
Automatic Inclusion of
Middleware Performance Attributes

into Architectural UML Software Models
Tom Verdickt, Bart Dhoedt, Frank Gielen, and Piet Demeester, Senior Member, IEEE

Abstract—Distributed systems often use a form of communication middleware to cope with different forms of heterogeneity, including

geographical spreading of the components, different programming languages and platform architectures, etc. The middleware will, of

course, impact the architecture and the performance of the system. This paper presents a model transformation framework to

automatically include the architectural impact and the overhead incurred by using a middleware layer between several system

components. Using this framework, architects can model the system in a middleware-independent fashion. Accurate, middleware-

aware models can then be obtained automatically using a middleware model repository. The actual transformation algorithm will be

presented in more detail. The resulting models can be used to obtain performance models of the system. From those performance

models, early indications of the system performance can be extracted.

Index Terms—Distributed software engineering tools and techniques, performance of systems: modeling techniques.

�

1 INTRODUCTION

ONE of the most critical aspects of the quality of a

software system is its performance. At the same time,
software engineering methodologies strongly focus on the

functionality of the system, while applying a “fix-it-later”

approach to software performance aspects. The system is

designed to meet its functional requirements, postponing

considerations about the nonfunctional requirements (such

as performance) to the later development stages. As a result,

lengthy fine-tunings, expensive extra hardware, or even

redesigns are necessary for the system to meet the
performance requirements. And, even with fine-tuning,

there is no guarantee that the system performance will be

appropriate.

1.1 Software Performance Engineering (SPE)

To solve this problem, software engineering techniques

have been designed to integrate performance considera-

tions into the design process. Performance modeling

methodologies and quantitative solution methods are used

throughout the entire development cycle (starting as early

as possible) to check whether the system performance is

satisfactory [1]. This allows the performance requirements

to be “built into” the system, rather than added on later.
Several modeling formalisms have been designed to

allow system designers to model the system performance,

e.g., queueing networks [2], [3] and Petri Nets [4]. Several

automated tools exist for most of these modeling ap-
proaches to obtain performance metrics from the models,
either by using analytic techniques or by simulation (LQNS
[5], SPNP [6], etc.). Using these modeling formalisms and
tools, the system designers can obtain performance
estimates at an early development stage and detect
performance problems when solving them is still fairly
inexpensive.

This methodology for performance engineering has an
important drawback: It demands extra effort and capabil-
ities from the system designers. New models need to be
created in a performance modeling language unfamiliar to
the designers. Much recent research is aimed at automating
the performance modeling process, facilitating its adoption
for system design. Part of the automation effort is the
research of algorithms for the transformation of general-
purpose system models (such as UML) into performance
models (e.g., queueing networks) [7], [8]. This allows
designers to model the system using the formalisms they
are familiar with (e.g., UML) and obtain the performance
models automatically.

Automatic transformation to obtain performance models
requires the ability to specify performance parameters in
the general-purpose system models. Therefore, some mod-
eling formalisms have been extended with performance
modeling features (e.g., the UML profile for schedulability,
performance, and time [9]). Ideally, performance models
should be automatically extracted from well-established
modeling formalisms. However, obtaining accurate models,
including bottlenecks, is likely to require intervention of a
skilled analyst. The approach presented here aims at
reducing this intervention.

1.2 Modeling Formalisms

Probably the best-known and most widely used software
modeling language is the Unified Modeling Language (UML)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005 695

. The authors are with the Ghent University—IBBT—IMEC, Department of
Information Technology, Gaston Crommenlaan 8, 9050 Gent, Belgium.
E-mail:
{tom.verdickt, bart.dhoedt, frank.gielen, piet.demeester}@intec.ugent.be.

Manuscript received 29 Oct. 2004; revised 23 May 2005; accepted 6 June
2005; published online 12 Aug. 2005.
Recommended for acceptance by E. Weyuker.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0253-1004.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

[10]. Consequently, UML diagrams will be used in this
work to model the system architecture and its performance.

The Model Driven Architecture (MDA) [11] is a recent

effort to improve the use of modeling in system design, by

prescribing how a system should be modeled. MDA

describes what types of models should be used, how those

models should be used, and how the model types relate to

each other.

An important aspect of MDA is the definition of different

categories of models. The most important model types are

the platform independent models (PIM) and the platform

specific models (PSM). A PIM addresses the operation of

the system, independent of supporting platform details

such as the middleware. PSMs give a more detailed, lower-

level view of the system, taking (part of) the underlying

platform into account. MDA also focuses on transforma-

tions between system models (most importantly from

platform independent models to platform dependent

models).

The transformation presented in this paper and the

models it uses all follow the MDA methodology.

1.3 Distributed Systems

System modeling and, specifically, performance modeling,
becomes even more complex when considering distributed
systems. Distributed systems are a response to the growing
demands for processing power and the geographical
spreading and heterogeneity of processing power, data
sources, and storage. They consist of several collaborating
components (both hardware and software) connected by a
network.

Often, middleware is used to enhance the interoper-

ability between the various system components. Middle-

ware offers the advantage of location transparency,

platform and programming language independence, event

handling, etc. Important middleware standards include the

Common Object Request Broker Architecture (CORBA) [12],

Java Remote Method Invocation (Java RMI), Web Services, etc.

The growing interest in distributed systems has resulted

in a growing interest in performance engineering techni-

ques for those systems. Several efforts to model and predict

the performance of middleware-based systems have

already been undertaken [13], [14], [15], [16], [17]. Using

these models requires a detailed knowledge of the internals

of the middleware (and of the modeling language itself) in

order to be able to adjust the model to the specific

characteristics of the system and to integrate the middle-

ware model into the overall model of the system.

On the other hand, using the MDA philosophy, one

should be able to construct a PIM of the system, omitting

the platform details (e.g., the middleware), which could

then be transformed automatically to a PSM that includes

all the details necessary to implement the system (and to

obtain performance estimates). That way, the architects do

not need to know the full details of the middleware. Those

details will be inserted by the PIM-to-PSM transformation

tool. This way of modeling would also allow rapid

evaluation of the performance of the system with several

different middleware technologies, in order to find the one

with the best results.

This paper presents an algorithm that performs part of

the transformation from a PIM to a PSM of a distributed

system by including the middleware details into the model.

