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Wireless networks are commonly used in public spaces, universities, and public

institutions and provide accurate and easily accessible information to monitor

the mobility and behavior of users. Following the application of containment

measures during the recent pandemic, we analyzed extensive data from theWi-

Fi network in a university campus in Italy during three periods, corresponding to

partial lockdown, partial opening, and almost complete opening. We measured

the probability distributions of groups and link activations at Wi-Fi access points,

investigating how different areas are used in the presence of restrictions. We

ranked the hotspots and the area they cover according to their crowding and to

the probability of link formation, which is the relevant variable in determining

potential outbreaks. We considered a recently proposed epidemic model on

simplicial temporal networks, and we used the measured distributions to infer

the change in the reproduction number in the three phases. Our data show that

additional measures are necessary to limit the spread of epidemic in the total

opening phase due to the dramatic increase in the number of contacts.
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1 Introduction

Wireless networks are increasingly used in public spaces as a tool to provide constant

connectivity over large areas for diversified devices. Organized in widespread and economic

hotspots, wireless networks, in contrast to mobile networks, are particularly accessible to

researchers because their use is common in university and corporate campuses and, in general,
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in institutions with interest in primary research. Data from wireless

networks have often been analyzed to measure the quality of service

and to improve network performance and management [1, 2].

However, they also provide accurate and easily accessible data,

which allows us to study user mobility, physical space fruition,

and user behavior [3, 4].

Monitoring the occupation of public spaces by many people at

the same time has become particularly interesting in the last 2 years,

during the COVID-19 pandemic. In fact, in this last period, it has

become of fundamental importance to be able to control crowded

areas to maintain adequate distancing measures. Large events and

gatherings, in particular those taking place indoors, have been often

FIGURE 1
Dynamical behavior of attendance at Parma University. Plot of temporal evolution of the attendance of all users (A), students (B), and structured
staff (C) during the different closing phases. The first 2 weeks correspond to the closing phase, the two central weeks to the partial opening phase,
and the last 2 weeks to the total opening phase. We can observe a significant increase in attendance for students in different phases, while for
structured staff, we find a very similar dynamical behavior of attendance between different regimes. The data are very detailed and give much
information, such as the low number of attendances during the weekend and during holidays.
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related to super-spreading events that have accelerated the outbreaks

[5]. Therefore, they should be monitored. On the other hand, social

distancing creates enormous economic and social costs. It is, thus,

important to adequately control large gatherings in public spaces and,

at the same time, quantify the benefits of different containment

measures.

In this respect, Wi-Fi data represent an extremely interesting

tool. They are easily available through public institutions, and

they rely on relatively economic infrastructures that are already

present in public spaces. The localization of agents is not as

accurate as for GPS and mobile traces [6–8], but it can be

improved with different tools. Interestingly, Wi-Fi data

directly provide the distribution of clusters of users connected

to the same access point, potentially crowding the same area and

forming temporal simplices which evolve in time [9, 10]. This is

relevant information to be used as an input for models of higher-

order interactions in epidemics and information spreading with

complex contagions [11–13].

Considering the problem of pandemic control, in this study,

we explore Wi-Fi data from the university campus in Parma,

Italy, to monitor both the formation of large gatherings and the

presence of areas of intense traffic. We follow the daily usage of

public areas across the campus from anonymized data of devices

connected to the access points (APs) of the network. In

particular, we measure the probability distribution of large

gatherings and of the number of different couples (links)

generated at the same spot, potentially accounting for

dangerous contacts, in specific areas of the campus. We

analyze three phases, characterized by different containment

measures: a closing phase, a partial opening phase, and an

open phase, with almost complete reopening of the university

activities. Based on this analysis, we rank the APs according to

their potential danger and we characterize the fruition of spaces

by different classes of users in the three periods. In particular, we

show that the attendance data in the closing phase follow a

completely different distribution, while the two opening phases

share similar features, after a proper rescaling of the total

numbers of users. Relying on a recent modelling scheme of

epidemic propagation in activity-driven simplicial temporal

networks [9, 10, 14, 15], we also estimate the change in the

reproduction rate R0 due to the release of restrictions in the last

period. Our data signal a dramatic change in the reproduction

number, suggesting that additional measures are crucial to limit

the probability of outbreaks in the open phase.

2 Wi-Fi data

2.1 Attendance data in the presence of
different containment measures

The University of Parma, like many universities and public

institutions, has covered its buildings and spaces with a unified

Wi-Fi network, enabling all users to establish more than

10,000 sessions a day. All session data from the login

management system are collected by the “ICT services” office

of the University of Parma. The login management system

manages all wireless APs and all users’ requests for

connection to the internet with their registered devices.

The staff of the “ICT service” office has the authorization

to access files with personal data and carry out an

anonymization process. The structure of the dataset and

the anonymization process is described in the

Supplementary Appendix. From the anonymized data, we

infer the number of individuals and the number of

different couples per day in specific areas, avoiding double-

counting of the same individual in a 24-h time window. These

data do not any contain personal information.

