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Abstract
A novel mixed framework and energy-momentum consistent integration
scheme in the field of coupled nonlinear thermo-electro-elastodynamics is pro-
posed. The mixed environment is primarily based on a framework for elastody-
namics in the case of polyconvex strain energy functions. For this elastodynamic
framework, the properties of the so-called tensor cross product are exploited
to derive a mixed formulation via a Hu-Washizu type extension of the strain
energy function. Afterwards, a general path to incorporate nonpotential prob-
lems for mixed formulations is demonstrated. To this end, the strong form of
the mixed framework is derived and supplemented with the energy balance as
well as Maxwell’s equations neglecting magnetic and time dependent effects. By
additionally choosing an appropriate energy function, this procedure leads to
a fully coupled thermo-electro-elastodynamic formulation which benefits from
the properties of the underlying mixed framework. In addition, the proposed
mixed framework facilitates the design of a new energy-momentum consistent
time integration scheme by employing discrete derivatives in the sense of Gon-
zalez. A one-step integration scheme of second-order accuracy is obtained which
is shown to be stable even for large time steps. Eventually, the performance of
the novel formulation is demonstrated in several numerical examples.
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1 INTRODUCTION

Electroactive polymers (EAPs) represent a class of multi-functional materials capable of displaying significant changes
in their shape when actuated by means of an electrical stimulus.1 These can be broadly grouped into ionic polymers and
electronic EAPs. In the former, the application of an electric field triggers an internal transport of ions, which ultimately
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2 FRANKE et al.

yields bending type deformations. In the latter, however, Coulomb forces are responsible for the electrically induced
deformations of the EAPs, which can result in more complex shape changes compared to their ionic counterparts.

Among electronic EAPs, dielectric elastomers (DEs) have demonstrated remarkable electrically induced actuation
properties facilitated by their lightness, fast response, biomimetism, and low stiffness properties.2,3 DEs are indeed capable
of exhibiting massive electrically induced deformations, as demonstrated by experimental studies,4 where electrically
induced area expansions of 1962% in DEs have been reported. As a result, DEs have been identified as ideal candidates
for their use in the field of soft robotics, where cutting-edge technological developments start evidencing the onset of a
paradigm switch: Traditional hard robotic systems will be replaced by soft robotic solutions,5 especially in applications
requiring safe interactions with humans or, when human avatars are demanded in extremely hazardous environmental
conditions.6 However, the applications of DEs are not limited to the field of electrically induced actuation, as DEs have
been successfully applied as Braille displays, deformable lenses, haptic devices, and energy generators, to name but a few.7

Advances in the field of soft robotics can be accelerated through high fidelity finite element simulations for which a
reliable material characterization of these materials, and of DEs in particular, is of major importance. Recently, Mehnert
et al.8 devoted great effort to the mechanical and coupled electro-mechanical characterization of so-called very high bond
(VHB) polymers. This characterization was extended to account for the thermo-viscoelastic behavior in these materials.
The experimental works in References 8-11 enabled a comprehensive characterization of the thermo-electro-viscoelastic
properties of particle filled silicone EAPs. Crucially, the characterization conducted on these experimental studies has led
to subsequent works with deep roots in continuum mechanics, thermodynamics, and even micromechanics. In Refer-
ence 12, the analytical strain energy function is formulated based on thermo-electro-mechanical invariants and internal
variables (accounting for viscoelastic effects). A calibration of the analytical constitutive model was carried out by fit-
ting their response to the data generated in the experimental work using optimization techniques. Crucially, as proven
by the aforementioned works, the performance of DEs is highly sensitive to temperature variations and its consideration
is of paramount importance. This is for instance the case, when understanding the dynamics of DE-based soft robotic
underwater applications,13 where the temperature of the surrounding fluid might vary. Accordingly, these findings clearly
justify the necessity of embedding temperature effects into the constitutive models of DEs.

Analytical constitutive models should not only approximate the available data of the material response (whether
available from experiments or analytical computations or computational homogenization), but also comply with phys-
ical requirements, that is, objectivity, material symmetry and so forth.14,15 Further mathematical assumptions have to
be embedded by realistic constitutive models. It is well assumed that these must satisfy the ellipticity or rank-one con-
vexity condition.16 This condition prevents the formation of extremely localized deformation modes, guarantees the
propagation of real travelling plane waves in the material,17 and ensures the well-posedness of the underlying bound-
ary value problem.18 A sufficient condition complying with the ellipticity condition is the polyconvexity16,19 of the strain
energy function (analytical constitutive model). This concept was later extended from elasticity to the field of nonlinear
electro-mechanics.20-22

In addition to reliable and physically-mathematically sound constitutive models, long-term time dependent finite
element simulations of DEs require the use of stable and robust spatial and temporal discretizations. In this vein,
energy-momentum (EM) time integration schemes emerge as elegant and robust candidates, proving higher stability and
robustness properties than other classical time integration schemes.23-27 The underlying reason for this lies in their ther-
modynamic roots, as they are endowed by construction with the discrete analogue of the conservation properties of the
continuum, namely the conservation of total energy, total linear momentum, and total angular momentum. Consistency
of these methods, namely their ability to conserve (or dissipate for nonreversible constitutive models) the total energy
of a system in agreement with the laws of thermodynamics,23 is attained by replacing the (exact) partial derivatives of
the strain energy function (or other types of energy like, for example, the internal energy function) with respect to its
arguments with their carefully designed algorithmic counterparts.

Recently, Betsch et al.28 proposed a novel EM scheme in the context of nonlinear elasticity, by taking advantage of
the concept of polyconvexity and the use of a novel tensor cross product pioneered by de Boer29 and re-discovered in
the context of nonlinear continuum mechanics by Bonet et al.30,31 In essence, the authors in Reference 28 proposed the
consideration of three discrete derivatives which were used to form an algorithmic version of the second Piola–Kirchhoff
stress tensor. These three discrete derivatives represent the algorithmic counterparts of the work conjugates of the right
Cauchy-Green deformation tensor, its cofactor, and its determinant. This strategy leads to a simplified expression of the
algorithmic second Piola–Kirchhoff stress tensor, compared to those obtained by the classical approach.23,24 Later, this
work has been extended to multiphysics scenarios such as thermoelasticity,32,33 nonlinear electro-mechanics,34,35 and
more recently to thermo-electro-mechanics.36 In Reference 36, a simple thermo-electro-mechanical constitutive model is
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FRANKE et al. 3

considered in which the thermal effects are coupled exclusively with the volumetric deformations, excluding any direct
interaction between thermal and electrical effects. The present work aims at incorporating more generic and sophisticated
constitutive models. In addition, it advocates for a multifield formulation where not only displacements, electric potential,
and temperature are regarded as unknown fields. Rather, strains, electric displacement, and suitable stress-type Lagrange
multipliers, are incorporated as unknown fields, relying on a stable spatial discretization of all fields involved. In that
regard, a noteworthy contribution lies in the introduction of a general path to incorporate nonpotential problems for
mixed formulations, where this path is not limited to the considered area of thermo-electro-elastodynamics.

The manuscript is organized as follows: Section 2 describes the multiphysics initial boundary value problem (IBVP)
associated with the underlying governing equations for DEs in nonisothermal scenarios. Section 3 introduces the neces-
sary elements of algebra associated with the tensor cross product operation. In this context, the tensor cross product is
used to conveniently rewrite the cofactor of the deformation gradient. Furthermore, this section presents the analytical
constitutive model considered. In addition, a Hu-Washizu type variational formulation for the purely mechanical elas-
tostatic case is presented. From its stationary conditions, the associated multi-field strong form is derived. This strong
form serves as a starting point for the subsequent extension to the nonconservative multiphysics case of interest, where
electrical and thermal effects are incorporated. Section 4 presents the weak form of the multi-field multiphysics IBVP
presented at the end of Section 3. Additionally, the conservation properties of the proposed continuous formulation are
examined. Section 5 illustrates the algorithmic treatment of the weak form in Section 4, where derivatives of the ana-
lytical constitutive model are replaced with their algorithmic counterparts to embed the desired conservation properties
into the resulting EM time integration scheme. Section 6 presents the spatial discretization of the algorithmic weak form
shown in Section 5. Eventually, numerical tests are conducted throughout Section 7 with the aim of testing the spatial and
temporal convergence properties of the proposed multi-field EM time integrator, as well as its long-term stability. Finally,
concluding remarks are provided in Section 8.

2 NONLINEAR CONTINUUM THERMO-ELECTRO-MECHANICS

We consider a deformable continuum body with boundary 𝜕 subject to time t ∈  = [0,T], where T ∈ R+. We distin-
guish between the reference configuration 0 ⊂ R3 and the current configuration t = 𝝋(0, t), where 𝝋 ∶ 0 ×  → R3

denotes the bijective mapping that maps material coordinates X ∈ 0 to its spatial counterparts x = 𝝋(X, t) ∈ t.

2.1 Initial boundary value problem

The IBVP for thermo-electro-mechanics is obviously composed of contributions from the mechanical, the thermal, and
the electrical fields and is introduced in the following.

2.1.1 Elastodynamics

The basic kinematic quantity in elastodynamics is the deformation gradient F ∶ 0 ×  → R3×3 defined as

F = ∇X𝝋(X, t), dx = F dX, (1)

which maps infinitesimal line elements dX ∈ 0 to their spatial counterparts dx ∈ t. The IBVP for elastodynamics is
given by

𝜌0 �̈� = Div P + B in0 × ,

P N = T on 𝜕T0 × ,
𝝋 = 𝝋 on 𝜕𝝋0 × , (2)

𝝋(X, 0) = 𝝋0 in0,

�̇�(X, 0) = v0 in0.
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4 FRANKE et al.

The above set of equations is comprised of the balance of linear momentum (2)1, where 𝜌0 ∶ 0 → R is the mate-
rial mass density, the dot (

⋅
•) indicates material time differentiation of quantity (•), P ∶ 0 ×  → R3×3 is the first

Piola–Kirchhoff stress tensor, and B ∶ 0 ×  → R3 denotes the prescribed volume force per unit undeformed volume
0. Furthermore, the Neumann boundary condition is given by (2)2, where N ∶ 𝜕T0 ×  → R3 denotes the material
outward normal vector to the Neumann boundary 𝜕T0 ∈ 𝜕0, and T ∶ 𝜕T0 ×  → R3 is the prescribed Piola stress vec-
tor. Equation (2)3 denotes the Dirichlet boundary condition with the prescribed displacement field 𝝋 on 𝜕𝝋0 ∈ 𝜕0.
The whole boundary for the mechanical field is comprised of both introduced boundaries, which may not overlap,
such that

𝜕T0 ∪ 𝜕𝝋0 = 𝜕0, 𝜕T0 ∩ 𝜕𝝋0 = ∅. (3)

Finally, (2)4–(2)5 are the initial conditions for configuration and velocity with 𝝋0 and v0 being the initial configuration
and velocity, respectively.

