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In the ferromagnetic (FM) Weyl semimetal CeAlSi both space-inversion and time-reversal sym-
metries are broken. Our quantum oscillation (QO) data indicate that the FM ordering modifies the
Fermi surface topology and also leads to an unusual drop in the QO amplitude. In the FM phase,
we find a pressure-induced suppression of the anomalous and the loop Hall effects. This cannot be
explained based on the electronic band structure or magnetic structure, both of which are nearly
pressure independent. Instead, we show that a simplified model describing the scattering of Weyl
fermions off FM domain walls can potentially explain the observed topological features. Our study
highlights the importance of domain walls for understanding transport in FM Weyl semimetals.

I. INTRODUCTION

Topological phases of matter have lately received con-
siderable attention, due to the experimental realization of
exotic types of charge carriers. One example is the mass-
less Weyl fermions found in Weyl semimetals (WSMs)
[1–3], which are characterized by remarkable electronic
properties, such as surface Fermi arcs, a bulk chiral
anomaly, axial–gravitational anomaly, an extremely large
magnetoresistance (MR) and an anomalous Hall effect
(AHE) [1, 3–6]. Weyl fermions can be generated by either
breaking space-inversion (SI) or time-reversal (TR) sym-
metry of materials with a Dirac or quadratic band touch-
ing points. So far most experimentally studied WSMs
break SI symmetry [7–15]; fewer examples are known for
WSMs with broken TR symmetry, i.e. magnetic WSMs
[16–21]. Magnetic WSMs are of fundamental interest
since they intertwine topology and strong correlations
[22, 23]. They also offer the potential to manipulate the
topological phase in a desired way, for instance using
a magnetic field to tune the position of Weyl nodes or
to control the chirality or geometry of magnetic domain
walls, which is important for next-generation spintronics
applications [24, 25].

The family of LnAlPn (Ln = lanthanides, Pn = Ge,
Si) materials is ideal to host nontrivial topological prop-
erties due to their noncentrosymmetric crystalline struc-
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ture (I41md), which is the same as in the TaAs family
of WSMs [7, 9, 26–29]. Multiple Weyl nodes and a large
spin Hall effect were predicted to exist in LaAlGe and
LaAlSi [30]. Weyl cones were experimentally observed
for LaAlGe [31] and a π Berry phase was recently found
in LaAlSi [32]. Remarkably, magnetic members of the
family host rare-earth moments which can order and ad-
ditionally break TR symmetry - many of them are pre-
dicted to feature Weyl nodes near the Fermi level [33–36].
Experiments have discovered an anomalous Hall effect
(AHE) in PrAlGe1−xSix [33], chiral surface Fermi arcs in
PrAlGe [37, 38], and a topological magnetic phase and
singular angular MR in the semimetal CeAlGe [39–41].
In addition, Weyl fermions have been found to mediate
magnetism in NdAlSi [42] and a π Berry phase was re-
ported for quantum oscillations (QO) in SmAlSi [34].

In this Article, we focus on the ferromagnetic Weyl
semimetal CeAlSi. CeAlSi, which hosts an in-plane non-
collinear ferromagnetic (FM) order below the Curie tem-
perature TC ≈ 8 K with a large anisotropy, the c-axis
being the magnetically hard axis [36]. Ce3+ spins in ad-
jacent FM planes display an angle of ≈ 70◦ [36]. Recent
angle resolved photo emission spectroscopy experiments
in the paramagnetic phase of CeAlSi above TC revealed
Fermi arcs and several Weyl nodes lying close to the
Fermi energy which stem from the non-centrosymmetric
structure [43]. Going below TC , into the FM state,
a magnetic field applied parallel to the [100] direction
reveals an AHE, while a [001] field leads to an unex-
plained hysteretic loop Hall effect (LHE) [36]. In ad-
dition, CeAlSi may exhibit nontrivial magnetic domain
walls [44]; indeed, chiral domain walls were recently de-
tected in this system [45]. Furthermore, magnetoelastic

ar
X

iv
:2

30
1.

13
70

7v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  3

1 
Ja

n 
20

23

mailto:Mario.Piva@cpfs.mpg.de
mailto:Michael.Nicklas@cpfs.mpg.de


2

couplings give rise to picometer displacements in the unit
cell due to the internal FM field, which can lead to dif-
ferent domain wall spin textures [46].

The presence of this magnetoelastic effect suggests
that external pressure may lead to a strong tuning of
magnetism and to associated large changes in the AHE
and LHE [46]. Hydrostatic pressure has previously been
shown to be an effective tool in tuning the electronic
structure without introducing any additional disorder
and was successfully used to tune Weyl points closer to
the Fermi energy in certain topological materials [47–50].
Furthermore, application of pressure is known to system-
atically modify the magnetic properties in Ce-based ma-
terials [51]. Here, we use hydrostatic pressure as a tool
to investigate the origin of the features characteristic of
the nontrivial topological behavior in CeAlSi, focusing
on longitudinal and Hall transport experiments and on
quantum oscillation measurements. We combine these
with ab initio density functional theory (DFT) calcula-
tions and phenomenological models for scattering of Weyl
fermions off magnetic domain walls to shed light on our
unusual observations.

II. METHODS

Single crystals of CeAlSi and LaAlSi were grown by
the Al-flux technique similar to [52]. High purity el-
ements with starting composition Ce [La] (99.99%) :
Al (99.999+%) : Si (99.999+%), 1 : 20 : 1, were place into
an alumina crucible and sealed in an evacuated quartz
tube. The samples were heated to 1200◦C, kept at this
temperature for 15 hours and cooled down to 720◦C at
2◦C/h. The excess of Al was removed by spinning the
tube upside down in a centrifuge. The crystal structure
was confirmed by x-ray powder diffraction. Energy dis-
persive x-ray spectroscopy shows, within the experimen-
tal uncertainty, a Ce:Al:Si proportion of 1 : 1 : 1.

Electrical transport experiments were carried out by a
four-probe configuration using a low-frequency AC resis-
tance bridge. Temperatures down to 1.8 K and magnetic
fields up to 9 T were achieved in a physical property
measurement system (PPMS, Quantum Design) and in a
liquid helium cryostat (Janis). Magnetization measure-
ments were conducted in a magnetic property measure-
ment system (MPMS, Quantum Design). Pressures up to
2.7 GPa (electrical transport) and 1 GPa (magnetization)
were generated using self-contained piston-cylinder-type
pressure cells using silicon oil as pressure transmitting
medium. A piece of lead (tin) served as manometer.

