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Abstract

Deep drawing is one of the most important forming processes for the forming of flat sheet blanks, where the formation
of wrinkles and the appearance of cracks can be a problem, especially in areas of high geometric complexity. The local
increase of the temperature in these critical areas can help to improve the formability of the material and thus reduce
defects. The present paper aims at a targeted temperature control of the die of a deep-drawing mold. For this sensors
are placed systematically to develop an estimator for the spatial-temporal temperature evolution to subsequently realize
tracking control using the embedded actuation devices. A continuum representation of the temperature distribution
in the die is derived and transferred to a high order finite element (FE) approximation to take the complex-shaped
geometry of the tool into account. Parameter identification is performed based on measurement data to improve the
accuracy of the FE approximation and model order reduction (MOR) techniques are applied to determine a sufficiently
low order system representation. A mixed-integer optimization problem is formulated and solved making use of different
formulations of the observability Gramian to determine the optimal sensor locations and a Kalman filter is designed as
an estimator based on a reduced order model. Moreover, a linear-quadratic regulator with integral part combined with
the Kalman filter is developed to react efficiently towards disturbances. Finally this theoretical framework is tested in a
real experiment.

Keywords: Deep drawing, Finite Element method, Metal sheet forming, Model order reduction, Estimator design,
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1. Introduction

The production of increasingly complex structures has
been a crucial requirement for the development of new
products and a key contributor to the growth of a wide
range of industrial sectors in recent decades. Metals, which
are still the most widely used class of materials due to their
outstanding mechanical properties, have entered new ar-
eas of application through a wide variety of manufacturing
processes and, thanks to the latest technologies for com-
ponent design, at competitive cost. Most of the metals
are used in the industry with large lot productions, e.g. a
statistical car consists of 90% components made by metal
forming processes [1]. The focus for high-volume products,
such as those in the automotive industry, is therefore on
fast and cost-effective production with reproducible high
quality, defined by design, surface quality, geometric accu-
racy, and hardness. These properties should usually also
be achieved in a resource- and energy-saving manner [2].
The material, which is usually supplied as sheet metal,
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undergoes a wide variety of forming and machining pro-
cesses. One of the most important forming processes for
shaping flat sheet blanks is the deep drawing process de-
scribed in [3] and [4], where the sheet metal, also known
as the blank, is placed on the die and a defined force is
applied via a drawing punch. Additionally so-called blank
holders are used to ensure an adequate fixation of the sheet
metal and to prevent slippage.

During the deep drawing process wrinkles and cracks
can occur especially in areas of high geometric complex-
ity. To minimize the possiblity of the occurance of such
quality-reducing defects the temperature of the die can
be increased during the process to get a better formabil-
ity of the metal [5]. For a cost-effective production it is
reasonable to only increase the temperature locally in the
critical areas. In order to realize this, a targeted interven-
tion by built-in actuators is developed together with the
estimation of the spatial-temporal evolution of the temper-
ature in the die. The project ZF4558805RU8 funded by
the German Zentrales Innovationsprogramm Mittelstand
(ZIM) aims at the development of active thermal control
in specialized deep drawing tools. For this, the experimen-
tal device illustrated by the CAD image in Fig. 1 is built
and equipped suitably. It is of high geometric complex-
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ity to ensure transferability to other deep drawing tools
as a benchmark. In six critical areas a locally increased
temperature is desired. For each of these areas, insertion
elements are designed as part of the die and provided with
actuators. The computer-aided designed experimental die
with these elements is depicted in Fig. 2. To obtain in-
formation about the temperature distribution in the die
thermocouples are placed both in the insertion elements
and in the rest of the die. Note that a thermal imaging
camera is not used in this study as it requires placement
close to the tool. Measuring the temperature during the
holding time of the forming process is hardly possible and
for the open tool the optical measuring angle is quite small.

First experiments with the experimental device have
shown the benefit of a heated die. In Fig. 3 two parts of the
formed sheet metal (1050 aluminium alloy with a thickness
of 0.5mm) are depicted without heating the die (left) and
with the insertion elements heated open-loop to approxi-
mately T = 150 ◦C at the critical areas (right). Obviously
a reduction of wrinkles is achieved, however the number
of cracks remains nearly the same. The used temperature
was evaluated as the best choice for the reduction of the
defects. An occuring problem is the temperature decrease
in the die as consequence of the cold forming punch. These
results clearly support the approach of an active thermally
controlled forming tool to keep the temperature at a suit-
ably determined level during multiple consecutive forming
steps.

Accurate active thermal control requires a mathematical
model describing the spatial-temporal temperature evolu-
tion, which is derived based on the heat equation. The
finite element (FE) method described in [6] is then ap-
plied for spatial discretization due to the complex geome-
try. Based on this model a parameter identification prob-
lem is formulated to determine the unknown parameters.
Different model order reduction (MOR) techniques (see,
e.g., [7, 8]) are applied and compared to obtain a reduced
order model (ROM) suitable for the control and the esti-
mator design. For the latter an optimal sensor placement
is addressed to improve the temperature estimation capa-
bilities, combining mathematical model and local sensor

Figure 1: Computer-aided designed experimental deep drawing tool
in total. The punch is visualized in red and the die in green.

Figure 2: Computer-aided designed experimental die (top view). In-
sertion element 1 is marked in yellow, 2 in magenta, 3 in light blue,
4 in dark blue, 5 in grey and 6 in dark red.

(a) First blank part without
heating.

(b) First blank part with
heating.

(c) Second blank part with-
out heating.

(d) Second blank part with
heating.

Figure 3: Two parts of a shaped blank with and without heating.
The colored ellipsoids mark the positions of the insertion elements
with respect to the used colors in Fig. 2.

information. In [9] different model order reduction (MOR)
methods are compared minimizing the covariance matrix
in order to find the optimal sensor positions, while in [10]
and [11] the balanced model reduction is used. Maximiz-
ing the controllability Gramian is the aim of [12] and [8]
to find the optimal actuator positions. In this work, the
latter approach is transferred to address the sensor place-
ment problem by maximizing the observability Gramian
and some related measure as, e.g., proposed by [13]. This
directly contributes to the system design as the determined
locations are transferred to the experimental setup. This
goes along with the incorporation of different model or-
der reduction techniques (see, e.g., the surveys in [14, 7])
and a comparison with the full model. In particular a
Kalman filter is implemented based on a ROM to evalu-
ate the performance of the different sensor configurations.
This Kalman filter is later tested in an experimental setup
to validate sensor placement.

