Substituting 𝜕𝑣𝑠𝑖∕𝜕𝑡 from Equation (14) into Equation (17) and writing the UP1 equations (14), (1), (17) for plane wave

solutions, we obtain, respectively,

𝜚
𝜕𝑣𝑠𝑖
𝜕𝑡

− 𝑛𝑗
𝜕𝜎𝑗𝑖

𝜕𝑥
+ 𝛼𝑛𝑖

𝜕𝑝𝑓

𝜕𝑥
= 0, (37)

𝜕𝜎𝑗𝑖

𝜕𝑡
− 𝐶𝑗𝑖𝑘𝑙𝑛𝑙

𝜕𝑣𝑠𝑘
𝜕𝑥

= 0, (38)

𝜕𝑝𝑓

𝜕𝑡
+ 𝑄𝛼𝑛𝑖

𝜕𝑣𝑠𝑖
𝜕𝑥

−
𝑄𝑘

𝜚

[
𝜚𝑓𝑛𝑖𝑛𝑗

𝜕2𝜎𝑗𝑖

𝜕𝑥2
+
(
𝜚 − 𝛼𝜚𝑓

)𝜕2𝑝𝑓

𝜕𝑥2

]
= 0. (39)

System (37)–(39), being first order in time and second order in space, resembles a parabolic system, but it is not parabolic
(cf. Ref. [35], Section 3.4). The system is of a mixed type. It consists of the hyperbolic-like equations (37), (38) without
second-order derivatives, and the parabolic-like equation (39). The second-order equation (39) can be written as two first-
order equations with a new function ℎ:

𝜕𝑝𝑓

𝜕𝑡
+ 𝑄𝛼𝑛𝑖

𝜕𝑣𝑠𝑖
𝜕𝑥

−
𝑄𝑘

𝜚

𝜕ℎ

𝜕𝑥
= 0, (40)

𝜚𝑓𝑛𝑖𝑛𝑗
𝜕𝜎𝑗𝑖

𝜕𝑥
+
(
𝜚 − 𝛼𝜚𝑓

)𝜕𝑝𝑓

𝜕𝑥
= ℎ. (41)

System (37), (38), (40), (41) for 𝑣𝑠𝑖, 𝜎𝑗𝑖, 𝑝𝑓, ℎ is of the form

𝐽
𝜕𝑈

𝜕𝑡
+𝑀

𝜕𝑈

𝜕𝑥
= 𝐹, (42)

where thematrix 𝐽 is singular. The singularity of 𝐽 does not allow the system to bemultiplied on the left by 𝐽−1 andwritten
like system (36). As will be seen below, the matrix𝑀 is singular as well, so we have to deal with system (42) containing
two matrices. In such a case, the characteristic speeds 𝑐 = Δ𝑥∕Δ𝑡 are found from the generalized eigenvalue problem

Δ𝑥𝐽𝑈0 = Δ𝑡𝑀𝑈0, (43)

where 𝑈0 is the eigenvector. The generalized eigenvalue problem encompasses the characteristics with Δ𝑡 = 0 (infinite
characteristic speed) when the matrix 𝐽 is singular.
For finite characteristic speeds with Δ𝑡 ≠ 0, the eigenvalue problem (43) for system (37), (38), (40), (41) can be written

in component form as

𝑐𝜚𝑣0
𝑠𝑖
+ 𝑛𝑗𝜎

0
𝑗𝑖
− 𝛼𝑛𝑖𝑝

0
𝑓
= 0, (44)

𝑐𝜎0
𝑗𝑖
+ 𝐶𝑗𝑖𝑘𝑙𝑛𝑙𝑣

0
𝑠𝑘

= 0, (45)

𝑐𝑝0
𝑓
− 𝑄𝛼𝑛𝑖𝑣

0
𝑠𝑖
+

𝑄𝑘

𝜚
ℎ0 = 0, (46)