Density functional theory (DFT) calculations were per-
formed with the local density approximation functional
(LDA) and projector-augmented wave (PAW) method as
implemented in the Abinit software package [53], using
Jollet-Torrent-Holzwarth (JTH) pseudopotentials [54].
Spin-orbit coupling (SOC) and non-collinear magnetism
are taken into account. An on-site Coulomb interaction
with U = 6 eV was added for the Ce f electrons within

the LDA+U scheme. We use a 16× 16× 16 Monkhorst-
Pack k-point grid and a plane-wave energy cutoff of
25 hartree. The lattice parameters and relevant inter-
nal atomic coordinates were optimized at respectively
0 GPa and 3 GPa until all forces on the atoms were
below 10−6 hartree/bohr3. At 0 GPa (3 GPa), we ob-
tain a = 7.926 bohr (a = 7.832 bohr) and c = 27.397 bohr
(c = 27.192 bohr).

III. RESULTS

Temperature – pressure phase diagram

At ambient pressure, the FM ordering transition in
CeAlSi is marked by a singular magnetization M(T ) and
sharp drop in electrical resistivity as a function of tem-
perature ρ(T ) at TC ≈ 8 K. Figure 1 shows the effect of
external pressure on the magnetic phase (see Appendix
A for additional data). Application of pressure linearly
enhances TC(p) with a slope of 0.62(2) K/GPa, driving
TC from 7.8 K at ambient pressure to 9.4 K at 2.7 GPa
(values taken from the resistivity data). More important
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FIG. 1. (a) Magnetization (M) (left axis), obtained in an
applied field of 50 mT along the [100] crystal axis, and elec-
trical resistivity (right axis) as a function of temperature for
selected pressures. (b) Temperature–pressure phase diagram.
The solid lines are linear fits. (c) Magnetization measure-
ments for several pressures.
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FIG. 2. Electronic bands and DOS at ambient pressure (blue) and 3 GPa (red). The hatched region of right panel corresponds
to the partial DOS associated with Ce f states.

is our finding that, for different pressures, the in-plane
magnetization curves M(H) at 2 K as a function of the
applied magnetic field along the [100] direction lie on
top of each other. This result indicates a negligible pres-
sure effect on the non-collinear planar magnetic structure
found at ambient pressure [36].

Electronic band structure

Our DFT calculations at ambient pressure and 3 GPa,
which incorporate spin-orbit coupling and non-collinear
magnetic order, reveal only a negligible effect of pres-
sure on the electronic band structure and the electronic
density of states (DOS) at the Fermi energy [see Fig 2]
as well as on the ordered moments and their orienta-
tion. The bands contributing to the hole pockets at the
Fermi surface (FS) barely display any variation of their
intercepts of the Fermi energy in k-space, suggesting a
negligible variation of the FS area (see Appendix D for
further information). The only noticeable modification
of the electronic structure is a small shift of the bands
associated with Ce f -electrons to higher energies with re-
spect to the Fermi energy. As these bands lie about 2 eV
below the Fermi level, they most likely do not directly
contribute to the transport properties.

Quantum oscillations

Next we turn to the results of our QO measurements.
Longitudinal conductivity data σxx well above TC at
T = 15 K and in the FM state at T = 2 K at several
pressures are presented in the inset of Fig. 3(a), where
we have subtracted a smooth background yielding ∆σxx.
Within the investigated field range, the ∆σxx data as
well as its fast Fourier transform (FFT) analysis reveals

D
s x

x (
kS

/m
)

1/(m0H) (T-1)

2 K

15 K

FF
T 

Am
pl

itu
de

 (a
rb

. u
ni

ts
)

T (K)

       p (GPa)
 0   2.2
 1.2   2.6

CeAlSi 

H || [001]

(a)

    p (GPa)
 0
 2.2

N

1/(m0H) (T-1)

(b) H || [001]

T = 15 K

    p (GPa)
 0
 2.2

N

1/(m0H) (T-1)

(c) H || [001]

T = 2 K

FIG. 3. (a) Fast Fourier transformation (FFT) amplitude
as a function of temperature at different applied pressures.
The solid lines are simulations considering the best fits using
the Lifshitz-Kosevich formula. The inset shows longitudinal
conductivity for H ‖ [001] after subtraction of a third order
polynomial background ∆σxx as a function of 1/(µ0H) at
15 K (top) and 2 K (bottom) for selected pressures. The
curves at 2 K were shifted by−10 kS/m for clarity. (b) and (c)
Landau fan diagrams for CeAlSi at 15 and 2 K, respectively.

a single QO frequency f ≈ 20(5) T, which is found to be
independent of pressure and temperature (see Appendix
B). We notice two main features: i. the amplitude of
the oscillations at 15 K is larger than that at 2 K and
ii. the amplitude of the oscillations is suppressed by in-
creasing pressure [see Fig. 3(a)]. Generally, the thermal
damping of the QO amplitude can be described by the
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Lifshitz-Kosevich (LK) formula [55]. However, our FFT
signal follows the LK prediction only in the paramagnetic
(PM) region above TC [solid lines in Fig. 3(a)]. In the
FM state we observe an unusual reduction of the QO am-
plitude upon cooling. This remarkable response of the
oscillation amplitude as a function of temperature has
not been observed in any other members of the LnAlPn
family [32, 34, 36, 42, 56], and was previously reported
in just a few materials [57, 58]. In SmSb, for instance,
a sudden decrease of the Shubnikov-de Haas oscillations
takes place once the material becomes antiferromagnetic,
which was conjectured to be due to the presence of a non-
trivial Berry phase [58].

To further analyze the QO, Landau fan diagrams are
shown in Figs. 3(b) and 3(c). Our analysis indicates a
change in the nature of the topological properties be-
tween the PM and FM phase. At 15 K in the PM phase
the intercept is around −5/8, which suggests the pres-
ence of topologically trivial charge carriers [59]. In con-
trast to that, at 2 K the intercept is −9/8, which for 3D
magnetic WSMs can be associated with linear dispersive
charge carriers and a nontrivial Berry phase [59].

Our QO data suggest that the momentum space sep-
aration between nearby Weyl nodes with opposite topo-
logical charges gets enhanced in the FM state leading
to a change in FS topology - from one which encloses
both Weyl nodes above TC to a split FS enclosing iso-
lated well-separated Weyl nodes below TC . An enhanced
separation of the Weyl nodes in the FM phase has been
also previously found in band-structure calculations (SI
of Ref. [36]). This can explain the change in the inter-
cept in our Landau fan plot. Such a change in the FS
topology could nonetheless preserve the area of certain
extremal orbits, so that the observed QO frequency can
remain nearly unchanged (see Appendix E for details). If
the topological Fermi pockets are only weakly split below
TC , the large density of states due to proximity to the
Lifshitz transition [60] can lead to an increased scattering
rate for states on the extremal orbits, thus enhancing the
Dingle temperature and suppressing the QO amplitude
for T < TC . We note that our results cannot rule out
other possible scenarios for the suppression of the ampli-
tude of the quantum oscillations upon cooling. However,
a Lifshitz transition in the FS of CeAlSi can explain both,
the suppression of the QO and the phase shift upon en-
tering the FM phase revealed by our measurements.

