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Abstract—With the rapid growth of the Internet of Things,
smart fast-moving consumer products, and wearable devices,
requirements such as flexibility, non-toxicity, and low cost are
desperately required. However, these requirements are usually
beyond the reach of conventional rigid silicon technologies. In
this regard, printed electronics offers a promising alternative.
Combined with neuromorphic computing, printed neuromorphic
circuits offer not only the aforementioned properties, but also
compensate for some of the weaknesses of printed electronics,
such as manufacturing variations, low device count, and high
latency. Generally, (printed) neuromorphic circuits express their
functionality through printed resistor crossbars to emulate ma-
trix multiplication, and nonlinear circuitry to express activation
functions. The values of the former are usually learned, while the
latter is designed beforehand and considered fixed in training for
all tasks. The additive manufacturing feature of printed electronics
allows the design of highly-bespoke designs. In the case of printed
neuromorphic circuits, the circuit is optimized to a particular
dataset. Moreover, we explore an approach to learn not only the
values of the crossbar resistances, but also the parameterization
of the nonlinear components for a bespoke implementation. While
providing additional flexibility of the functionality to be expressed,
this will also allow an increased robustness against printing
variation. The experiments show that the accuracy and robustness
of printed neuromorphic circuits can be improved by 26% and
75% respectively under 10% variation of circuit components.

I. INTRODUCTION

Next-generation electronics, such as soft-robots, fast-moving
consumer goods, wearables, and the Internet of Things (IoT) in-
frastructures, shows a trend towards lightweight, flexibility and
cheapness [1]. However, classical silicon-based technologies
cannot meet these requirements due to their bulky substrates
and high production costs from the complicated subtractive
manufacturing processes. In this regard, printed electronics (PE)
becomes a promising candidate, as the additive manufacturing
used for their fabrication offers ultra-low production costs, as
it requires fewer fabrication steps and equipment compared to
conventional lithography processes used in silicon fabrication.
Additionally, depending on the choice of printing materials and
substrates, printed circuits can be non-toxic and flexible [2], [3].

With the rapid development in data science and machine
learning, neuromorphic computing receives increasing atten-
tion for its expressiveness and ability to approximate desired
functionalities [4]. Moreover, the fundamental operations in
neuromorphic computing are simple (generally weighted-sum
operations and activation functions), which facilitates the imple-
mentation of neuromorphic computing by simple circuit primi-

tives. By printing and connecting these primitives, printed neu-
romorphic circuits are realized. More specifically, the circuits
are the interconnection of multiple printed neurons that mainly
consist of resistor crossbars for weighted-sum operations and
nonlinear circuits as activation functions.

Multiple works have already proposed adaptations of the
designs and/or training algorithms for printed neuromorphic
circuits. For example, [1] proposed an inverter-based printed
neuromorphic circuit, consisting of resistor crossbars, tanh-
like nonlinear circuits, and negative weight circuits. They also
proposed a design algorithm for the circuits, which considers
the variation of resistance values in the crossbar. Similarly, [5]
and [6] investigated the aging of crossbars in neuromorphic
circuits and proposed an adapted training objective to mitigate
aging effects.

However, these works focus solely on the resistors in the
crossbars as learnable parameters, which correspond to the
weights in neural networks (NNs). For the nonlinear com-
ponents, the same predefined and fixed parameterization was
used. In this regard, the unique feature of PE, i.e., high
customizability, is not fully leveraged, because the design and
optimization of nonlinear subcircuits can also be adapted to
the target tasks. In this work, we shift the attention to the
nonlinear subcircuits, namely the negative weights circuits
and activation circuits with the intention to make their char-
acteristics learnable. This means, different tasks may have
different activation circuits with different characteristic curves.
To assess the behavior for different configurations of these
components, we learn small, parameterized artificial NNs based
on SPICE simulation data. These NN models then serve as
surrogate models of the nonlinear circuits, which transform the
component values to the characteristic curves. As these models
are fully differentiable, their circuit parameterization can be
learned alongside the values for the crossbar resistances (i.e.,
weights) in training. This added flexibility not only allows to
learn more expressible functions with the same circuitry, but
also increases the robustness of the resulting circuits against
manufacturing variations, which is also a major issue in additive
printing.