1.4 Approach

The goal of the research reported here is the development of

a framework for the automatic modeling of the impact of

the middleware on the architecture and the performance of

distributed software systems. The framework semi-auto-

matically constructs the UML model of a distributed system

that uses middleware. This is done by transforming a

middleware-independent UML model into a middleware-

aware UML model (effectively an MDA PIM-to-PSM

transformation). This model allows to obtain more fine-

grained performance models, leading to a performance

model where the potential bottlenecks situated in these

lower layers also become apparent. This allows developers

to easily assess the impact of using a certain type of

middleware on the system performance, enabling them to

detect possible performance problems as early as possible in

the development process.

The input to the transformation consists of a high-level,

middleware-independent UML model, constructed by the

system designers, together with some middleware-specific

information (mapping of specific middleware components,

like a naming server, to a processor, etc.). This middleware

description is supplied to the transformation algorithm as a

separate file, containing, for example, execution times for

various middleware components, deployment information

for additional middleware services, etc. The UML model

can be seen as a PIM (where the middleware is considered

the “platform”), while the middleware information de-

scribes specifics of the platform.

The transformation output is a more detailed UML

model (a PSM) of the system, containing all the necessary

details of the middleware, both architectural and perfor-

mance-related.

The framework (see Fig. 1) consists of a transformation

algorithm and a library of middleware descriptions, each

containing the middleware-specific part of the transforma-

tion for that type of middleware. The middleware library

gives designers the opportunity to rapidly model the

system using different types of middleware, without having

to delve into the internals of all those different middleware

types. The obtained models can then be used to compare the

system performance using the different types of middle-

ware and make a well-founded decision about which

middleware to use.

The transformation framework described in this paper

follows the modeling approach used in [8] and [18]. There,

system models, described using UML activity, collabora-

tion, and deployment diagrams, are transformed into

layered queueing network performance models from which

performance estimates can be extracted using existing tools.

By using the same types of UML diagrams, cooperation

between the tools can be ensured, allowing the output of

696 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

this methodology to be transformed to a performance

model by using the algorithms and the tools described in [8]

and [18].

In this paper, the current prototype of the transformation

framework will be described, using the inclusion of details

of the CORBA middleware into a UML model of a sample

application as an example.

Section 2 will give a short introduction to MDA. In

Section 3, an overview of CORBA will be presented, with

the relevant aspects of the “UML profile for schedulability,

performance and time” following in Section 4. Sections 5

and 6 will provide a description of the model transforma-

tion framework and the actual transformation algorithm for

CORBA, which will be used in a case-study in Section 7.

Finally, in Section 8, the conclusions of this research will be

presented.

2 MODEL DRIVEN ARCHITECTURE (MDA)

The goal of MDA is to provide models that are portable,
interoperable, and reusable. This is accomplished by letting
designers specify the system and the supporting platform
separately, providing a separation of concerns at the
architectural level. This makes modeling much easier
because the system can be modeled without taking the
details of the platform into account and vice versa. It also
facilitates transforming the specification of the system into
one on a different platform, as the system itself and the
platform are described separately.

A system description following the MDA guidelines

consists of several models, representing the system from

several viewpoints, with different levels of abstraction. The

system representation from these viewpoints may use any

modeling language (ranging from general purpose model-

ing languages like UML to languages specific to the system

application domain).

A high-level type of model used in the MDA is the

Platform Independent Model (PIM). A PIM can be used across

different platforms (as long as they are relatively similar,

e.g., with regard to their interface to the system), allowing

rapid remodeling for a different platform. To achieve

platform independence, a PIM can, for example, model

the system for a technology-neutral virtual machine.
Another abstraction level is the Platform Specific Model

(PSM). A PSM is a combination of a PIM of the system with

the supporting platform usage. A PSM might provide all

the details necessary to implement the system, or it could be

rather high-level, acting as a PIM in a transformation to a

more detailed PSM. As such, the modeling can be layered,

gradually adding detail and, thereby, allowing several

levels of model abstraction. During the development, the

model gradually becomes more detailed as more and more

design decisions are made.

The supporting platform itself is described using a

Platform Model, representing the technical details of the

platform and the services provided by the platform.

Much of the effort involving the MDA has gone to the

automation of the system design. The different viewpoints

of the MDA could help such automated design, or at least

make it less complex. The PIM, annotated with some extra

information, could be transformed automatically (or semi-

automatically) to a PSM of the system. If necessary, some

additional information (in the form of extra models) can be

supplied to the transformation process, as extra input,

together with the PIM.

This paper will present a transformation framework to

transform a high-level PIM to a lower-level PSM by adding

middleware details to the model.

3 CORBA

The core of the CORBA architecture is the Object Request
Broker (ORB). The ORB provides the communication
infrastructure between the client and the server, irrespective
of their programming language, application architecture, or
supporting platform.

A client attempting to make a request to the server will

not send the request directly to the server, but rather to a

local stub (created during initialization), acting as a local

proxy of the server. The stub will pass the request on to the

ORB, which will send the request to the server-side ORB

using the network. When the request arrives at the server-

side ORB, the ORB will deliver it to the skeleton (the server-

side equivalent of the stub), which, in turn, will forward the

request to the server. The server processes the request and

sends the response back to the client, using the same path

through the different components, in the opposite direction.

This communication mechanism provides a form of location

transparency to the client. The client only communicates

with the local stub, thereby getting the impression that the

server also resides on the same computer as the client.

The stub and the skeleton perform additional operations

on the request and the response (marshaling and unmar-

shaling), to transform the data (e.g., parameter values) from

VERDICKT ET AL.: AUTOMATIC INCLUSION OF MIDDLEWARE PERFORMANCE ATTRIBUTES INTO ARCHITECTURAL UML SOFTWARE... 697

Fig. 1. The transformation framework.

the native format to a language independent wire format

and back. This allows cooperation between clients and

servers, implemented using different programming lan-

guages and running on various platforms.

Before a client can send a request to a server object, it

needs to obtain a reference to the server, indicating, for

example, its location in the network and the port it is

listening on. One way to obtain a reference is by using a

Naming Service (NS). The NS binds canonical server names

to remote object references and can be queried by a client to

obtain a reference to a server object.