2.1.2 Thermodynamics

The IBVP for thermodynamics is given by

𝜃 �̇� = R − DivQ in0 × ,

Q ⋅N = −Q on 𝜕Q0 × , (4)

𝜃 = 𝜃 on 𝜕𝜃0 × ,
𝜃(X, 0) = 𝜃0 in0,

where (4)1 denotes the local energy balance with 𝜃 ∶ 0 ×  → R+ being the absolute temperature field and 𝜂 ∶ 0 ×
 → R is the entropy density. Furthermore, R ∶ 0 ×  → R denotes a prescribed heat source per unit undeformed vol-
ume0 and Q ∶ 0 ×  → R3 denotes the Piola heat flux vector per unit undeformed volume0. Equations (4)2 and (4)3
are the Neumann and Dirichlet boundary conditions, respectively. Therein, Q ∶ 𝜕Q0 ×  → R denotes a prescribed rate
of heat transfer across a unit of undeformed area applied on 𝜕Q0 ⊂ 𝜕0. Essential temperature boundary conditions 𝜃
are applied on 𝜕𝜃0 ⊂ 𝜕0. The boundaries for the thermal field in (4) need to satisfy

𝜕Q0 ∪ 𝜕𝜃0 = 𝜕0, 𝜕Q0 ∩ 𝜕𝜃0 = ∅. (5)

Eventually, the initial thermal field is prescribed in (4)4 with the initial temperature 𝜃0.

2.1.3 Electrostatics

Restricting our focus to capacitor-like DEs allows us to neglect magnetic and time-dependent electrical effects. Thus, it
is possible to reduce Maxwell’s equations to

DivD0 = 𝜌
e
0 in 0 × ,

E0 = −∇XΦ in 0 × ,
D0 ⋅N = −𝜔e

0 on 𝜕𝜔0 × , (6)

Φ = Φ on 𝜕Φ0 × .

Therein, D0 ∶ 0 ×  → R3 represents the Lagrangian electric displacement vector, 𝜌e
0 ∶ 0 ×  → R is the prescribed

electric volume charge per unit of undeformed volume0, and𝜔
e
0 ∶ 𝜕𝜔0 ×  → R denotes the electric surface charge per

unit of undeformed area 𝜕𝜔0 ⊂ 𝜕0. Furthermore, E0 ∶ 0 ×  → R3 represents the Lagrangian electric field vector and
Φ ∶ 0 ×  → R is the electric potential field which is prescribed with Φ on 𝜕Φ0 ⊂ 𝜕0. The boundaries are composed
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FRANKE et al. 5

of the Dirichlet and Neumann boundaries which may not overlap, thus

𝜕𝜔0 ∪ 𝜕Φ0 = 𝜕0, 𝜕𝜔0 ∩ 𝜕Φ0 = ∅. (7)

2.2 Constitutive equations

The behavior of body 0 is characterized by the chosen energy density function. For many applications it is important
to incorporate coupling effects between the fields, that is, to consider interactions between the mechanical, thermal, and
electric fields. In doing so, we herein assume an energy function ̂ = ̂ (F, D0, 𝜃) (cf. Reference 36). Considering the
second law of thermodynamics, the constitutive equations

P = 𝜕F̂ , E0 = 𝜕D0 ̂ , 𝜂 = −𝜕𝜃̂ , (8)

must hold for the first Piola–Kirchhoff stress tensor P, the entropy density 𝜂, and the Lagrangian electric field vector E0.
Furthermore, the constitutive equations are supplemented by the Piola heat flux

Q = −F−1 K F−T
𝜸, (9)

which is governed by Duhamel’s law of heat conduction. Therein, K is the material thermal conductivity tensor and
𝜸 ∶ 0 ×  → R3 denotes the material gradient of the absolute temperature field

𝜸 = −∇X𝜃. (10)

Assuming a suitable energy  , and K to be a positive semi-definite second-order tensor, the constitutive equations (8)
and (9) satisfy the Clausius–Duhem inequality and can thus be regarded as thermodynamically consistent.

3 ADVANCED MODELING ASPECTS WITHIN THE CONTINUOUS
DESCRIPTION

In this section, we outline advanced modeling aspects within the continuous description. We want to emphasize that
many of these aspects are not necessarily limited to the thermo-electro-mechanical system considered in Section 2,
but can be applied to other problems as well. More precisely, we present a polyconvexity-inspired framework based on
the tensor cross product operation, thermo-electro-mechanical constitutive models, a Hu-Washizu type mixed formu-
lation for nonpotential (coupled) systems and an alternative energy balance formulation to facilitate the design of the
desired energy-momentum consistent time integration scheme. Eventually, we propose a multiphysics, mixed IBVP for
thermo-electro-elastodynamics.

3.1 Polyconvexity-inspired framework

In order to find a polyconvexity-based energy density function describing the constitutive behavior of a DE, the tensor
cross product operation between second-order tensors is introduced. Afterwards, kinematics and constitutive equations
are reconsidered by the beneficial properties of the tensor cross product.

3.1.1 Tensor cross product

The tensor cross product was introduced in Reference 29, exploited in the context of nonlinear continuum mechanics by
Bonet et al.31 and subsequently extended to multiphysics problems (cf. References 32-36). It enables to simplify algebraic
derivations, especially when polyconvex constitutive models are considered.
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6 FRANKE et al.

The tensor cross product between two second-order tensors A, B ∈ R3×3 can be defined as

(A ⨳ B)ij = 𝜖i𝛼𝛽 𝜖jab A𝛼a B𝛽b. (11)

Therein, Einstein’s summation convention is employed to pairs of repeated indices, where i, j, 𝛼, 𝛽, a, b ∈ {1, 2, 3}. In
addition, 𝜖ijk denotes the third-order permutation tensor. A noteworthy feature of the tensor cross product is that it allows
to redefine the cofactor of a second-order tensor A ∈ R3×3 as

cof(A) = det(A)A−T = 1
2
(A ⨳A). (12)

Furthermore, the determinant of a second-order tensor A ∈ R3×3 can be written in an elegant manner as

det(A) = 1
6
(A ⨳A) ∶ A. (13)

Some further helpful properties of the tensor cross product can be found, for example, Reference 36.

3.1.2 Kinematics

In addition to the deformation gradient F in (1), alternative kinematic measures can be defined. More precisely, its cofactor
H ∶ 0 ×  → R3×3 can now be defined with the help of the tensor cross product as in (12), namely

H = cof(F) = 1
2

F ⨳ F, da = H dA. (14)

This allows to map infinitesimal material area elements dA ∈ 𝜕0 to their spatial counterparts da ∈ 𝜕t. Further-
more, with the help of equation (13), the Jacobian determinant of F can be written in terms of the tensor cross
product as

J = det(F) = 1
6
(F ⨳ F) ∶ F, dv = J dV . (15)

The Jacobian determinant maps infinitesimal volume elements of the reference configuration dV ∈ 0 to their spatial
counterparts dv ∈ t. For an objective (material frame indifferent) representation of the energy density function, we
introduce the symmetric right Cauchy-Green strain tensor C ∶ 0 ×  → R3×3 with

C = FT F. (16)

In addition to that, the cofactor of C can be defined in a similar fashion as in (14), that is,

G = cof(C) = HT H = 1
2

C ⨳ C, (17)

where G ∶ 0 ×  → R3×3. Eventually, we introduce the determinant of C in analogy to (15), that is,

C = det(C) = J2 = 1
6
(C ⨳ C) ∶ C, (18)

where C ∶ 0 ×  → R+.

3.1.3 Energy density function

We assume that the behavior of DEs can be characterized by means of the energy density function

̂ (F,D0, 𝜃) = ̃ (F, cof(F), det(F),D0,d(F,D0), 𝜃) = ̃ (F,H, J,D0,d, 𝜃), d = FD0, (19)
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FRANKE et al. 7

where ̃ ∶ R3×3 ×R3×3 ×R+ ×R3 ×R3 ×R+ → R is convex with respect to its arguments F,H, J,D0,d and con-
cave with respect to 𝜃. With the objective representation of the kinematics (see Section 3.1.2), we can re-express
̃ as

̃ (F,H, J,D0,d, 𝜃) = ⋆(C,G,C,D0,CD0, 𝜃) =  (C,G,C,D0, 𝜃). (20)

Example 1. Inspired by the works,37,38 we exemplarily consider the following additive decomposition of the energy
density function  (C,G,C,D0, 𝜃)*† as

 (C,G,C,D0, 𝜃) = f𝜃(𝜃) em(C,G,C,D0) + tm(C, 𝜃) + t(𝜃), (21)

where em ∶ R3×3 ×R3×3 ×R+ ×R3 → R represents the electro-mechanical contribution to the energy density function,
which, for example, can be additively decomposed into a compressible Mooney–Rivlin model (mechanical) and an ideal
dielectric elastomer model (electro-mechanical), that is,

em(C,G,C,D0) = a trC + b trG + c
2
(
√

C − 1)2 − d log
√

C + 1
2 𝜀r 𝜀0

√
C

D0 ⋅ (C D0). (22)

In the above, the mechanical parameters a, b, c ∈ R+ and d = 2 (a + 2 b) have been employed. Moreover, the permit-
tivity of vacuum is denoted by 𝜀0 = 8.8541 × 10−12 AsV−1m−1 and 𝜀r ∈ R+ is the relative permittivity of the considered
medium. Furthermore, tm(C, 𝜃) ∶ R+ ×R+ → R represents the coupled thermo-mechanical contribution, for which
we use‡

tm(C, 𝜃) = −3 𝛽 e (C − 1) (𝜃 − 𝜃R), (23)

following.36 Therein, 𝛽, e ∈ R+ are thermo-mechanical parameters and 𝜃R ∈ R+ is the reference temperature. In addition,
t(𝜃) ∶ R+ → R represents the purely thermal contribution,36 defined as

t(𝜃) = 𝜅

(
𝜃 − 𝜃R − 𝜃 log

(
𝜃

𝜃R

))
, (24)

where 𝜅 ∈ R+ denotes the specific heat capacity. Finally, the factor f𝜃 ∶ R+ → R+ in front of the electro-mechanical
contribution em ∶ R3×3 ×R3×3 ×R+ ×R3 → R is chosen as

f𝜃(𝜃) =
𝜃

𝜃R
, (25)

following the work of Reference 38. Notice that multiplication of f𝜃 and em aims at a fully coupled model
(cf. References 38 and 37), which contrasts with our previous publication,36 where f𝜃 = 1. Accordingly, the constitutive
equations are given by

P = F S, S = 2 (𝜕C + 𝜕G ⨳ C + 𝜕C G), E0 = 𝜕D0 , 𝜂 = −𝜕𝜃 , (26)

where S ∶ 0 ×  → R3×3 denotes the second Piola–Kirchhoff stress tensor. In addition, assuming thermal isotropy,
Duhamel’s law of heat conduction (9) reduces to Fourier’s law of heat conduction. Accordingly, with K = k0I we
obtain

Q = −k0C−1
𝜸 = −k0

C
G 𝜸, (27)

where k0 ∈ R+ denotes the coefficient of thermal conductivity with respect to the reference configuration.
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8 FRANKE et al.

