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Abstract: The distance d(va, vb) between two vertices of a simple connected graph G is the length of
the shortest path between va and vb. Vertices va, vb of G are considered to be resolved by a vertex v if
d(va, v) 6= d(vb, v). An ordered set W = {v1, v2, v3, . . . , vs} ⊆ V(G) is said to be a resolving set for G,
if for any va, vb ∈ V(G), ∃ vi ∈W 3 d(va, vi) 6= d(vb, vi). The representation of vertex v with respect
to W is denoted by r(v|W) and is an s-vector(s-tuple) (d(v, v1), d(v, v2), d(v, v3), . . . , d(v, vs)). Using
representation r(v|W), we can say that W is a resolving set if, for any two vertices va, vb ∈ V(G), we
have r(va|W) 6= r(vb|W). A minimal resolving set is termed a metric basis for G. The cardinality of
the metric basis set is called the metric dimension of G, represented by dim(G). In this article, we
study the metric dimension of two types of bicyclic graphs. The obtained results prove that they have
constant metric dimension.

Keywords: graph theory; bicyclic graph; metric basis; resolving set; metric dimensions
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1. Introduction

While studying the problem of finding out the location of an intruder in a network,
Slater in [1], and later in [2], introduced the term “locating set”. He termed the minimum
resolving set a “reference set” and referred to the cardinality of a minimum resolving set
(reference set) as the “location number”. Harary and Melter [3] also independently discussed
these concepts. They used the nomenclature “metric dimension” instead of location number.

In this article, we use the terminology developed by Harary and Melter. Hence,
the metric dimension, dim(G), is the cardinality of the minimum resolving set. Fol-
lowing the convention in [4], we call the minimum resolving set the basis for G. Let
W = {w1, w2, w3, · · · , ws} ⊂ V(G) be a basis for a simple graph G, then the s-tuple
(d(u, w1), d(u, w2), d(u, w3), . . . , d(u, ws)) is termed a distance vector of u corresponding
to/with respect to W and is denoted by r(u|W). It is worthwhile to mention, distinct
vertices have a distinct representation with respect to the basis vertices W.

This graph invariant has garnered a lot of attention from researchers. Chartrand
et al. [4] characterized graphs with metric dimensions 1, n− 1, and n− 2. Klein and Yi [5]
compared the metric dimensions of a graph and its line graph. Shao et al. [6] calculated the
metric dimensions of generalized Peterson graphs of type (2k, k) and (3k, k) and showed
that they have constant metric dimensions. Applications of metric dimensions to vari-
ous fields, e.g., navigation of robots [7], chemistry [8,9], coin-weighing, and mastermind
game [10] have been presented in the literature. Further studies on metric dimension and
metric basis were conducted in [11–20].

Many other variants of metric dimension have been defined to further study the
structure of a graph. Okamoto et al. [21] defined local metric dimensions and characterized
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all nontrivial connected graphs of order n having local metric dimension 1, n− 2, or n− 1.
Kelenc et al. [22] defined mixed metric dimensions and showed that a graph is a path graph
if and only if its mixed metric dimension is 2. They also characterized complete graphs in
terms of mixed metric dimensions. Sedlar and Skrekovski [23] determined that for every
Theta graph G, the mixed metric dimension equals 3 or 4, with 4 being attained if and only
if G is a balanced Theta graph. Moreno et al. [24] defined k-metric dimensions and proved
that a graph G is n-metric dimensional if and only if G ' K2. They also characterized
(n− 1)-metric dimensional graphs.

Khuller et al. [7] showed that a graph G with metric dimension 2 can not have K5
or K3,3 as a subgraph. They also showed that there exist non-planar graphs with metric
dimension 2. In light of this information, characterizing all graphs with metric dimension 2
is a daunting task. On the other hand, if we only consider the problem of characterizing
planar graphs of metric dimension 2, the problem becomes more manageable.

It is a well known result that dim(Cn) = 2. Further studies on metric dimension of
unicyclic graphs were conducted in [25,26]. Armed with the knowledge from these articles,
we can easily determine unicyclic graphs G, for which, dim(G) = 2. We can also easily
deduce that, if a planar graph G contains a cycle as a subgraph, then dim(G) ≥ 2. This raises
a question about metric dimensions of graphs having two or more cycles. In this article,
we will discuss the metric dimension of bicyclic graphs. Using these bicyclic graphs as
our building blocks, we can then move on to tricyclic and n-cyclic graphs and consider the
same problem in that context. The ultimate goal of this line of questioning is to determine
all planar graphs with metric dimensions 2.