The resulting dataset refers to a sample of 696 wireless

APs, 19,749 users (divided into 16,505 students,

1968 structured staff, and 1,276 external guests), and about

15,000 daily connections. The dataset spans 10 months,

starting on December 10TH 2020 and ending on November

7TH 2021. During this period, due to the COVID-19 pandemic

restrictions, we can distinguish three different phases: a

closing phase, a partial opening phase, and a total opening

phase for the 2021-2022 academic year.

• Closing phase. During this phase, access to university

buildings was allowed only to staff, faculty, and students

who took part in laboratory activities. All lectures were

held remotely. This phase starts on December 10TH

2020 and ends on February 21TH 2021 and starts again

on February 21TH 2021 and ends on April 18TH 2021.

• Partially opening phase. During this phase, access to the

university buildings was extended to first-year students to

allow them to follow lessons in limited presence (about

25% of students enrolled in the degree courses). This phase

starts on February 22TH 2021, ends on March 14TH

2021 and starts again on April 19TH 2021, finally ending

in June.

• Total opening phase. During this phase, teaching activities

took place in classrooms with the request of a Green Pass to

access the university. This phase starts on September 27TH

2021 and ends with our dataset.

2.2 Dynamical behavior of attendance
data

From the connection session, we can estimate the time

evolution of the attendance at a single AP, in a university

building or area (such as the scientific campus) or in the

whole university. To obtain these data, we extract from the

connection sessions the number of users connected to each

AP as a function of time, every minute. The sum of all AP’s
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temporal series corresponds to the presences for the entire

university or for the campus APs. The algorithm also extracts

the dynamical behavior of attendance for generic users and,

separately, student users, structured staff, and external

guests. In Figure 1, we graphically represent attendance

data at the university in the different phases of closures.

For structured staff, we find a very limited increase in

attendance in the second and third regimes, while the

presence of students increases very significantly in the last

phase.

Figure 2 shows the attendance data in the university on a

typical working day during the closing Figure 2A, the partial

opening Figure 2B, and the total opening Figure 2C phases. In

all cases, the curve rapidly increases in the morning, partially

decreases during lunchtime, increases again in the afternoon,

and decreases in the evening. We notice that in the closing

phase, staff members provide the largest contribution, which

is similar to the partial opening phase. On the other hand,

in the total opening phase, the behavior is totally driven by

the student population. Moreover, the student population

displays an oscillating behavior, with peaks corresponding

to the morning and afternoon lessons, while the presence

of staff members is distributed during the whole working

hours.

As mentioned above, Wi-Fi data only refer to individuals

connected to the Wi-Fi, and this naturally leads to an

underestimation of the total number of presences. To

measure such an effect, we compared the Wi-Fi data with

data obtained from the badge access to a specific building (the

physics building). For this calibration, we restrict our

measure to structured staff in the partial opening phase.

Indeed, only in this case, the use of the badge was

compulsory. Figure 3 shows that the attendance given by

Wi-Fi data is underestimated about by a factor of 2 compared

to the attendance given by badge data. To obtain an analogous

calibration for the student dataset, we compared Wi-Fi data

from APs near a specific classroom (“Aula Newton”) inside

the physics building with the online seat reservation needed

to take part in the face-to-face lessons during the partial

opening phase. Also, in this case, we find an underestimation

of the Wi-Fi data by about a factor of 2 compared to that of

online seat reservations.

2.3 Data limitations

Passive Wi-Fi data at the AP level is a coarse measure for

people localization and co-location. Depending on multiple

factors like signal strength and load on individual APs,

devices in different rooms can connect to the same AP, or

vice versa, devices in the same room can connect to different

APs [16]. A number of technologies exist to improve this kind of

localization (see Section 2.4); however, they either require special

sensing applications installed on the devices or special sensors on

the APs. None of them is widely available and deployed. Instead,

our goal is to investigate results coming from the Wi-Fi-

infrastructure “AS-IS” deployed nowadays in the majority of

buildings and public spaces.

Due to localization errors, some of the results described in the

next section can contain miscounts (e.g., people connected to the

AP registered in a room that was actually another one). However,

the university buildings are large, with large classrooms and halls

[17–19], and over long observation periods, these errors will

likely average out, as it is more likely to be connected to the AP in

the room where the device is actually present. Therefore, we

FIGURE 2
Presences in Parma University during a typical working day.
(A) Time evolution of attendance during a typical working day in
the closing regime. In this phase, staff members provide the larger
contribution, and the presence of students is very limited. In
(B), we see that students and structured staff provide a similar
contribution, while in (C), we notice that in the total opening
phase, the dynamical behavior is completely driven by the student
population.
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believe such mis-locations are limited in our scenario. In this

perspective, the comparison between Wi-Fi data and badge

readings reported in Figure 3 confirms that our method

provides reliable results.