In summary, the contributions of this work are:

• We approximate the behavior of the nonlinear circuit
components through regression NNs. They then serve as
surrogate models for their behaviors and allow us to learn
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Fig. 1. Primitive subcircuits of printed neuromorphic circuits. The left part
indicates a resistor crossbar, while the right part shows the schematic of a
circuit for nonlinear transformation.

individual component values in the main training routine.
• We extend variation-aware training of printed neural net-

works for the consideration of learnable nonlinear subcir-
cuits. This means, not only the variance of resistors in the
crossbar is taken into account, but also the components in
nonlinear circuits.

• We conduct experiments to prove the feasibility of learning
nonlinear subcircuits, and show that it can additionally
increase the robustness against manufacturing variations.

The rest of this paper is structured as follows: Sec. II
briefly introduces the background material. Sec. III describes
the proposed surrogate models of the nonlinear circuits, their
integration into the printed neural networks, and an adapted
variation-aware training approach. In Sec. IV, we evaluate the
effectiveness of the proposed models on benchmark datasets.
Sec. V concludes this work.

II. PRELIMINARY

A. Printed Electronics

Similar to color printing, PE technology is an additive
fabrication process for electronic components based on var-
ious printing techniques, such as roll-to-roll printing and jet
printing [7].

Depending on the printing materials and substrates, printed
circuits can offer several advantages, such as non-toxicity,
lightweight, and flexibility. Additionally, as the additive man-
ufacturing process for PE requires less and cheaper equip-
ment compared to subtractive manufacturing of the conven-
tional silicon-based VLSI, printed circuits can be fabricated
at an ultra-low cost. This advantage further facilitates the
development of new products by enabling the cost-effective
production of highly-customized devices in small batches.
Another formidable benefit of additive manufacturing is that,
the printed components can be modified at almost any stage
in the production, which enables the post-processing and even
the repair of printed devices. Furthermore, the simplicity of the
manufacturing process and the low non-recurring engineering
costs of additive manufacturing provide the ability to fabricate
and customize highly personalized or task-specified electronic
devices.

Despite these benefits, additive manufacturing also presents
drawbacks to printed electronics, such as large feature sizes
and low integration density. Moreover, printed electronics may
also suffer from higher fabrication variabilities. To this end,
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Fig. 2. Exemplary characteristic curves of a ptanh circuit (left) and a negative
weight circuit (right) with certain physical parameter values. The legends with
corresponding colors indicate the values of physical parameters ω.

rather than replacing the conventional silicon-based technology,
printed electronics should be leveraged as a complement by
offering its unique advantages in various applications.

Considering both advantages and disadvantages, several fun-
damental components of printed computing systems have been
successfully realized, including but not limited to Boolean
logic [8], storage elements [9], and amplifiers [10].

In this work, we leverage the high customizability of PE to
tailor the nonlinear subcircuits in printed analog neuromorphic
circuits to specific tasks. These nonlinear subcircuits were
previously considered as fixed for all tasks. Moreover, we
respect the high variation of PE by employing variation-aware
training for the nonlinear circuit components. As a result, the
printed neuromorphic circuits are customized and optimized
to the given tasks, leading to significant enhancements in
circuit performance (e.g., accuracy in classification tasks) and
improved robustness to printing variations.

B. Printed Analog Neuromorphic Circuit

Neuromorphic circuits implement the functionalities that
are equivalent to the operations in artificial NNs, specifically,
weighted-sums and nonlinear activations. There have been mul-
tiple hardware-level implementations for digital neuromorphic
systems [11], but these digital schemes are not particularly well-
suited to PE, which is characterized by large feature sizes and
low integration density. Consequently, the analog neuromorphic
computing approach has become increasingly attractive within
the PE community, as analog solutions necessitate significantly
lower device counts. For example, a 3-input 1-output 4-bit
digital neural neuron requires hundreds of transistors, whereas
an analog approach requires only less than ten [1].