A CORBA implementation may also provide additional

CORBA services, as described in the CORBA specification.

Examples include a security service, an event service, an

interface repository, etc.

This short overview of CORBA indicates that there are

some components of CORBA influencing the performance

of a distributed system using it. For example, the marshal-

ing and unmarshaling of requests and responses will incur

some overhead, as will using any additional CORBA

services, like querying the NS. These services might even

become a bottleneck, e.g., if many clients try to obtain a

server reference from the NS concurrently.

These aspects of CORBA need to be represented in the

system model in order to obtain accurate performance

estimates for a CORBA-based distributed system. There-

fore, these CORBA-specific features (components and

interaction logic) will be inserted into the system model

when transforming it from a middleware-independent PIM

to a middleware-aware PSM. The methodology described in

this paper includes the performance influence of the various

middleware components during the PIM-to-PSM transfor-

mation, by adding components to the models to represent

the naming service, the marshaling and unmarshaling of

requests, etc.

4 THE UML PROFILE FOR SCHEDULABILITY,
PERFORMANCE, AND TIME

The UML Profile for Schedulability, Performance, and Time
provides the possibility to: [9]

. enable the construction of models that could be used

to make quantitative predictions regarding time,

schedulability, and performance-related aspects of
real-time systems;

. facilitate communication of design intent between

developers in a standard way;
. enable interoperability between various analysis and

design tools.

The profile provides abstractions to be used in describ-

ing the performance of a system. Scenarios define response

paths and can have Quality of Service requirements or

other kinds of performance information, such as response

times or throughputs. Scenarios are executed by workloads

(sometimes called job classes), which can be open (with a

given arrival pattern, such as Poisson arrivals) or closed

(with a fixed number of clients or jobs). Scenario steps are

the elements that compose a scenario. They are joined in a

sequence with forks, joins, loops etc., and may have

different levels of granularity, from elementary operations

to complex subscenarios. Each step has a mean number of

executions (the number of times it is repeated each time it

is executed), a host execution demand (the execution time on

its host device), and optionally demands to other

resources (not defined by the UML model, but intended

for the performance modeling tool). The resources them-

selves are modeled as servers, either active or passive, and

having a service time (active resource) or a holding time

(passive resource).

In UML, scenarios are most directly modeled as either

collaborations or activity graphs. The other performance

components described above are modeled by using a

system of stereotypes and tagged values in this specific

profile. Scenario steps, for example, are identified by

stereotyping each action or subactivity state in the activity

graph as a <<PAstep>>. When using collaborations to

represent scenarios, the <<PAstep>> stereotype should be

applied to messages and stimuli. The execution details of

the scenario steps are then provided by associating tagged

values with the steps. For example, the execution time is

represented by the tagged value PAdemand.

The advent of UML 2.0 will probably bring changes to

the UML performance profile. At the time of this research

and writing, however, the UML 2.0 standard was not yet

finalized. Therefore, the transformation framework de-

scribed here still uses UML 1.4. A modeling formalism

change to UML 2.0 will, however, not significantly impact

the transformation algorithm presented in this paper,

except for some implementation details and possibly a

change in the performance description.

5 INPUT TO THE TRANSFORMATION

The input to the transformation contains the following
elements, as shown in Fig. 1:

. a UML activity diagram, detailing the operation of

the system;
. a UML deployment diagram, showing the allocation

of the software components of the system to the

processing nodes and the interconnection between

the processing nodes;
. one or more UML collaboration diagrams, describ-

ing the architectural patterns used in the system

(how the software components interact);
. a description of the middleware usage: what type of

middleware the system uses, which processing
nodes some middleware components are located

on, and some performance parameters for middle-

ware-specific components (e.g., stub, skeleton, nam-

ing service overhead).

As explained above, this follows the approach taken in

[8] and [18] for describing the overall system architecture in

order to provide compatibility with the UML-to-LQN

transformation tools.

698 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

The UML diagrams are all represented as XML files,

using the XMI interface [19], generated by state-of-the-art

UML tools. However, these UML tools do not yet support

the performance profile. Therefore, the performance in-

formation (stereotypes and tagged values) for nonmiddle-

ware components was included in the model on an ad hoc

basis.

Figs. 2, 3, and 4 show a sample UML model to be used as

input to the transformation. The modeled “system” consists

of a client and a server, running on different computers,

with the client making a single call to the server.

The UML diagrams are linked by the element names. A

system component that is represented in different diagrams

should have the same name in all the diagrams. For

example, the client is represented by a component instance

in the deployment diagram, a classifier role in a collabora-

tion, and a partition in the activity diagram, all named

“client.”
Note the way the call is modeled in the activity diagram

and, more specifically, the client part. In this example, the
client makes a synchronous call, blocking until it receives a
reply from the server. Asynchronous or “deferred synchro-
nous” calls (the client performs some additional work after
sending the request to the server and only blocks after that
additional work has finished) should be modeled as in
Fig. 5. This distinction between call types is important in

order to allow the correct parsing of the activity diagram.
Without such rigorous modeling, it would be very difficult
(or even impossible under certain circumstances) to
correctly identify the reply to a certain request, considering
the possibility of callbacks.

Special care should be taken when modeling callbacks,

since they could cause the activity diagram to become

ambiguous (in some cases, it would be impossible to

distinguish a reply to a synchronous call from a callback).

Therefore, callbacks should be modeled as in Fig. 6: Add a

client-side component that will accept the callback and that

acts as a “server” to the callback.

The UML model does not mention the use of a

middleware, but rather lets the client make a direct call to

the server. The specifics of the middleware (its type, some

performance information, etc.) are given in a separate input

file to the transformation, for which a dedicated XML

format was developed (see Fig. 7 for the DTD).

VERDICKT ET AL.: AUTOMATIC INCLUSION OF MIDDLEWARE PERFORMANCE ATTRIBUTES INTO ARCHITECTURAL UML SOFTWARE... 699

Fig. 2. Example input UML deployment diagram.

Fig. 3. Example input UML collaboration diagram.

Fig. 4. Example input UML activity diagram.

Fig. 5. Activity diagrams for other call types. (a) Asynchronous.
(b) Deferred synchronous.