The transition between different temperature profiles in
the die can be realized efficiently within a specified time in-
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terval making use of a trajectory planning. Flatness based
approaches are proposed by, e.g., [8, 15, 16] using e.g. a
Gevrey function [17]. For our purposes a feedback control
based on a ROM combined with the implemented Kalman
filter is developed. Therfore a linear quadratic (LQ) reg-
ulator is used as in [18] for the optimal cooling of steel
profiles and in [19] to handle stochastic parameter uncer-
tainties. The regulator is extended by an integral part as
proposed in [20] to reduce estimator errors efficiently. The
whole setup is implemented at the experimental setup to
validy the quality of the developed control loop.

The goal of the paper is to counteract the occurance of
wrinkles and cracks during a deep drawing process by a lo-
cal temperature increase in critical areas of the die. This
is realized by a targeted intervention by built-in actuators
together with the estimation of the spatial-temporal evolu-
tion of the temperature in the die. The paper is organized
as follows. Section 2 introduces the thermal model for
the considered deep drawing tool and its FE approxima-
tion together with a parameter identification of the exper-
imentally observed maximum power of the actuators and
the heat transfer coefficient. The used MOR techniques
are briefly described. Optimal sensor placement followed
by the design of an estimator is addressed in Section 3.
Section 4 introduces an estimator based controller design.
Section 5 shows the results of the experiments performed
to validate the theoretical developments. Some final re-
marks in Section 6 conclude the paper.

2. Modelling, Order Reduction and Parameter
Identification

The heat equation is introduced to describe the spatial-
temporal temperature evolution in the die. Based on this,
a FE approximation is determined and the obtained model
equations are reduced using different MOR techniques.
A parameter identification based on experimental data is
considered to determine the model parameters.

2.1. Continuum Representation

Mathematical modeling of the temperature distribution
T (x, t) in the die, whose spatial domain is denoted by Ω,
leads to the heat equation

ρcp∂tT −∇ · (λ∇T ) = 0, (x, t) ∈ Ω× R+
0 (1a)

with boundary and initial conditions

n · (λ∇T ) = qiui, (x, t) ∈ Γi × R+
0 , i ∈ I (1b)

n · (λ∇T ) = h(T∞ − T ), (x, t) ∈ Γa × R+
0 (1c)

T = T0, x ∈ Ω, t = 0. (1d)

Herein, ρ = 7850 kgm−1, cp = 460 J kg−1 K−1 and λ =
34.5 J s−1 m−1 K−1 denote density, specific heat capacity,
and thermal conductivity of the material, the tool steel
1.2312 (40CrMnMoS8-6). Note that these parameters may

vary with x = (x1, x2, x3) to represent inhomogeneous or
composite material. For reasons of simplicity they are cho-
sen to be constant during the considered heating process.
This is valid as the specific heat capacity of the steel is
constant in the temperature range considered here. The
boundary ∂Ω of the domain Ω is subdivided into m = 6
actuated subsets Γi, i ∈ I = {1, . . . ,m}, where the exter-
nal heating power qiui, with maximal power qi and the
degree of actuation ui ∈ [0, 1] is applied, and the remain-
ing surface Γa, which is in contact with the ambient air
at uniform temperature T∞. Convective heat transfer be-
tween steel and air is described by the parameter h with
SI unit Wm−2 K−1. Radiative heat transfer is neglected
as its contribution is much smaller compared to convective
heat transfer in the experimental temperature range. The
surface normal is denoted as n. The actuators are not part
of the domain Ω.

2.2. Meshing and FE Approximation

To take into account the complex geometry of the tool
for control, the FE method is applied to (1). Based on the
CAD construction of the tool shown in Fig. 1, the mesh of
the die illustrated in Fig. 4 was generated using Coreform
Cubit 2020.2. Critical areas involving curvatures at low
radii can be clearly identified due to the comparatively
tighter local mesh.

Figure 4: Meshed die, top view (left above) and view of the back
side from Fig. 1 (right above) and wireframe view (below).

The FE approximation is evaluated using the software
library Firedrake [21] in Python and leads to the finite-
dimensional approximation in terms of the system of ordi-
nary differential equations (ODEs)

EṪ = AT +Bu, t > 0, T (0) = T 0. (2)

in the nodal temperatures summarized in the vector T (t) ∈
Rn with n = 42819. The elements of the thermal damping
matrix E ∈ Rn×n, the thermal stiffness matrix A ∈ Rn×n,
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and the input matrix B = [b1, b2, . . . , bm] ∈ Rn×m are
obtained from the variational form of (1). Herein, the
test function v ∈ V and the trial function ϕ ∈ V , with V
being a suitable function space for the solution of T , are
used, as described in [6]. The ambient temperature T∞ is
assumed constant, so the mapping T (x, t) 7→ T (x, t)− T∞
or respectively

T (t) 7→ T (t)− T∞1 (3)

with 1 ∈ Rn composed of only ones is introduced for the
subsequent analysis and design. The input vector reads
u(t) = [u1(t), u2(t), . . . , um(t)]T with ui(t) ∈ [0, 1], i =
1, . . . ,m entering the system via the input vectors bi. This
represents the heating elements with maximal power qi for
ui = 1 defined in (1b). The output matrix C ∈ Rp×n

extracts the local temperatures at to be determined mea-
surement locations inside and on the die, i.e.,

y = CT , t ≥ 0 (4)

with y(t) ∈ Rp. In particular, p sensors are placed using
the optimization setup addressed in Section 3.

2.3. Model Order Reduction

The large number of n = 42819 nodes leads to a com-
putationally intensive calculation for simulation, one time
step takes 1.2462 s, and makes the model unusable for con-
trol and estimator design purposes, which is discussed in
Section 3 and Section 4. To cope with this difficulty a
reduced order model (ROM) of significantly lower dimen-
sion r ≪ n is determined, which approximates the dy-
namics of the full order system with sufficient accuracy.
Due to the model availability in terms of (2) and (4)
projection-based MOR is considered. Following [7] the un-
known state variables in a basis of reduced dimension are
approximated and the governing equations are projected
onto a suitably defined subspace of small dimension. The
projection matrices V ∈ Rn×r and W ∈ Rn×r are used,
where V = range(V ) is an r-dimensional test subspace
and W = range(W ) an associated trial subspace. Approx-
imating the full state T (t) evolving in the r-dimensional
subspace V in terms of T r(t) ∈ Rr,

T = V T r (5)

is written. Taking into account the Petrov-Galerkin con-
dition [7]

WT
(
EV Ṫ r −AV T r −Bu

)
= 0,

the substitution of (5) into (2), (4) yields

ErṪ r = ArT r +Bru, t > 0, T r(0) = T 0
r (6a)

y = CrT r. (6b)

Herein, the reduced order matrices Er ∈ Rr×r, Ar ∈ Rr×r,
Br ∈ Rr×m and Cr ∈ Rp×r are determined as

Er = WTEV, Ar = WTAV, Br = WTB, Cr = CV.

The calculation time of one time step reduces significantly
to 0.0147 s for an exemplary reduction order r = 95. Sub-
sequently, three different MOR techniques based on this
projection are evaluated.