In printed analog neuromorphic circuits, the weighted-sums
are realized through printed resistor crossbars and nonlinear
activations are implemented via inverter-based circuitry. These
components are explained next.

a) Resistor crossbar: The left part in Fig. 1 shows a
resistor crossbar for weighted-sum operation. According to
Kirchhoff’s law,∑

i

Vi − Vz

RC
i

+
Vb − Vz

RC
b

− Vz

RC
d

= 0.

Vi and Vz denote the input and output voltages of the crossbar,
Vb denotes a constant bias voltage (e.g., 1V) Moreover, RC

i ,
RC

b , and RC
d refer to the corresponding resistances of the

voltages. The superscript (·)C distinguishes the resistors in the
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Fig. 3. Pipeline for modelling of the nonlinear circuits. The orange boxes
indicate the feasible design space, the green boxes denote the process of
building the dataset, and the blue box refers to the model approximation.

crossbar from that in the nonlinear circuits (which will be
introduced later). After expressing the resistances R by the
conductances, g = 1/R, we obtain

Vz =
∑
i

gCi
G

Vi +
gCb
G

, (1)

where G =
∑

i g
C
i +gCb +gCd . Consequently, the output voltage

Vz is produced by a weighted-sum (including a bias) of the
input voltages Vi. It thus resembles the weighted-sum operation
in artificial NNs.

b) Printed tanh-like (ptanh) circuit: Following the resistor
crossbar, a circuit for nonlinear transformation is printed. The
right part in Fig. 1 represents the schematic of an inverter-based
nonlinear circuit. By cascading of two inverters, a tanh-like
transformation function can be resembled, whose characteristic
curve can be approximately described by a modified tanh
function, ptanh(·), i.e.,

Va = ptanh(Vz) = η1 + η2 · tanh ((Vz − η3) · η4) , (2)

where Vz and Va are the input and output voltages of the
tanh-like circuit. The parameter vector η = [η1, η2, η3, η4]
modifies the shape and position of the tanh function. Note
that η are only auxiliary parameters that do not directly relate
to the values of the physical components in the nonlinear
circuits, namely, the resistors RN

i and the dimensions of the
electrolyte-gated transistor T , with its width W and length
L [12]. By modifying these physical parameters, summarized
by ω := [RN

1 , R
N
2 , R

N
3 , R

N
4 , R

N
5 , W, L], we can achieve

different curve characteristics, see Fig. 2 (left).
c) Negative weight circuit: According to Eq. 1, the

weights are formed through the conductances in the crossbar.
Consequently, they cannot be negative. To address this problem
and express negative relationships, the printed negative weight
circuit is proposed. Whenever a negative weight is needed, the
respective input Vi is instead transformed with the negative
weight circuit, inv(·), before it is connected to the succeeding
resistor crossbar. Multiple circuits are possible to implement the
negative weight function. But as a shortcut, we use the same
circuit as ptanh circuit in this work. The characteristic curve of
the circuit can also be described by a modified tanh function,
namely,

inv(Vi) = − (η1 + η2 · tanh ((Vi − η3) · η4)) . (3)

Fig. 2 (right) shows some characteristic curves of the negative
weight circuit with different physical quantities.

C. Printed Neural Network

To obtain the optimal component values in a neuromorphic
circuit, a machine learning based model of the circuit, i.e.,
printed neural network (pNN), was proposed in [1]. Usually, the
learnable parameters of the pNN are the surrogate conductances
θ = [θ1, θ2, ...]. Each θi resembles the conductance values gCi
and the corresponding negative weight circuits. Specifically, the
absolute value of the surrogate conductance |θi| indicates the
conductance to be printed, while the sign of θi denotes whether
the input voltage Vi should be inverted. In this way, training a
pNN can be understood as designing a printed neuromorphic
circuit.