Hall effect

For magnetic field along the [100] direction and cur-
rent along [010] [see sketch in Fig. 4(a)] we find a large
AHE in CeAlSi in its ferromagnetic state. The AHE
signal has been extracted by fitting the Hall resistiv-
ity to the form ρyz(H) = R0H + ρAHE, where R0 is
the ordinary Hall effect coefficient and ρAHE = RsMx

with Rs being the anomalous Hall coefficient and Mx

being the magnetization along [100] (see Appendix C).
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FIG. 4. (a) Anomalous Hall effect (AHE) at 2 K as a func-
tion of magnetic fields H ‖ [001] for different applied pres-
sures. The top inset shows the AHE jump as a function of
pressure and the bottom inset displays a scheme of the cir-
cuit used in this measurement. s1 and s2 denote samples 1
and 2, respectively. (b) Loop Hall effect (LHE) at 2 K as a
function of magnetic field for H ‖ [001] for selected applied
pressures. The left inset shows the Hall resistivity measured
upon increasing (red) and decreasing (blue) magnetic field
and the difference of both curves (green) at 0.1 GPa. The
right inset displays a schematic drawing of the measurement
circuit. Data of the nonmagnetic reference material LaSiAl
at ambient pressure is shown as gray line in both panels

We confirm that an AHE is absent in the non-magnetic
analog LaAlSi [Fig. 4(a)]. We have fitted the longi-
tudinal and ordinary Hall conductivities to a simple
two-band model to obtain information on the density
of the electron- and hole-like charge carriers and their
mobilities (see Appendix C). At low temperatures and
ambient pressure we find 5.9(1) × 1019 holes/cm3 and
2.5(1) × 1019 electrons/cm3. The application of exter-
nal pressure suppresses the extracted hole density only
slightly, which reaches 4.6(1)×1019 holes/cm3 at 2 K and
2.6 GPa, whereas the electrons density remains nearly
unchanged. Moreover, the corresponding mobilities at
2 K and ambient pressure are about 1.4(1)×103 cm2/Vs
(3.2(1)×103 cm2/Vs) for holes (electrons). These values
are nearly unaffected by application of external pressure
and are on the same order of magnitude compared with
other Weyl semimetals [61, 62]. Application of external
pressure suppresses the jump of the AHE (defined as dif-
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ference in ρAHE between positive and negative magnetic
fields) up to 1.5 GPa [top inset of Fig. 4(a)]. Above
1.5 GPa the anomalous Hall jump saturates to around
0.5(1) µΩcm. As we have shown above, the M(H) curves
taken at different pressures fall on top of each other [see
Fig. 1(b)], suggesting the absence of changes in the mag-
netic structure as a source for the suppression of the
AHE. Moreover, the electronic bands close to the Fermi
level are only slightly affected by pressure [see Fig. 1(c)],
making it unlikely that this significant decrease results
from a pressure-induced change in the position of the
Weyl nodes. We find that while Rs scales nearly linearly
with ρxx for pressure . 1 GPa, the scaling deviates sig-
nificantly from linear behavior at higher pressures (see
Appendix C). A linear relation between Rs and ρxx sug-
gests that the observed AHE at ambient pressure has
a significant extrinsic skew-scattering contribution [63],
which gets suppressed at high pressures. Given the ro-
bustness of the electronic structure and magnetic order
against pressure, the most plausible explanation for this
is a pressure-dependent change in the nature or distri-
bution of domain walls. Previous work has shown that
Weyl fermions can undergo skew scattering from mag-
netic domain walls which contain the axis of the average
magnetization, leading to an extrinsic contribution to the
AHE qualitatively consistent with our data [64].

An even more unusual Hall response is observed for
field applied along [001] [see sketch in Fig. 4(b)]. We
note that in this geometry the magnetic field is applied
perpendicular to the ferromagnetically ordered moments
in the 〈001〉 plane and this Hall response thus cannot
arise from the bulk in-plane magnetization. This so-
called loop Hall effect (LHE) is displayed in Fig. 4(b).
It is only observed in the ferromagnetic regime, displays
hysteresis even in the absence of any observable Mz mag-
netization hysteresis, and is absent in the non-magnetic
analog LaAlSi. ρLHE(H) is obtained by recording the
Hall resistivity ρxy for H ‖ [001] upon increasing and
decreasing magnetic field and taking the difference be-
tween both curves, as shown in the left inset of Fig. 4(b)
for 0.1 GPa as an example. Similar to the AHE, the ap-
plication of external pressure leads to a decrease in the
LHE [see Fig. 4(b)]. While the existence of the LHE in
CeAlSi has been argued to be tied to the presence of the
Weyl nodes near the Fermi energy [36], no clear physical
mechanism has been provided for its origin.

IV. DISCUSSION

In the following we present a simplified model for Weyl
fermions in a non-centrosymmetric FM, and show that a
domain wall scattering mechanism, similiar to that previ-
ously explored to understand the AHE [64], can also lead
to the LHE for domain walls which are perpendicular to
the average magnetization. Our key idea here is that the
bulk magnetic domains in CeAlSi host an in-plane mag-
netization with hard axis along [001], so that the out-of-

(b)

x

y

z
Domain	wall

MDW(x)	=	M	sin	q(x)

(a)

Z

(c)MDW <0Z

MDW >0Z

FIG. 5. (a) Domain wall between two bulk magnetic
domains showing twisted magnetization configuration with
MDW

z (x) = M sin θ(x). (b) Skew scattering of Weyl fermions
off hysteretic domain wall loops, with red regions having
MDW

z > 0 and blue having MDW
z < 0, provides a mech-

anism for the loop Hall effect (LHE). The black arrows are
classical representations of the Weyl fermions trajectories. (c)
Calculated LHE shown as a ratio of Landauer conductances,
versus the maximal out of plane tilt angle θ of the domain
wall magnetization.

plane bulk contribution to the field-induced magnetiza-
tion Mbulk

z is not expected to be hysteretic as we tune the
magnetic field Hz. We instead argue that the hysteretic
LHE must be attributed to the hysteretic domain wall
magnetization MDW

z as we tune Hz, as schematically de-
picted in Fig. 4(a) and 4(b). Our calculations show that
the intra-node skew scattering of Weyl fermions as they
cross a domain wall with nonzero MDW

z can explain the
LHE.