Remark 1. The proposed constitutive model (21) within Example 1 can be considered as polyconvex only up to a certain
temperature 𝜃cr. More precisely, ̃ must satisfy the conditions

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿F
𝛿H
𝛿J
𝛿D0

𝛿d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕
2
FF̃ 𝜕

2
FH̃ 𝜕

2
FJ̃ 𝜕

2
FD0
̃ 𝜕

2
Fd̃

𝜕
2
HF̃ 𝜕

2
HH̃ 𝜕

2
HJ̃ 𝜕

2
HD0
̃ 𝜕

2
Hd̃

𝜕
2
JF̃ 𝜕

2
JH̃ 𝜕

2
JJ̃ 𝜕

2
JD0
̃ 𝜕

2
Jd̃

𝜕
2
D0F̃ 𝜕

2
D0H̃ 𝜕

2
D0J̃ 𝜕

2
D0D0
̃ 𝜕

2
D0d̃

𝜕
2
dF̃ 𝜕

2
dH̃ 𝜕

2
dJ̃ 𝜕

2
dD0
̃ 𝜕

2
dd̃

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[H
̃
]

∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿F
𝛿H
𝛿J
𝛿D0

𝛿d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≥ 0, 𝜕
2
𝜃𝜃
̃ < 0, (28)

for this to be true. However, as can be seen in Reference 36, the critical temperature is typically relatively high, so we will
not address this topic further.

Remark 2. Mehnert et al.,37 considered a similar additive decomposition to that in equation (21) within Example 1, where
the main difference resided in the higher nonlinearity associated with the temperature dependent factor f𝜃(𝜃), defined
therein as

f𝜃(𝜃) =
𝜃

𝜃R
+ g(𝜃), g(𝜃) = −

𝜃
(

tanh(a2(𝜃 − 𝜃R))
) 3

𝜃R + a1
, (29)

where a1, a2 ∈ R are material parameters. Such nonlinearity was introduced with a two-fold purpose. First, to introduce
a dependence of the specific heat capacity with respect to deformations. This can be seen from the definition of the specific
heat capacity, that is,

k(C,G,C,D0, 𝜃) = −𝜃𝜕2
𝜃𝜃
 = 𝜅 − 𝜃g′′(𝜃)em(C,G,C,D0). (30)

Second, a definition of f𝜃(𝜃) as in (29) ensures a nonlinear dependence of both stresses and electric fields with respect to
temperature, which, according to equation (8), would depend on a linear fashion with respect to f𝜃(𝜃), comprising the
linear term 𝜃∕𝜃R and the nonlinear term g(𝜃).

3.2 Mixed formulation for nonpotential coupled systems

In order to develop a multi-field, mixed formulation for nonpotential systems, we carry out two steps. First and foremost,
we start with a variational Hu-Washizu type formulation for elastostatics (cf. Reference 28) and convert it to its associated
(mixed) strong form. In a second step, we augment the (mixed) strong form to a mixed thermo-electro-mechanics strong
formulation.

A noteworthy feature of the above procedure is that it is not restricted to thermo-electro-mechanical coupled problems
but does also work for various coupled systems including nonpotential contributions.

3.2.1 Variational Hu-Washizu type formulation for elastostatics

For the elastostatic case under consideration, the potential energy can be defined as

Πm(𝝋) = Πm,int(𝝋) + Πm,ext(𝝋), (31)

with its internal and external contributions

Πm,int(𝝋) =
∫
0

Ŵ(F(𝝋)) dV , Πm,ext(𝝋) = −
∫
0

B ⋅ 𝝋 dV −
∫
𝜕T0

T ⋅ 𝝋 dA, (32)
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FRANKE et al. 9

respectively, where Ŵ ∶ R3×3 → R denotes the strain energy. In the above, the solution function𝝋 ∈ V𝝋 is employed with
space

V𝝋 = {𝝋 ∶ 0 → R
3 | 𝜑i ∈ H1 (0) ∧ 𝝋 = 𝝋 on 𝜕𝝋0 ∧ det(∇X𝝋) > 0 in 0}, (33)

where H1 denotes the Sobolev space. The principle of stationary potential energy states that the first variation of the poten-
tial energy disappears if equilibrium prevails (cf. Reference 40). The principle of stationary potential energy is equivalent
to the procedure of deriving the weak form directly from the strong formulation of a problem. By introducing the objective
kinematic set within a cascade manner§ as

C = (∇X𝝋)T ∇X𝝋,

G = 1
2

C ⨳ C,

C = 1
3

G ∶ C,

(34)

the potential energy can be re-expressed as an augmented 7-field Hu-Washizu type version

Π̃m(𝝋,𝚺,𝚲) =
∫
0

W(C,G,C) + 𝚲C ∶
(
(∇X𝝋)T ∇X𝝋 − C

)

+ 𝚲G ∶
(

1
2

C ⨳ C − G
)

+ ΛC ∶
(

1
3

G ∶ C − C
)

dV + Πm,ext(𝝋),

(35)

where the above kinematic set is enforced (cf. Reference 28). Therein, the kinematic set 𝚺 = (C,G,C) and the set of
Lagrange multipliers 𝚲 = (𝚲C

,𝚲G
,ΛC) have been introduced to simplify notation. Furthermore, the solution functions

C, G, 𝚲C
, 𝚲G ∈ VA, with generalized space

VA = V
0
A = {A ∶ 0 → S | Aij ∈ L2(0)}, (36)

and C, ΛC ∈ VA, with generalized space

VA = V
0
A = {A ∶ 0 → R | A ∈ L2(0)}, (37)

are used, where S denotes the space of symmetric second-order tensors and L2 is the space of square integrable func-
tions. Imposing stationarity conditions to (35), that is, variation with respect to the independent variables and setting the
variation to zero yields the mixed variational formulation for elastostatics

𝛿𝝋Π̃m =
∫
0

𝚲C ∶
(
(∇X𝛿𝝋)T ∇X𝝋 + (∇X𝝋)T ∇X𝛿𝝋

)
dV + Πm,ext(𝛿𝝋) = 0,

𝛿CΠ̃m =
∫
0

𝛿C ∶
(
𝜕CW − 𝚲C + 𝚲G ⨳ C + 1

3
ΛC G

)
dV = 0,

𝛿GΠ̃m =
∫
0

𝛿G ∶
(
𝜕GW − 𝚲G + 1

3
ΛC C

)
dV = 0,

𝛿CΠ̃m =
∫
0

𝛿C
(
𝜕CW − ΛC) dV = 0,

𝛿𝚲CΠ̃m =
∫
0

𝛿𝚲C ∶
(
(∇X𝝋)T ∇X𝝋 − C

)
dV = 0,

𝛿𝚲GΠ̃m =
∫
0

𝛿𝚲G ∶
(

1
2
C ⨳ C − G

)
dV = 0,

𝛿ΛC Π̃m =
∫
0

𝛿ΛC
(

1
3

G ∶ C − C
)

dV = 0,

(38)

where the equations above have to hold for arbitrary 𝛿𝝋 ∈ V
0
𝝋, with

V
0
𝝋 = {w𝝋 ∶ 0 → R

3 | w𝝋i ∈ H1 (0) ∧w𝝋 = 0 on 𝜕𝝋0}, (39)
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10 FRANKE et al.

𝛿C, 𝛿G, 𝛿𝚲C
, 𝛿𝚲G ∈ V

0
A, and 𝛿C, 𝛿ΛC ∈ V

0
A. The variational formulation (38) can be converted to its strong form using

basic algebraic operations. This strong form consists of the equations

Div(2 F𝚲C) + B̄ = 0

𝜕CW − 𝚲C + 𝚲G ⨳ C + 1
3
ΛC G = 0

𝜕GW − 𝚲G + 1
3
ΛC C = 0

𝜕CW − ΛC = 0

(∇X𝝋)T ∇X𝝋 − C = 0
1
2

C ⨳ C − G = 0
1
3

G ∶ C − C = 0

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎭

in 0 (40)

and the corresponding boundary conditions

𝝋 = 𝝋 on 𝜕𝝋0,

(2 F 𝚲C) N = T on 𝜕T0.
(41)

3.2.2 Mixed thermo-electro-mechanical strong formulation

To extend the BVP in (40)-(41) to the case of thermo-electro-elastodynamics, we proceed as follows. First, we take into
account the inertia term within the balance of linear momentum, that is, in equation (40)1. Second, we consider the IBVP
of thermodynamics (4) and the BVP of electrostatics (6) to incorporate thermal and electrical effects. Finally, we employ
the energy density function  =  (C,G,C,D0, 𝜃) from (21) to achieve coupling between the different physical processes.
The above steps yield the final multiphysics, mixed IBVP¶ consisting of the equations

𝜌0 (�̇� − v) = 0

Div(2 F𝚲C) + B̄ = 𝜌0 v̇

𝜃 �̇� + DivQ − R̄ = 0

DivD0 − �̄�
e
0 = 0

𝜕D0 + ∇XΦ = 0

𝜕C − 𝚲C + 𝚲G ⨳ C + 1
3
ΛC G = 0

𝜕G − 𝚲G + 1
3
ΛC C = 0

𝜕C − ΛC = 0

(∇X𝝋)T ∇X𝝋 − C = 0
1
2

C ⨳ C − G = 0
1
3

G ∶ C − C = 0

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

in 0 × , (42)

the boundary conditions

𝝋 = 𝝋 on 𝜕𝝋0 × ,
(2 F 𝚲C)N = T on 𝜕T0 × ,

𝜃 = 𝜃 on 𝜕𝜃0 × ,
Q ⋅N = −Q on 𝜕Q0 × ,

D0 ⋅N = −𝜔e
0 on 𝜕𝜔0 × ,

Φ = Φ on 𝜕Φ0 × ,

(43)
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FRANKE et al. 11

and the initial conditions

𝝋(t = 0) = 𝝋0

v(t = 0) = v0

𝜃(t = 0) = 𝜃0

⎫
⎪
⎬
⎪
⎭

in0. (44)

3.3 Energy formulation to facilitate discrete energy consistency

In order to facilitate the design of an energy-momentum consistent time integration scheme, the local energy balance on
a continuum level in (42)3 is reconsidered as

d
dt
(𝜃𝜂) − �̇�𝜂 + DivQ − R = 0 in0 × , (45)

which was already proposed in Reference 34 and applied in the context of thermo-electro-mechanics in Reference 36.