2.3.1. Balanced truncation

The controllability and observability Gramians depend
on the respective choice of the coordinate system and will
transform under a change of coordinates. A transforma-
tion with respect to the controllability and observability
is called balanced, if the gramians Wc and Wo go together
to Wc,r = Wo,r becoming equal and diagonal [22].

Given (2), (4) and the fact that the spectrum of A is
contained in the open left half plane, i.e., σ(A) ⊂ C−

0 , the
controllability and observability Gramians Wc and Wo can
be calculated via the generalized Lyapunov equations

AWcE
T + EWcA

T +BBT = 0, (7a)

ATWoE + ETWoA+ CTC = 0. (7b)

To solve these efficiently the low-rank alternating-direction
implicit (ADI) method presented in, e.g., [23] is applied.
Using the Cholesky decompositions Wc = Wc,CW

T
c,C ,

Wo = Wo,CW
T
o,C and the singular value decomposition

(SVD)

WT
c,CWo,C =

[
U1 U2

] [Σ1 0
0 Σ2

] [
V T
1

V T
2

]
leads to the balancing transformations

W = Wo,CV1Σ
− 1

2
1 , V = Wc,CU1Σ

− 1
2

1 .

For balanced truncation (BT) these matrices are used to
evaluate (6). Herein, the MESS toolbox [24] in MATLAB
is used for numerical evaluation.

2.3.2. Iterative rational Krylov algorithm

Moment matching (MM) methods in general aim at the
construction of a lower degree rational transfer function
Gr(s) that matches the transfer function G(s) of the full
order system and its derivatives at certain points sk ∈ C in
the complex domain. The iterative rational Krylov algo-
rithm (IRKA) is an MM method using an H2-optimal shift
set to determine W and V iteratively [25]. For the con-
sidered application the IRKA is solved using the sssMOR
toolbox [26] in MATLAB.

2.3.3. Proper orthogonal decomposition

The proper orthogonal decomposition (POD) operates
with a snapshot matrix to construct the transformation
matrices [27]. Snapshots are computed by numerically
solving the system (2), (4) subject to appropriate exci-
tation signals u. The SVD of the snapshot matrix leads
to the transformation matrices V and W .
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2.4. Parameter Identification

Heating elements are installed in order to locally in-
crease the temperature in the die. These are placed in the
m = 6 insertion elements I = {1, . . . , 6} which are fully
integrated in the die and consist of the same tool steel
1.2312 (40CrMnMoS8-6). The dimensions of the heaters,
their maximum heating power and the type are listed in
Table 1. Elements i ∈ {1, 2, 3, 6} are equipped with one
heater, elements i ∈ {4, 5} with two heaters controlled
in parallel. A sensor is installed in each of the elements.
Due to non-ideal assembly and imperfections in installa-
tion the transferred and experimentally observed heating
power does not directly correspond to the nominal values
listed in Table 1. To address this and to cover the accumu-
lated effects of the assembly and installation a parameter
identification procedure is developed.

Together with the parameters of the actuators, the heat
transfer coefficient of (1c) is adressed in this identification
setup, as it is not exactly defined by the used material and
therefore not known. For parameter identification, the in-
sertion elements are separate components detached from
the die. They are fully surrounded by the ambient air at
uniform temperature T∞. A mathematical model for de-
scribing the temperature distribution over the respective
domains is derived for all six insertion elements. The con-
tinuum representations are derived in the same way as in
(1). To discretize the equations again the FE method is
used. The meshes generated using Coreform Cubit 2020.2
are illustrated in Fig. 5. As before the FE model is deter-
mined using the software library Firedrake [21] to obtain
the set of ODEs

EiṪ i = AiT i +Biui, t > 0, T i(0) = T 0
i , (8a)

yi = cTi T i, t ≥ 0. (8b)

with

Ai = Aλ,i + hAh,i,

ui(t) = pηi

(
1− e

− t
τi

)
1, i ∈ {1, 2, 3, 6}.[
1

1

]
, i ∈ {4, 5}.

(8c)

The nodal temperatures are summarized in the vectors
T i(t) ∈ Rni for ni, i = 1, . . . ,m. The elements of the

Table 1: Properties of the heating elements in the six insertion ele-
ments.
El. i ∈ I Measures in mm Power in W Heater type

1 Ø4× 930 1200 Coil
2 Ø8.5× 468 1050 Tubular
3 Ø8.5× 397 900 Tubular
4 Ø12.5× 65 500 Cartridge

Ø12.5× 35 300 Cartridge
5 Ø20× 50 600 Cartridge

Ø12.5× 70 550 Cartridge
6 Ø16× 60 400 Cartridge

(a) Meshed insertion element 1
with a red marked coil heater.

(b) Meshed insertion element 2
with a red marked tubular heater.

(c) Meshed insertion element 3
with a red marked tubular heater.

(d) Meshed insertion element 4
with two red marked cartridge
heaters.

(e) Meshed insertion element 5
with two red marked cartridge
heaters.

(f) Meshed insertion element 6
with a red marked cartridge
heater.

Figure 5: Meshes of the six insertion elements.

thermal damping matrices Ei ∈ Rni×ni , the input matri-
ces Bi ∈ Rni×1 for i ∈ {1, 2, 3, 6} and Bi ∈ Rni×2 for
i ∈ {4, 5} and the thermal stiffness matrices Ai ∈ Rni×ni

are obtained from the variational form of the continuum
representation. Herein, Aλ,i denotes the part of Ai re-
sulting from (1a) of the heat equation and Ah,i the part
from (1c). This splitting enables the parameter identifica-
tion of the heat transfer coefficient h. The output vectors
cTi ∈ R1×ni are used to project the nodal temperature to
the measured outputs yi. In the equations p is the degree
of actuation and ηi can be interpreted as efficiency fac-
tors. The variables τi describe the delayed start-up of the
actuators following a PT1 behavior. The measured sen-
sor values ỹi are collected for all six insertion elements in
two different scenarios resulting in two data sets {ỹp1,i}6i=1

and {ỹp2,i}6i=1. These differ in the used degree of actuation
with

p1 =

{
0.1, t ≤ t1,i

0, t > t1,i.
, p2 =

{
1, t ≤ t2,i

0, t > t2,i
,

where t1,i and t2,i denote the points in time at which the
degrees of actuation become zero to avoid extremely high
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temperatures. During the experiments, the insertion el-
ements were detached from the die. Making use of (8a)
numerical solutions are determined for each insertion ele-
ment for both actuation scenarios in each iteration of the
optimization problem

min
h,η,τ

J =

m∑
i=1

∥ỹp1,i − yp1,i∥1 +
m∑
i=1

∥ỹp2,i − yp2,i∥1,

where yp1,i and yp2,i refer to the simulated outputs, h is
the to be determined heat transfer coefficient, and η =
[η1, . . . , η6]

T , τ = [τ1, . . . , τ6]
T are the parameters in (8c).