Fig. 6. UML model of a callback.

<mw_instance> elements are used to describe “mid-

dleware instances” (e.g., a CORBA ORB). They show the

type of middleware and specify the initialization time and

the time needed to clean up and destroy the instance and

other used resources.

<link> elements describe groups of calls (and their

responses) between a client and a server using the CORBA

platform. They reference a <mw_instance> element and

show which additional services (if any) are used.
Each <link> element may contain one or more <call>

elements, representing the actual calls that are performed in

the link group and are handled by the middleware. A

<call> element specifies the client-side and server-side

overhead of using the middleware (e.g., incurred by

marshaling and unmarshaling in the stub and the skeleton)

and references a transition in the activity diagram that

represents the call in the UML model.

Alternatively, a <link> may contain a single <end-

points> element, referencing the endpoints (the client and

the server component) of the link group. It is then assumed

that all communication between the two components uses

the middleware. This way, however, all the stubs for the

calls between the endpoints will be modeled with the same

execution time, and the same goes for all the skeletons. This

might introduce large modeling inaccuracies if the calls

have different signatures (e.g., a different number of

arguments), which would incur different marshaling and

unmarshaling overheads. Therefore, the <endpoints>

element should be used cautiously.

The use of additional middleware services (a naming

service, for example) is indicated by <use_service>

children of <link> or <call> elements. A <use_ser-

vice> element contains a reference to a <service>

element specifying more details of the service. A

<use_service> child of a <link> element indicates

700 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

Fig. 7. The XML DTD for the middleware description.

that the service is used for all the calls in the link. When

<use_service> children are added to <call> elements,

only those calls use the service. Note that this distinction

is unnecessary for some services (e.g., the naming service),

but might be important for others (e.g., an event service,

where not every call might use events).

The <service> element specifies the type of service

(e.g., NS or security), which will be used to correctly

include it in the model (different services might need

different ways of modeling). It may also contain a host

attribute, which references the processor that will run the

service. No host should be present if the service does

not require an additional “server” apart from the

components involved in the call using the service. A

<service> element may also have an <overhead>

child, containing an <initialization> and/or an

<invocation> element. They specify the overhead in

the client, the server, and the service host (if applicable)

for the initialization of the service (for a single link) and

for a single use of the service, respectively. All overheads

are considered to be 0 if not specified.

Fig. 8 shows a possible middleware description for the

model shown in Figs. 2, 3, and 4. The system will use

CORBA as a middleware without any additional services.

Since all the calls between client and server use the

middleware, the <call> element could also be replaced by

an <endpoints> element:

<endpoints client=”S1” server=”S2”

stubtime=”1.8413” skeletontime=”0.1021”/>

with S1 being the id of the client swimlane and S2 the id of
the server swimlane.

6 THE MODEL TRANSFORMATION

One way of including the middleware-induced overhead is
to adjust the performance information of the existing
components. This would not make the models more
complex and would still allow estimation of the system
performance. On the other hand, if an analysis of the model
should reveal performance problems, the information
would be insufficiently detailed to pinpoint the exact cause
of the problem. This requires a more fine-grained model.

Therefore, it is necessary to model the middleware (and

the overhead that it incurs) as separate components in the

system model, with their own execution times, resource

needs, and other performance parameters.

The remainder of this section will describe the concrete

transformation to include the CORBA structure into the

model. The transformation process consists of finding the

involved components, followed by transforming the UML

diagrams. The different steps of this process will be

further detailed in the remains of this section. The

handling of additional middleware services (<service>

and <use_service> elements) will be deferred until the

end of this section in order to simplify the algorithms and

the figures, although, in reality, the services will be

included in the model together with the other middle-

ware components.

6.1 Additional CORBA Components

As explained above, transforming a system model to

include CORBA (or any other type of middleware) will be
performed by adding several new, middleware-specific

components to the model. These components reflect the
architectural changes incurred by using middleware, as

well as the impact on the overall system performance.

Considering the different abstraction layers offered by

MDA (PIMs, multiple levels of PSMs), it is clear that the

middleware (like the system) can be modeled with different

levels of detail. More detailed models (reflecting the exact

software architecture of the middleware implementation

under study) can generate more accurate performance

estimates, but cause the system models to be more complex,

compared to more high-level models (showing the middle-

ware from a functional viewpoint, how it interacts with the

rest of the system). Because this research is aimed at

performance modeling at the architectural level, we have

opted for a functional middleware modeling level.

Obviously, the stub and the skeleton need to be included

in the model. These components perform the marshaling

and unmarshaling of requests and responses and the

transfer of those messages. The ORB part of the commu-

nication overhead will not be modeled separately, but will

instead be included in the stub and skeleton components to

avoid unnecessary complication of the model.

The ORB will still be included in the model, but not for

the communication part. The initialization and the destruc-

tion of the stub (and of the ORB itself) is taken into account

in the model. The initialization and destruction of the

skeleton will not be modeled because they only happen at

server startup and shutdown, whereas the goal of the model

is to accurately model the runtime behavior of the system

(more specifically, its performance).
Some components are added purely for convenience.

corba_client is an example of such a component. The

corba_client does not represent any real-life behavior of

the system. It simply calls the other components of the

model, serving as a link between them. It was added to

simplify the transformation algorithm by limiting the

changes to the original system components to a bare

minimum.

If the system uses any additional middleware services,

then these need to be modeled as well. The actual

components to be added to the model might vary from

one service to another (or even from one service imple-

mentation to another), but will generally consist of one or

VERDICKT ET AL.: AUTOMATIC INCLUSION OF MIDDLEWARE PERFORMANCE ATTRIBUTES INTO ARCHITECTURAL UML SOFTWARE... 701

Fig. 8. A sample middleware description.

more components at the client, the server, and a possible

third computer (the service host).
Obviously, multiple instances of some or all of these

components can be added to the model, depending on the
concrete application (more accurately, depending on the
actual use of the middleware, as described in the
“middleware usage description” input file). A separate
Naming Service component, for example, will be added
for each <service type=”NS”> element in the middle-
ware usage description. For other components (not
service-related), an instance (or a separate component
with a similar function, e.g., a stub for another server) is
added for every connection between a client and a server
that uses CORBA (meaning, for every <link> element in
the middleware usage description). ORB components
(specified by an <mw_instance> element), on the other
hand, are included only once for every client that uses
them (meaning, for every component that participates as a
client in one or more links that use the ORB instance).
Thus, it is perfectly possible for multiple stubs and
skeletons to appear in the resulting model, even for a
single client or server component in the original model, as
long as the stubs and skeletons belong to separate links.