4 WEAK FORMULATION

Based on the strong formulation given in (42), but exchanging the local energy balance in (42)3 with (45), the associated
symmetric weak formulation of (42) is obtained after multiplying each equation with a suitable test function, integrating
over the domain 0, and applying basic algebraic operations. This yields

∫
0

wv ⋅ (�̇� − v) 𝜌0 dV = 0,

∫
0

(
w𝝋 ⋅ v̇ 𝜌0 + 𝚲C ∶

(
(∇Xw𝝋)T ∇X𝝋 + (∇X𝝋)T ∇Xw𝝋

))
dV + Πm,ext(w𝝋) = 0,

∫
0

(
w𝜃

( d
dt
(𝜃𝜂) − �̇�𝜂

)
− ∇Xw𝜃 ⋅Q

)
dV + Πt,ext(w𝜃) = 0,

∫
0

∇XwΦ ⋅D0 dV + Πe,ext(wΦ) = 0,

∫
0

wD0 ⋅ (𝜕D0 + ∇XΦ) dV = 0,

∫
0

wC ∶
(
𝜕C − 𝚲C + 𝚲G ⨳ C + 1

3
ΛC G

)
dV = 0,

∫
0

wG ∶
(
𝜕G − 𝚲G + 1

3
ΛC C

)
dV = 0,

∫
0

wC (𝜕C − ΛC) dV = 0,

∫
0

w𝚲C ∶
(
∇X𝝋)T ∇X𝝋 − C

)
dV = 0,

∫
0

w𝚲G ∶
(

1
2

C ⨳ C − G
)

dV = 0,

∫
0

wΛC

(
1
3

G ∶ C − C
)

dV = 0,

(46)

where the external thermal and electrical potentials are given by

Πt,ext(w𝜃) = − ∫
0

w𝜃R dV − ∫
𝜕Q0

w𝜃 Q dA,

Πe,ext(wΦ) = ∫
0

wΦ𝜌
e
0 dV + ∫

𝜕
𝜔
0

wΦ 𝜔
e
0 dA,

(47)
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12 FRANKE et al.

respectively. The above weak equations are valid for suitable test functions, that is, wv ∈ V
0
v, w𝝋 ∈ V

0
𝝋, w𝜃 ∈ V

0
𝜃
, wΦ ∈ V

0
Φ,

wD0 ∈ V
0
D0

, wC, wG, w𝚲C , w𝚲G ∈ V
0
A, and wC, wΛC ∈ V

0
A, with

Vv = V
0
v = {v ∶ 0 → R3 | vi ∈ L2 (0)},

V
0
𝜃
= {w𝜃 ∶ 0 → R | w𝜃 ∈ H1 (0) ∧ w𝜃 = 0 on 𝜕𝜃0},

V
0
Φ = {wΦ ∶ 0 → R | wΦ ∈ H1 (0) ∧ wΦ = 0 on 𝜕Φ0},

VD0 = V
0
D0
= {D0 ∶ 0 → R3 | D0i ∈ L2 (0)}.

(48)

Moreover, v ∈ Vv, 𝝋 ∈ V𝝋, 𝜃 ∈ V𝜃 ,Φ ∈ VΦ, D0 ∈ VD0 , C, G, 𝚲C
, 𝚲G ∈ VA, and C, ΛC ∈ VA must hold for the solution

functions, with the remaining function spaces defined by

V𝜃 = {𝜃 ∶ 0 → R | 𝜃 ∈ H1 (0) ∧ 𝜃 = 𝜃 on 𝜕𝜃0},
VΦ = {Φ ∶ 0 → R | Φ ∈ H1 (0) ∧ Φ = Φ on 𝜕Φ0}.

(49)

4.1 Balance laws

In this section, the balance laws of the coupled problem given by (46) are examined. In particular, total angular momentum
and total energy are considered. To this end, a homogeneous Neumann problem is assumed by applying 𝜕𝝋0 = 𝜕𝜃0 =
𝜕Φ0 = ∅.

4.1.1 Conservation of angular momentum

The total angular momentum of the continuum body with respect to the origin of the inertial frame is given by

J =
∫
0

𝝋 × 𝜌0v dV . (50)

To verify conservation of angular momentum, we take the following admissible values for the test functions wv = 𝜻 × �̇� ∈
V

0
v and w𝝋 = 𝜻 × 𝝋 ∈ V

0
𝝋 in (46) using arbitrary but constant values for 𝜻 ∈ R3. With the above, (46)1 yields

∫
0

�̇� × 𝜌0v dV = 0. (51)

Accordingly, the conservation of total angular momentum can be written as

J̇ =
∫
0

𝝋 × 𝜌0v̇ dV = 0. (52)

Furthermore, we introduce the skew-symmetric matrix �̂� ∈ R3×3 by 𝜻 × a = �̂�a with property �̂�T + �̂� = 0, such that (46)2
with (52) can be written as

𝜻 ⋅
(
J̇ −Mm,ext) = 0. (53)

In the above the total external mechanical torque exerted by body and surface loads is introduced as

Mm,ext =
∫
0

𝝋 × B dV +
∫
𝜕T0

𝝋 × T dA. (54)

Hence, for vanishing external mechanical loads, the total angular momentum is conserved.
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FRANKE et al. 13

4.1.2 Conservation of energy

The total energy of the thermo-electro-mechanical body

E = T + U, (55)

consists of the total kinetic energy

T = 1
2 ∫0

𝜌0v ⋅ v dV , (56)

and (cf. Reference 36)

U =
∫
0

 (C,G,C,D0, 𝜃) +D0 ⋅ ∇XΦ + 𝜃𝜂 dV . (57)

Accordingly, conservation of total energy is achieved if

Ė = Ṫ + U̇ = 0. (58)

Therein, the derivatives of the energies with respect to time can be written as

Ṫ =
∫
0

𝜌0v ⋅ v̇ dV ,

U̇ =
∫
0

(
𝜕C ∶ Ċ + 𝜕G ∶ Ġ + 𝜕C Ċ + 𝜕D0 ⋅ Ḋ0 + 𝜕𝜃 �̇�

)
dV

+
∫
0

(
Ḋ0 ⋅ ∇XΦ +D0 ⋅ ∇XΦ̇ + �̇�𝜂 + 𝜃�̇�

)
dV (59)

=
∫
0

(
𝜕C ∶ Ċ + 𝜕G ∶ Ġ + 𝜕C Ċ

)
dV

+
∫
0

(
(𝜕D0 + ∇XΦ) ⋅ Ḋ0 +D0 ⋅ ∇XΦ̇ + 𝜃�̇�

)
dV .

In order to verify the conservation of total energy, we replace the test functions (wv,w𝝋,w𝜃,wΦ,wD0) in (46) with
(v̇, �̇�, 1, Φ̇, Ḋ0) ∈ V

0
v ×V

0
𝝋 ×V

0
𝜃
×V

0
Φ ×V

0
D0

and obtain

∫
0

v̇ ⋅ (�̇� − v) 𝜌0 dV = 0,

∫
0

(
�̇� ⋅ 𝜌0v̇ + 𝚲C ∶

(
(∇X�̇�)T∇X𝝋 + (∇X𝝋)T∇X�̇�

))
dV + Πm,ext(�̇�) = 0,

∫
0

( d
dt
(𝜃𝜂) − �̇�𝜂

)
dV + Πt,ext(1) = 0, (60)

∫
0

∇XΦ̇ ⋅D0 dV + Πe,ext(Φ̇) = 0,

∫
0

Ḋ0 ⋅
(
𝜕D0 + ∇XΦ

)
dV = 0.

Furthermore, we apply (wC,wG,wC) = (Ċ, Ġ, Ċ) ∈ V
0
A ×V

0
A ×V

0
A in (46), which leads to

∫
0

Ċ ∶
(
𝜕C − 𝚲C + 𝚲G ⨳ C + 1

3
ΛCG

)
dV = 0,

∫
0

Ġ ∶
(
𝜕G − 𝚲G + 1

3
ΛCC

)
dV = 0,

∫
0

Ċ
(
𝜕C − ΛC) dV = 0.

(61)
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14 FRANKE et al.

Eventually, we use (w𝚲C ,w𝚲G ,wΛC ) = (𝚲C
,𝚲G

,ΛC) ∈ V
0
A ×V

0
A ×V

0
A in (46), which yields

∫
0

𝚲C ∶
(
(∇X�̇�)T∇X𝝋 + (∇X𝝋)T∇X�̇� − Ċ

)
dV = 0,

∫
0

𝚲G ∶
(
C ⨳ Ċ − Ġ

)
dV = 0,

∫
0

ΛC
(

1
3
Ġ ∶ C + 1

3
G ∶ Ċ − Ċ

)
dV = 0.

(62)

Finally, we add equations (60)2-5 to (61)1-3 and subtract (60)1 and (62)1-3, respectively, such that we obtain the desired
result

Ṫ + U̇ + Πm,ext(�̇�) + Πt,ext(1) + Πe,ext(Φ̇) = 0. (63)

Accordingly, for vanishing external loads, the total energy is a constant of the motion.

5 TIME DISCRETIZATION: ENERGY-MOMENTUM SCHEME

In this section, we conduct the time discretization of the weak equations (46) derived in the previous section. For
that, we divide the interval  into subintervals [tn, tn+1] ⊂ . In doing so, we assume that the values of the fields
𝝋, v, 𝜃, Φ, D0, 𝚺, and𝚲 are known at time tn and unknown at time tn+1. For completeness, we denote the fields at time
tn by (•)n and at time tn+1 by (•)n+1. Furthermore, we introduce the average value

(•)n+ 1
2
= 1

2
[(•)n + (•)n+1] , (64)

and the time step size

Δt = tn+1 − tn. (65)

The objective is to develop a numerical one-step method that permits to compute the values of the unknown fields at time
tn+1. For this purpose, we choose the time discretization

∫
0

wv ⋅
( 1
Δt
(𝝋n+1 − 𝝋n) − vn+ 1

2

)
𝜌0 dV = 0,

∫
0

w𝝋 ⋅
𝜌0

Δt
(vn+1 − vn)

+ 𝚲C
n+1 ∶

((
∇Xw𝝋

)T∇X𝝋n+ 1
2
+
(
∇X𝝋n+ 1

2

)T
∇Xw𝝋

)
dV + Πm,ext

n+ 1
2

(w𝝋) = 0,

∫
0

w𝜃

( 1
Δt
(𝜃n+1𝜂n+1 + 𝜃n𝜂n) −

1
Δt
(𝜃n+1 − 𝜃n)D𝜃

)
dV

−
∫
0

∇Xw𝜃 ⋅Qn+ 1
2

dV + Πt,ext
n+ 1

2

(w𝜃) = 0, (66)

∫
0

∇XwΦ ⋅D0n+ 1
2

dV + Πe,ext
n+ 1

2

(wΦ) = 0,

∫
0

wD0 ⋅
(

DD0 + ∇XΦn+ 1
2

)
dV = 0
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FRANKE et al. 15

for the weak equations (46)1−5. In addition, we propose

∫
0

wC ∶
(

DC − 𝚲C
n+1 + 𝚲

G
n+1 ⨳ Cn+ 1

2
+ 1

3
ΛC

n+1Gn+ 1
2

)
dV = 0,

∫
0

wG ∶
(

DG − 𝚲G
n+1 +

1
3
ΛC

n+1Cn+ 1
2

)
dV = 0,

∫
0

wC
(
DC − ΛC

n+1
)

dV = 0

(67)

for the weak equations (46)6−8 and

∫
0

w𝚲C ∶
((
∇X𝝋n+1

)T ∇X𝝋n+1 − Cn+1

)
dV = 0,

∫
0

w𝚲G ∶
(

1
2
Cn+1 ⨳ Cn+1 − Gn+1

)
dV = 0,

∫
0

wΛC

(
1
3
Gn+1 ∶ Cn+1 − Cn+1

)
dV = 0

(68)

for the weak equations (46)9−11.
In (66), the time-discrete versions of the external mechanical, thermal, and electrical contributions are given by

Πm,ext
n+ 1

2

(w𝝋) = −
∫
0

Bn+ 1
2
⋅w𝝋 dV −

∫
𝜕T0

Tn+ 1
2
⋅w𝝋 dA,

Πt,ext
n+ 1

2

(w𝜃) = −
∫
0

Rn+ 1
2
w𝜃 dV −

∫
𝜕Q0

Qn+ 1
2
w𝜃 dA, (69)

Πe,ext
n+ 1

2

(wΦ) =
∫
0

𝜌
e
0n+ 1

2
wΦ dV +

∫
𝜕
𝜔
0

𝜔
e
0n+ 1

2
wΦ dA.