𝜚𝑓𝑛𝑖𝑛𝑗𝜎
0
𝑗𝑖
+
(
𝜚 − 𝛼𝜚𝑓

)
𝑝0
𝑓
= 0, (47)

where 𝑐 = Δ𝑥∕Δ𝑡 is the characteristic speed, and 𝑣0
𝑠𝑖
, 𝜎0

𝑗𝑖
, 𝑝0

𝑓
, ℎ0 are the components of the eigenvector𝑈0. The determinant

of system (44)–(47) can be written as 𝑐3𝑓(𝑐), where 𝑓(𝑐) is a 6th-degree polynomial in 𝑐, so there must be nine finite
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OSINOV 9

characteristic speeds, countingmultiplicities. It is seen by inspection that there are three linearly independent eigenvectors
associated with 𝑐 = 0:

𝑣0
𝑠𝑖
= 0, 𝜎0

𝑗𝑖
= 𝑠𝑗𝑠𝑖, 𝑝0

𝑓
= 0, ℎ0 = 0, (48)

𝑣0
𝑠𝑖
= 0, 𝜎0

𝑗𝑖
= 𝑞𝑗𝑞𝑖, 𝑝0

𝑓
= 0, ℎ0 = 0, (49)

𝑣0
𝑠𝑖
= 0, 𝜎0

𝑗𝑖
= 𝑠𝑗𝑞𝑖 + 𝑠𝑖𝑞𝑗, 𝑝0

𝑓
= 0, ℎ0 = 0, (50)

where 𝑠𝑖, 𝑞𝑖 are the components of two non-zero vectors s,q orthogonal to each other and to the vector n. The eigenvalue
𝑐 = 0means that the matrix𝑀 in Equation (42) is singular, as mentioned earlier.
In order to find non-zero speeds, we assume 𝑐 ≠ 0, substitute 𝜎0

𝑗𝑖
from Equation (45) into Equations (44) and (47) and

then, assuming 𝜚 ≠ 𝛼𝜚𝑓 , substitute 𝑝0
𝑓
from Equation (47) into Equation (44). In this way, the components 𝜎0

𝑗𝑖
, 𝑝0

𝑓
are

eliminated from the equations, and we arrive at a system for 𝑣0
𝑠𝑖
:

𝐵𝑖𝑘𝑣
0
𝑠𝑘

= 𝜚𝑐2𝑣0
𝑠𝑖
, (51)

where

𝐵𝑖𝑘 = 𝐴𝑖𝑘 +
𝛼𝜚𝑓

𝜚 − 𝛼𝜚𝑓
𝑛𝑖𝑛𝑗𝐴𝑗𝑘, (52)

and 𝐴𝑖𝑘 = 𝐶𝑗𝑖𝑘𝑙𝑛𝑗𝑛𝑙 are the components of the acoustic tensor. System (51) is the eigenvalue problem for a matrix 𝐵 with
the components 𝐵𝑖𝑘, and 𝜚𝑐2 is the eigenvalue. In matrix form,

𝐵 = 𝐴 +
𝛼𝜚𝑓

𝜚 − 𝛼𝜚𝑓
𝑁𝑁𝑇𝐴 =

(
𝐼 +

𝛼𝜚𝑓

𝜚 − 𝛼𝜚𝑓
𝑁𝑁𝑇

)
𝐴, (53)

where 𝐴 is the matrix of the acoustic tensor, and 𝑁 is the column vector of the components of the vector n. Since 𝐴𝑖𝑘 are
the components of a tensor (the acoustic tensorA), 𝐵𝑖𝑘 are also the components of a tensorBwritten in tensorial notations
as

𝐁 = 𝐀 +
𝛼𝜚𝑓

𝜚 − 𝛼𝜚𝑓
𝐧 ⊗ 𝐧 ⋅ 𝐀. (54)

Thus, we have seen that the UP1 equations (37), (38), (40), (41) for plane wave solutions have infinite and zero charac-
teristic speeds and, in addition, six characteristic speeds 𝑐 = ±