6.2 Locating the Involved Components

Before the transformation can start, it is obviously necessary
to locate the components that are involved in the
transformation. These are the components that make use
of the middleware (the client and the server). This needs to
be done for each <link> element in the middleware usage
description (see Fig. 8) since each <link> element has its
own client and server.

The pseudocode for this part of the transformation can
be found in Fig. 9. If a <link> element contains an
<endpoints> child, its client and server attributes
directly reference the partitions in the activity diagram
that represent the components involved in the link. If all
the calls in the link are specified separately, then the
components are found by looking up the transitions that
are referenced in the <call> children of the <link>. Or
rather, this is done for only one <call> child because all
<call> elements of a single <link> element should
reference transitions between the same components. The
names of the partitions in the activity diagram that

contain the source and destination of the transition are
the names of the components involved in the link. In the
example, these are the components client and server,
acting as client and server. They are also the names of the
roles in the collaboration diagrams and of the component
instances in the deployment diagram that are involved in
the transformation.

6.3 The Deployment Diagram

The actual transformation starts with the transformation of
the deployment diagram (Fig. 10). First of all, the processors
that will run the new components are located in the
deployment diagram. These are the node instances that
contain the component instances identified earlier (in this
case clientPC and serverPC, containing client and
server). The new components are added to these
processors: corba_client, orb (if it was not yet added),
and stub to the clientPC and skeleton to the
serverPC.

As an illustration, the final deployment diagram for the

client-server system of the example, is shown in Fig. 11.

6.4 The Collaboration Diagram

The main goal of the collaboration diagram is to provide an
architectural overview of the system, indicating the archi-
tectural software patterns that were applied, in order to
allow structured parsing and processing of the activity
diagram. Adding CORBA to the system obviously changes
the system architecture, demanding that the collaboration
diagram be adjusted to reflect the new architecture.
Specifically, the new system components (such as the
ORB, the stub, and the skeleton) need to be added, together
with their relation to the other system components and to
each other.

702 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

Fig. 9. Transformation algorithm, finding the components.

Fig. 10. Transformation algorithm, deployment diagram.

Fig. 11. Transformation result: UML deployment diagram.

The collaboration diagram resulting from the transfor-

mation is shown in Fig. 12. It was obtained by applying the

algorithm of Fig. 13. The structure of the collaboration

diagram is rather straightforward. It contains a classifier

role for every middleware component (as described earlier)

and links them all in several client-server collaborations.

6.5 The Activity Diagram

The activity diagram should be adjusted in three places

during the transformation in order to include the middle-

ware into the model. Fig. 14 shows the pseudocode for the

activity diagram transformation (which will be explained in

more detail in the rest of this section) in case the

middleware-using calls are specified separately in the

middleware usage description (using <call> elements).

The algorithm can be adapted to work with <endpoint>

elements, by iterating over the calls (transitions) in the

activity diagram (between the client and the server), instead

of over the <call> elements.

Before the first call1 is made from the client to the server,

an initialization phase should be inserted, e.g., at the start of

the client. The calls themselves need to be redirected to use

the stub and the skeleton. Finally, the ORB and the stub

must be destroyed (along with some other clean-up

operations) after the final call.

It is important to note that the transformed collaboration

diagram contains only client-server collaborations (at least

the part that uses the middleware, since CORBA is designed

for client-server systems). To a certain degree, this will be

reflected in the activity diagram: calls for a single <link>

will always have the same source (the “client”) and the

same target (the “server”), with a possible response in the

opposite direction (though not necessary, as calls can be

asynchronous).

The resulting activity diagram (for a synchronous call) is

shown in Fig. 15. An explanation of the stereotypes and

tagged values will be given in Section 6.7. The activity

diagrams for asynchronous and deferred synchronous calls

are presented in Figs. 16 and 17. The different steps of

transforming the activity diagram will be presented next.
The initialization phase (e.g., initializing the ORB) is

modeled by an initialize action in the orb partition

of the activity diagram. After the initialization phase, the

client can start sending requests to the server. For every

<call> element in the middleware usage description, the

referenced transition is obtained. If the call is synchro-

nous or deferred synchronous, the reply is located as well

(how this is done will be explained below). The

requesting transition is redirected in order to use the

stub and the skeleton to send a request to the server. The

reply follows the same route in the opposite direction if

there is a reply. Otherwise, only the request part needs to

be transformed. If the middleware description only

indicates the endpoints of a link, instead of the individual

calls, then all calls between those endpoints (and from the

client to the server) will be located and the previous

algorithm will be executed for each of those calls.

Finding the reply to a given call can be done as follows

(and by extension, this algorithm can also be used to check

whether the call is synchronous or not, because calls for

which no reply can be found are asynchronous). It is

important to note that the request transition will start in a

fork (see Figs. 4, 5a, and 5b). Start by following the “path”

through the server, started by the request transition, until a

transition from the server to the client can be found (or,

rather, a transition from the server to a join, which has an

outgoing transition to an action in the client swimlane). If

the target of this transition (or of the outgoing transition of

the join) can be reached by following the other path from

the “request fork” (following the client swimlane), then this

transition (from the server to the client) represents the reply

of the earlier request transition.

If this is not the case, then this transition represents the

request in a callback from the server to the client (an

alternative way of modeling a callback, though the model of

Fig. 6 should be preferred). In this case, keep following the

path until another transition from the server to the client

has been found, which becomes the new reply candidate,

and make the same test, etc. If no reply can be found

corresponding with a certain request, then the request was

an asynchronous call.
Just before the client ends, a request is made to the ORB

in order to free the used resources and to destroy the ORB.

As long as this clean-up phase is included after the last call

VERDICKT ET AL.: AUTOMATIC INCLUSION OF MIDDLEWARE PERFORMANCE ATTRIBUTES INTO ARCHITECTURAL UML SOFTWARE... 703

Fig. 13. Transformation algorithm, collaboration diagram.