The proposed discretization in time conforms to an EM scheme. An essential part of this scheme is the utilization
of the so-called discrete derivatives DC , DG , DC , DD0 , and D𝜃 , which were introduced in Reference 43 and
can be interpreted as algorithmic or time-discrete counterparts of 𝜕C , 𝜕G , 𝜕C , 𝜕D0 , and 𝜕𝜃 . According to
Reference 44, the concept of discrete derivatives is a further development of the original idea from Reference 23,
limited to St. Venant–Kirchhoff material. The five discrete derivatives can be defined, using the abbreviated notation
 = (1

, 
2
, 

3
, 

4
, 

5) = (C, G, C, D0, 𝜃), by

D i = 1
2

(
D in+1,n + D in,n+1

)
, i ∈ Y = {1, 2, 3, 4, 5},

D in+1,n = D i ( i
n+1,

i
n)
||| j

n+1,
k
n

, ∀j ∈ Y ∶ j < i; ∀k ∈ Y ∶ k > i,

D in,n+1 = D i ( i
n,

i
n+1)

||| j
n,

k
n+1

, ∀j ∈ Y ∶ j < i; ∀k ∈ Y ∶ k > i,

(70)

where D i ( i
n+1,

i
n)| j

n+1,
k
n

and D i ( i
n,

i
n+1)| j

n,
k
n+1

are given by

D i |


j
n+1,

k
n
= 𝜕 i

(


i
n+ 1

2

)||||| j
n+1,

k
n

+


(


i
n+1
)||| j

n+1,
k
n

− 
(


i
n
)||| j

n+1,
k
n

− ⟨𝜕 i

(


i
n+ 1

2

)||||| j
n+1,

k
n

,Δ i⟩

⟨Δ i,Δ i⟩
Δ i

, (71)

D i |


j
n,

k
n+1
= 𝜕 i

(


i
n+ 1

2

)||||| j
n,

k
n+1

+


(


i
n+1
)||| j

n,
k
n+1

− 
(


i
n
)||| j

n,
k
n+1

− ⟨𝜕 i

(


i
n+ 1

2

)||||| j
n,

k
n+1

,Δ i⟩

⟨Δ i,Δ i⟩
Δ i

.

Therein, ⟨•, •⟩ denotes the inner product and Δ i =  i
n+1 − 

i
n.
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16 FRANKE et al.

Remark 3. If  i is a scalar quantity, the definition of the discrete derivatives is simplified. It is then reminiscent of
Greenspan’s formula (cf. Reference 45) and becomes

D i |


j
n+1,

k
n
=
( i

n+1)| j
n+1 ,

k
n
−( i

n)| j
n+1 ,

k
n

Δ i ,

D i |


j
n,

k
n+1
=
( i

n+1)| j
n ,

k
n+1

−( i
n)| j

n ,
k
n+1

Δ i .

(72)

As shown in detail in Reference 36, the discrete derivatives possess two important properties:

1. Directionality:
This property is crucial to show the conservation of energy and states that

 (n+1) −  (n) = DC ∶ ΔC + DG ∶ ΔG + DC ΔC
+DD0 ⋅ ΔD0 + D𝜃 Δ𝜃.

(73)

2. Consistency:
One can show that the discrete derivatives are well defined in the limit ||Δ i||→ 0, where ||Δ i|| =

√
⟨Δ i,Δ i⟩,

because

D i = 𝜕 i

(
n+ 1

2

)
+
∑5

j=1O
(
||Δ j||2

)

+
∑5

k=1,k≠i
∑5

l=k+1,l≠iO(||Δk||||Δ l||).
(74)

Remark 4. Note that D i is not defined for ||Δ i|| = 0. This case may occur, for example, during the first iteration of
Newton’s method. To overcome this potential numerical difficulty, it is reasonable to compute the discrete derivatives for
||Δ i||→ 0 as for the midpoint rule, that is,

D i = 𝜕 i

(
n+ 1

2

)
. (75)

The validity of (75) follows from (74).

5.1 Semidiscrete balance laws

In this section, we show that the proposed time integration scheme in equations (66)–(68) satisfies the conservation laws
for any time step size. As customary in doing so (cf. Reference 32), we assume the homogeneous Neumann case.

5.1.1 Conservation of angular momentum

The total angular momentum at time tn+1 and at time tn is defined as

Jn+1 =
∫
0

𝝋n+1 × 𝜌0vn+1 dV , Jn =
∫
0

𝝋n × 𝜌0vn dV . (76)

The total angular momentum is conserved if its variation from tn to tn+1 vanishes, namely

Jn+1 − Jn = ∫0
𝝋n+1 × 𝜌0vn+1 − 𝝋n × 𝜌0vn dV

= ∫
0

(
𝝋n+1 − 𝝋n

)
× 𝜌0vn+ 1

2
+ 𝝋n+ 1

2
× 𝜌0 (vn+1 − vn) dV = 0.

(77)

To show that the time-discrete version of the weak form satisfies this requirement, we assume that wv = 𝜻 × 1
Δt
(𝝋n+1 −

𝝋n) ∈ V
0
v, where 𝜻 ∈ R3 is arbitrary but constant. Inserting this value into (66)1 results in

𝜻 ⋅
(

∫
0

1
Δt

(
𝝋n+1 − 𝝋n

)
× 𝜌0vn+ 1

2
dV
)
= 0. (78)
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FRANKE et al. 17

By adding (78) to (66)2 and assuming that w𝝋 = 𝜻 × 𝝋n+ 1
2
∈ V

0
𝝋, we obtain

𝜻 ⋅
(

1
Δt
∫
0

(
𝝋n+1 − 𝝋n

)
× 𝜌0vn+ 1

2
+ 𝝋n+ 1

2
× 𝜌0 (vn+1 − vn) dV

)

+ ∫
0
𝚲C

n+1 ∶
((
∇X𝝋n+ 1

2

)T (
�̂�

T + �̂�
)
∇X𝝋n+ 1

2

)
dV − 𝜻 ⋅Mm,ext

n+ 1
2

= 0,
(79)

where �̂� is again a skew-symmetric matrix and

Mm,ext
n+ 1

2

=
∫
0

𝝋n+ 1
2
× Bn+ 1

2
dV +

∫
𝜕T0

𝝋n+ 1
2
× Tn+ 1

2
dA. (80)

Considering the properties of �̂� , we finally arrive at

𝜻 ⋅
(

1
Δt
(Jn+1 − Jn) −Mm,ext

n+ 1
2

)
= 0. (81)

Thus, as long as Mm,ext
n+ 1

2

= 0, for example, when there are no external mechanical torques acting on the body, we can

conclude that the proposed formulation conserves the total angular momentum.

5.1.2 Conservation of energy

The total energy at time steps tn+1 and tn can be written as

En+1 = Tn+1 + Un+1, En = Tn + Un, (82)

with the corresponding kinetic energies

Tn+1 =
1
2 ∫0

𝜌0vn+1 ⋅ vn+1 dV , Tn =
1
2 ∫0

𝜌0vn ⋅ vn dV , (83)

and

Un+1 = ∫0
 (Cn+1,Gn+1,Cn+1,D0n+1 , 𝜃n+1) +D0n+1 ⋅ ∇XΦn+1 + 𝜃n+1𝜂n+1 dV ,

Un = ∫0
 (Cn,Gn,Cn,D0n , 𝜃n) +D0n ⋅ ∇XΦn + 𝜃n𝜂n dV .

(84)

The total energy is conserved from tn to tn+1 if its variation vanishes, that is,

En+1 − En = Tn+1 − Tn + Un+1 − Un = 0. (85)

To show that the proposed time-discrete formulation conserves the total energy, we start by assuming that in equation
(66)1, wv = vn+1 − vn ∈ V

0
v, which yields

∫
0

(vn+1 − vn) ⋅
𝜌0

Δt
(
𝝋n+1 − 𝝋n

)
dV =

∫
0

(vn+1 − vn) ⋅ vn+ 1
2
𝜌0 dV

= 1
2 ∫0

(vn+1 ⋅ vn+1 − vn ⋅ vn) 𝜌0 dV (86)

= Tn+1 − Tn.
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18 FRANKE et al.

Next, we replace the test functions (wC, wG, wC) in (67) with (Cn+1 − Cn, Gn+1 − Gn, Cn+1 − Cn) ∈ V
0
A ×V

0
A ×V

0
A, and

thus obtain

∫
0

DC ∶ (Cn+1 − Cn) dV

=
∫
0

(
𝚲C

n+1 − 𝚲
G
n+1 ⨳ Cn+ 1

2
− 1

3
ΛC

n+1Gn+ 1
2

)
∶ (Cn+1 − Cn) dV ,

∫
0

DG ∶ (Gn+1 − Gn) dV =
∫
0

(
𝚲G

n+1 −
1
3
ΛC

n+1Cn+ 1
2

)
∶ (Gn+1 − Gn) dV ,

∫
0

DC (Cn+1 − Cn) dV =
∫
0

ΛC
n+1 (Cn+1 − Cn) dV .

(87)

In addition, we replace the test functions (w𝜃, wΦ, wD0) in (66)3-5 with (1, Φn+1 − Φn, D0n+1 −D0n) ∈ V
0
𝜃
×V

0
Φ ×V

0
D0

.
Inserting the constitutive relations and subtracting (66)4 from (66)5 then yields

∫
0

D𝜃 (𝜃n+1 − 𝜃n) dV = ∫
0
(−𝜃n+1𝜂n+1 + 𝜃n𝜂n) dV ,

∫
0

DD0 ⋅
(
D0n+1 −D0n

)
dV = ∫

0

(
−∇XΦn+1D0n+1 + ∇XΦnD0n

)
dV .