To illustrate this physics, we study a model with 4
pairs of Weyl nodes in the kz = 0 plane (see Appendix E
for details). These could be viewed as a caricature of the
W ′3 Weyl nodes found to lie ∼ 46 meV above the Fermi
level close to the kz = 0 plane in CeAlSi [36, 43]. For a
single Weyl node, with chirality +1, we consider a simple
linearized Hamiltonian:

H+ = vFσiG
(+)
ij qj + σiMi (1)

where vF is the nodal velocity, σ is the spin Pauli matrix,
q denotes the momentum relative to the Weyl node po-
sition, and the tensor Gij is chosen to yield an elliptical
Fermi surface at fixed kz with its major axis rotated away
from the x, y axes. The Hamiltonian for the other Weyl
nodes can be reconstructed using symmetries. The Weiss
field M is nonzero in the magnetically ordered phase and
tunes the momentum of the Weyl node; we assume this
leads to topologically nontrivial FS pockets enclosing sin-
gle Weyl nodes. For a magnetic field Hz applied along
the z-axis, the system will support domains of M, with
magnetization aligned along different in-plane directions,
which are separated by domain walls. As shown in [45],
the domain wall magnetization in such cases supports an
out-of-plane component MDW

z . Fig. 5(c) shows the com-
puted Hall conductance scaled by the longitudinal con-
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ductance showing that it is an odd function of MDW
z (see

Appendix F for details). Crudely, this small Landauer
conductance [65, 66] ratio is expected to be related to the
ratio of loop Hall to longitudinal resistivity - our exper-
iments show that ρLHE

xy /ρxx∼ 10−3, in reasonable agree-
ment with the theoretical estimate in Fig. 5. We thus
propose that the mechanism for the aptly named LHE
is the skew scattering of Weyl fermions off hysteretic do-
main wall loops or surfaces. Since we expect the domain
wall magnetization MDW

z �Mbulk
z , the hysteretic behav-

ior of MDW
z cannot be resolved in bulk magnetization

measurements. Our model might also help to understand
the observation of a similar LHE reported previously in
other compounds, in which Weyl fermions were predict
to exist [67–69].

V. CONCLUSIONS

In summary, our study emphasizes, through a key tun-
ing parameter (hydrostatic pressure), the importance of
ferromagnetism for the low temperature topological fea-
tures in CeAlSi. Our QO data show a difference in the
Berry phase above and below TC , indicating that FM or-
dering shifts oppositely charged Weyl nodes away from
each other in momentum space, leading to a change in
the Fermi-surface topology. We have argued that this
also leads to an increase in the scattering rate below TC ,
and thus to a drop in the amplitude of Shubnikov – de
Haas oscillations in contrast to the conventional LK for-
mula. This result calls for angular dependent Shubnikov
– de Haas and de Haas – van Alphen experiments in
an extended field range. We have also discovered pres-
sure dependent changes in the AHE and LHE below TC .
Since our DFT calculations indicate that the electronic
band structure is robust against pressure, we argue that
these changes in the AHE and LHE must arise from dif-
ferences in domain wall defects and we have shown how
Weyl fermions scattering off hysteretic domain walls can
lead to the LHE.

DATA AVAILABILITY

Data that underpin the findings of this study are avail-
able at Edmond – the open research data repository of
the Max Planck Society at [70].
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APPENDICES

APPENDIX A: ELECTRICAL RESISTIVITY

Figures 6(a) and 6(b) present the electrical resistivity
(ρ) as a function of temperature at several pressures for
two different samples of CeAlSi. At high temperatures
ρ(T ) exhibits a metallic behavior for both samples at all
studied pressures. Moreover, a clear kink is observed at
low-temperatures characterizing the ferromagnetic tran-
sition, in good agreement with previous reports at am-
bient pressure [36, 45, 46]. A broad shoulder is observed
at around 80 K. It shows up as a maximum in the tem-
perature derivative of the electrical resistivity [see insets
of Figs. 6(a) and 6(b)]. The shape and the position of
the maximum is nearly unaffected by the application of
external pressure, suggesting that the gap between the
ground state and the first excited crystalline electrical
field state does not change with increasing pressure.

APPENDIX B: QUANTUM OSCILLATIONS

The left panels of Fig. 7 present the longitudinal con-
ductivity measured with H ‖ [001] after subtraction of a
third order polynomial (fit between 5 and 9 T) ∆σxx as
a function of 1/(µ0H). We note that quantum oscilla-
tions are clearly seen up to 40 K at all studied pressures.
Furthermore, the unusual behavior of the quantum oscil-
lations amplitudes can be seen by the naked eye. The os-
cillations in the paramagnetic state at 15 K are more pro-
nounced than the oscillations in the ferromagnetic state
at 2 K. The panels on the right side of Fig. 7 present
the Fast Fourier transformation (FFT) of ∆σxx, using a
Hamming window from 0.2 to 0.11 T−1, as a function of
frequency (f) at several temperatures for selected pres-
sures. Only one oscillation frequency f ≈ 20(5) T is
present. It is unaffected by changes in pressure and/or
temperature.
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FIG. 6. (a) and (b) Electrical resistivity (ρ) as a function of temperature at several pressures for two different samples of
CeAlSi. The insets displays a magnified view of the low-temperature range. The insets show the temperature derivative of ρ
as a function of temperature at several pressures for two different samples of CeAlSi.

The effective mass (m∗) was estimated in the param-
agnetic state of CeAlSi by fitting the FFT amplitude as
a function of temperature by the Lifshitz-Kosevich (LK)
formula [55]:

RT =
αTm∗

B sinh(αTm∗/B)
, (2)

in which α = 2π2kB/e~ ≈ 14.69 T/K, T is the tempera-
ture, B is the magnetic field and m∗ the effective mass.
As shown in Fig. 8, the application of external pressure
leads to a decrease in the value of m∗.

APPENDIX C: HALL EFFECT

Anomalous Hall Effect

Figure 9 presents the Hall resistivity (ρyz) as a function
of magnetic field at 2 K for several pressures. A linear
background was determined by performing a linear fit in
the range 0.2 T 6 H 6 0.6 T. We obtained the anomalous
Hall (ρAHE) effect by subtracting the linear background
using ρyz = R0H + ρAHE.