The optimization problem results in h =
6.6768Wm−2 K−1 and the values in Table 2. The opti-
mization objective J = 2321.5K, which is equivalent to a
temperature difference of Tdiff = 2321.5K/n∆t ≈ 0.9625K
between optimized simulation and experimental data, is
sufficiently small. Here, the total number of time steps
in all data sets is n∆t = 2412. Literature values for the
heat transfer coefficient h between steel and air are in
the range of h = 5Wm−2 K−1 and h = 30Wm−2 K−1

[28], which fit with the determined value. The results for
the efficiency factors η are also plausible. As expected,
they are smaller than, but close to 1 and state that the
actuators have maximum heating powers of 78.36% to
95.61% of the data sheet values. The optimized values of
the delay variables τ result in transient responses between
9.9137 s and 40.4569 s, with the maximum value for the
coil heater.

Table 2: Opimized values of the heating elements.

No. i ηi τi

1 0.9409 40.4569
2 0.8738 16.7488
3 0.8824 27.0662
4 0.9561 9.9137
5 0.7836 9.9217
6 0.9063 31.5385

Fig. 6 depicts the temporal evolution of the tempera-
ture in the two scenarios. The dashed lines represent the
experimental data, while the continuous lines refer to the
simulations results using (8a) with the determined param-
eters. The results clearly confirm that the dynamics of the
insertion elements is rather accurately represented. Dif-
ferences arise primarily for the fourth insertion element
in the scenario p2, where temperatures above 200 ◦C are
induced. These may lead to simulation problems as the
influence of the neglected effect of radiative heat transfer
becomes more important.

3. Optimal Sensor Placement

To determine the most reasonable sensor positions in the
die to gain insight into the process dynamics and to set up
an estimator strategy an optimization-based approach is

Figure 6: Simulations (continuous lines) and experimental data
(dashed lines) of the six insertion elements in the scenarios with
p = p1 (left) and p = p2 (right).

considered to place sensors. As the insertion elements are
equipped with seperate sensors a model of the die without
these elements is used for optimization. This model is
described in detail in [29]. The mesh is visualised in Fig. 7.

Figure 7: Meshed die, top view (left) and view of the back side from
Fig. 1 (right).

3.1. Segmentation

For sensor placement the model geometry is divided into
segments illustrated in Fig. 8. Segments in this context
represent possible sensor positions used as decision vari-
ables in the optimal sensor placement problem introduced
subsequently. The segments are created by dividing the
x1-, x2- and x3-axes into 8, 7 and 4 elements, respectively.
Since the surface in x3-direction varies in height in total
p = 166 segments are considered with some not fully oc-
cupied by the tool volume.

The output equation for the segmentation is defined as

yseg = CsegT , t ≥ 0 (9)

amending the finite-dimensional approximation (2). The
vector yseg(t) ∈ Rp is composed of the temperatures av-
eraged over each possible segment. Therefore the nonzero
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Figure 8: Nodes (red dots) and segments (cuboids) of the die.

elements of the sparse output matrix Cseg ∈ Rp×n are de-
fined as q−1, with q being the number of nodes in the
specific segment.

3.2. Optimization Problem

To quantify the level of observability of a particular sen-
sor configuration the observability Gramian Wo is used,
which contains the observable subspace of a system [22].
This matrix describes to which extent the system dynam-
ics can be reconstructed by the placed sensors. The ob-
servability Gramian Wo can be computed by means of the
generalized Lyapunov equation (7b) using Cseg as output
matrix. The Gramian Wo depends on Cseg and thus on
the placed sensors. Following Wo(χ) with the binary vec-
tor χ ∈ {0, 1}p is used repesenting a possible sensor con-
figuration and χi = 1 denoting a chosen segment. This
method enables the possiblity to define non-feasable seg-
ments.

3.2.1. MAX-DET optimization.

By making use of the results of [12] for the dual problem
of optimal actuator placement the maximization of the de-
terminant of Wo is considered as the maximum represents
the volume of the observable subspace. This leads to

max
χ

det (Wo (χ)) .

The observability Gramian Wo,i is set up for each segment
so that due to linearity

Wo (χ) =

p∑
i=1

χiWo,i

with the decision variables χi ∈ {0, 1}, i = 1, . . . , p. To ac-
celerate the calculation, an SVD is performed, i.e., Wo =
USV T , and only the s largest singular values U1:s are
considered in the reduced Gramian Wo,red = U1:sWoU

T
1:s,

where the first s columns of U are used to reduce the size
of Wo from Rn×n to Rs×s. This extracts the most relevant

information contained in the s largest singular values and
yields the reduced optimization problem

max
χ

det

(
p∑

i=1

χiU1:sWo,iU
T
1:s

)
.

The maximization problem can be recast into a minimiza-
tion problem by considering the inverse matrix and making
use of the logarithm for better scaling. This results in the
mixed-integer optimization problem

min
χ

log det

(
p∑

i=1

χiU1:sWo,iU
T
1:s

)−1

(10a)

s.t.

p∑
i=1

χi ≤ pmax, χi ∈ {0, 1}, (10b)

where pmax is the maximal number of sensors to be em-
bedded into the die.

3.2.2. Alternative measures.

Following, e.g., [13] measures other than the MAX-
DET optimization seem reasonable. This includes
max(− traceW−1

o ), which is proportional to the energy
needed on average to observe the systems’ states. Taking
into account the previous exposition the resulting mini-
mization problem reads

min
χ

trace

(
p∑

i=1

χiU1:sWo,iU
T
1:s

)−1

s.t. (10b). (11)

The measure max traceWo is inversely related to the av-
erage energy of the system and calculates the average ob-
servability in all directions. This implies

min
χ

− trace

(
p∑

i=1

χiU1:sWo,iU
T
1:s

)
s.t. (10b). (12)

To maximize the dimension of the observable subspace the
rank of the Gramian can be maximized so that

min
χ

− rank

(
p∑

i=1

χiU1:sWo,iU
T
1:s

)
s.t. (10b). (13)

It might also be useful to maximize the smallest eigenvalue
λmin(Wo) of the observability Gramian. This measures the
amount of energy, which is needed to move the system into
the direction that is most difficult to observe and implies

min
χ

−λmin

(
p∑

i=1

χiU1:sWo,iU
T
1:s

)
s.t. (10b). (14)

3.2.3. Optimization using ROMs.

Solving the Lyapunov equation to obtain the observ-
ability Gramian Wo requires high computational power.
Another intuitive way to calculate a reduced Gramian is
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solving the Lyapunov equation (7b) for the ROM (6). This
allows to transfer any of the optimization problems (10)
to (14) by replacing Wo with the resulting ROM-based
Gramian Wo,r. Since the sensor-dependent output matrix
C, which has to be determined is not available, Cseg is used
to create the ROM. Aiming, e.g., at the maximization of
the smallest eigenvalue as in (14) this results in

min
χ

−λmin

(
p∑

i=1

χiU1:sWo,r,iU
T
1:s

)
s.t. (10b). (15)

Subsequently, the distinction is made between the reduced
observability Gramian Wo,r computed using BT (Wo,BT),
IRKA (Wo,IRKA), and POD (Wo,POD).