(88)

The enforcement of the constraints on position level in the equations of (68) can be transferred to the velocity level, as
shown in Reference 28. More precisely, if the equations in (68) hold at both time tn and time tn+1, one can show that

∫
0

w𝚲C ∶ (Cn+1 − Cn) dV

=
∫
0

w𝚲C ∶
(((

∇X𝝋n+1
)T −

(
∇X𝝋n

)T
)
∇X𝝋n+ 1

2

+
(
∇X𝝋n+ 1

2

)T (
∇X𝝋n+1 − ∇X𝝋n

))
dV ,

∫
0

w𝚲G ∶
(

Cn+ 1
2
⨳ (Cn+1 − Cn) − (Gn+1 − Gn)

)
dV = 0,

∫
0

wC

(
1
3
Cn+ 1

2
∶ (Gn+1 − Gn) + 1

3
Gn+ 1

2
∶ (Cn+1 − Cn) − (Cn+1 − Cn)

)
dV = 0

(89)

also holds.
Next, we consider the directionality property of the discrete derivatives (73) as well as the relations (87) and

(88). By making the additional assumption that the test functions (w𝚲C , w𝚲G , wΛC ) in (89) take the admissible values
(𝚲C

n+1, 𝚲
G
n+1, Λ

C
n+1) ∈ V

0
A ×V

0
A ×V

0
A, we can show that the difference Un+1 − Un (see (84)) yields

Un+1 − Un =
∫
0

 (n+1) −  (n) dV

+
∫
0

D0n+1 ⋅ ∇XΦn+1 −D0n ⋅ ∇XΦn + 𝜃n+1𝜂n+1 − 𝜃n𝜂n dV

=
∫
0

DC ∶ ΔC + DG ∶ ΔG + DCΔC + DD0 ⋅ ΔD0 dV

+
∫
0

D𝜃Δ𝜃 +D0n+1 ⋅ ∇XΦn+1 −D0n ⋅ ∇XΦn + 𝜃n+1𝜂n+1 − 𝜃n𝜂n dV

=
∫
0

𝚲C
n+1 ∶ (Cn+1 − Cn) dV

−
∫
0

𝚲G
n+1 ∶

(
Cn+ 1

2
⨳ (Cn+1 − Cn) − (Gn+1 − Gn)

)
dV
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FRANKE et al. 19

−
∫
0

(
1
3
Cn+ 1

2
∶ (Gn+1 − Gn) + 1

3
Gn+ 1

2
∶ (Cn+1 − Cn) − (Cn+1 − Cn)

)
dV

=
∫
0

𝚲C
n+1 ∶

(((
∇X𝝋n+1

)T −
(
∇X𝝋n

)T
)
∇X𝝋n+ 1

2

+
(
∇X𝝋n+ 1

2

)T (
∇X𝝋n+1 − ∇X𝝋n

))
dV

= −
∫
0

(
𝝋n+1 − 𝝋n

)
⋅
𝜌0

Δt
(vn+1 − vn) dV , (90)

where (66)2 is used on the last step of equation (90), for the specific case where w𝝋 = 𝝋n+1 − 𝝋n ∈ V
0
𝝋. Finally, with the

help of (86), we can conclude that indeed the last expression in (90) coincides with the (minus) increment of the kinetic
energy, namely

Un+1 − Un = −
∫
0

(
𝝋n+1 − 𝝋n

)
⋅
𝜌0

Δt
(vn+1 − vn) dV = − (Tn+1 − Tn) . (91)

In summary, the proposed time-discrete version of the weak form conserves the total energy of the system, which is
essentially due to the directionality property of the discrete derivatives.

6 SPACE DISCRETIZATION: FINITE ELEMENT METHOD

We employ the finite element method for the spatial discretization of the time-discrete weak form proposed throughout
equations (66)–(68). For this purpose, the body 0 is subdivided into ne nonoverlapping finite elements such that

0 ≈ h
0=

ne⋃

e=1


e
0, (92)

where the superscript (•)h indicates an approximation. Furthermore, we utilize the isoparametric concept for the dis-
cretization in space. Accordingly, we interpolate the continuous field quantities  = (vt, 𝝋t, 𝜃t, Φt) as specified by the
function spaces V

h
v ×V

h
𝝋 ×V

h
𝜃
×V

h
Φ, given by

V
h
v =

{
vt ∈ Vv | vh

t |e
0
=
∑nnode

a=1 Nava
t

}
, V

h
𝝋 =

{
𝝋t ∈ V𝝋 | 𝝋h

t |e
0
=
∑nnode

a=1 Na
𝝋

a
t

}
,

V
h
𝜃
=
{
𝜃t ∈ V𝜃 | 𝜃h

t |e
0
=
∑nnode

a=1 Na
𝜃

a
t

}
, V

h
Φ =

{
Φt ∈ VΦ | Φh

t |e
0
=
∑nnode

a=1 NaΦa
t

}
.

(93)

Therein, nnode indicates the number of nodes used per element for the approximation of the corresponding continuous
quantity and Na ∶ e

0 → R denotes the nodal shape functions. Following the work in Reference 35, we make use of a
discontinuous interpolation of the remaining fields = (D0t , Ct, Gt, Ct, 𝚲C

t , 𝚲G
t , ΛC

t ). This entails that these fields can
actually be discretized independently on each element of the mesh, enabling the use of a static condensation process
before assembling the global tangent matrix (for more details see Appendix A). Doing so leads to an efficient formulation
from a computational costs standpoint. The interpolation of these fields is carried out according to the function spaces
V

h
D0
×V

h
A ×V

h
A ×V

h
A ×V

h
A ×V

h
A ×V

h
A, specified as

V
h
D0
=
{

D0t ∈ VD0 | Dh
0 t|e

0
=
∑nnode

a=1 MaDa
0 t

}
, V

h
A =

{
At ∈ VA | Ah

t |e
0
=
∑nnode

a=1 MaAa
t

}
,

V
h
A =

{
At ∈ VA | Ah

t |e
0
=
∑nnode

a=1 MaAa
t

}
,

(94)

where nnode denotes the number of nodes used to interpolate the discontinuous fields  within one finite element. Note
that it is also possible to approximate the variables in a different way. However, for the sake of simplicity, we restrict
ourselves in this work to the form presented above. The test functions are approximated following a Bubnov-Galerkin
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20 FRANKE et al.

approach. More precisely, we choose (wv, w𝝋, w𝜃, wΦ) ∈ V
0,h
v ×V

0,h
𝝋 ×V

0,h
𝜃
×V

0,h
Φ , where

V
0,h
v =

{
wv ∈ V

0
v | wh

v|e
0
=
∑nnode

a=1 Nawa
v

}
, V

0,h
𝝋 =

{
w𝝋 ∈ V

0
𝝋 | wh

𝝋|e
0
=
∑nnode

a=1 Nawa
𝝋

}
,

V
0,h
𝜃
=
{

w𝜃 ∈ V
0
𝜃
| wh

𝜃
|e

0
=
∑nnode

a=1 Nawa
𝜃

}
, V

0,h
Φ =

{
wΦ ∈ V

0
Φ | wh

Φ|e
0
=
∑nnode

a=1 Nawa
Φ

}
,

(95)

and (wD0 , wC, wG, wC, w𝚲C , w𝚲G , wΛC ) ∈ V
h
D0
×V

h
A ×V

h
A ×V

h
A ×V

h
A ×V

h
A ×V

h
A. Inserting the spatial approxima-

tions into the time-discrete weak form in (66)–(68) yields

ne

A
e=1

nnode∑

a=1
wa

v ⋅ Ra,e
v = 0,

ne

A
e=1

nnode∑

a=1
wa
𝝋 ⋅ Ra,e

𝝋 = 0,

ne

A
e=1

nnode∑

a=1
wa
𝜃
Ra,e
𝜃
= 0,

ne

A
e=1

nnode∑

a=1
wa
ΦRa,e

Φ = 0,

ne

A
e=1

nnode∑

a=1
wa

D0
⋅ Ra,e

D0
= 0,

ne

A
e=1

nnode∑

a=1
wa

C ∶ Ra,e
C = 0,

ne

A
e=1

nnode∑

a=1
wa

G ∶ Ra,e
G = 0,

ne

A
e=1

nnode∑

a=1
wa

CRa,e
C = 0,

ne

A
e=1

nnode∑

a=1
wa
𝚲C ∶ Ra,e

𝚲C = 0,
ne

A
e=1

nnode∑

a=1
wa
𝚲G ∶ Ra,e

𝚲G = 0,

ne

A
e=1

nnode∑

a=1
wa
ΛC Ra,e

ΛC = 0,

(96)

where A
ne
e=1 denotes the assembly operator and where the nodal residuals are defined as

Ra,e
v =

∫


e
0

Na
( 1
Δt

(
𝝋n+1 − 𝝋n

)
− vn+ 1

2

)
𝜌0 dV ,

Ra,e
𝝋 =

∫


e
0

Na
(
𝜌0

Δt
(vn+1 − vn)

)
+ BaT

n+ 1
2

(
2𝚲C

n+1
)V dV −

∫


e
0

NaB̄n+ 1
2

dV ,

Ra,e
𝜃

=
∫


e
0

Na
( 1
Δt
(𝜃n+1𝜂n+1 − 𝜃n𝜂n) +

1
Δt
(𝜃n+1 − 𝜃n)D𝜃

)
dV

−
∫


e
0

∇XNa ⋅Qn+ 1
2

dV −
∫


e
0

NaR̄n+ 1
2

dV ,

Ra,e
Φ =

∫


e
0

∇XNa ⋅D0n+ 1
2

dV +
∫


e
0

Na
𝜌

e
0n+ 1

2
dV ,

Ra,e
D0

=
∫


e
0

Ma
(

DD0 + ∇XΦn+ 1
2

)
dV ,

Ra,e
C =

∫


e
0

Ma
(

DC − 𝚲C
n+1 + 𝚲

G
n+1 ⨳ Cn+ 1

2
+ 1

3
ΛC

n+1Gn+ 1
2

)
dV ,

Ra,e
G =

∫


e
0

Ma
(

DG − 𝚲G
n+1 +

1
3
ΛC

n+1Cn+ 1
2

)
dV ,

Ra,e
C =

∫


e
0

Ma (DC − ΛC
n+1
)

dV ,

Ra,e
𝚲C =

∫


e
0

Ma
((
∇X𝝋n+1

)T ∇X𝝋n+1 − Cn+1

)
dV ,
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FRANKE et al. 21

F I G U R E 1 Nodal points of the different finite element families. The nodes of the continuous fields are represented by bullets ◦,
whereas the nodes of the discontinuous mixed fields are indicated by crosses ×.

Ra,e
𝚲G =

∫


e
0

Ma
(

1
2
Cn+1 ⨳ Cn+1 − Gn+1

)
dV ,

Ra,e
ΛC =

∫


e
0

Ma
(

1
3
Gn+1 ∶ Cn+1 − Cn+1

)
dV . (97)

In the above, Ba ∈ R6×3 is the standard nodal operator matrix and (•)V refers to Voigt’s vector notation of symmetric
stress-related quantities. Note that we have omitted the superscript (•)h in the representation of the residuals (97), for
clarity.

7 NUMERICAL EXAMPLES

In this section, we investigate the properties of the novel mixed thermo-electro-mechanic formulation numerically in a
variety of examples. Therein, three different finite element families are employed for space discretization. These are:

1. H1
cH0

d: Continuous trilinear hexahedral elements for 𝝋, Φ, and 𝜃. Discontinuous constant hexahedral elements for
D0, 𝚺, and 𝚲.

2. P2cP1d: Continuous triquadratic tetrahedral elements for 𝝋, Φ, and 𝜃. Discontinuous trilinear tetrahedral elements
for D0, 𝚺, and 𝚲.

3. H2
cH1

d: Continuous triquadratic serendipity-type hexahedral elements for 𝝋, Φ, and 𝜃. Discontinuous trilinear
hexahedral elements for D0, 𝚺, and 𝚲.