Moreover, we stress that our results are typically based on

the comparison between different time periods characterized

by different opening and closing phases. Therefore, it is

likely that possible errors are cancelled out since the

number of miscounts due to limitations of our

technologies should affect the different phases in the same

manner. Accordingly, we are confident that our results and

conclusions hold despite data limitations and that the

advantages of using “standard” passive Wi-Fi data, both

in terms of widespread applicability and in terms of

allowing a long-term indefinite observation period,

outweigh the limitations.

2.4 Monitoring crowding with different
approaches

There are several ways to use Wi-Fi networks to localize and

estimate people’s presence in an environment. We briefly

summarize them and discuss applications of Wi-Fi

localization, and also other technologies, to analyze COVID-

related crowding.

2.4.1 ImprovedWi-Fi-basedmeasures for people
counting

A number of technologies have been proposed to use the

Wi-Fi network as a means to localize and estimate people’s

presence. One of the key advantages of our proposal is to rely

on the available Wi-Fi-infrastructure “AS-IS.” Even if the

precision obtained in people localization is limited, the

approach can be immediately applied to a wide range of

environments for a prolonged indefinite period of

observation, providing sufficiently accurate measures of

occupancy. Nevertheless, we think it is valuable to briefly

survey existing approaches that could be used to improve

Wi-Fi localization with special-purpose equipment that

could be installed in critical areas.

Wi-Fi Real-Time Location System (RTLS) [4, 20, 21] uses

multiple network signals (e.g., Received Signal Strength–RSS,

Angle of Arrival–AoA) from multiple neighboring APs to

provide high precise localization of individual devices. Reports

indicate that the RTLS can achieve localization accuracy of less

than 5–10 m.

An even more advanced technique, the analysis of WiFi

Channel State Information can detect and count people’s

presence (actual people, not devices) in an environment. In

particular, [22] analyzed this technique (that requires

specifically placed hardware) for COVID-Safe Occupancy

Monitoring, obtaining optimal performance.

A number of studies, e.g. [3], use specific apps to track and

localize individuals based on Wi-Fi signals. Continuous

tracking via specific apps can notably improve localization

accuracy, but it requires users to actively install the

application. Also, approaches like the one in [16] would

notably improve Wi-Fi localization accuracy but critically

require Wi-Fi signal sensing by the smartphone—therefore

reacquiring specific (monitoring) apps to be installed.

Similarly [23], we apply advanced estimation mechanisms

to calibrate Wi-Fi measures on the basis of camera footage.

After a calibration phase, they achieve improved performance

on people counting.

This kind of technology would notably improve our

estimates, but it is not widespread in Wi-Fi deployments

and does not need the involvement of multiple users;

therefore, it cannot be directly applied without notable

investments.

FIGURE 3
Wi-Fi data calibration. A comparison of the temporal evolution of attendance obtained from badge reader (blue line) data and from the Wi-Fi
data for structured staff (red line) during a typical working week. The attendance obtained from Wi-Fi is underestimated by about a factor of
2 compared to the attendance provided by badge data.
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2.4.2 Systems for the analysis of distancing
There are also some available approaches to detect distancing

in general, not Wi-Fi-based, which we briefly review here.

Mobile phone applications have been one of the most used

technologies to monitor social distancing and track COVID

diffusion [24, 25]. In this context, Bluetooth-inferred

proximity [16, 26] is one of the most commonly used

technologies. These approaches basically rely on mobile

phones’ localization and/or detection of nearby devices to

detect social distancing. As well-documented in mainstream

news, the main issue with this technology is user acceptance

and willingness to actively install such applications.

Another important body of work is about monitoring large

user populations via mobile phone networks [27]. A number of

network signals are recorded by mobile phone operators and can

be used to effectively localize individuals and analyze social

distancing. While these applications can cover large areas,

network-based localization accuracy is often too coarse to

detect social distancing.

The recent advancements in computer vision technology and

widespread deployment of fixed and mobile cameras (e.g., on

drones) have attracted a number of works analyzing social

distancing on the basis of video analysis [28]. From a

technological point of view, this is probably one of the best

solutions, but it is hindered by strong privacy concerns about

accessing multiple video feeds.

More in general, [29] introduces several challenges in

multiple technologies to contact tracing and analysis of social

distances.

2.4.3 Wi-Fi-based systems for the analysis of
distancing

Restricting our focus on Wi-Fi-based approaches to monitor

distancing, we find different directions.

The work in [30] analyzes user occupancy and mobility via

deployed Wi-Fi infrastructure to help institutions monitor

and maintain safety compliance according to the public health

guidelines. While the overall motivations and goals of this

work are very similar to ours, there are some important

differences with regard to the metrics derived from Wi-Fi

data. In our analysis, we strived to be fully GDPR-compliant.