√
𝜁𝑖∕𝜚, 𝑖 = 1, 2, 3, where 𝜁𝑖 are the eigenvalues of the tensor

B.
In the particular case of an isotropic elastic skeleton with the Lamé constants 𝜆 and 𝜇, the components of the acoustic

tensor and the tensor B are

𝐴𝑖𝑘 = (𝜆 + 𝜇)𝑛𝑖𝑛𝑘 + 𝜇𝛿𝑖𝑘, (55)

𝐵𝑖𝑘 = (𝜆 + 𝜇)𝑛𝑖𝑛𝑘 + 𝜇𝛿𝑖𝑘 +
𝛼𝜚𝑓

𝜚 − 𝛼𝜚𝑓
(𝜆 + 2𝜇)𝑛𝑖𝑛𝑘. (56)

The eigenvalues of the tensor B are

𝜁1 =
𝜚

𝜚 − 𝛼𝜚𝑓
(𝜆 + 2𝜇), 𝜁2 = 𝜁3 = 𝜇. (57)

If n is parallel to one of the coordinate axis, the system of equations splits into two independent systems: one for the
longitudinal motion, and the other one for the transverse motion, with the eigenvalues 𝜁1 and 𝜁2 = 𝜁3, respectively. If
𝜚 > 𝛼𝜚𝑓 , the eigenvalue 𝜁1 is positive and the characteristic speeds±

√
𝜁1∕𝜚 for longitudinal waves are real. The inequality

𝜚 > 𝛼𝜚𝑓 , or equivalently

(1 − 𝑛)𝜚𝑠 > (𝛼 − 𝑛)𝜚𝑓, (58)

is satisfied in applications. For incompressible solid phase, 𝛼 = 1 and the condition 𝜚 > 𝛼𝜚𝑓 reduces to 𝜚𝑠 > 𝜚𝑓 .
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10 OSINOV

We assume that the boundary value problem of the UP1 approximation for an isotropic elastic fluid-saturated solid
with 𝜚 > 𝛼𝜚𝑓 and properly specified initial and boundary conditions is well-posed. Based on this premise and taking
into account that the characteristic speeds are determined by the eigenvalues of the tensor B, we postulate the following
necessary condition for well-posedness in the general anisotropic case. We say that the UP1 system (1), (14), (17) satisfies
the hyperbolicity condition if 𝜚 ≠ 𝛼𝜚𝑓 and the eigenvalues of the tensor B defined by Equation (54) are real and positive for
all directions n. If the hyperbolicity condition is not satisfied, the boundary value problem is considered to be ill-posed.
Similar to the exact formulation, there are cases in which the UP1 hyperbolicity condition can be shown to be satisfied.

Proposition 4. If 𝜚 > 𝛼𝜚𝑓 and the acoustic tensor of the skeleton is symmetric and positive definite for all directions n, then
the UP1 system (1), (14), (17) satisfies the hyperbolicity condition.

Proof. If 𝜚 > 𝛼𝜚𝑓 , then the matrix in brackets in Equation (53) is symmetric and positive definite. The eigenvalues of the
product of two real symmetric positive definite matrices are real and positive (Ref. [37], Corollary 7.6.2). □

TheUP2 system is similar to theUP1 system. It contains the same two first-order equations (1), (14) and the second-order
equation (18), but the latter is different from Equation (17) – in particular, it does not contain the stress components. We
proceed along the same lines as before to reduce the UP2 system to a first-order system in one space variable. For plane
wave solutions 𝑈(𝑥, 𝑡), where 𝑥 = 𝑛𝑖𝑥𝑖 , Equation (18) becomes

𝜕𝑝𝑓

𝜕𝑡
+ 𝑄𝛼𝑛𝑖

𝜕𝑣𝑠𝑖
𝜕𝑥

− 𝑄𝑘
𝜕2𝑝𝑓

𝜕𝑥2
= 0. (59)