Fig. 12. Transformation result: UML collaboration diagram.

1. Here and in the rest of this section, call refers to a call from the client to
the server that uses CORBA and is referenced by a <call> element in the
middleware usage description, or any call from the client to the server in
case the middleware usage description directly specifies the <endpoints>.

using the ORB, the exact location does not really influence

the model or the performance estimates obtained from it.

A new action (dummy) is inserted into the client partition,

just before the ORB destruction. This action does not have a

functional meaning and is inserted only for the convenience

of performance estimation. If the ORB destruction would

simply be included just before the final action (or state) of

the client and, if that state would be reached by a

transaction modeling a reply to an earlier call, for example,

then the ORB destruction would influence the performance

estimates of that call. The extra dummy action allows to

separate the CORBA overhead from the rest of the client

operation.

6.6 Middleware Services

If the system uses any additional middleware services

(naming, security, interface repository, etc.), then that will

have an impact on the system model. Not only the

services themselves need to be included in the model, but

using them might change the interaction between other

components.

There are two options for the inclusion of middleware

services, requiring different input models. The first option

is to let the transformation tool make all the decisions

regarding the services (both software and hardware), except

perhaps for the decision to use them. This has the

advantage that the system designers hardly need to be

aware of the fact that the services are even available for that

type of middleware. On the other hand, the designers also

have no control over how the services are incorporated into

the system exactly. All the details would have to be

specified by the transformation tool. For example, when

modeling the naming service, the transformation tool

would have to decide which processor should contain it.

This could be a new processor (only supporting the naming

service) or an existing one (already used by some other

system components). Additionally, for every new proces-

sor, the tool would have to decide how the processor should

704 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

Fig. 14. Transformation algorithm, activity diagram.

be connected to the rest of the system. These are important

design decisions that should be made by the system

designers themselves (when making the PIM-to-PSM

transformation), rather than by an automated model

transformation tool.
Therefore, another approach was adopted in this tool

with regard to middleware services. The system designers
do decide whether to use a service or not, and they specify
certain details of its use, like which processor the service
will run on, its connection to the network, and how the
service will be used (by which clients and servers).
Therefore, this information should be specified in the
middleware usage description (which processor should

run the NS) and the input UML model (how the processor
fits into the network topology of the system). This might
mean adding “empty” processors to the deployment
diagram (without a component running on them) to be
used by one or more services.

How the use of the service needs to be modeled depends

on the service at hand. Some services will be invoked only

once (e.g., during client or server initialization), while

VERDICKT ET AL.: AUTOMATIC INCLUSION OF MIDDLEWARE PERFORMANCE ATTRIBUTES INTO ARCHITECTURAL UML SOFTWARE... 705

Fig. 17. Transformation result: activity diagram with a deferred

synchronous call.

Fig. 16. Transformation result: activity diagram with an asynchronous

call.

Fig. 15. Transformation result: UML activity diagram.

others are used for every or some of the calls between a

client and a server. As an example, sample diagrams will be

presented for two services, the Naming Service and the

Security Service, which have a distinctively different

interaction with the other system components.

6.6.1 Naming Service

The naming service is only used during the initialization

of a client (or rather, of a connection between a client and

a server). After the connection to the naming service itself

is established, it is queried to obtain a reference to the

server the client wishes to contact. For example, perform-

ing the transformation with the middleware description

of Fig. 18 on the UML model of Figs. 2, 3, and 4, yields

an activity diagram which starts as shown in Fig. 19

(irrelevant parts and performance information not shown

for clarity). The transformation of the collaboration and

deployment diagrams is rather straightforward (adding

the naming_context and NS components) and will be

illustrated in the case-study in Section 7.

6.6.2 Security Service

The security service is used in a completely different way
than the naming service. Instead of calling the service
during initialization in order to obtain a server reference or
some other information, the security service is used
whenever a message (call, reply) needs to be secured, e.g.,
to provide privacy or authentication. Therefore, using the
security service will impact the way calls are modeled, e.g.,
like in Fig. 20.

6.7 Performance Attributes

Another part of transforming a PIM to a PSM, apart from
the structural changes due to including middleware
components, is the addition of performance information
for those middleware components (performance para-
meters of nonmiddleware components are outside the
scope of the transformation tool). This information is
described using the UML Profile for Schedulability,
Performance, and Time.

Using the profile, there are two options in representing

performance information. The performance information

can be included in a collaboration diagram or in an

activity diagram. Since the activity diagram generated by

the transformation tool gives a more detailed overview of

the system than the collaboration diagram, the perfor-

mance information will be included in the activity

diagram. More specifically, execution times will be

specified for the relevant middleware-related actions.

This will be done by giving the actions the <<PAstep>>

stereotype and specifying a tagged value PAdemand to

represent the execution time.

No performance parameters are specified for actions like

skeleton_reply or stub_reply. The reason is that

these actions are mainly presented in the model to accept

the response to an earlier transition. The possible (small)

execution time of these actions can be included in the earlier

action in the same partition (e.g., skeleton_request and

stub_request). Similarly, none of the actions in the

corba_client partition get performance parameters, as

those actions only serve to connect the different parts of the

model, without having functional real-world counterparts.

The actions for which performance information needs to

be specified are initialize, destroy, stub_request,

and skeleton_request, plus the relevant actions when

using additional middleware services.

The execution times for those actions will be obtained

from the middleware usage description. The inittime

attribute of the <mw_instance> element will serve as the

PAdemand tagged value of the initialize action. Like-

wise, the attribute destroytime will specify the values for

the action destroy. stubtime and skeletontime will

provide execution times for the actions stub_request and

skeleton_request. The execution times of the service

actions are found in the client, server and host

attributes of the <initialization> and <invocation>

elements of the service.

The stereotypes and tagged values that are added to the

activity diagram are shown as notes in Fig. 15. The

performance data is obtained from the middleware descrip-

tion of Fig. 8.

706 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

Fig. 19. Activity diagram for a system which uses the NS (initialization

part).

Fig. 18. A middleware description using the Naming Service.

6.8 Transformation Limitations

The transformation framework as described in this paper

places some constraints on the models it can handle.