As we can see in Fig. 10, the linear dependence between
the anomalous Hall coefficient (RS) and the longitudi-
nal resistivity (ρxx) characterizes the presence of a skew
scattering contribution to the AHE in CeAlSi at ambi-
ent pressure [63]. The observation of this contribution in
a good metal regime can be attributed to domain wall
scattering of Weyl fermions (see Sec. IV), as this contri-
bution should be the dominant one in highly conducting
samples (σxx > 0.5 × 106 (Ωcm)−1) [63]. Furthermore,
the application of external pressure suppresses the lin-
ear relation between Rs and ρxx, which is better seen in
the inset of Fig. 10, where the exponents obtained with
allometric fits (RS = a + bρnxx) are shown as a function
of pressure. One can clearly see the increase of the ex-
ponent n as a function of increasing pressure, reaching

1.21(1) at 1.1 GPa, indicating that the skew scattering
contribution of the AHE from the domain walls is be-
ing suppressed by application of pressure. The domains
themselves (bulk) also contribute to the AHE. It is pos-
sible to differentiate both contributions, as analyzed in
great detail in Ref. [64], by considering that the domain
wall scattering contribution to the AHE is limited by the
electron mean free path, whereas the bulk contribution
is not. The total Hall resistivity is therefore an average
between the bulk and domain wall contributions. Our
results suggests that at low pressures (p 6 1.5 GPa) the
AHE is dominated by the skew scattering contribution
coming from the domain walls, while in the high-pressure
range (p > 1.5 GPa), where the AHE is not skew scat-
tering type, it is dominated by the contribution of the
domains.

Two-band model fits

To accurately estimate the carrier densities and mobil-
ities of CeAlSi, we have simultaneously fit the longitudi-
nal (σxx) and the Hall (σxy) conductivities considering a
two-band model described by:

σxx = e

(
neµe

1 + µ2
e (µ0H)

2 +
nhµh

1 + µ2
h (µ0H)

2

)

σxy = e (µ0H)

(
neµ

2
e

1 + µ2
e (µ0H)

2 −
nhµ

2
h

1 + µ2
h (µ0H)

2

)
,

where n denotes the electron (e) and hole (h) carrier den-
sities, and µe and µh are the electron and hole mobilities,
respectively. Figure 11(a) presents a representative plot
of the fits at 2 K and 1.2 GPa, in which a good agreement
between the experimental data and the fits is observed.
Figure 11(b) displays the carrier densities as a function of
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FIG. 8. Effective mass m∗ as a function of pressure for mag-
netic fields parallel to [001].

FIG. 9. Hall resistivity (ρyz) as a function of magnetic field
applied parallel to [100] at 2 K for several pressures. The
solid orange line is an extrapolation of a linear fit performed
in the range 0.2 T 6 H 6 0.6 T, which yields the ordinary
background of ρyz.

temperature at several pressures. Figure 11(c) shows the
mobilities as a function of temperature at several pres-
sures.

APPENDIX D: BANDSTRUCTURE
CALCULATIONS

Figure 12 shows the electronic bands and DOS zoomed
in the vicinity of the Fermi level, to emphasize the negli-
gible effect of pressure on the bands contributing to the
AHE and LHE. Note, also that no crossing feature nor
electron pocket was found in our ambient pressure calcu-
lation along the Γ−X high symmetry path, in contrary
to Fig. 3(a) of [36]. This discrepancy could be attributed
to the different exchange-correlation functional or to our
use of theoretically relaxed lattice parameters, while [36]
used experimental values which, in the case of the PBE-
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n
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RS = a + brn
xx

FIG. 10. Anomalous Hall coefficient (RS) as a function of the
longitudinal resistivity (ρxx) at several pressures.

GGA functional used in their paper, will be smaller than
the theoretical one. Nevertheless, from the pressure de-
pendence of the electronic bands relative to the Fermi
level, an electron pocket could likely appear along this
path upon further increasing the pressure.

We further refine the analysis of the electronic struc-
ture by calculating the orbital decomposition of the
electronic wavefunction inside the atom-centered PAW
spheres for Ce 5d states (left panels, red), as well as for
Al (middle panels, green) and Si (right panels, blue) 2p
states, in the same energy range as Fig. 12. The relative
weights of the different orbitals at ambient pressure (top
panels) and 3 GPa (bottom panels) are essentially iden-
tical, thus confirming the negligible effect of pressure on
the electronic bands.

The calculated magnetic structure does not display
any significant differences between 0 and 3 GPa either,
in agreement with the experimental observations (see
Fig. 1(b) of the main text). For 0 GPa (3 GPa), we
find a magnetic moment of 0.880 µB (0.878 µB) inside
the PAW spheres of the 2 inequivalent Ce atoms in the
unit cell. Considering that one moment points mostly in
the x̂ direction and the other in the ŷ direction with an
angle of 87.3◦ (89.8◦) between them, we find a total net
magnetic moment of 1.311 µB (1.284 µB) oriented along
[110] for the whole unit cell. Note that the net size of the
magnetic moment depends strongly on the choice of U .

APPENDIX E: SIMPLIFIED MODEL FOR WEYL
NODES

We choose a simple model for CeAlSi with 4 pairs of
Weyl nodes as shown in Fig. 14 (top left panel). We have
chosen the Weyl nodes and Fermi pockets for T > TC
to be consistent with the C4v and mirror Mx,My crys-
tal symmetries of CeAlSi, as well as time-reversal sym-
metry. These nodes crudely mimic the W ′3 nodes found
slightly above the Fermi level in previous ab initio elec-
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FIG. 11. (a) Longitudinal (σxx) and Hall (σxy) conductivities at 2 K and 1.2 GPa. Carrier densities (b) and mobilities (c)
obtained from the two-band fits as a function of temperature at several pressures.

tronic structure calculations. With the onset of mag-
netism, the Weyl nodes get displaced with opposite chi-
rality nodes being displaced in opposite directions. As
shown in Fig. 14(top right panel), this can lead to a topo-
logical transition of the Fermi surface where each pocket
now encloses a single Weyl node. At the same time,
for the type of Fermi surface sketched above, certain
extremal orbits can remain unchanged in area (dashed
lines), so that the QO frequency will be unaffected as
observed. If the Weyl nodes are not widely separated
even after the topological Fermi surface phase transition,
proximity to a Lifshitz transition may lead to an enhance-
ment of the electron scattering rate (in the presence of
weak disorder) due to a large density of states, which can
enhance the Dingle temperature and explain the strong
observed deviation from the Lifshitz-Kosevich formula.

Within the symmetry broken for T < TC , it is reason-
able to consider the physics of isolated Weyl nodes. We
model a single Weyl node as having an elliptical pocket
with velocity tensor and a simple coupling to the Weiss

field from the magnetization.

H+ = σiG
(+)
ij q̃j + σiMi, (3)

G
(+)
ij =


|a|

1
|a|

1




cosβ sinβ 0

− sinβ cosβ 0

0 0 1

 , (4)

Here q̃i = vF qi where q denotes the momentum mea-
sured from the Weyl node location, and vF is a velocity
scale. The real matrix, Gij , defined this way results in
an ellipsoidal Fermi surface, whose xy-plane cross section
has an elliptical shape with the major and minor axis, |a|
and 1/|a| respectively for |a| > 1, and the major axis is
rotated from the qy-axis by the angle β. For |a| < 1, the
major axis is instead rotated from the qx axis by β.