Therefore, analysis/applications requiring maintaining user-

ID for a prolonged time—like the mobility analysis conducted

in this related work—are actually unfeasible under GDPR.

Vice versa, we identified novel, useful, and GDPR-compliant

analyses—e.g., the AP different links per day—that can better-

support institutions. Similarly, [31, 32], describes a similar

analysis with the aforementioned differences with our

approach.

Analogously [33], it presents a system to observe individuals

and spaces to implement policies for social distancing and

contact tracing using Wi-Fi connectivity data in a passive and

privacy-preserving manner.

One of the most interesting related works is [34]. They start

from motivations similar to ours and compute analogous co-

location metrics. However, their approach does not take into

consideration “forced” distancing in some environments and

cannot differentiate between “safe” areas with numerous co-

locations but distanced between each other (e.g., classes) and

“unsafe” areas where distancing is not enforced (e.g., hallways).

On the other hand, our work presents a compelling analysis of

the localized closure policies that can be enacted on the basis of

the obtained results. Such policies could be effectively

implemented using our data and approach.

Similarly, the recent work [35] discusses passive Wi-Fi-

monitoring in a campus scenario to monitor social distances.

While their goals, motivations, and technologies being very

similar to ours, our work focuses on a much longer monitoring

period to analyze the impact of different policies enacted to contain

COVID epidemics. Moreover, our work applies novel analysis to

better-measure epidemiology.

3 Results

3.1 The simplex size distribution

During the COVID-19 pandemic, great attention has been

devoted to limiting large gatherings of people, especially

in situations where the tracing of the attendance is a difficult

task. In this framework, the Wi-Fi dataset provides a natural way

of monitoring the presence of large groups (simplices) within a

certain area by considering the number of people simultaneously

connected to the same AP. As a first step, we extract the group

size s distribution P(s) from Wi-Fi data connections during

working hours (from 8.00 a.m. to 7.00 p.m.).

FIGURE 4
University group size distribution. Probability P(s) to find a
group of s people connected to the same AP for almost
15 consecutive minutes on a log–log scale. We plot the group size
probability distribution for each phase with different
restriction regimes. The distribution P(s) in the total opening phase
is compatible with a power law f(s)∝ s−] with an exponent ] ≈1.65.
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In social systems, the duration in time of face-to-face contacts

typically displays a broad distribution with non-trivial behaviors

[36, 37]. However, the infection process occurs on a characteristic

timescale, which for COVID-19 has been estimated to be about

15 min for the first variants [38]. We, therefore, define a simplex

of size s a group of s people who are connected to the same AP for

at least 15 min (the same time interval used in contact tracing

apps). Since this choice can influence the cluster size distribution,

we also verify that our main results are qualitatively independent

of this choice, by varying the time interval from 5 to 30 min. In

particular, for each AP, we split working hours (from 8.00 a.m. to

7.00 p.m.) into 15-min intervals, and for each interval, we find the

number of users that were connected to that AP for the entire

time interval: this number corresponds to the simplex size.

Disconnections from a single AP lasting less than 5 min have

been discarded from our data set. We distinguish the three phases

of the pandemic period with different levels of restriction

(closing, partially opening, and total opening phases) and

obtain three different distributions of group sizes.

Figure 4 clearly shows that a broader distribution P(s) is

observed in the opening phases, and the maximum group size

grows from sCmax � 36, to sPOmax � 58 and to sTOmax � 174 in the

closing, partial opening, and opening phases, respectively. In

particular, the distribution P(s) in the total opening phase is

compatible with a power law P(s) ∝ s−] with an exponent ] ≈
1.65. In Figure 5 we plot the different contributions of

university staff and students to the group size distribution.

Again, the plot clarifies that the restrictions in the closing and

partial opening periods mainly affect the behavior of the

student population, whose simplex distribution is strongly

modified in the different phases, while for staff members, the

differences are very limited.

3.2 Epidemics on simplicial temporal
networks

Epidemic compartmental models have recently been

extended to time-evolving networks driven by the activity of

nodes in the framework of activity-driven networks [39–41]. In

particular, in simplicial activity-driven networks [9, 10], nodes

are grouped into fully connected clusters of different sizes, which

are continuously activated and destroyed. In this context,

parameters tailored to SARS-CoV-2 transmission [42–44]

have been considered.

In the susceptible–infected–recovered (SIR) model on

activity-driven simplicial networks [9, 10], the interaction

network evolves by activating simplices at rate a, the

simplex activity; when a simplex (clique) of size s is active,

s nodes are chosen uniformly at random to participate in the

simplex, producing s (s − 1)/2 interactions. Then, the cluster is

destroyed, and the process is iterated. The simplex size s is

drawn from the distribution P(s) of the sizes of the clusters,

which models the heterogeneity in the size of gatherings. Each

susceptible node of the cluster is infected with a probability λ

by the infected nodes I that belong to the same cluster. Then,

each node randomly recovers at a rate μ, as in the original SIR.