A pNN is also able to consider further technical constraints.
For example, the range of printable conductances is not ar-
bitrary: With a given printable range of conductances, i.e.,
gi ∈ {0} ∪ [Gmin,Gmax] (zero refers to not printing), θi must
be in [−Gmax,−Gmin] ∪ {0} ∪ [Gmin,Gmax]. This constraint
can be ensured through projecting all infeasible values into
feasible range in the forward pass, while ignoring the projection
in the backward pass. This technique of obtaining gradients
is commonly referred to as the straight-through (gradient)
estimator [13].

Moreover, the variation of values caused by fabrication errors
can also be considered in pNNs: By modifying the learnable
parameters to stochastic variables, e.g., θ ∼ pθ(θ), the variation
of printed values can be simulated. In this case, the expected
loss function w.r.t. variation is minimized. A more concrete
example is introduced in Sec. III-C.

III. METHODOLOGY

Additive manufacturing uniquely allows PE to have highly
customized circuit components. However, only the crossbars
are designed task-specifically in previous work, whereas the
nonlinear subcircuits are always predefined and fixed. To enable
individual adjustment of the nonlinear circuits, we extend the
learnable parameters in pNNs by the parameters for nonlin-
ear components. Specifically, we introduce differentiable, NN-
based surrogate models to describe the behaviors of the nonlin-
ear circuits, and integrate them into the pNNs. Moreover, thanks
to the surrogate models, the printing variation in nonlinear
circuits can also be considered into the training of pNNs.

A. Modelling of Nonlinear Circuits

To enable the learning of physical quantities ω rather than
the auxiliary variables η, a differentiable mapping ω 7→ η
is required. Therefore, we choose NNs as surrogate models
to approximate this mapping. As shown in Fig. 3, to model
the nonlinear circuit, the design space of circuit components is
defined first. Subsequently, since the mapping is approximated
by NNs, the dataset that describes the circuit behavior is
generated (via SPICE simulation). Finally, NNs are trained as
the surrogate models for nonlinear circuits, which are denoted
by η̂(ω) in the following.

a) Design space: In accordance with printing technology
and circuit design experience, we introduce the following con-
straints to the circuit components: The ranges of the parameters



[ωmin,ωmax] are found by performing sweep analysis in the
simulation tool, which leads to tanh-like characteristic curves.
Moreover, the resistances RN

1 and RN
3 must be larger than RN

2

and RN
4 , respectively. Otherwise, the voltage divider cannot

meet the assumption of a constant ratio due to the connections
with surrounding circuit elements. Tab. I summarizes all the
constraints of the design space.

TABLE I
FEASIBLE DESIGN SPACE OF NONLINEAR CIRCUIT

RN
1 RN

2 RN
3 RN

4 RN
5 W L

(Ω) (Ω) (kΩ) (kΩ) (kΩ) (µm) (µm)

minimal 10 5 10 8 10 200 10

maximal 500 250 500 400 500 800 70

inequality RN
1 > RN

2 RN
3 > RN

4 - - -

b) Dataset: The dataset consists of pairs of physical
design parameters ω and the corresponding auxiliary param-
eters η for tanh-like functions. To obtain a set of ω that
are representative enough for the whole feasible design space,
we employ Quasi Monte-Carlo sampling [14] to draw 10 000
points in the feasible design space, which are denoted by ωi,
i = 1, ..., 10 000. Afterwards, we use Cadence Virtuoso1 for
SPICE simulation based on a prior developed printed Process
Design Kit (pPDK) [12] to simulate the input and output
voltages (V in,V out)i for each sampled circuit (parameterized
by ωi). The green points in Fig. 4 (left) exemplify a simulation
result with a certain ωi. Note that the number of points plotted
in the figure has been reduced for clarity of visualization.