Position of Weyl points: When Mi = 0, the Weyl
point resides at q = 0. When Mi 6= 0, the Weyl point
shifts to the point satisfying the following equation

q̃∗i = −
[
G(+)

]−1

ij
Mj (5)
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Eigenspectrum: The eigenvalues of H+ are given by

E = ±
√
q̃i[G(+)]Tij [G

(+)]jlq̃l + 2Mi[G(+)]ij q̃j +MiMi

(6)

Written in the form which is useful for numerics:

0 = q̃2
x

(
|a|2c2 +

1

|a|2
s2

)
+q̃x

[
2cs

(
|a|2 − 1

|a|2

)
q̃y + 2

(
|a|cMx −

1

|a|
sMy

)]
+

[
q̃2
z + 2Mz q̃z +

(
|a|2s2 +

1

|a|2
c2
)
q̃2
y

+ 2

(
|a|sMx +

1

|a|
cMy

)
q̃y +M2 − E2

]
, (7)

where s ≡ sinβ and c ≡ cosβ. The quadratic equation
allows us to determine the mover modes given the Fermi
energy and the Weiss field. If the q̃x solutions are real-
valued, we obtain travelling waves; the complex-valued
solutions correspond to evanescent waves.

T > Tc T < Tc

kx

ky

kz kz

ky

kx

kx

ky
T < Tc

FIG. 14. Top: Illustrative example of 4 topologically
trivial Fermi surface pockets for T > Tc, each enclos-
ing a pair of Weyl points (WP) with opposite topological
charge, located at momenta (K0,±K1, 0), (−K0,±K1, 0),
(±K1,K0, 0), (±K1,−K0, 0). For T < Tc, the in-plane mag-
netization leads to a momentum space displacement of the
Weyl points, leading to transition into 8 topologically non-
trivial Fermi pockets. The area of certain maximal orbits
(dashed lines) can remain unchanged across this transition.
Bottom: Projected view of the elliptical cross sections of the
topologically nontrivial Fermi surfaces for T <Tc.

The eigenfunctions are merely the eigenfunctions of
a usual 2-by-2 Hermitian matrix, generally expressed
in terms of the Pauli matrices as diσi, where di =

G
(+)
ij q̃j +Mi. The wave functions are given by

ψ =


1√

2d(d+d3)

(
d+ d3

d1 + id2

)
, for E = d > 0,

1√
2d(d+d3)

(
id2 − d1

d3 + d

)
, for E = −d < 0.

(8)

The group velocity for a mover are given by

vi =

[
G(+)

]T
ij

([
G(+)

]
jl
q̃l +Mj

)
E

(9)

Negative-chirality node: With M = 0, we can use
C4v, time-reversal, and mirror symmetries Mx, My to
write out the Hamiltonian for all 8 Weyl nodes. For in-
stance a negative chirality node is obtained under a mir-
ror operation, where we can relate the g-tensor part of
the Hamiltonian H(+) to the g-tensor part of H(−). For
the Weyl point related to the original one by a mirror
My, we have

H(−) = σiG
(−)
ij q̃j + σiMi, (10)

G(−) = −


|a|

1
|a|

1




cosβ − sinβ 0

sinβ cosβ 0

0 0 1

 . (11)

The distinctions from G(+) are (i) the prefactor -1 which
leads to the negative determinant and (ii) the sinβ which
used to be − sinβ in G(+). The latter amounts to a
rotation of the Fermi surface about qz-axis by −β instead
of β in H(+). All the formulae derived in earlier in this
section can be straightforwardly generalized for H(−).
Choice of parameters: As an illustrative example, we
choose |a| = 0.5 and β = π/4. This results in ellipti-
cal cross-sections (at any given kz) for the Fermi sur-
faces near a Weyl point with major : minor axis ratio of
4 : 1. The major axis of the ellipse is rotated by π/4,
so that it points along the 45◦ direction in the (kx, ky)
plane. We also choose other parameters to be reason-
able values in line with the ab initio calculations, namely
vF = 500 meVÅand chemical potential µ = −30 meV
(below the Weyl node). This leads to Fermi pockets with
a typical size kF ∼ 0.06 Å−1. We fix the Weiss field to
have a magnitude |M | = |EF |/4. We note that our re-
sults do not change qualitatively if we choose somewhat
different parameters - however, it is important that the
elliptical Fermi pockets are not aligned along the tetrag-
onal x or y axes (see Fig. 14).

APPENDIX F: MODELING THE DOMAIN WALL

We assume a domain wall width N ×w = 40 nm (cor-
responding to N = 40.) We consider a domain wall be-
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FIG. 15. Evolution of the magnetization across a do-
main wall. Region I and region III indicate bulk do-
mains, and region-II is the domain wall region. Going
across the domain wall, the magnetization vector twists, with
the perpendicular domain wall magnetization MDW

z > 0
for the depicted configuration. We will denote M(x) =
M(cos θ(x) cos γ(x), cos θ(x) sin γ(x), sin θ(x)). In region-I, we
choose θ = 0, γ = π/4, while we set θ = 0, γ = −π/4 in region
III. In region II, we assume a twisting magnetization profile,
with the maximum out of plane component determined by
θmax which is achieved at the center of region II.
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FIG. 16. Illustration of the Fermi surfaces and the domain
wall induced intra-node scattering (dashed arrow). For sim-
plicity, we have not shown the displacements of the Fermi
pockets relative to each other in the two domains or their dif-
ference in spin textures, but this is taken into account in our
calculations as given below.

tween a left and a right region (see illustration in Fig. 15)
with the following Weiss fields, respectively,

MI = M (cos γ, sin γ, 0)
T
, (12)

MIII = M (cos γ,− sin γ, 0)
T
. (13)

The domain wall region, region II, has a widthNw, which
is partitioned into N intervals, each with width w. The
Weiss field in j-th interval is given by

Mj = M (cos θj cos γj , cos θj sin γj , sin θj)
T
, (14)

γj = γ − 2γ
j − 1/2

N
, (15)

θj =

(
1−

2|j − 1
2 −

N
2 |

N

)
θ, (16)

where θ is the angle at the center of region II. θj mono-
tonically decreases away from the center of region II. A
large N models a smooth variation of the Weiss field in
region II.

A. Transmission and reflection coefficients

The domain wall will lead to a scattering between Weyl
Fermi surfaces. For simplicity, we assume a smooth do-
main wall and only take into account the intra-node scat-
tering as shown in Fig. 16. We now sketch the compu-
tation of the transmission coefficient (TC) and reflection
coefficient (RC) at the domain wall, defined earlier. For
concreteness, we show the calculation forH(+). The step-
by-step summary is given below

• For a given Fermi energy E and the parallel mo-
menta (qy, qz), we compute the x-momenta for all
the regions.