The epidemic propagation is governed by the basic

reproduction number R0: if R0 < 1, the epidemic does not

spread and only a finite number of people are infected, while

for R0 > 1, the epidemics display an exponentially growing

outbreak, eventually infecting a finite fraction of the whole

population. Since in the network evolution, each simplex is

randomly reconstructed at each activation so that the

connections among the agents are continuously reshuffled,

a mean field approach exactly describes the evolution of the

system:

ztS t( ) � −S t( )∫ asP s( ) 1 − 1 − λI s( )( )s−1[ ]ds
ztI t( ) � −μI t( ) + S t( )∫ asP s( ) 1 − 1 − λI s( )( )s−1[ ]ds
ztR t( ) � μI t( )

(1)

where a is the activation rate of a simplex (i.e., the number of

simplices in the system per unit of time), λ is the probability

FIGURE 5
Group size distribution comparison. (A) shows the
contribution of university staff to the group size distributions in the
three phases with different restriction regimes. The effect of the
restrictions in the closing and partial opening phases is very
limited. On the other hand, we note in (B) that the restrictions have
a strong impact on the behavior of the student population, whose
group size distribution is strongly modified in the different phases.
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that an active link transmits the disease, and μ is the recovery

rate of a node. S(t), I(t), and R(t) represent the probabilities for

a node to be susceptible, infected, or recovered at time t,

respectively; the normalization condition implies that S(t) +

I(t) + R(t) = 1. In Eq. 1, the term μI(t) represents the recovery

rate of the process I → R and the integral describes the

infection process: i.e., asS(t)P(s) is the activation rate of

susceptible nodes into a cluster of size s and [1 −
(1 − λI(s))s−1] is the probability that such an activated

susceptible node is infected by one of the remaining s − 1

individuals in the cluster; finally, we sum (integrate) over all

the possible cluster sizes. The stability of the solution where all

nodes are susceptible (i.e., S = 1, I = 0, and R = 0) can be studied

by linearization. In particular, the linearization of the second of

Eq. 1 gives

ztI t( ) � −μ + aλ〈s s − 1( )〉( )I t( ). (2)

with 〈s (s − 1)〉 = ∫s (s − 1)P(s)ds and the solution with I = 0, R =

0, and S = 1 is stable only if μ > aλ〈s (s − 1)〉 and the basic

reproduction number reads:

R0 � aλ〈s s − 1( )〉
μ

. (3)

The measure of the parameters in Eq. 3 is a difficult task.

However, the expression for RO can be used to obtain a first

estimate of the effect of a variation in the network connectivity on

the epidemic propagation.

Since s (s−1)/2 is the number of links in a fully connected

simplex of size s, Eq. 3 states that R0 is proportional to the

number of connections present in the system. As in the activity-

driven models, individuals of a cluster are randomly reshuffled at

each time step, correlation, andmemory effect, characterizing the

behavior of real temporal networks that are not included in this

approach [40, 45].

Eq. 3 allows for a comparison among the three phases to

estimate the change in the basic reproduction number due to the

different size distribution P(s) in the closing, partial opening, and

total opening phases (Figure 4). In particular, R0 increases from

the closing to the partial opening phase as

R0,PO

R0,C
� 〈s s − 1( )〉PO

〈s s − 1( )〉C ≈ 2.63 (4)

while going from the partial opening to the total opening

phase implies:

R0,TO

R0,PO
� 〈s s − 1( )〉TO
〈s s − 1( )〉PO ≈ 13.03 (5)

We verify that our estimates for the ratios in Eqs. 4, 5 are robust if

we consider different time intervals to define the simplices from our

data-set. In particular, for a time interval of 5 min, we obtain 2.91 and

12.36, while for a time interval of 30min, we obtain 2.78 and 12.47 for

the ratios in Eqs. 4 and 5, respectively.

We notice that the ratio between the total and partial opening

phases is much larger than the ratio between the partial and closing

phases. Therefore, while one could imagine controlling the spread

with tracingmeasures in the transition from the closing to the partial

opening period [10], the same kind of control would turn out to be

ineffective in the transition to the total opening. However, we point

out that in the total opening phase, a large percentage of the

population had been vaccinated (about 80% in Italy), and the use

of the Green Pass (mandatory for the access to the university

buildings) implies that only vaccinated or tested people are

admitted to the university buildings. Our data show that these

additional measures are clearly necessary to limit the propagation in

the total opening phase, due to the huge increase in the potentially

dangerous contacts. Moreover, we notice that, in addition to tracing

procedures, the use of masks and social distancing are still active

even in the total opening period.