To extract ηi, we fit the simulated data (V in,V out)i by Eq. 2
or Eq. 3 (depending on the circuit) with minimal Euclidean
distance, i.e.,

η∗ = argmin
η

∥∥ptanhη(V in)− V out

∥∥
2
.

By now, we have collected physical design parameters ωi and
their corresponding auxiliary parameters ηi. With this dataset,
NN-based surrogate models η̂(ω) can be trained to describe
the transformation from ωi to ηi.

c) Surrogate nonlinear circuit models: Since the rela-
tionship between ωi and ηi is complicated, we propose to
approximate it by surrogate models based on artificial NNs.
Empirically, data normalization can significantly improve the
performance of NNs. However, the ratios of voltage dividers,
i.e., RN

2 /R
N
1 and RN

4 /R
N
3 , and the ratio between W and L are

critical features of the circuits. If each parameter is normalized
independently, the ratio information is weakened. We therefore
extended the design parameters manually with these three
ratios, i.e.,

ω 7→ [RN
1 , R

N
2 , R

N
3 , R

N
4 , R

N
5 ,W,L, k1, k2, k3],

where k1, k2, and k3 denote the aforementioned ratios. After
the extension, we normalize the data ω to ω̃ as the input of
the NNs. Similarly, the target outputs of the NNs are also
the normalized values of η, which are denoted by η̃. The
maximal and minimal values ωmin, ωmax, ηmin, and ηmax

are saved to perform denormalization later. To find the best

1https://www.cadence.com
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Fig. 4. Left: parameter fitting from (V in,V out) to η. Green points show the
simulated input/output voltages, and the red curve indicates the fitted tanh-
like function parameterized by η. Right: visualization of the results from
the surrogate model. The x-axis and the y-axis refer to the true value η̃
and predicted value η̂(ω). Blue, green, and red colors denotes the data from
training, validation, and test sets.

NNs for surrogate models, we randomly split the dataset into
training set (70%), validation set (20%), and test set (10%),
train the NNs on the training set, and use the MSE loss on
the validation set to find the best hyperparameters for NNs.
After the hyperparameter tuning, a 13-layer NN (#neurons:
10-9-9-8-8-7-7-6-6-6-5-5-5-4) is obtained as the final surrogate
nonlinear circuit model. The plot on the right side of Fig. 4
visualizes the results of all three sets from a surrogate model.
We can thus conclude that, there is no overfitting on the training
data and the surrogate model provides acceptable predictions
from the component values ω to the characteristic curves η.

B. Constraints on the Design Parameters of the pNN

To integrate the surrogate models into pNNs, we introduce
an additional learnable parameter w to the pNNs. To respect
the feasible range of the parameters, we consider the learnable
parameter as the normalized one. Moreover, to include the
inequality constraints, we do not directly learn RN

2 and RN
4 ,

but their corresponding ratios k1 and k2. Thus, the learnable
parameter w corresponds to [R̃N

1 , R̃
N
3 , R̃

N
5 , W̃ , L̃, k1, k2], as

shown in Fig. 5. Due to the normalization and inequality
constraints, all values in w should be in the range (0, 1). Thus,
we pass w through a sigmoid function to ensure this constraint.

To convert the parameters further to printable values, we
denormalize the first five elements and reassemble the vector
with RN

2 = RN
1 k1 and RN

4 = RN
3 k2. Since the elements RN

2

and RN
4 are inferred by k1 and k2, they may not be in their

feasible range (Tab. I). This issue can be addressed by simply
clipping them to their feasible range. Now, w is converted to the
component values that should be printed in the neuromorphic
circuits, i.e., ω (printable values in Fig. 5).

To match the input of surrogate models, the parameters are
extended and normalized as discussed before. The resulting w̃
are put into the surrogate model to estimate the normalized η,
i.e., η̃ = η̂(w̃). Finally, the tanh-like function can be built and
integrated into pNNs after denormalization.