Perhaps the most important constraint is the naming

convention described in Section 5: Model elements that

occur in different diagrams need to have the same name,

and that name should be unique in the model. This naming

convention, however, is necessary to identify the occur-

rences of a single component in the different diagrams

(deployment, collaboration, and activity).

Another limitation is that not all possible interactions

currently can be handled by the transformation framework,

e.g., forwarding servers (a client sends a request to server A,

who forwards the request to server B, who sends the reply

directly back to the client instead of first replying to

server A). Since the difference between these interaction

patterns is quite significant, however, they should be

modeled as a different type of collaboration in the

collaboration diagram (e.g., client-forwarding-server,

instead of client-server). This allows the framework to

detect such interaction, though it cannot yet handle them.

7 USING THE FRAMEWORK: A CASE STUDY

As an illustration of the use of the UML transformation

framework, a case study was conducted, modeling an on-

line store using CORBA between the client and the server.

The input to the transformation is presented in Figs. 21, 22,

and 23.

The middleware usage description can be found in

Fig. 24. The performance estimates for the CORBA

components (given in the middleware usage description)

were obtained from measurements on a prototype imple-

mentation of the online store, by instrumention of the ORB

and the Naming Service. Performance parameters for the

other (nonmiddleware) components are given in Table 1.

Applying the transformation framework to the high-

level input model yields the low-level, CORBA-aware UML

model presented in Figs. 25, 26 (containing the performance

impact of the CORBA middleware), and 27.

VERDICKT ET AL.: AUTOMATIC INCLUSION OF MIDDLEWARE PERFORMANCE ATTRIBUTES INTO ARCHITECTURAL UML SOFTWARE... 707

Fig. 21. Input UML deployment diagram of an online store. Fig. 22. Input UML collaboration diagram of an online store.

Fig. 20. Activity diagram for a call which uses the security service.

These models were then transformed (by hand) to a

layered queueing network model of the system. The

CORBA components were transformed using the CORBA

LQN model described in [16]. Using the LQNS solver [5],

performance estimates were extracted for varying system

parameters.
The LQN model validation performed in [16] indicated

that estimation errors for the delay caused by CORBA are

expected to be below 5 percent of the actual measured

delays. Under most circumstances, this is acceptable,
considering the fact that the model (and the automated
transformation algorithm) is designed to be used during the
architectural design, when only estimates of the perfor-
mance of the system components are available.

Fig. 28 shows the (estimated) execution time of the
client for a rising request arrival rate. The system was
modeled without middleware, using CORBA but no
naming service, and using CORBA with the naming
service. The “execution time” shown in the figure is the
time that passes between starting the client and its ending
(more accurately, the time to execute the entire scenario of
the activity diagram of Fig. 26).

It is clear that a bottleneck occurs in the system using

CORBA. Further inspection of the performance analysis

output revealed that the server was the bottleneck, due to

the added load of the skeleton. Similar information can be

used early on during system design to assess the impact of

the middleware and to assure that the middleware will not

cause the system to break its performance requirements. If

the system had only been modeled without the CORBA

details (see the “no CORBA” line in Fig. 28), such a

bottleneck would only have been detected in the actual

implementation of the system, when removing the bottle-

neck could prove difficult.
The second part of the case study consisted of a series of

tests to study whether it would be more beneficial to
improve the performance of the naming server or the
database, given certain load parameters. Consider r ¼ �=�,

708 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

TABLE 1
Performance Parameters for the Case-Study

Fig. 25. Transformation result: deployment diagram of an online store.Fig. 24. Middleware description for the online store.

Fig. 23. Input UML activity diagram of an online store.

being the ratio of the processing time of the database (�)

and the processing time of the naming service (�).

“Processing time” is used here in the sense of the time

needed to process a single request, assuming no additional

load. A change in the processing time can be achieved, for

VERDICKT ET AL.: AUTOMATIC INCLUSION OF MIDDLEWARE PERFORMANCE ATTRIBUTES INTO ARCHITECTURAL UML SOFTWARE... 709

Fig. 27. Transformation result: collaboration diagram of an online store.

Fig. 26. Transformation result: activity diagram of an online store.

Fig. 28. Performance influence of CORBA.

example, by changing the NS or the database implementa-
tion, or by changing the hardware running them.

Fig. 29 shows the client execution time as a function of r,

for a fixed request rate and for different numbers of

requests to the server per client (but always a single request

to the naming service).
As could be expected, the performance of the database

becomes more important with rising numbers of requests
per client. However, if the naming service is very slow
compared to the database, it might be more favorable to
enhance the performance of the naming service (e.g.,
upgrading the hardware) than the performance of the
database. Charts like Fig. 29 indicate under what circum-
stances that might be the case.

8 CONCLUSIONS

This paper presented a UML model transformation frame-
work to automatically incorporate the use of middleware
into the system models. The transformation includes both
the structural impact of the middleware and the overhead
incurred by it into the models. Thus, a middleware-aware
model is obtained, starting from a middleware-independent
model and a description of the middleware usage (e.g., its
deployment) and its performance. A concrete algorithm
performing this transformation for the CORBA middleware
has been described in further detail.

The resulting UML model (a PSM from a middleware
perspective) contains sufficient information to be used in
modeling and analyzing the performance of the system and,
more importantly, how the performance is influenced by
the middleware. The resulting model can, for example, be
transformed to a performance model of the system using
existing transformation tools. From these performance
models, estimates for the performance of the final system
can be extracted, again using existing tools.

That way, the framework can be used to combine the
advantages of MDA and SPE. It allows a standardized
modeling of the system with separation of concerns
(modeling the middleware semi-automatically) and using
modeling formalisms familiar to the system architects. At
the same time, it gives the possibility to obtain performance

estimates as early as possible, when redesigning the system

can still be done without excessive costs by providing

system models that can be transformed directly into

performance models.

ACKNOWLEDGMENTS

This research was financed by a PhD grant of the Institute

for the Promotion of Innovation through Science and

Technology in Flanders (IWT-Vlaanderen). The authors

would like to thank the Real-Time and Distributed Systems

Group at Carleton University in Ottawa, Canada, for

providing the tools to simulate and solve the LQN models

and to transform UML models to LQN.