3.3 The link distribution at the access
points

So far, we analyzed the sizes of groups that form in the university

and we compared the distributions in the three phases with different

restrictions. In particular, the data of simplex sizes can also be used

to identify the most critical areas in the university, where large

gatherings are more frequent. However, the formation of large

groups is not the only relevant information to determine if an

AP is critical. Indeed, if the large gatherings are due, e.g., to face-to-

face lessons, we expect that the groups are stable for the whole

duration of the lesson and that the contagion could be effectively

traced (e.g., in the partially open period, an online seat reservation

procedure was active). On the other hand, there could be places

(such as an atrium) where small groups form, but they are

continuously reshuffled. These places are typically dangerous

because they host a high number of different contacts, many of

which are very difficult to trace. For these reasons, we introduce a

different characterization of the APs in order to find places where a

large variety of contacts may occur. In particular, we define the daily

links li of an AP as the number of contacts per day formed for more

than 15 consecutiveminutes between two different users in the same

location. The index i hereafter labels the different APs. In this

framework, if two users meet two or more times at the same point

but at a different time, this is counted only once. Again, in the

counting of user pairs, we have considered only the working time.

In order to test the effectiveness of the simplex size and of the

daily linkmeasure to characterize the critical locations, in Figure 6, we

focus on two specific APs; one placed in a classroom of the teaching

building and the other in the atrium of the physics department. In

particular, panel c shows that in the partial opening period, the two

APs have a similar size distribution Pi(s) (simplices of size smaller

than 5 cannot be reconstructed due to the anonymization procedure;

see Supplementary Appendix). In this period, the average number of

links 〈s (s – 1)〉I = ∫dsPi(s)s (s–− 1) at the atrium is about 50% larger
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than in the classroom (〈s (s–− 1)〉i≈ 31.7 v. s. 〈s (s–− 1)〉i≈ 19.0). On
the other hand, in the partial opening phase, the distribution of the

number of different links per day ~Pi(l) turns out to be very different
in the two APs. In particular, the average number of links per day is

almost four times larger in the atrium than in the classroom (〈l〉i ≈
270 vs. 〈l〉i ≈ 70). This implies, as expected, a much more variable

behavior of the contacts in the atrium. Panels g and h also show that

in the atrium, the occupancy is almost constant during the working

hours, while in the classroom, people assemble mainly during lessons.

The data also show that people use the two areas differently in the

periods we examined. In the atrium, the average link number

increases from 〈l〉i ≈ 73 in the closure period to 〈l〉i ≈ 270,

reaching 〈l〉i ≈ 445 in the total opening phase, while in the

classroom, we observe a much rapid growth starting from 〈l〉i ≈
0.7 (almost no use in the closure period) to 〈l〉i≈ 70, up to 〈l〉i≈ 2030
in the total opening phase. The fact that different locations are used

very differently in the distinct regimes of restrictions is well-confirmed

in Figure 7, where we plot the distribution of the duration of the daily

contacts between pairs of individuals in the different regimes of

restrictions, in the atrium and in the considered classroom. All

distributions display a typical exponential decay with a

characteristic timescale, and, as expected, the contacts in the

atrium are typically shorter than in the classroom. Moreover, as

the restrictions are removed, the duration of the connection in the

classroom increases, as one would expect due to the larger number of

lessons; however, in the atrium, the contact time becomes shorter,

FIGURE 6
Comparison between different APs of the simplex size and daily linkmeasures. We consider two APs installed in two different types of areas; one
placed in a classroom and the other in the atrium of the physics department, and we compare their group size and daily link distributions. (A,B) Plot of
group size distribution and daily link during the closing phase. The AP placed in the classroom shows that small groups are formed due to restrictions.
(C,D) For the same APs, we plot the distributions obtained during the partial opening phase. The two APs have a similar group size distribution
but different daily link distributions. This shows that the groups in the classroom are more stable than those in the atrium, where the groups are
continuously reshuffled. (E,F) Plots show that large gatherings are formed in the classroom due to the return of face-to-face lessons. (G,H) Time
evolution of the group size for the two APs during a typical working day in partial opening and total opening, respectively. For small groups with size
s <6, we have set the group size to 0.
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showing a potential problem in monitoring the gatherings in

common areas.

3.4 Optimal monitoring of spaces

The previous example shows that the distribution of the

group sizes and that of the number of new links per day provide

different information to identify critical areas. Therefore, to find

the APs that need to be monitored first, in each phase, we

characterize the AP i by the average number of different links

per day 〈l〉i and also by the average number of links present in

the relevant groups, that is, 〈s (s − 1)〉i. In Figures 10, 11, we show
the APs with the largest 〈l〉i and 〈s (s − 1)〉i in the partial and

total opening period, respectively. There are cases of APs,

particularly in study rooms and common areas, which gain

more than fifteen positions in the ranking according to 〈l〉i

compared to 〈s (s − 1)〉i, reaching the positions of critical APs. In
this perspective, we notice that in the partial opening period, the

atrium of the physics department considered in the previous

section is ranked 16-th according to 〈s (s − 1)〉i and 9-th

according to 〈l〉i, while the classroom moves from 24-th to

60-th position with the link ranking. This confirms that the

two quantities classify the university areas differently according

to their use. For potentially dangerous locations, the formation of

large groups provides important information, but the relevant

measure is the number of links between different users. A high

number of daily links implies a continuous reshuffling of users

who could trigger superspreading events. Therefore, the

classification by average daily links of the APs appears to be

the most relevant classification for determining the critical areas

of the university campus.