• Compute the eigenfunctions

• Wave function in each region is a superposition of
a left mover and a right mover, except in Region
III, where the wave function consists of only a right
mover

ΨI = χRe
iqR·x + rχLe

iqL·x (17)

ΨII,j = c
(j)
1 η

(j)
1 eip

(j)
1 ·x + c

(j)
2 η

(j)
2 eip

(j)
2 ·x, (18)

ΨIII = tξRe
ikR·x, (19)

where t and r are the transmission and reflection
amplitude respectively.

• We then match the wave function at each boundary
at xj = jw for j = 0, 1, · · · , N to determine r, t

and c
(j)
1,2. This can be formulated in transfer matrix

form. This can be seen below.



14

χR + rχL = c
(1)
1 η

(1)
1 + c

(1)
2 η

(1)
2 , (20)

c
(1)
1 η

(1)
1 eip

(1)
1x w + c

(1)
2 η

(1)
2 eip

(1)
2x w = c

(2)
1 η

(2)
1 eip

(2)
1x w + c

(2)
2 η

(2)
2 eip

(2)
2x w (21)

c
(2)
1 η

(2)
1 eip

(2)
1x 2w + c

(2)
2 η

(2)
2 eip

(2)
2x 2w = c

(3)
1 η

(3)
1 eip

(3)
1x 2w + c

(3)
2 η

(3)
2 eip

(3)
2x 2w (22)

c
(j)
1 η

(j)
1 eip

(j)
1x jw + c

(j)
2 η

(j)
2 eip

(j)
2x jw = c

(j+1)
1 η

(j+1)
1 eip

(j+1)
1x jw + c

(j+1)
2 η

(j+1)
2 eip

(j+1)
2x jw (23)

c
(N)
1 η

(N)
1 eip

(N)
1x Nw + c

(N)
2 η

(N)
2 eip

(N)
2x Nw = tξRe

ikRxNw. (24)

Rewriting in matrix form

(
χR χL

)1

r

 =
(
η

(1)
1 η

(1)
2

)c(1)
1

c
(1)
2

 , (25)

(
η

(j)
1 eip

(j)
1x jw η

(j)
2 eip

(j)
2x jw

)c(j)
1

c
(j)
2
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(
η

(j+1)
1 eip

(j+1)
1x jw η

(j+1)
2 eip

(j+1)
2x jw

)c(j+1)
1

c
(j+1)
2

 (26)

(
η

(N)
1 eip

(N)
1x Nw η

(N)
2 eip

(N)
2x Nw

)c(N)
1

c
(N)
2

 = tξRe
ikRxNw. (27)

From above, we can solve for r and t by the transfer matrix T (j):1

r

 = teikRxNw
(
χR χL

)−1

T (1) · · ·T (N)ξR ≡ t

u1

u2


(28)

T (j) =
(
η

(j)
1 eip

(j)
1x (j−1)w η

(j)
2 eip

(j)
2x (j−1)w

)(
η

(j)
1 eip

(j)
1x jw η

(j)
2 eip

(j)
2x jw

)−1

, (29)

where, in the definition of the transfer matrix, the two
matrices differ from each other, apart from the inverse
operation, by the phase factors: one involves (j − 1)w,
whereas the other involves jw. We finally obtain

t = 1/u1 (30)

r = u2/u1. (31)

TC and RC are given by

TC =
|vx,trans|
|vx,inc|

|t|2, (32)

RC =
|vx,refl|
|vx,inc|

|r|2. (33)

The longitudinal conductance gxx and the transverse
conductance gyx are then computed using TC and RC
[64] (see also Refs. 71 and 72.)

B. Results: case |a| = 0.5, β = π/4

1. Parameters

The xy-plane cross section of the Fermi surface near a
Weyl point is an ellipse whose major axis is rotated by
π/4.

The results corresponds to the following parameters:

• Fermi velocity vF = 500 meV.Å

• Fermi wave vector kF ∼ 0.06 Å−1

• Fermi energy EF = −30 meV

• Weiss field |M | = 0.015 a.u., which corresponds to
|EF |/4.

• Domain wall width N × w = 40 nm for N = 40.

2. Results

We will show results of the anomalous Hall contribu-
tion obtained by antisymmetrizing the off-diagonal con-
ductance: gAyx(θ) = 1

2 (gyx(θ) − gyx(−θ)), namely anti-
symmetrizing w.r.t merely reversing the Mz component
of the Weiss field. Figure 17 shows gAyx for the 4 pairs
of WPs: (i) Fermi surfaces in each pair are related by
either Mx or My mirror operation at zero Weiss field
(see Fig. 14), and (ii) different pairs are related by a C4v

rotation at zero Weiss field (see Fig. 14.)
A few main results are summarized below:

(1) AHE contributions from the two Fermi surfaces in
each pair has opposite signs, yet they do not cancel
each other out, so AHE is still non vanishing.
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(2) AHE from the four WPs related by C4z rotations
has the same sign (see Fig. 17.)

(3) Interchanging region I and region III leads to the
same θ-dependence of gAyx (see Fig. 18.) This
suggests that as long as the total z-component of
the Weiss field does not vanish, AHE contribution
from the domain wall is non-zero.

(4) Ratio gAyx/gxx is of the order 10−3 at small angle,
see Fig. 5(c).
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FIG. 17. Contributions from the 4 pairs (green-purple pair of
adjacent Fermi surfaces related byMx orMy in Fig. S14) of
Fermi surfaces.
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FIG. 18. θ dependence of AHE stays the same upon inter-
changing Region I and Region III.
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J. W. Zwanziger, The Abinitproject: Impact, environ-
ment and recent developments, Comput. Phys. Commun.
248, 107042 (2019).

[54] F. Jollet, M. Torrent, and N. Holzwarth, Generation of
Projector Augmented-Wave atomic data: A 71 element
validated table in the XML format, Comput. Phys. Com-
mun. 185, 1246 (2014).

[55] D. Shoenberg, Magnetic oscillations in metals (Cam-
bridge University Press, 2009).

[56] J.-F. Wang, Q.-x. Dong, Y.-F. Huang, Z.-S. Wang, Z.-P.
Guo, Z.-J. Wang, Z.-A. Ren, G. Li, P.-J. Sun, X. Dai,
et al., Temperature dependent quantum oscillations at a
constant magnetic field in a magnetic Weyl semimetal,
arXiv:2201.06412 10.48550/arXiv.2201.06412 (2022).

[57] M. M. Honold, N. Harrison, J. Singleton, H. Yaguchi,
C. Mielke, D. Rickel, I. Deckers, P. H. P. Reinders,
F. Herlach, M. Kurmoo, and P. Day, The importance
of edge states in the quantum Hall regime of the organic
conductor, J. Condens. Matter Phys. 9, L533 (1997).