REFERENCES

[1] C.U. Smith, “Designing High-Performance Distributed Applica-
tions Using Software Performance Engineering: A Tutorial,” Proc.
Computer Management Group, Dec. 1996.

[2] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik,
Quantitative System Performance, Computer System Analysis Using
Queueing Network Models. Prentice-Hall, 1984.

[3] M. Woodside and G. Franks, “Tutorial Introduction to Layered
Modeling of Software Performance,” Proc. Workshop Software and
Performance, Aug. 2004.

[4] M.A. Marsan, C. Gianni, and B. Gianfranco, “A Class of General-
ized Stochastic Petri Nets for the Performance Evaluation of
Multiprocessor Systems,” ACM Trans. Computer Systems, vol. 2,
no. 2, pp. 93-122, May 1984.

[5] G. Franks, A. Hubbard, S. Majumdar, J. Neilson, C. Petriu, J. Rolia,
and M. Woodside, “A Toolset for Performance Engineering and
Software Design of Client-Server Systems,” Performance Evaluation,
vol. 24, nos. 1-2, pp. 117-135, Feb. 1995.

[6] G. Ciardo, J. Muppala, and K. Trivedi, “SPNP: Stochastic Petri Net
Package,” Proc. Third Int’l Workshop Petri Nets and Performance
Models, pp. 142-151, 1990.

[7] V. Cortelessa, A. D’Ambrogio, and G. Iazeolla, “Automatic
Derivation of Software Performance Models from Case Docu-
ments,” Performance Evaluation, vol. 45, nos. 2-3, pp. 81-105, July
2001.

[8] P.G. Gu and D.C. Petriu, “XSLT Transformation from UML
Models to LQN Performance Models,” Proc. Third Int’l Workshop
Software and Performance (WOSP ’2002), pp. 227-234, July 2002.

[9] Object Management Group, “UML Profile for Schedulability,
Performance, and Time,” Apr. 2003.

[10] Object Management Group, “Unified Modeling Language Speci-
fication, Version 1.4,” 2001.

[11] J. Miller and J. Mukerji, “MDA Guide, Version 1.0.1,” June 2003.
[12] Object Management Group, “The Common Object Request

Broker: Architecture and Specification,” 2002.
[13] P. Kähkipuro, “Performance Modeling Framework for CORBA

Based Distributed Systems,” PhD thesis, 2000.
[14] D. Petriu, H. Amer, S. Majumdar, and I. Abdul-Fatah, “Using

Analytic Models for Predicting Middleware Performance,” Proc.
Second Int’l Workshop Software and Performance, pp. 189-194, Sept.
2000.

[15] C.U. Smith and L.G. Williams, “Performance Engineering Models
of Corba-Based Distributed-Object Systems,” Proc. Computer
Measurement Group Conf., pp. 886-898, Dec. 1998.

[16] T. Verdickt, B. Dhoedt, F. Gielen, and P. Demeester, “Modelling
the Performance of CORBA Using Layered Queueing Networks,”
Proc. 29th Euromicro Conf., pp. 117-123, 2003.

[17] S. Chen, Y. Liu, I. Gorton, and A. Liu, “Performance Prediction of
Component-Based Applications,” J. Systems and Software, vol. 74,
no. 1, pp. 35-43, Jan. 2005.

[18] D.C. Petriu and H. Shen, “Applying the UML Performance Profile:
Graph Grammar-Based Derivation of LQN Models from UML
Specifications,” Proc. 12th Int’l Conf. Computer Performance Evalua-
tion, Modelling Techniques and Tools (TOOLS 2002), pp. 159-177,
Apr. 2002.

[19] Object Management Group, “OMG XML Metadata Interchange
(XMI) Specification,” OMG Document formal/02-01-01, 2002.

710 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 8, AUGUST 2005

Fig. 29. Influence of the relative performance of the naming service and

the database.

Tom Verdickt received the degree in computer
science engineering (option: software engineer-
ing) from Ghent University in 2002. In August
2002, he joined the Department of Information
Technology of the Faculty of Applied Sciences,
Ghent University, and is currently working
towards a PhD degree. His research mainly
focuses on performance modeling of distributed
software at an architectural level.

Bart Dhoedt received the degree in engineering
from Ghent University in 1990. In September
1990, he joined the Department of Information
Technology of the Faculty of Applied Sciences,
University of Ghent. He is responsible for
several courses on algorithms, programming,
and software development. He is author or
coauthor of approximately 100 papers published
in international journals or in the proceedings of
international conferences. His current research

addresses software technologies for communication networks, peer-to-
peer networks, mobile networks, and active networks.

Frank Gielen received the Masters degree in
telecommunication system engineering from the
Royal Military Academy in Brussels (1985) and
the PhD degree in computer science from the
Free University of Brussels (1993). From 1993
until 2002, he held a number of technical and
managerial functions in the software industry.
He started as a software architect and technical
manager with AT&T Bell Labs in the the US and
was also Director of Software Technology at

Alcatel. In 1998, he joined Tellium, a US-based startup company in
optical network technology, as their Vice President of Software
Engineering. He returned to Europe in 2001 as the CEO for Tellium
EMEA. In 2002, he was appointed Technology Transfer Officer for the
investment fund of the Free University of Brussels and joined the
University of Ghent as a professor of software engineering.

Piet Demeester received the Masters degree in
electro-technical engineering and the PhD de-
gree from Ghent University in 1984 and 1988,
respectively. In 1992, he started a new research
activity on broadband communication networks
resulting in the IBCN-group (INTEC Broadband
communications network research group). Since
1993, he has been a professor at Ghent
University, where he is responsible for the
research and education on communication net-

works. The research activities cover various communication networks
(IP, ATM, SDH, WDM, access, active, mobile), including network
planning, network and service management, telecom software, inter-
networking, network protocols for QoS support, etc. He is author of more
than 400 publications in the area of network design, optimization, and
management. He is member of the editorial board of several interna-
tional journals and has been member of several technical program
committees (ECOC, OFC, DRCN, ICCCN, IZS, etc.). He is a senior
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

VERDICKT ET AL.: AUTOMATIC INCLUSION OF MIDDLEWARE PERFORMANCE ATTRIBUTES INTO ARCHITECTURAL UML SOFTWARE... 711