Figures 10, 11 also show that the location of critical AP

completely changes in the partial and total opening phases.

This is due to the fact that some teaching activities with a large

number of students, such as in engineering and in economics,

were still held completely remotely in the partial opening

period. For this reason, the relevant areas with typically

substantial attendance remained almost empty in the

partial opening period. This is shown in Figure 8 where on

a city map we highlight with different colors the university

buildings according to the number of APs present in Figure 10

or Figure 11, in the partial and total opening periods,

respectively. In particular, we plot in light blue the

buildings where there are no APs in the critical lists, in

yellow the buildings where there are one or two critical

APs, and in red the buildings where there are more than

two critical APs in the lists.

Figure 9 shows how 〈l〉I and 〈s (s–− 1)〉i are distributed among

the different APs. In order to plot the data on the same scale, both

quantities are normalized by their average over the different APs

(i.e., 〈s(s − 1)〉 � 1
NAP

∑NAP
i�1 〈s(s − 1)〉i, 〈l〉 � 1

NAP
∑NAP

i�1 〈l〉i, where
NAP is the total number of APs). We notice that the distributions

feature slow decay at large values, which corresponds to the critical AP

described in Figures 10, 11, i.e., the data above the vertical dashed lines

in the figure.

3.5 Beyond the simplicial temporal
network

The basic estimated reproduction number R0 that we show

in Section 3.2 has been evaluated on a temporal network

model with simplices in a mean field approach without

memory [9, 10]. This means that it is assumed that all the s

(s − 1)/2 links formed in the group of size s occur between

nodes that are always different, with a total reshuffling at each

time step. However, in our data, we observe that links between

the same users usually repeat at the same location (i.e., AP)

and probably also at different places, leading to an

FIGURE 7
Contact time distribution. Probability P(t) that two users are in
contact for a time t during working hours per day. (A,B) show the
contact time distributions in the three different restriction regimes
for the AP placed in the atrium of the physics department and
classroom, respectively. We note that all distributions have an
exponential decay f(t)∝ e−t/τ but with different constant τ. For the
contact time distributions related to the AP installed in the atrium
of the physics department, we obtain a constant τC =49±2 m,
τPO =41±1 m and τTO =38±1 m, while for the AP placed in the
classroom, we obtain τC=39±5m, τPO=56±4m and τTO=80±7m.
We note that for the atrium of the physics department, the contact
time decreases as the restrictions are removed, while in the
classroom, the contact duration becomes longer in the opening
periods.
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overestimate of the number of contacts. Moreover, we have

shown that link repetition displays different timescales in the

different restriction regimes and in the different locations.

From this perspective, contact reshuffling may have a

significant effect on epidemic spread even in the

comparison among the different phases of restrictions.

In the previous section, we outlined the measured AP link

distribution. This quantity gives the number of different pairs

per day formed for more than 15 min at each AP. In order to

estimate the global effect of the contact reshuffling in the

different phases, we can also consider how many different

couples Ld are formed every day in the whole university and

compare the behavior of this quantity in the different regimes.

This integrated global data have been directly calculated by

the “ICT services” office as discussed in Supplementary

Appendix. The ratio between the average number of

different pairs per day in the partial opening and in the

closing phase is

〈Ld〉PO
〈Ld〉C

≈ 3.70 (6)

We notice that the ratio obtained considering different links

(Eq. 6) is significantly larger than the ratio obtained considering

the total number of links given in (Eq. 4). This means that in the

passage from partial opening to a closing period, not only the size

of the groups is significantly reduced but also the variability of

contacts is even more suppressed. This could be due to the

different behaviors of students and university staff. In particular,

as already observed, in the closing phase, the presence of students

is reduced, and this probably strongly limits the flows between

FIGURE 8
Geographical map of buildings with critical APs. Map of Parma with the university buildings in three different colors based on the number of
critical APs inside. (A) refers to the APs’ rank in Figure 10 of the partial opening period, while (B) refers to the total opening period with the ranking of
the APs given in Figure 11. The light blue color represents the buildings where there are no APs in the critical list, the yellow buildings where there are
one or two critical APs, and the red buildingswhere there aremore than two critical APs in the list. The return of face-to-face lessons completely
changes the location of critical APs to different buildings, such as in the economics department.
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the different departments, due to face-to-face lessons, and the use

of common areas. On the other hand, staff members, in

particular in the closing period, tend to establish contacts only

with people within their own laboratory, displaying, therefore, a

more stable pattern of contacts.