C. Variation-aware Training of pNN

Variation-aware training refers to taking the fabrication errors
of printed components into account during the training for
pNNs [1]. In variation-unaware training, the loss function L
depends on the training data (x,y), the surrogate conductances
θ, and the parameters for nonlinear circuits w. Therefore, the

https://www.cadence.com
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Fig. 5. Flowchart for the processing of the learanble parameter for a surrogate
model of the nonlinear circuit.

loss function can be denoted as L(θ,w,x,y). In the following,
we denote variation-unaware training as nominal training.

Benefiting from the differentiable surrogate models, the
variation of the components in nonlinear circuits can also
be considered. In variation-aware training, the parameters θ
and w are no longer represented by deterministic values, but
modeled as stochastic variables θ ∼ p(θ) and w ∼ p(w)
to respect random fabrication errors. With reparameterization,
they can be formed as εθθ and εωw, where each element in
εθ and εω are i.i.d. variables following a uniform distribution
U [1− ϵ, 1 + ϵ], because the printing variation is mainly driven
by printing limited resolution. Here, ϵ can be chosen to reflect
the precision of printing resolution. Moreover, it is notable
that, the stochastic variable εω is not multiplied by the original
learnable parameter, but the one refers to the component values
to be printed (i.e., printable values in Fig. 5). Consequently, for
variation-aware training, we minimize the expected loss value
w.r.t. the random variables, i.e.,

minimize
θ,w

L(θ,w) = Eεθ,εω {L(εθθ, εωw,x,y)}

=

∫∫
L(εθθ, εωw,x,y)p(εθ)p(εω)dεθdεω.

Since, this integration can not be solved analytically, we
estimate L by Monte-Carlo approximation, i.e.,

L ≈ 1

N

∑
ε′
θ,ε

′
ω

L(ε′θθ, ε
′
ωw,x,y), with

ε′θ ∼ p(εθ),

ε′ω ∼ p(εω),

where N is the number of samples ε′θ and ε′ω drawn from their
distributions in each epoch. Any gradient-based algorithm can
be employed to solve this optimization problem, e.g., SGD [15]
and Adam [16].

IV. EXPERIMENT

We implement2 the pNNs with learnable nonlinear circuit
and conduct experiments with both nominal and variation-
aware training.

2https://github.com/Neuromophic/LearnableNonlinearCircuits

A. Experiment Setup

a) Datasets: In line with the related work [5], we utilize
13 benchmark classification datasets (see Tab. II), whose com-
plexity matches the target application domains of PE, taking
into account the large feature size and low device count of
PE. The datasets are then randomly split into training (60%),
validation (20%), and test (20%) sets.

b) Hyperparameters: Regarding the topology, we decide
#input-3-#output for pNNs, as in [5]. As optimizer, we
utilize Adam with default settings. Since θ and w represent
different underlying effects (i.e., weights and activation func-
tions), we choose different learning rates for them, namely
αθ = 0.1 for θ and αω ∈ {0, 0.005} for w (αω = 0 refers
to a non-learnable nonlinear circuit). We use early-stopping
with the patience of 5 000 epochs as the stop criterion for the
training. Regarding the variation, we select ϵ ∈ {0%, 5%, 10%}
to reflect nominal training as well as low and high printing
resolutions, because typical printing resolutions range from
20µm to 100µm [17], whereas the component feature sizes
in printed neuromorphic circuits are on the order of 1mm [1].
For Monte-Carlo approximation, we select Ntrain = 20. We
run the experiment ten times with random seeds in {1, ..., 10}.

B. Ablation Study

To investigate the contribution of learnable nonlinear circuits
and the variation-aware training, we conduct two ablation stud-
ies. In (a), we explore the influence of the learnable nonlinear
circuit, i.e., we set αω = 0 and observe the change in results.
In (b), we investigate the effect of variation-aware training,
meaning that we perform both nominal training and variation-
aware training with non-learnable nonlinear circuits. As base-
line, neither variation-aware training nor learnable nonlinear
circuits is adopted.