2. Preliminaries

The order of a graph G is defined to be the cardinality of its vertex set. In what follows,
we will use the terms Pn for a path of order n, Cn for cycle, Kn for complete graph, and Ḡ
for the complement of G. Other notations will be defined when they are needed.

Definition 1. A simple connected graph G with |V(G)| = n is said to be bicyclic, if |E(G)| =
n + 1.

It is well known that |E(G)| = n− 1 when G ' Tn. A bicyclic graph can be obtained
from this Tn by adding any two new edges.

Let G be a bicyclic graph, then the base bicyclic graph of G, denoted as G̃ is the unique
minimal bicyclic subgraph of G. It is easily concluded that G̃ is unique and contains no
vertices of degree 1 (a pendant vertex).

There are three types of bicyclic graphs containing no pendant vertices. These are
given in the following.

I. Cn,m obtained from two disjoint cycles Cn and Cm, where Cn and Cm share a single
vertex. Let us label the vertices as given in Figure 1.

vn vn+m

Cn Cm

v1

v2v3

vn−1

vn−2

vn+1

vn+2

vn+m−2

vn+m−1

Figure 1. Bicyclic graph of type-I.

The vertices vn of Cn and vn+m of Cm are identified together as the common vertex in
this labeling. Note that the vertices of Cn are labeled anti-clockwise, while vertices of
Cm are labeled clockwise.
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II. Cn,r,m obtained from two disjoint cycles Cn and Cm, by adding a path Pr(r ≥ 1),
from any vertex of Cn to any vertex of Cm. Let us consider the labeling given in
Figure 2.

vn vn+r

Cn Cm

v1

v2v3

vn−1

vn−2

vn+1

vn+r+2

vn+r+m−2

vn+r+m−1

vn+r−1

vn+r+1

Pr

Figure 2. Bicyclic graph of type-II.

In this labeling, the vertex vn of Cn is attached to the vertex vn+r of Cm, by a path of
length r.

III. Ck,l,m obtained from three pairwise internal disjoint paths Pk , Pl , and Pm, by joining
starting vertices of Pk and Pm to the starting vertex of Pl , and ending vertices of
Pk and Pm, to the ending vertex of Pl . Let us denote the vertices of this graph as
v1, v2, · · · , vk+l+m, then this type of bicyclic graph is given in Figure 3.

v1 v2 v3 vk−1 vk

vk+2 vk+3 vk+4 vk+l−2 vk+l−1

vK+l+1

vk+l+2

vk+l+3 vk+l+m−1

vk+l+m

vk+1 vk+l

Figure 3. Bicyclic graph of type-III.

Note that the starting vertices of paths, i.e., v1 of Pk, vk+1 of Pl , and vk+l+1 of Pm, are
joined together. The same is applied to the ending vertices of paths.

Let Bn be the class of all bicyclic graphs of order n. Using the three types of bases
given above, bicyclic graphs were divided into three classes, in [27], as follows.

• B1(n) =
{

G ∈ Bn|G̃ = C(k, l) for some k, l ≥ 3
}

• B2(n) =
{

G ∈ Bn|G̃ = C(k, r, l) for some k, l ≥ 3 and r ≥ 1
}

• B3(n) =
{

G ∈ Bn|G̃ = C(Pk, Pl , Pm) for some 1 ≤ m ≤ min{k, l}
}

It is obvious that Bn = B1(n) ∪ B2(n) ∪ B3(n). Henceforth, we will use the term base
bicyclic graph to refer to the unique minimal bicyclic graph having no pendant vertices.

Let us use the notation G ∪ H to denote the disjoint union of graphs G and H, and
G + H to denote the graph, obtained from G ∪ H, by joining every vertex of G with every
vertex of H. We also use Kr,s to denote a complete bipartite graph with partitions of order r
and s. Using these notations, we state the following theorem, which gives the dimensions
of some well known graphs.

Theorem 1 ([4,7]). Given a connected simple graph G of order n ≥ 2, we have:

(a) dim(G) = 1 if and only if G ' Pn.
(b) dim(G) = n− 1 if and only if G ' Kn.
(c) For n ≥ 3, dim(Cn) = 2.
(d) For n ≥ 4, dim(G) = n − 2 if and only if G ' Kr,s(r, s ≥ 1, r + s = n), G ' Kr +

K̄s(r ≥ 1, s ≥ 2, r + s = n), or G ' Kr + (K1 ∪ Ks)(r, s ≥ 1, r + s = n− 1).