3.3. Optimal Sensor Configuration

Depending on the different measures (10) to (15) and
observability Gramians the respective optimal sensor con-
figurations are determined. For the numerical evaluations
s = 10 is chosen so that the 10 largest singular values of
the observability Gramian Wo,i are used to represent the
most relevant part of the dynamics.

3.3.1. Comparison of measures

The first optimizations are set up with the full model
and pmax = 8. The optimality measure is varied to com-
pare (10) to (14). For the solution of the mixed-integer
optimization problems the Genetic Algorithm from the
Global Optimization Toolbox of MATLAB is used as it
can solve smooth and nonsmooth optimization problems
including integer constraints. Fig. 9 shows the resulting
sensor placement in the die, where the nodes inside the
respective segments are marked red. Most of the chosen
segments are distributed on the surface of the deep draw-
ing tool. Covered segments include the area with highest
x3-value, the center and the lower part in negative x1-
direction. The flat area with positive x1- and negative
x2-value is neglected in most cases. Maximizing the rank
of Wo differs significantly. In this case many segments are
inside the tool.

Remark 1 (Estimator design). To compare the per-
formance of these sensor configurations an estimator is set
up using the ROM (6) obtained from balanced truncation.
There is a different ROM for each configuration, because
the ROM depends on the output matrix C, which is set
up by placing imaginary sensors at nodes near the center
of the selected segments. For this purpose, a Kalman filter
is used

Er
˙̂
T r = ArT̂ r +Bru+ L (y − ŷ) , t > 0 (16a)

T̂ r(0) = T̂
0

(16b)

ŷ = CrT̂ , t ≥ 0. (16c)

minimizing the variance of the estimation error T̃ r(t) =

T r(t)−T̂ r(t) under the assumption of zero mean Gaussian

(a) Approach (10) (b) Approach (11)

(c) Approach (12) (d) Approach (13)

(e) Approach (14)

Figure 9: Selected sensor segments for the different optimization
routines based on the full model.

process and measurement noise with covariances Q and R
[30]. The static estimator gain matrix from (16) follows
as L = PCT

r R
−1 with the covariance matrix P obtained

from solving the algebraic Riccati equation

0 = ErPAT
r +ArPET

r − ErPCT
r R

−1CrPET
r +Q.

This equation is not solvable for the full order model with
a computer equipped with 16GB RAM, which justifies the
usage of the ROM. In the evaluations an appropriate input
u is chosen.

Figure 10: Comparison of the resulting estimation error for the sensor
locations of Fig. 9.

Fig. 10 shows the estimation errors from the differ-
ent sensor configurations. To guarantee comparability
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Table 3: Estimation error analysis for Fig. 10.

Approach mean(T̃ (t)) max(T̃ (t)) λmin(Wo)

(10) 0.7960 2.6708 1.2282e-05
(11) 0.8647 3.4461 7.8567e-06
(12) 0.5232 2.0963 1.1628e-07
(13) 0.8563 10.0819 1.1645e-10
(14) 0.4226 1.2924 7.1687e-05

the matrices Q and R are identity matrices for all con-
figurations. The errors from the full model T̃ = V T̃ r

are compared. The average error considering all nodes’
mean(T̃ (t)) =

∑n
i=1 T̃i(t)/n is shown on the left and the

maximum error of all nodes max(T̃ (t)) is shown on the
right. Table 3 summarizes average estimation errors over
a five hour time interval. Maximizing the rank of Wo in
(13) gives poor results. The SVD reduced observability
Gramian matrices has full rank in many cases, so this sen-
sor configuration is nearly random. Maximizing the mini-
mal eigenvalue of Wo using (14) emerges as the best sensor
configuration. This measure is therefore given special con-
sideration for comparison with the respective ROMs. Ta-
ble 3 also shows the value of λmin(Wo). This measure tends
to evaluate sensor placement reasonably. Thus, (13) pro-
viding the worst observation result also implies the small-
est value of λmin(Wo).

3.3.2. Comparison of ROMs

Secondly, the discussed ROMs are used for optimal sen-
sor placement by making use of the measure (15) and
pmax = 8. The arising mixed-integer optimization prob-
lems are solved as before. Fig. 11 summarizes the resulting
sensor locations based on the computation with the full or-
der model (here (14) is applied) and ROMs based on BT,
IRKA and POD. In comparison to the sensor placement
based on the full order model, the result obtained using
the IRKA-ROM shows some tendency to locate sensors in
the part with negative x1-coordinate. The result of the
BT-ROM configuration resembles the sensor segments of
the full order model. The segments of the POD-ROM
configuration are fewer represented in the middle of the
tool. The performance of these sensor configurations is
compared similarly to the previous case by setting up a
respective estimator. As before the matrices Q and R are
chosen as identity matrices for all configurations.

Table 4: Estimation error analysis for Fig. 12.

Approach mean(T̃ (t)) max(T̃ (t)) λmin(Wo,BT )

(14) 0.4226 1.2924 10.04
BT 0.3369 1.6438 96.33

IRKA 0.5740 2.0202 39.88
POD 0.4373 3.5061 4.68

Fig. 12 and Table 4 enable to compare the estimator per-
formances using the sensor locations determined based on
the ROMs with those summarized in Fig. 10 and Table 3

(a) Approach (14) (b) BT

(c) IRKA (d) POD

Figure 11: Selected sensor segments for (15) using different ROMs.
Subfigure 11(a) is added for comparison.

Figure 12: Comparison of thew resulting estimation error for the
sensor locations of Fig. 11 obtained for different ROMs.

obtained for the full order model. The mean estimation
error is largest for model order reduction by the IRKA.
The mean error for the POD is nearly equal to the error
of the full model, but the maximum error is larger. Using
MOR based on BT leads to the best estimation results.
The average error in all nodes is even below the error of
the full model. Table 4 also shows the function value of
λmin(Wo,BT). Here, a higher value does not automatically
lead to a smaller estimation error.