C. Result

After training all pNNs, we select the best pNNs in each
setup w.r.t. the validation loss, as these circuits would be the
ones to be printed, and evaluate them on the test sets. For pNNs
from nominal training, we test them with ϵ = 5% and ϵ = 10%
respectively. As for pNNs from variation-aware training, we test
with variation according to the respective training ε. All pNNs
are tested with Ntest = 100 Monte-Carlo samples. The mean
and standard deviation from Ntest samples are calculated and
reported in Tab. II.

To demonstrate the results from different experiment setups
more intuitively, we average the accuracies and standard devi-
ations over all datasets to a scalar for each experiment setup.
The averaged values are reported in both Tab. II and Tab. III.

D. Discussion

By comparing the baseline with pNNs with learnable nonlin-
ear circuit from variation-aware training, significant improve-
ment becomes evident: The (mean) accuracy has been increased
by 19% and 26% with respect to 5% and 10% variation,
while the robustness (standard variation) has been improved
(reduced) by 73% and 75%, respectively. By observing the
learnable nonlinear circuit and the variation-aware training

https://github.com/Neuromophic/LearnableNonlinearCircuits


TABLE II
RESULT OF THE EXPERIMENT ON 13 BENCHMARK DATASETS

Dataset
Non-learnable nonlinear circuit Learnable nonlinear circuit

Nominal training Variation-aware training Nominal training Variation-aware training
5% 10% 5% 10% 5% 10% 5% 10%

Acute Inflammation 0.821 ± 0.083 0.800 ± 0.085 0.891 ± 0.078 0.874 ± 0.044 0.956 ± 0.089 0.882 ± 0.111 1.000 ± 0.000 0.999 ± 0.012

Balance Scale 0.778 ± 0.095 0.682 ± 0.203 0.810 ± 0.040 0.705 ± 0.066 0.870 ± 0.050 0.824 ± 0.108 0.880 ± 0.004 0.877 ± 0.008

Breast Cancer Wisconsin 0.907 ± 0.031 0.864 ± 0.097 0.924 ± 0.018 0.878 ± 0.149 0.951 ± 0.035 0.880 ± 0.136 0.963 ± 0.008 0.931 ± 0.039

Cardiotocography 0.768 ± 0.017 0.748 ± 0.051 0.775 ± 0.014 0.768 ± 0.009 0.773 ± 0.088 0.756 ± 0.198 0.774 ± 0.004 0.763 ± 0.002

Energy Efficiency (y1) 0.816 ± 0.080 0.709 ± 0.178 0.838 ± 0.000 0.835 ± 0.015 0.889 ± 0.044 0.835 ± 0.148 0.889 ± 0.032 0.847 ± 0.012

Energy Efficiency (y2) 0.663 ± 0.090 0.615 ± 0.142 0.727 ± 0.054 0.714 ± 0.073 0.837 ± 0.079 0.772 ± 0.146 0.883 ± 0.023 0.867 ± 0.026

Iris 0.706 ± 0.092 0.659 ± 0.104 0.807 ± 0.103 0.733 ± 0.140 0.726 ± 0.141 0.657 ± 0.181 0.912 ± 0.034 0.843 ± 0.045

Mammographic Mass 0.613 ± 0.100 0.569 ± 0.116 0.689 ± 0.125 0.642 ± 0.136 0.630 ± 0.134 0.609 ± 0.120 0.782 ± 0.017 0.766 ± 0.053

Pendigits 0.313 ± 0.155 0.234 ± 0.145 0.365 ± 0.063 0.253 ± 0.085 0.391 ± 0.131 0.331 ± 0.137 0.554 ± 0.038 0.548 ± 0.047

Seeds 0.520 ± 0.158 0.413 ± 0.191 0.766 ± 0.043 0.717 ± 0.132 0.749 ± 0.039 0.656 ± 0.140 0.820 ± 0.034 0.820 ± 0.041