[58] F. Wu, C. Guo, M. Smidman, J. Zhang, Y. Chen, J. Sin-
gleton, and H. Yuan, Anomalous quantum oscillations
and evidence for a non-trivial Berry phase in SmSb, npj
Quantum Mater. 4, 1 (2019).

[59] C. M. Wang, H.-Z. Lu, and S.-Q. Shen, Anomalous
Phase Shift of Quantum Oscillations in 3D Topological
Semimetals, Phys. Rev. Lett. 117, 077201 (2016).

[60] P. Fontana, M. Burrello, and A. Trombettoni, Topolog-
ical van Hove singularities at phase transitions in Weyl
metals, Phys. Rev. B 104, 195127 (2021).

[61] E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao,
S.-Y. Yang, D. Liu, A. Liang, Q. Xu, et al., Giant
anomalous hall effect in a ferromagnetic kagome-lattice
semimetal, Nat. Phys. 14, 1125 (2018).

[62] Y. He, J. Gayles, M. Yao, T. Helm, T. Reimann, V. N.
Strocov, W. Schnelle, M. Nicklas, Y. Sun, G. H. Fecher,
et al., Large linear non-saturating magnetoresistance and
high mobility in ferromagnetic MnBi, Nat. Commun. 12,
1 (2021).

[63] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and
N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82,
1539 (2010).

[64] S. Sorn and A. Paramekanti, Domain wall skew scattering
in ferromagnetic Weyl metals, Phys. Rev. B 103, 104413
(2021).

[65] S. Datta, Electronic transport in mesoscopic systems
(Cambridge university press, 1997).

[66] Y. V. Nazarov and Y. M. Blanter, Quantum transport:
introduction to nanoscience (Cambridge university press,
2009).

[67] E. Y. Ma, Y.-T. Cui, K. Ueda, S. Tang, K. Chen,
N. Tamura, P. M. Wu, J. Fujioka, Y. Tokura, and Z.-X.
Shen, Mobile metallic domain walls in an all-in-all-out
magnetic insulator, Science 350, 538 (2015).

[68] K. Ueda, R. Kaneko, H. Ishizuka, J. Fujioka, N. Na-
gaosa, and Y. Tokura, Spontaneous Hall effect in the
Weyl semimetal candidate of all-in all-out pyrochlore iri-
date, Nat. Commun. 9, 1 (2018).

https://doi.org/10.1103/PhysRevB.98.245132
https://doi.org/10.1103/PhysRevB.98.245132
https://doi.org/10.1126/science.aat0348
https://doi.org/10.1126/science.aat0348
https://doi.org/10.1103/PhysRevLett.124.017202
https://doi.org/10.1038/s41563-021-01062-8
https://arxiv.org/abs/2203.05440
https://arxiv.org/abs/2106.02215
https://doi.org/10.1103/PhysRevB.104.235119
https://doi.org/10.1103/PhysRevB.104.235119
https://doi.org/https://doi.org/10.1002/qute.202000101
https://doi.org/https://doi.org/10.1002/qute.202000101
https://doi.org/10.1103/PhysRevB.93.205102
https://doi.org/10.1126/sciadv.1602510
https://doi.org/10.1103/PhysRevLett.114.206401
https://doi.org/10.1103/PhysRevLett.114.206401
https://doi.org/10.1103/PhysRevLett.124.136402
https://doi.org/10.1007/978-3-662-44133-6_6
https://doi.org/10.1007/978-3-662-44133-6_6
https://doi.org/10.1016/j.jssc.2005.04.021
https://doi.org/10.1016/j.jssc.2005.04.021
https://doi.org/10.1016/j.cpc.2019.107042
https://doi.org/10.1016/j.cpc.2019.107042
https://doi.org/10.1016/j.cpc.2013.12.023
https://doi.org/10.1016/j.cpc.2013.12.023
https://doi.org/10.48550/arXiv.2201.06412
https://doi.org/10.1088/0953-8984/9/39/001
https://doi.org/10.1038/s41535-019-0161-4
https://doi.org/10.1038/s41535-019-0161-4
https://doi.org/10.1103/PhysRevLett.117.077201
https://doi.org/10.1103/PhysRevB.104.195127
https://doi.org/10.1038/s41567-018-0234-5
https://doi.org/10.1038/s41467-021-24692-7
https://doi.org/10.1038/s41467-021-24692-7
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/PhysRevB.103.104413
https://doi.org/10.1103/PhysRevB.103.104413
https://doi.org/10.1126/science.aac8289
https://doi.org/10.1038/s41467-018-05530-9


18

[69] Y. Yamaji and M. Imada, Metallic Interface Emerging at
Magnetic Domain Wall of Antiferromagnetic Insulator:
Fate of Extinct Weyl Electrons, Phys. Rev. X 4, 021035
(2014).

[70] See 10.17617/3.KMQPZY.
[71] A. Matos-Abiague and J. Fabian, Tunneling Anomalous

and Spin Hall Effects, Phys. Rev. Lett. 115, 056602
(2015).

[72] M. Y. Zhuravlev, A. Alexandrov, L. L. Tao, and E. Y.
Tsymbal, Tunneling anomalous Hall effect in a ferro-
electric tunnel junction, Appl. Phys. Lett. 113, 172405
(2018).

https://doi.org/10.1103/PhysRevX.4.021035
https://doi.org/10.1103/PhysRevX.4.021035
https://doi.org/10.17617/3.KMQPZY
https://doi.org/10.1103/PhysRevLett.115.056602
https://doi.org/10.1103/PhysRevLett.115.056602
https://doi.org/10.1063/1.5051629
https://doi.org/10.1063/1.5051629

	Topological features in the ferromagnetic Weyl semimetal CeAlSi:  Role of domain walls
	Abstract
	I INTRODUCTION
	II METHODS
	III RESULTS
	 Temperature – pressure phase diagram
	 Electronic band structure
	 Quantum oscillations
	 Hall effect

	IV DISCUSSION
	V CONCLUSIONS
	 DATA AVAILABILITY
	 Acknowledgments
	 APPENDICES
	  APPENDIX A: Electrical resistivity
	 APPENDIX B: Quantum Oscillations
	 APPENDIX C: Hall Effect
	 Anomalous Hall Effect
	 Two-band model fits

	 APPENDIX D: Bandstructure calculations
	 APPENDIX E: SIMPLIFIED MODEL FOR WEYL NODES
	 APPENDIX F: MODELING THE DOMAIN WALL
	A Transmission and reflection coefficients
	B Results: case |a| = 0.5, = /4
	1 Parameters
	2 Results


	 References