Introducing a new function 𝑔, we write the second-order equation (59) as two first-order equations

𝜕𝑝𝑓

𝜕𝑡
+ 𝑄𝛼𝑛𝑖

𝜕𝑣𝑠𝑖
𝜕𝑥

− 𝑄𝑘
𝜕𝑔

𝜕𝑥
= 0, (60)

𝜕𝑝𝑓

𝜕𝑥
= 𝑔. (61)

System (37), (38), (60), (61) is of the form (42), where both matrices 𝐽 and 𝑀 are singular. The singularity of 𝐽 yields
infinite characteristic speeds, while the singularity of𝑀 yields zero speeds. Thematrix𝑀 has the same three linearly inde-
pendent eigenvectors (48)–(50) associatedwith 𝑐 = 0, with 𝑔0 in place of ℎ0. For finite characteristic speeds, the eigenvalue
problem (43) consists of Equations (44), (45) and two equations

𝑐𝑝0
𝑓
− 𝑄𝛼𝑛𝑖𝑣

0
𝑠𝑖
+ 𝑄𝑘𝑔0 = 0, (62)

𝑝0
𝑓
= 0. (63)

The determinant of system (44), (45), (62), (63) can be written as 𝑐3𝑓(𝑐), where 𝑓(𝑐) is a 6th-degree polynomial in 𝑐.
This shows that there are nine finite characteristic speeds, counting multiplicities. Since Equations (62) and (63) provide
no information about the characteristic speeds, these are found solely from Equations (44) and (45) with 𝑝0

𝑓
= 0. Equa-

tions (44) and (45) with 𝑝0
𝑓
= 0 are the same as for a one-phase solid with the density 𝜚. For 𝑐 ≠ 0, substituting 𝜎0

𝑗𝑖
from

Equation (45) into Equation (44) leads to the eigenvalue problem

𝐴𝑖𝑘𝑣
0
𝑠𝑘

= 𝜚𝑐2𝑣0
𝑠𝑖
, (64)

which gives six characteristic speeds 𝑐 = ±
√
𝜂𝑖∕𝜚, 𝑖 = 1, 2, 3, where 𝜂𝑖 are the eigenvalues of the acoustic tensor. In the

isotropic case, the eigenvalues of the acoustic tensor are

𝜂1 = 𝜆 + 2𝜇, 𝜂2 = 𝜂3 = 𝜇. (65)

They are positive and give six real characteristic speeds, counting multiplicities. Assuming that the boundary value prob-
lem of the UP2 formulation with properly specified initial and boundary conditions is well-posed in the isotropic case,
we postulate the following necessary condition for well-posedness in the general anisotropic case. We say that the UP2
system (1), (14), (18) satisfies the hyperbolicity condition if the eigenvalues of the acoustic tensor of the skeleton are real and
positive for all directions n.
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5 CONCLUSION

Hyperbolicity of the dynamic equations for fluid-saturated solids with rate-independent constitutive behaviour of the
skeleton is a necessary condition for well-posedness of the boundary value problems. The equations of the two 𝑢-𝑝 approx-
imations, written either as first-order systems for 𝑣𝑠𝑖, 𝑣𝑓𝑖, 𝜎𝑗𝑖, 𝑝𝑓 or second-order systems for 𝑣𝑠𝑖, 𝜎𝑗𝑖, 𝑝𝑓 , do not belong to
the class of equations to which the conventional definition of hyperbolicity can be applied. The hyperbolicity conditions
proposed in this paper as necessary conditions for well-posedness for the 𝑢-𝑝 equations are derived from the characteristic
speed analysis of the equations for plane waves, with infinite characteristic speeds being allowed for. It is assumed that

(i) for isotropic elastic solids, the 𝑢-𝑝 approximations lead to well-posed problems (provided 𝜚 > 𝛼𝜚𝑓 for the UP1
approximation),

(ii) in the general anisotropic case, for the boundary value problems of the 𝑢-𝑝 approximations to be well-posed, the
number of real non-zero finite characteristic speeds must be the same as in the isotropic case.