Tic-Tac-Toe Endgame 0.630 ± 0.000 0.630 ± 0.000 0.633 ± 0.009 0.634 ± 0.020 0.682 ± 0.209 0.630 ± 0.000 0.713 ± 0.012 0.660 ± 0.017

Vertebral Column (2 cl.) 0.681 ± 0.071 0.650 ± 0.089 0.682 ± 0.070 0.666 ± 0.049 0.706 ± 0.069 0.659 ± 0.107 0.716 ± 0.007 0.661 ± 0.000

Vertebral Column (3 cl.) 0.593 ± 0.137 0.570 ± 0.130 0.602 ± 0.071 0.570 ± 0.118 0.612 ± 0.132 0.574 ± 0.157 0.634 ± 0.086 0.634 ± 0.075

Average 0.678 ± 0.085 0.626 ± 0.118 0.731 ± 0.053 0.691 ± 0.080 0.752 ± 0.095 0.697 ± 0.130 0.809 ± 0.023 0.786 ± 0.029

separately in Tab. III, we conclude that learnable nonlinear
circuit and variation-aware training contribute 58% and 42% to
the improvement of the accuracy under 5% variation, whereas
52% and 48% in case of 10% variance. Regarding the robust-
ness, almost all the contribution is provided by variation-aware
training.

In short, depending on the variations (5%-10%), the proposed
method in this work provides 19%-26% improvement of pNNs
regarding mean accuracy and around 75% improvement regard-
ing robustness. In this method, the learnable nonlinear circuit
contributes more to the resulting improvement in accuracy,
while the improvement of robustness is provided mainly by
variation-aware training.

TABLE III
SUMMARIZED RESULTS FROM ABLATION STUDY

Learnable non- Variation-aware ϵtest

linear circuit training 5% 10%
✓ ✓ 0.809 ± 0.023 0.786 ± 0.029

✓ ✗ 0.752 ± 0.095 0.697 ± 0.130

✗ ✓ 0.731 ± 0.053 0.691 ± 0.080

✗ ✗ 0.678 ± 0.085 0.626 ± 0.118

V. CONCLUSION

Printed analog neuromorphic circuits have become increas-
ingly attractive, especially in emerging fields like IoT and
wearable computing. This is due to their unique characteristics,
such as flexibility, lightweight, and inexpensiveness, which are
unmatchable by the traditional silicon-based chips.

To leverage another unique feature of PE, i.e., highly cus-
tomized additive manufacturing, this work focuses on the
bespoke nonlinear circuits in the printed neuromorphic circuits.
Additionally, the printing variations of the components in both
crossbars and nonlinear circuits are considered by introducing
the variation-aware training for pNNs, which aims to increase
the robustness of the printed neuromorphic circuits.

The preliminary experiment proved that, by introducing these
two approaches, the accuracy and robustness of the pNNs
were significantly improved. Ablation study reveals that, the
learnable nonlinear circuit provides a unique contribution to the

final improvement in accuracy, while the robustness is mainly
provided by the variation-aware training.
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[14] I. Soboĺ, “Quasi-Monte Carlo Methods,” Progress in Nuclear Energy,
vol. 24, no. 1-3, pp. 55–61, 1990.

[15] S.-i. Amari, “Backpropagation and Stochastic Gradient Descent Method,”
Neurocomputing, vol. 5, no. 4-5, pp. 185–196, 1993.

[16] D. P. Kingma et al., “Adam: A Method for Stochastic Optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[17] S. Khan et al., “Technologies for Printing Sensors and Electronics over
Large Flexible Substrates: A Review,” IEEE Sensors Journal, vol. 15, p.
3164, 2014.


	Introduction
	Preliminary
	Printed Electronics
	Printed Analog Neuromorphic Circuit
	Printed Neural Network

	Methodology
	Modelling of Nonlinear Circuits
	Constraints on the Design Parameters of the pnn
	Variation-aware Training of pnn

	Experiment
	Experiment Setup
	Ablation Study
	Result
	Discussion

	Conclusion
	References