Finally, we measure the ratio of the average number of

different links per day in the total and in the partial opening

phase:
〈Ld〉TO
〈Ld〉PO

≈ 12.98 (7)

In this case, the ratio we obtain is very similar to the ratio

observed between 〈s (s − 1)〉 in the same phases. This seems to

suggest that the effect of link reshuffling vs. link repetition is

stable in the transition between these two phases, and only a

global rescaling of the total number of contacts is observed.

We notice that now in both periods, the presence of students

and lessons is dominant. Therefore, the same type of space

fruition takes place in the two phases in the university,

while, as we observed above, in the closing regime, the

laboratory activity provides a more stable pattern of link

formation.

Our estimates for the ratio of the average number of

different pairs and the average number of different links

per day in the two periods are robust if we change the time

intervals used to define simplices. In particular, if the

formation of the simplex is defined using a time interval of

5 min, we obtain the values 3.56 and 12.50 for the ratios in Eqs

FIGURE 9
Link distribution among the different APs. The plots show how the average number of different links per day < l> i and average links < s(s − 1)> i

are distributed among the different APs. Both quantities are normalized by their average over the different APs. The dashed lines correspond to the
thresholds that give the critical APs in Figures 10, 11. There is a different distribution for the closing period compared to the opening phases, clarifying
that groups are more stable in the closing phase.
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6, 7, respectively, while for a time interval of 30 min, the

results are 3.64 and 13.33.

The different behavior characterizing the closing period with

respect to the partial and total opening phases is also shown in

Figure 9. The distribution among the different APs is very similar

in the two opening phases, and they differ only for a global

rescaling. This confirms that in the opening phases, different

areas are occupied in a similar way, with an analogous reshuffling

mechanism and only a global shift in the number of presences.

Interestingly, such regular behavior characterized by a global

rescaling occurs even if the location of the critical APs drastically

changes in the two periods, as evidenced by Figure 8. On the

other hand, in the closing period, the distributions in Figure 9 are

significantly different even after the global rescaling. In

particular, the distribution of 〈l〉i shows a sharper behavior,

indicating that areas characterized by a reshuffling significantly

larger than the average are very rare in the period without

didactic activity.

4 Discussion

Data fromWi-Fi networks provide an efficient way to monitor

in (almost) real time space occupancy and mobility of users in

restricted areas. These data can represent an interesting resource for

maintaining continuous monitoring in public spaces during the

period of control of the epidemic that surely awaits us in the coming

years. Here, we used anonymized data to signal the most used areas

of a university campus in three different periods with distinct

containment measures. We classify the university areas according

to two different quantities: the typical size of groups and the

average number of links between different users formed in

FIGURE 10
Rankings during the partial opening phase. The top twenty positions in the ranking by link distributions during the partial opening phase
compared with positions in the ranking by the size of groups.
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the area covered by the APs. Both of these quantities can be

used to signal areas that are potentially dangerous due to the

risk of the contagion, with the second one being related to

areas of intense and uncontrolled traffic that are difficult to

trace and riskier. Also, these quantities can be used to

efficiently monitor the different fruition of spaces from

distinct classes of users, such as staff and students. Within

an approach to epidemic spreading on simplicial temporal

networks, using the measured simplex size distribution as an

input to the theory, our analysis also provides a specific

estimate of the dramatic change in the reproduction number

occurring in the total opening phase due to the increasing of

contacts [10].

Notably, Wi-Fi data, further anonymized also with respect to

locations, can provide a useful source to build an experimental

temporal network to test specific epidemic models [34]. In

particular, it would be very interesting to compare the results

obtained from epidemic spreading on the real network to the

mean field formulation to test the efficacy of mean field

approximations.

Beyond applications to epidemic models, Wi-Fi data represent a

natural tool to obtain the structure and the evolution of groups of

people that move and connect in the same spatial environment. In

particular, Wi-Fi measurements allow us quite naturally to detect the

presence of more complex nested sub-structures (motifs) other than

fully connected simplices, as evidenced in several contexts [46]. For

these reasons, Wi-Fi data may be of potential interest for applications

of higher-order interaction models in different fields, such as opinion

dynamics, social cooperation, and complex contagion [11–13].

A further extension of our work is the analysis of other public

and private spaces with a focus on public transportation,

including Wi-Fi on buses. In this context, it will also be very

FIGURE 11
Rankings during the total opening phase. The top twenty positions in the ranking by link distributions during the total opening phase compared
with positions in the ranking by the size of groups.
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interesting to analyze the impact of multi-modal monitoring

solutions, for example, combining Wi-Fi, cellular, and video-

based localization. We foresee that such multi-modal

technologies could compensate for each other’s

limitations, enabling us to analyze wide areas, while

limiting privacy impact.

The use of such fine-grained passive monitoring technologies

could be very useful for conducting natural experiments to evaluate

the impact of policies and mechanisms to steer people’s behaviors.

For example, we plan to use this approach to evaluate the impact of

COVID-related notices and signage on people crowding.
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