The requirement (ii) is fulfilled if the hyperbolicity condition for the 𝑢-𝑝 approximation is satisfied. According to
the assumptions (i) and (ii), the boundary value problem of the 𝑢-𝑝 approximation is considered to be ill-posed if the
corresponding hyperbolicity condition is violated.
Although the exact formulation and the two 𝑢-𝑝 approximations can be used for the modelling of the same physical

process with the same constitutive relations, the criteria for well-posedness defined in terms of hyperbolicity are different
for the three systems of equations. The hyperbolicity condition for the UP1 equations involves the eigenvalues of the
3 × 3 matrix 𝐵 defined by Equation (53), while hyperbolicity of the exact equations is determined by the eigenvalues of
the 4 × 4 acoustic matrix 𝑆 defined by Equation (35). A marked difference is that the hyperbolicity condition for the UP1
equations does not depend on the compressibility of the pore fluid. Another distinctive feature is the role of the inequality
𝜚 > 𝛼𝜚𝑓 for the UP1 equations. In particular, if 𝜚 < 𝛼𝜚𝑓 , then the UP1 equations for an isotropic solid yield imaginary
characteristic speeds for longitudinal waves, see Equation (57). The similarity between the exact and the UP1 formulations
is that in both cases, hyperbolicity for the dry solid determined by the acoustic tensor of the skeleton does not in general
guarantee hyperbolicity for the saturated solid, except when the acoustic tensor is symmetric.
The hyperbolicity condition for the UP2 approximation is basically the same as weak hyperbolicity for the dry solid,

as both are determined by the eigenvalues of the acoustic tensor of the skeleton. If the equations for the dry solid are
hyperbolic, then the UP2 hyperbolicity condition is fulfilled. This fact simplifies the verification of hyperbolicity. Both the
UP1 and UP2 hyperbolicity conditions do not involve the compressibility of the pore fluid.
Hyperbolicity is ensured for all three formulations if the acoustic tensor of the skeleton is symmetric andpositive definite

for all directions (provided 𝜚 > 𝛼𝜚𝑓 for the UP1 approximation). This is the case, in particular, for a linearly hyperelastic
skeleton with a positive strain energy function.
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APPENDIX
SYMMETRY OF THE ACOUSTIC TENSOR
As shown in Ref. [25], the necessary and sufficient condition for the symmetry of the acoustic tensor for all directions n is

𝐶𝑖𝑗𝑘𝑙 − 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑘𝑗𝑖𝑙 − 𝐶𝑖𝑙𝑘𝑗, (A.1)

where 𝐶𝑗𝑖𝑘𝑙 are the components of the stiffness tensor defined by Equation (1). The stiffness tensor defined by Equation
(1) possesses both minor symmetries. Condition (A.1) seems at first glance to be weaker than the major symmetry 𝐶𝑗𝑖𝑘𝑙 =

𝐶𝑘𝑙𝑗𝑖, so it is erroneously inferred in Ref. [25] that the major symmetry is not necessary for the acoustic tensor to be
symmetric for all directions. A closer inspection reveals that condition (A.1) leads to the major symmetry. Indeed, writing
Equation (A.1) as

𝐶𝑗𝑘𝑙𝑖 − 𝐶𝑙𝑖𝑗𝑘 = 𝐶𝑙𝑘𝑗𝑖 − 𝐶𝑗𝑖𝑙𝑘 (A.2)

and taking into account the minor symmetries, we see that the right-hand side of Equation (A.1) is the same as the left-
hand side of Equation (A.2), and hence the left-hand side of Equation (A.1) is equal to the right-hand side of Equation (A.2).
The latter equality gives the major symmetry. Thus, the major symmetry follows from Equation (A.1) and is, therefore,
necessary for the acoustic tensor to be symmetric for all directions.
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