3.3.3. Variation of the number of sensors

In the previous optimizations the maximum number of
sensors was chosen to be pmax = 8. To evaluate this choice
the obtained values of measure (15) using the BT-ROM
with increasing pmax are compared. This is depicted in
Fig. 13. The value of λmin(Wo,BT) is rising approximately
exponentially until pmax = 8 and then changes to a linear
increase. Hence, assigning pmax = 8 seems a reasonable
choice and good compromise between effort and effect as
can also be seen from the estimation results in Figs. 10
and 12. It is worth noting that the maximum number
of sensors pmax is always equal to the actual number of
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Figure 13: Measure (15) using BT-ROM for different maximum num-
ber of sensors pmax.

sensors. It follows that (10b) can also be formulated as∑p
i=1 χi = pmax.

(a) Sensors in the outer die. (b) Sensors in the insertion ele-
ments.

Figure 14: Placed sensors in the die: outer die and insertion elements.

Based on the presented results for optimal sensor place-
ment the sensor configuration depicted in Fig. 14(a) is re-
alized. The sensors are placed in the segments selected
from measure (15) using BT-ROM. Herein one segment,
which is located right next to an actuator, was left out
as this is covered by a local thermocouple built in near
the used heating cartridges. The further sensors located
in the insertion elements are depicted in Fig. 14(b). The
resulting output equation corresponds to (4) with p = 13
sensors. The numbers next to the position points define
the respective index in the output vector y.

4. Feedback Control Design

Knowledge of the current spatial-temporal temperature
distribution is the starting point for feedback control de-
sign. For this, a linear quadratic regulator with integral
part is set up combined with a Kalman filter to react ef-
ficiently to changes in the distribution resulting from dis-
turbances or from the forming process.

4.1. Desired temperature profile

For the deep drawing tool it is in particular required to
achieve a desired transient temperature profile in the six
zones shown in Fig. 15. These zones include the nodes of
the top surfaces of the six insertion elements.

This profile is subsequently summarized in the vector

ytarg = CtargT , t ≥ 0 (17)

Figure 15: Die with the six red marked critical areas.

with the matrix Ctarg ∈ Rq×n extracting the mean value
of the nodal temperatures from T (t) for each zone. The
integer q is 6 as there are six zones. In steady state with
the input us and the temperature profile T s (17) can be
expressed as

ys
targ = CtargT

s = Ctarg(−A)−1Bus.

Given steady state target temperatures ys
targ the corre-

sponding input us hence follows by making use of the the
Moore–Penrose inverse, i.e.,

us = (Ctarg(−A)−1B)†ys
targ. (18)

Finally, (18) calculates the constant input us required to
reach the desired temperatures in the target zones ys

targ

when steady state is reached. In steady state the die in-
cluding the insertion elements approaches an almost con-
stant temperature. The actuators only counteract the heat
loss via convection.

4.2. Linear–quadratic–Gaussian control

As soon as the (nearly) steady state of the tempera-
ture distribution in the die is reached, the deep drawing
operations can be carried out with the die. It is expected
that during a cycle the die will cool down considerably due
to the cold sheet metal, which is pressed against the die
by the cold punch. For this process, a controller must be
designed to adjust the heating power of the actuators in
such a way that the reaction to the heat loss is as fast and
efficient as possible. For this purpose, a linear-quadratic
(LQ) regulator is designed, which is supplemented by an
integral component to counteract possible model inaccura-
cies. This model-based controller is amended by a Kalman
filter as a state estimator. The design of the Kalman filter
is described in Section 3.3. Both controller and estimator
are based on the BT reduced model of dimension r = 95
for computability reasons.

For control design the model (16) is extended by an inte-
gral part [20]. Let y8:13(t) ∈ R6×r denote the (measured)
sensor values in the insertion elements according to Fig.
14(b) and let C8:13 and Cr,8:13 denote the corresponding
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submatrices of the output matrix C for the full model and
for the BT-ROM. With this consider the extended system[

Er 0
0 I6

]
︸ ︷︷ ︸

=Er,ex

[
Ṫ r

ėI

]
=

[
Ar 0

−Cr,8:13 0

]
︸ ︷︷ ︸

=Ar,ex

[
T r

eI

]

+

[
Br

0

]
︸ ︷︷ ︸
=Br,ex

u+

[
0

y8:13

]
(19)

with I6 denoting the 6 × 6 identity matrix. Here, eI =∫ t

0
(y8:13 − ŷ8:13)dt is the integrated estimator error of the

sensors in the insertion elements. Once (19) is asymp-
totically stable, i.e. its rest position is reached, it follows
y8:13− ŷ8:13 = 0 due to ėI = 0. The state feedback control
is then set up according to

u = −K

[
T r

eI

]
+Hr (20a)

with H ∈ Rm×6 a prefilter matrix and r(t) ∈ R6 some
reference trajectory. For the determination of K the
quadratic cost functional1

J =

∫ ∞

0

[
T r

eI

]T
Qc

[
T r

eI

]
+ uTRcu.

is minimized with the positive definite matrices Qc and
Rc to balance the individual contributions of the extended
state [T r(t), eI(t)]T ∈ Rnx , nex = r + 6 and the input
input u. Subsequently, diagonal matrices Qc ∈ Rnex×nex

and Rc ∈ Rm×m are assigned. With this

K = R−1
c BT

r,exP. (20b)

is obtained [30], where P solves the Riccati equation

0 =AT
r,exPEr,ex + ET

r,exPAr,ex

− ET
r,exPBr,exR

−1
c BT

r,exPEr,ex +Qc

Similar to the estimator design this equation is not solvable
for the full order model on a standard PC, which justifies
the use of the ROM for controller design. The prefilter
matrix H is in this setup used to impose that ytarg(t)
defined in (17) approaches the reference trajectory r(t)
asymptotically as t → ∞. Substitution of (20a) into (19)
and taking into account (17), i.e.

ytarg = CtargT = Ctarg,rT r = Ctarg,r,ex

[
T r

eI

]
,

yields for t → ∞

H = −
(
Ctarg,r,ex (Ar,ex −Br,exK)

−1
Br,ex

)†
. (20c)

Due to the integral part in terms of eI(t) an anti-windup
scheme is required to address the input constraints uj ∈
[0, 1], j = 1, ...,m. The integration is stopped whenever
the constraints are violated as described in [31].

1Note that alternatively the linear-quadratic regular can be set
up to minimize the weighted difference between ytarg(t) and r(t).

Figure 16: Top view of the experimental die. The colored ellipsoids
mark the positions of the insertion elements with respect to the used
colors in Fig. 2.

5. Experimental Validation

The determined model (2) and (4), the estimator design
based on the BT reduced model in (16) and the chosen
controller based on the BT reduced model in (19) are vali-
dated experimentally. The used experimental die is shown
in Fig. 16. The sheet examined is a 1050 aluminium al-
loy with a thickness of 0.5mm. For control purposes a
hot runner controller (hotset HR30 from hotset) is used,
which is connected to the embedded actuators and the
sensors placed in the insertion elements. An USB thermo-
couple measurement gadget (RedLab TC from Meilhaus
Electronic) reads out the temperature of the sensors placed
in the outer die. Moreover, a serial connection between the
COM port of an USB converter connected to a computer
and the COM port of the hot runner controller via RS485
is established in the software MATLAB. Estimator and
controller are implemented using MATLAB and are eval-
uated online on the computer with a sampling time of 1 s.
The whole setup is visualised schematically in Fig. 17.