The nodal points of the different finite element mesh types are given in Figure 1 for convenience.
We employ the enhanced Mooney-Rivlin material model proposed in Example 1 for the numerical investigations. In

that regard, the material parameters provided by Table 1 are used for all subsequent examples.

7.1 Patch test

The purpose of the widely used patch test is to verify that a finite element formulation is capable of correctly reproducing
homogeneous states of stress - even with distorted meshes. This is a fundamental condition that any admissible finite
element formulation has to fulfill. To show that the novel mixed formulation passes this patch test requirement, we
consider a cube-shaped body 0 = [0, 1]3 m3, which has an initial temperature of 𝜃0 = 293.15 K and is investigated with
two different finite element meshes (see Figure 2). The initial coordinates of the inner nodes of the distorted mesh can be
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22 FRANKE et al.

T A B L E 1 Material parameters employed for the numerical examples.

Mechanical parameters a 25,000 Pa

b 50,000 Pa

c 500,000 Pa

d 250,000 Pa

e 5209 Pa

Mass density (transient examples) 𝜌0 1000 kgm−3

Specific heat capacity 𝜅 1500 JK−1m−3

Coupling coefficient 𝛽 2.233 × 10−4 K−1

Thermal conductivity k0 0.23 WK−1m−1

Reference temperature 𝜃R 293.15 K

Relative permittivity 𝜀r 4 -

F I G U R E 2 The regular (left) and the distorted (right) mesh employed in the patch test.

found in Reference 46. We employ H2
cH1

d elements for both the regular and the distorted mesh. For the sake of simplicity,
equivalent results for the H1

cH0
d and P2cP1d elements are not shown in Figures 2–5.

The simulation is performed for a total time T = 1 s with a time step size Δt = 0.1 s and a tolerance of Newton’s
method of eps= 1 × 10−6. During the simulation, the body is held on three faces to prevent translational and rotational
movements and is compressed displacement-driven to half of its original height. These specifications can be expressed
with respect to the initial configuration by the mechanical Dirichlet boundary conditions

𝜑1(X1 = 0, X2, X3) = 0,
𝜑2(X1, X2 = 0, X3) = 0,
𝜑3(X1, X2, X3 = 0) = 0,

(98)

and

𝜑3(X1, X2, X3 = 1 m) = 1 m − t
T

0.5 m. (99)

The compression causes the body to expand in the X1 and X2 directions and to heat up, which is due to the chosen material
model. Note that the patch test presented here is a quasi-static example, since we neglect the transient effects for the
mechanical and the electrical part, but consider them for the thermal part. Thus, the proposed integrator is active and the
discrete gradients are in use. Furthermore, we choose 𝜌0 = 0. We subsequently investigate, whether the formulation is
able to reproduce a homogeneous state of stress as well as a homogeneous temperature distribution and a homogeneous
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FRANKE et al. 23

F I G U R E 3 Von Mises stress distribution 𝜎vM [Pa] resulting from the patch test for the regular and the distorted mesh.

F I G U R E 4 Temperature distribution 𝜃 [K] resulting from the patch test for the regular and the distorted mesh.

F I G U R E 5 Electric potential distribution Φ [V] resulting from the patch test for the regular and the distorted mesh.

distribution of the electric potential, as it can be expected for the patch test. We use von Mises stress 𝜎vM as stress measure,
where the required Cauchy stress tensor can be obtained by

𝝈 = 2
J

F𝚲CFT
. (100)

As Figures 3–5 show, the novel formulation satisfies the patch test requirement. More precisely, a simulation with the
given parameters leads to a homogeneous stress, temperature, and electric potential distribution for both the regular and
the distorted mesh.
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24 FRANKE et al.

7.2 Analytical convergence analysis

The idea of this example is to numerically verify the spatial order of all fields for the finite element families H1cH0d,
P2cP1d, and H2cH1d (cf. References 35,36,47). For this ad-hoc manufactured example all time effects are neglected, such
that we have a thermo-electro-elastostatic problem with stationary heat conduction. Accordingly, the proposed integrator
is not employed for this example.

We again consider a cube-shaped body 0 = [0, 1]3 m3. For the analytical convergence analysis we assume solutions
of the form

𝝋
a = (X1 + Γ1 X3

1 ) e1 + (X2 + Γ2 X3
2 ) e2 + (X3 + Γ3 X3

3 ) e3,

𝜃
a = 𝜃 X3

2 + 293.15 K,

Φa = Φ̃ X3
1 ,

(101)

for the primary fields, where Γk = 0.01 k, k ∈ {1, 2, 3}, 𝜃 = 10 K, and Φ̃ = 100 V. These assumed solutions allow to com-
pute the first Piola–Kirchhoff stress tensor, the Lagrangian electric displacement vector, and the Piola heat flux vector#

analytically. Eventually, we compute the body force, charge density, and heat source analytically via the strong form given
by (42) as

B
a
= −DivPa

, 𝜌
e,a
0 = DivDa

0, R
a
= DivQa

, (102)

where all time effects are neglected. The above analytically computed values are subsequently used for the numerical
simulations. In that regard, Dirichlet boundaries are imposed at the faces of the body for all fields in agreement with the
assumed analytical solutions (101). In particular, considering Figure 6, outer faces (patterned surfaces) of the body are
imposed with Dirichlet boundary conditions by𝝋a,Φa, and 𝜃

a, given by (101). The simulation is performed for a total time
T = 1 s with a time step sizeΔt = 0.1 s and a tolerance of Newton’s method of eps= 1 × 10−6. Snapshots of the final mesh
with von Mises stress, electric potential distribution, and absolute temperature field are depicted in Figure 7 for P2cP1d

and H2cH1d elements. Eventually, the analytical solutions in (101) for all fields (•)a are compared to the numerically
computed solutions (•). For this purpose, the h-convergence rate is computed by employing the L2 norm of the error e(•),
given by

||e(•)||L2 =
||(•) − (•)a||L2

||(•)a||L2

, (103)

where

||(•)||L2 =
[

∫
0

⟨(•), (•)⟩ dV
] 1

2

. (104)

To this end, the h-convergence results are depicted in Figure 8. As expected, at least p + 1 convergence is observed for all
fields for the considered elements.

7.3 Rotating cross-shaped body

The objective of the first transient example is to illustrate the conservation properties as well as the order of accuracy
of the novel mixed formulation. For this purpose, we consider a cross-shaped body, whose geometry and finite element
mesh is given in Figure 9. The finite element mesh consists of a total of 104 H2

cH1
d elements. We further specify electrical

Dirichlet boundary conditions of the form

Φ(X1, X2, X3 = −0.5 m, t) = f (t),
Φ(X1, X2, X3 = 0 m, t) = 0,

(105)
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FRANKE et al. 25

F I G U R E 6 Dirichlet boundary conditions (left), initial P2cP1d (mid), and H2cH1d (right) meshes employed for the analytical
convergence analysis example.

F I G U R E 7 Von Mises stress 𝜎vM [Pa] (left), electric potential Φ [V] (mid), and absolute temperature 𝜃 [K] (right) for P2cP1d (top), and
H2cH1d (bottom) meshes, respectively.

where

f (t) =
⎧
⎪
⎨
⎪
⎩

sin
(
𝜋t 1

s

)
for t ≤ 0.5 s

1 for t > 0.5 s
[MV]. (106)

Apart from that, no other Dirichlet boundary conditions are imposed. However, due to a prescribed initial velocity

v0 = 𝝎 × X, 𝝎 = [0, 0, 4]T s−1
, X = [X1, X2, X3]T, (107)

the body rotates around the X3-axis during simulation. The system is simulated for a total time T = 10 s with a time step
size Δt = 0.05 s. Furthermore, we set the tolerance of Newton’s method to eps= 1 × 10−3 and the initial temperature of
the body to 𝜃0 = 293.15 K.
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26 FRANKE et al.

F I G U R E 8 Spatial convergence analysis for H1cH0d (left), P2cP1d (mid), and H2cH1d (right) elements for the analytical convergence
analysis example.

F I G U R E 9 Geometry and finite element mesh of the cross-shaped body.

A simulation with the given parameters yields the total angular momentum evolution depicted in Figure 10. Look-
ing at the differences of the total angular momentum from one time step to the next, it is evident that the novel
mixed framework is consistent with respect to the total angular momentum for both the midpoint rule (MP) and the
energy-momentum scheme (EM). As Figure 11 shows, this does not apply to the total energy. While the energy is con-
served for t > 0.5 s (dashed line) when using the energy-momentum scheme, using the midpoint rule results in an energy
blow up.

Next, we investigate the order of accuracy of the energy-momentum scheme. For this purpose, we compute the L2
norm of the error, which accumulates in the time interval 0.5 s ≤ t ≤ 0.6 s, for different time step sizes and for all primary
variables (𝝋, 𝜃, Φ). The L2 norm of the error is computed according to (103). However, for this example, we replace the
analytical solution with a reference solution that is computed with a very small time step size (Δt = 2.5 × 10−5 s) due to the
lack of an analytical solution. As Figure 12 shows, the energy-momentum scheme inherits, as expected, the second-order
accuracy of the midpoint rule (slopes of the regression lines are (𝝋, Φ, 𝜃) = (2.0449, 2.0127, 2.0242)).

7.4 Microfluidic pumping device

The purpose of the final example is to evaluate the proposed energy-momentum scheme within a realistic long-term
application.

A sophisticated technical realization of temperature sensitive DEs are microfluidic pumping devices. Such microflu-
idic pumping devices are employed, for instance, as medical implants, for example, for micro injection of drugs (see
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F I G U R E 10 Left: Evolution of the total angular momentum resulting from the rotating cross-shaped body example over the course of
the simulation computed using both the energy-momentum scheme (EM) and the midpoint rule (MP). Right: Incremental differences of the
total angular momentum from one time step to the next.

F I G U R E 11 Left: Evolution of the total energy resulting from the rotating cross-shaped body example over the course of the
simulation computed using both the energy-momentum scheme (EM) and the midpoint rule (MP). Right: Incremental differences of the
total energy from one time step to the next.

Reference 37). The microfluidic pumping device to be considered is closely related to the one presented in Reference 48
and 37 and likewise does not consider fluid-structure interaction. The full shape of the cylindrical pumping device with
H2cH1d mesh is shown in Figure 13.

Radii and dimensions of main body and outlet nozzle and boundary conditions of the pumping device are provided by
Figure 14. According to the symmetry only one eighth of the device with corresponding symmetry boundary conditions
is considered during the simulation (see also Figure 14).

For the pumping purpose two elastomer layers are sandwiched between two compliant electrodes at top and bottom
walls, respectively (see Figure 14, right). In particular, the pumping motion is controlled by a Dirichlet boundary condition
of the electric potential field via

Φ1 = 0 V, Φ2 = Φ0

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

sin
(

𝜋

2
t
t1
k

)
∀ t ∈ [t0

k, t1
k)

1 ∀ t ∈ [t1
k, t2

k)

cos
(

𝜋

2
t−t2

k
t3
k−t2

k

)
∀ t ∈ [t2

k, t3
k)

0 ∀ t ∈ [t3
k, t4

k)

, Φ3 = −Φ2(t + 16 s), (108)
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F I G U R E 12 L2 norm of the error resulting from the rotating cross-shaped body example, plotted for different time step sizes and all
primary variables.

F I G U R E 13 Mesh of the microfluidic pumping device.

whereΦ0 = 0.75 GV and t0
k = 32(k − 1) s, t1

k = t0
k + 4 s, t2

k = t1
k + 4 s, t3

k = t2
k + 4 s, t4

k = t0
k + 32 s, k ∈ Z>0 = 1, 2, ...,ncyc (see

also Figure 15). Furthermore, the heating of the pumped fluid is idealized by a thermal Neumann boundary condition
imposed at all internal walls and controlled by

Q = 0.8
⎧
⎪
⎨
⎪
⎩

t for t ≤ 2 s
4 − t for 2 s < t ≤ 4 s
0 for t > 4 s

[ W
m2

]
. (109)

The simulation is performed with a total simulation time of T = 100 s, a time step size of Δt = 0.1 s, and a tolerance of
Newton’s method of eps= 1 × 10−6. Accordingly, more than three pumping cycles are performed.

A mesh for one eigth of the device is comprised of 320 H2cH1d elements with a total of 9290 displacement, elec-
tric potential, and absolute temperature unknowns (size of the system of linear equations to be solved after static
condensation) is employed.

Snapshots of the motion with electric potential, absolute temperature, and von Mises stress results are shown in
Figure 16 for half of the pumping device. Due to the chosen setting, large deformations, temperature, and electric poten-
tial evolutions can be observed. After the heating phase and during constant phases of the applied potential fields (see
Figure 15) the total energy is a constant of motion. To this end the total energy and the energy difference are shown in
Figure 17. As can be observed the energy is perfectly reproduced by the proposed EM integration and is numerically sta-
ble during the long-term simulation with periodic loading. Furthermore, the energy difference is bounded by the chosen
tolerance of Newton’s method.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7209 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [02/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FRANKE et al. 29

F I G U R E 14 Top view (left) and side view (right) including mechanical (symmetry lines and hatching), electrical (Φ1−4), and thermal
(Q) boundary conditions employed for microfluidic pumping device example.

F I G U R E 15 Heating of the pump with Q (left) and electric potential fields Φ2 and Φ3 for the pumping process (right) employed for
microfluidic pumping device example.

F I G U R E 16 Snapshots of the microfluidic pumping device with electric potential field Φ [V] (left), the absolute temperature field
𝜃 [K] (mid), and von Mises stress 𝜎vM [Pa] (right) at t = 0 s (top), t = 6 s (mid), and t = 22 s (bottom).
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F I G U R E 17 Total energy of the microfluidic pumping device (left) and energy difference (right) for the first pumping cycle, see also
Figure 15 (right).

8 CONCLUDING REMARKS

In this article, we have presented a novel framework for coupled thermo-electro-elastodynamics. Building upon previous
works in the field of elastodynamics,28 electro-elastodynamics,34,35 and recently upon thermo-electro-elastodynamics,36

we have proposed a new tailor-made multi-field, mixed finite element formulation for the multiphysics context
considered. It is worth mentioning that the approach we have chosen to address the problem is not limited to
thermo-electro-elastodynamics, but can be applied to design mixed formulations for nonpotential (multi-field) systems
in general.

The starting point is a variational mixed formulation for elastostatics that is subsequently converted to its associated
mixed strong form. In a second step, the mixed strong form is then extended to a mixed coupled strong form by sup-
plementing the equations with the desired physics in form of additional initial boundary value problems and a suitable
coupling within, for example, the energy density function. These two steps can be applied for a variety of different systems,
including those with nonpotential contributions.

Our present work is based on a mixed elastostatic formulation, which is specifically designed for the case of polycon-
vex strain energy functions (cf. Reference 28). This formulation is particularly elegant due to the cascading introduction
of independent strain fields and the use of a rather unknown algebraic operation, namely the tensor cross product. We
were able to extend the benefits of this formulation to the case of thermo-electro-elastodynamics by following the afore-
mentioned path. In this context, we have incorporated a state of the art polyconvexity-based thermo-electro-mechanical
constitutive model that characterizes the behavior of dielectric elastomers. This model embeds a full interplay between the
three physics involved, namely, thermo-electro-mechanics. This is in contrast with a more simplified constitutive model
considered in our previous publication,36 where the thermal field was coupled exclusively with volumetric deformations.

Furthermore, we have shown how the advantages of energy and momentum consistent time integration schemes can
be transferred to multiphysics problems, in particular thermo-electro-elastodynamics.

Finally, we have included a series of numerical examples to investigate the proposed framework. More precisely, we
have evaluated the time and space convergence properties as well as the long term stability of the formulation. In doing
so, we were able to emphasize the advantageous characteristics of our formulation.
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The source code used for the finite element computations is implemented in Matlab under MIT license and is avail-
able at https://github.com/kit-ifm/moofeKIT. Version 1.00 of the code, used in this article, is archived at Reference 49.

ENDNOTES
∗The model given in (20) is typically known as a modified entropic electro-elasticity model.
†It is important to remark that the proposed framework is not restricted to the suggested energy function given in (20).
‡The polyconvexity properties of (23) are discussed in more detail in Appendix A.39

§G is bounded to independent variable C instead of C(𝝋) = (∇X𝝋)T ∇X𝝋. The same applies for the independent variable C which is bounded
to the independent variables G and C, respectively instead of G(C(𝝋)) and C(𝝋).

¶By additionally enforcing constraint (6)2 directly, we also yield a mixed formulation with regard to the electric part, which is known as ‘hybrid
finite-element model’ (see Reference 41) and is commonly applied in electrostatics due to some advantages (cf. References 35,36,42).
#A detailed survey of the analytical computations is provided in Appendix B.
||Note that summation convention applies to pairs of repeated indices in (A1).
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APPENDIX A. STATIC CONDENSATION

Analogous to Reference 28, we suggest using a static condensation procedure to obtain an efficient implementation of
our framework. To achieve this, we reconsider (97)1,2 as

Ra,e
v = Mab,e

(
1
Δt

(
𝝋bn+1

− 𝝋bn

)
− vbn+ 1

2

)
,
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2

dV ,
(A1)

where a, b = 1, ...,nnode and we introduce the mass matrix Mab,e ∈ R3×3 with||

Mab,e =
∫


e
0

𝜌0 Na Nb dV I. (A2)

In order to reduce the number of variables within the static condenstation procedure, we first consider (A1)1, which can
be transformed into
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2
Δt
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) − vbn . (A3)

Inserting the above equation into (A1)2 yields
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which replaces (97)1 and (97)2, such that we eventually obtain the vector of nodal residuals
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, (A5)

where ̃ = {𝝋, 𝜃,Φ} and = {D0,C,G,C,𝚲C
,𝚲G

,ΛC}.
Linearization within the framework of Newton’s method eventually results in

DR Δqn+1 = KT Δqn+1, (A6)
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where R = A
ne
e=1Re denotes the assembled residual vector, q = [qT

̃
,qT


]T contains all degrees of freedom, and KT = A

ne
e=1Ke

T
is the assembled tangent matrix with the element contributions

Ke
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

]

. (A7)

For the particular choice of the material model in Example 1, we obtain
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and
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For the sake of simplicity, the specific contributions of Ke
𝝋𝝋, Ke

𝜃𝜃
and so forth are not provided here. In particular, Ke

(•)1(•)2
denotes linearization of Re

(•)1
w.r.t. (•)2 where (•)1, (•)2 ∈ {̃,}.

For the static condenstation, we first consider the full system of linear equations

[
Ke
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Ke
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Ke
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Ke
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
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⎦
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[
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Re


]

, (A12)

for the unknowns Δqe


and Δqe


. Solving the full system of linear equations after assembling the element contributions
in (A12) is very demanding, but can be reduced considerably by employing static condensation. On element level, from
(A12)2 we obtain

Δqe

= −

((
Ke


)−1 Re

+
(
Ke
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)−1 Ke
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Δqe
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)
. (A13)
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Afterwards, we eliminate Δqe


by inserting (A13) into (A12)1, which yields
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e

. (A14)

This static condensation procedure eliminates the number of unknowns for the system of linear equations to the minimal
set Δqe

̃
with the reduced residual vector R̂

e
and the associated tangent matrix K̂

e
. Accordingly, the computational effort

to obtain the solution is significantly reduced. After computation of Δqe
̃

, we are able to compute Δqe


via relation (A13).

APPENDIX B. ANALYTICAL CONVERGENCE ANALYSIS EXAMPLE: ANALYTICAL
COMPUTATIONS

The assumed analytical solutions in (101) build the starting point of the analytical computations, that we need to provide
for the numerical example in Section 7.2. In the following, we provide the related computations in order to compute the
source terms which are neccessary to plug in (102):

• With (1), (16), (17), and (18) we are able to compute the kinematic relations

Fa =∇X𝝋
a(X)

=(1 + 2Γ1 X2
1 ) e1 ⊗ e1 + (1 + 2Γ2 X2

2 ) e2 ⊗ e2 + (1 + 2Γ3 X2
3 ) e3 ⊗ e3, (B1)

Ca =(Fa)T Fa
, (B2)

Ga =1
2

Ca ⨳ Ca
, (B3)

Ca =1
3

Ca ∶ Ga
. (B4)

• With (6), (10) we compute the gradients of the electric potential and the thermal field

Ea
0 = −∇XΦa(X), 𝜸

a = ∇X𝜃
a(X). (B5)

• With (21) and E0 = 𝜕D0 we are able to compute the Lagrangian electric displacement vector

Da
0 =

𝜀r𝜀0
√

Ca

f a
𝜃

(
Ca)−1Ea

0 , f a
𝜃
= 𝜃

a

𝜃R
. (B6)

• With (21), the derivatives of the energy density function are given by

𝜕C
a =f a

𝜃

(

a I + 1
2 𝜀r𝜀0

√
Ca

Da
0 ⊗ Da

0

)

, (B7)

𝜕G
a =f a

𝜃
b I, (B8)

𝜕C
a = − 3 𝛽 e (𝜃a − 𝜃R)

+ f a
𝜃

(
c
2

(

1 − 1
√

Ca

)

− d
2 Ca −

1
4 𝜀r𝜀0 (Ca)3∕2 Da

0 ⋅ (C
aDa

0)

)

. (B9)

• With (42)8,7,6, we eventually compute the Lagrange multipliers

ΛCa = 𝜕C
a
, (B10)

𝚲Ga = 𝜕G
a + 1

3
𝜕C

a Ca
, (B11)

𝚲Ca = 𝜕C
a + 𝚲Ga ⨳ Ca + 1

3
ΛCa Ga

. (B12)
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36 FRANKE et al.

With the above equations, with (42)2, and (27), we are able to compute the desired first and second Piola–Kirchhoff
stress tensor, and the Piola heat flux vector

Pa = Fa Sa
, Sa = 2 𝚲Ca

, Qa = k0

Ca Ga
𝜸

a
. (B13)
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