Forming tool

Experimental
die

Actuators &
sensors 8-13

Sensors 1-7

Hot runner
controller

RS485
converter

USB gadget

Computer

Figure 17: Experimental setup.

5.1. Estimator Validation

To analyze the performance of the Kalman filter de-
signed based on the BT-ROM (6) eleven sensors are used
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Figure 18: Temperature evolution in the die (top, left) and in the
insertion elements (top, right), estimator error for sensor positions
in the outer die (middle, left) and in the insertion elements (middle,
right), snapshots of the estimated temperature profiles at t = 5 s
(bottom, left) and t = 1600 s (bottom, right) for the scenario with
constant input (21). The vertical dashed line marks the point, where
the punch reaches the bottom dead point during the forming step.

for the estimator, while sensors no. 4 and 11 of Fig. 14
are used for validation purposes. This enables to compare
the temperatures estimated by the filter with the temper-
atures measured by the sensors. From these, one is located
in an insertion element while the other one is placed in the
outer die. However, this setup weakens the functionality
of the estimator in comparison to the one using all thir-
teen sensors for estimation. Two experimental scenarios
are considered for the validation. The matrices Q and R
are identity matrices again.

5.1.1. Heat-up with forming step

To validate the Kalman filter a scenario with constant
input

us = [0.2489, 0.2699, 0.2865,

0.1641, 0.2191, 0.6315]T (21)

is set up. This input corresponds according to (18) to a
target temperature profile of ys

targ = 130 × 1 ◦C under
steady state conditions inside the target zones. Due to the
mapping (3) with an ambient temperature of T∞ = 20 ◦C
this equals a temperature of 150 ◦C.
Applying u(t) = us the temperature in the tool rises

from the initial temperature of 25 ◦C for a period of about

1600 s. Fig. 18 shows the evolution of the sensors in the
outer die (top, left) and inside the insertion elements (top,
right). The respective estimator errors at all sensor loca-
tions are visualised below for those in the outer die (mid-
dle, left) and in the insertion elements (middle, right).
Snapshots of the temperature profiles reconstructed by
the estimator using the projection (5), i.e., T̂ = V T̂ r,
at t = 5 s and t = 1600 s are provided in the lower row. At
the sensors placed inside the die the measured temperature
rises nearly linear except for sensors 5 and 7, where the in-
crease slows down a little as the steady state temperature
value becomes closer. The sensors inside the insertion ele-
ments reach appropriately their steady state temperature
during this scenario.

At t = 1303 s a forming step starts with the punch mov-
ing downwards. At t = 1323 s the bottom dead point is
reached and and is held for 30 s. At t = 1353 s the punch
starts moving upwards to its upper dead center. Due to
the contact of the die with the metal sheet, which is in-
serted at room temperature, a temperature drop can be
observed, which is followed by a slow increase. This ef-
fect can be seen also, but to a much lower extent, in the
sensors in the outer die. The evolution of the estimation
errors confirms that the estimator works well. At the vali-
dation point given by sensor 4 the error reaches a negligible
value of about 0.5 ◦C. The error is higher in the inser-
tion elements, which is confirmed by the estimator error
obtained at the position of sensor 11, where a difference
of up to 20 ◦C between the Kalman filter estimation and
the measurement becomes apparent that decreases succes-
sively. After the forming step this error increases again
due to the contact with the metal sheet. It is worth not-
ing that this particular difference appears next to an ac-
tuator. The difference in the outer die is much smaller, so
that this error probably is just around the heater. In the
whole estimator using the test sensors for estimation this
error will likely be much smaller. However, no further test
sensor has been placed to prove this. Despite these local
differences in the quality of the estimation it can be con-
cluded that the BT-ROM is suitable for estimator design
and that the Kalman filter provides a sufficiently accurate
temperature estimation in the complete die. In particular
the estimator enables to reconstruct the spatial-temporal
temperature profile in the tool as can be seen in terms of
the snapshots shown in Fig. 18 (bottom).

5.1.2. Cool down with forming step

As a seconds scenario the cool down of the die is consid-
ered for u = 0. Starting with temperatures of up to 500 ◦C
in the die the decay behavior shown in Fig. 19 (top row) is
obtained. Forming steps are performed at times t = 423 s
and t = 1532 s. In both cases the punch needs 20 s to
reach the bottom dead center and stays there for 30 s. At
times t = 473 s and t = 1582 s the punch starts moving
upwards to its upper dead center. Due to the contact with
the sheet entering the tool at approximately ambient tem-
perature a significant cooling at the insertion elements is
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Figure 19: Temperature evolution in the die (top, left) and in the
insertion elements (top, right), estimator error for sensor positions in
the die (middle, left) and in the insertion elements (middle, right),
snapshots of the estimated temperature profiles at t = 100 s (bottom,
left) and t = 2800 s (bottom, right) for the scenario with zero input
u = 0. The vertical dashed lines mark the points, where the punch
reaches the bottom dead point during the forming steps.

initiated. The estimator errors shown in Fig. 19 (middle
row) converge to zero in both the outer die (see validation
sensor 4) and the insertion elements (see validation sensor
11). During the forming steps a short rise can be seen due
to the changed contact situation. The estimated spatial-
temporal temperature profiles shortly after the beginning
and at the end of the cool down with forming steps are
depicted in Fig. 19 (bottom row).

5.2. Controller Validation

The controller presented in Section 4.2 is experimen-
tally validated. Starting with a non-steady state profile
the state feedback (20) is evaluated using the estimated
states obtained from the Kalman filter (19). While the
latter is again tuned with the identity matrices Q and R,
the LQ controller is tuned with an identity matrix Qc and
a diagonal matrix Rc with

diagRc = [1.8, 1.45, 1.2, 1.05, 1.4, 1.25]T 106.

The reference trajectory is assigned constant with

r(t) = [130, 130, 130, 130, 130, 130]T ◦C

to reach the demanded temperature of 150 ◦C in the target
zones for T∞ = 20 ◦C. The considered scenario includes

Figure 20: Temperature evolution in the outer die (top, left) and in
the insertion elements (top, right), the applied control inputs (bot-
tom, left) and the target output (bottom, right) for the LQ-regulator
with integral part. The vertical dashed lines mark the points, where
the punch reaches the bottom dead point during the forming steps.

two forming steps, which are performed at times t = 730 s
and t = 1134 s. In both cases the punch again needs 20 s
to reach the bottom dead center and stays there for 30 s.
At times t = 780 s and t = 1184 s the punch starts moving
upwards to its upper dead center.

The obtained results are summarized in Fig. 20. The
temperature at the sensors in the die rises approximately
linearly, while the sensors in the insertion elements all
reach a nearly constant temperature after about t = 500 s
except during forming, see Fig. 20 (top row). Starting
when the die is at the bottom dead center during the form-
ing steps, it takes about 120 s until the sensors in the inser-
tion elements reach the temperature level before forming.
This is a significant improvement towards the heat-up case
in Fig. 18, where it takes about 300 s. The two diagrams
in the bottom row show the elements of the input vector
u and the target output ytarg. The input is nearly con-
stant after about 500 s but is rising to maximum power
when the forming operations take place. The values are
nearly proportional to the input (21), which guarantees
the desired temperature profile in the steady state. As
the steady state is not completely reached the inputs are
higher by a factor of about 1.5. The reached target outputs
are slightly larger than the desired 150 ◦C. This might be
due to the rising input power during the forming steps.
However, as the target temperatures almost never fall be-
low the reference the formability of the metal during the
forming process is guaranteed.

6. Conclusions and outlook

In this paper a temperature control strategy is devel-
oped for a deep drawing tool with embedded actuation
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and sensing devices to reduce wrinkles and cracks by in-
creasing the formability of the metal sheet to be formed.

Based on a continuum model of the spatial-temporal
temperature distribution in the die a finite element ap-
proximation is deduced. By systematically making use of
model order reduction techniques the large-scale approx-
imation is projected onto a suitable subspace of signif-
icantly smaller dimension to obtain a model setup that
can be used for control and estimator design. A parame-
ter identification is performed based on experimental data
to determine the heating power of the actuators and the
heat transfer coefficients. Optimal sensor placement is per-
formed using a suitable optimization strategy involving the
determined reduced order models. The sensor locations
obtained from different cost functionals in terms of the
observability Gramian are compared based by setting up
a Kalman filter to evaluate the resulting estimation perfor-
mance. This serves as basis for the targeted intervention
by built-in actuators. The best result was achieved by
maximizing the smallest eigenvalue of the reduced order
model obtained by balanced truncation. The estimator-
based feedback control is set up as a linear-quadratic reg-
ulator extended by an integral part to react efficiently to
disturbances. For the experimental validation the system
design in terms of optimal sensor placement is realized in
an experimental forming tool and the developed control
strategy involving the estimator based on a reduced order
model is implemented under real-time requirements.

The obtained experimental results clearly support the
applicability of this consistent design process and confirm
the control and estimation performance to maintain de-
sired prescribed local target temperatures during forming.
It is also shown that in a scenario with multiple consecu-
tive forming steps the demanded temperature can be kept
at the demanded level.

Possible improvements of the presented approach in fu-
ture research are summarized subsequently. Within the
project only the local heating of one half of the tool, the
bottom die, is considered. It is also possible to think of a
local heating of the punch of the tool. Another aspect can
be the heating of the blank before the forming process.
This could also improve the formability. Moreover, the
placement of another sensor could improve the validation
of the estimator. This enables the possibility to proof the
functionality of the Kalman filter using all placed sensors.
Furthermore, another optimization algorithm can be used
to compare the results of the optimal sensor placement
problem. Here, a simple greedy algorithm as discussed in
[13] could be considered. As already pointed out the num-
ber of sensors can be fixed to reduce the complexity of
the sensor placement problem. It is important to test this
framework in a production line with higher stroke rate, as
the maximum number of forming operations per time in-
terval at which the actuator and the controller can reliably
operate has not been evaluated in this work. However, a
significant improvement has been achieved to maintain the
operating condition by the proposed temperature control.
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[10] T. Nestorović, M. Trajkov, Optimal actuator and sensor place-
ment based on balanced reduced models, Mechanical Systems
and Signal Processing 36 (2013) 271–289.

[11] K. Manohar, J. N. Kutz, S. L. Brunton, Optimal sensor and ac-
tuator selection using balanced model reduction, IEEE Trans-
actions on Automatic Control 67 (4) (2022) 2108–2115.

[12] M. Serpas, G. Hackebeil, C. Laird, J. Hahn, Sensor location for
nonlinear dynamic systems via observability analysis and MAX-
DET optimization, Computers and Chemical Engineering 48
(2013) 105 – 112.

[13] T. H. Summers, F. L. Cortesi, J. Lygeros, On Submodular-
ity and Controllability in Complex Dynamical Networks, IEEE
Transactions on Control of Network Systems 3 (1) (2016) 91–
101.

[14] A. C. Antoulas, Approximation of Large-Scale Dynamical Sys-
tems, Society for Industrial and Applied Mathematics, 2005.

[15] J. Andrej, T. Meurer, Flatness-based constrained optimal con-
trol of reaction-diffusion systems, in: 2018 Annual American
Control Conference (ACC), 2018, pp. 2539–2544.

[16] T. Meurer, J. Andrej, Flatness-based model predictive control
of linear diffusion-convection-reaction processes, in: 2018 IEEE
Conference on Decision and Control (CDC), 2018, pp. 527–532.
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[24] J. Saak, M. Köhler, P. Benner, M-M.E.S.S.-2.0.1 – the matrix
equations sparse solvers library, DOI:10.5281/zenodo.3606345,
see also:www.mpi-magdeburg.mpg.de/projects/mess (Feb.
2020).

[25] S. Gugercin, A. Antoulas, C. Beattie, H2 Model Reduction for
Large-Scale Linear Dynamical Systems, SIAM J. Matrix Anal.
Appl. 30 (2) (2008) 609–638.

[26] A. Castagnotto, M. Cruz Varona, L. Jeschek, B. Lohmann, sss &
sssmor: Analysis and reduction of large-scale dynamic systems
in matlab, at-Automatisierungstechnik 65 (2) (Feb 2017).

[27] K. Kunisch, S. Volkwein, Galerkin proper orthogonal decompo-
sition methods for parabolic problems, Numerische Mathematik
90 (1) (2001) 117–148.

[28] S. Kakac, Y. Yener, A. Pramuanjaroenkij, Convective heat
transfer, CRC press, 2013.

[29] M. Wrobel, T. Meurer, Optimal sensor placement for tempera-
ture control in a deep drawing tool, IFAC-PapersOnLine 54 (11)
(2021) 91–96, 6th IFAC Workshop on Mining, Mineral and
Metal Processing MMM 2021.

[30] A. Gelb, Applied Optimal Estimation, MIT Press, Cambridge,
1974.

[31] P. Hippe, Prevention of controller windup, in: Windup in Con-
trol: Its Effects and Their Prevention, Springer London, Lon-
don, 2006, Ch. 2, pp. 21–57.

15