3. Results on Bicyclic Graphs of Type I

In what follows, let Cn,m be a base bicyclic graph of type I, also known as “∞-graph” [28].
The vertices are labeled as in Figure 1.
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Theorem 2. Let Cn,m be a base bicyclic graph of type 1, n, m ≥ 3. Then,

dim(Cn,m)) =


2 when n, m are odd
2 when n is even, m is odd
3 when n, m are even

Proof. We will prove all three cases as different parts.

Part 1. Let Cn,m be a bicyclic graph of type I where n, m are odd. Let us consider the set

W =
{

v1, vn+bm
2 c
}

.

Let Vk be as given in the following:

Vk =



{
v1, v2, . . . , vb n

2 c
}

, for k = 1{
vb n

2 c+1

}
, for k = 2{

vb n
2 c+1, . . . , vn

}
, for k = 3{

vn+1, . . . , vn+bm
2 c
}

, for k = 4{
vn+bm

2 c+1, . . . , vn+m−1

}
, for k = 5.

(1)

Then these Vk form a partition for V(Cn,m).
We observe that

r(va|W) =



(
a− 1,

⌊m
2
⌋
+ a
)

va ∈ V1(
a− 1, n +

⌊m
2
⌋
− a
)

va ∈ V2(
n + 1− a, n +

⌊m
2
⌋
− a
)

va ∈ V3(
a + 1− n, n +

⌊m
2
⌋
− a
)

va ∈ V4(
n + m + 1− a, a− n−

⌊m
2
⌋)

va ∈ V5.

(2)

We will show that any two distinct vertices of Cn,m have distinct representation with
respect to the set W. Let va, vb be two distinct vertices of Cn,m. It is straightforward to prove
that when both va, vb are in the same partition, then

r(va|W) 6= r(vb|W).

For all other cases, we proceed as follows.

Case 1. When va ∈ V1 and vb ∈ V2.
We claim that r(va|W) 6= r(vb|W). If this is not the case, then r(va|W) = r(vb|W) gives

us, a− 1 = b− 1 and
⌊m

2
⌋
+ a = n +

⌊m
2
⌋
− b.

⇒ a = b and a + b = n.
Solving the above equations for b gives, b = n

2 , which is a contradiction.

Case 2. When va ∈ V1 and vb ∈ V3.
If we take r(va|W) = r(vb|W), we get,= a− 1 = n + 1− b and

⌊m
2
⌋
+ a = n +

⌊m
2
⌋
− b.

Solving for a + b, we get, a + b = n + 2 and a + b = n, which is a contradiction. Hence,
va, vb have distinct representations.

Case 3. When va ∈ V1 and vb ∈ V4.
If we consider r(va|W) = r(vb|W) and use the representation given in Equation sets

(2), we get a + b = n. This is a contradiction, since b ∈
{

n + 1, · · · , n + bm
2 c
}

.
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Case 4. When va ∈ V1 and vb ∈ V5.
We again claim that r(va|W) 6= r(vb|W). If this is not the case, then r(va|W) = r(vb|W)
⇒ (a− 1, bm

2 c+ a) = (n + m + 1− b, b− n−
⌊m

2
⌋
)

⇒ a− 1 = n + m + 1− b and bm
2 c+ a = b− n− bm

2 c
⇒ a + b = n + m + 2 and a− b = −(m− 1)− n, since 2bm

2 c = m− 1.
Solving the above equations for a gives a = 3

2 . Again, this is a contradiction.

Case 5. When va ∈ V2 and vb ∈ V3.
Assuming r(va|W) = r(vb|W) gives us
(a− 1, n +

⌊m
2
⌋
− a)=(n + 1− b, n +

⌊m
2
⌋
− b)

⇒ a− 1 = n + 1− b and n + bm
2 c − a = n + bm

2 c − b
⇒ a + b = n + 2 and a = b
⇒ b = n

2 + 1,
but b ∈

{
b n

2 c+ 2, · · · , n
}

. Hence, r(va|W) 6= r(vb|W).

Case 6. When va ∈ V2 and vb ∈ V4.
For contradiction, let r(va|W) = r(vb|W). This gives,
(a− 1, n +

⌊m
2
⌋
− a)=(b + 1− n, n +

⌊m
2
⌋
− b)

⇒ a− 1 = b + 1− n and n + bm
2 c − a = n + bm

2 c − b
⇒ b− a = n− 2 and a = b
⇒ n− 2 = 0.
This is the desired contradiction.

Case 7. When va ∈ V2 and vb ∈ V5.
If we take r(va|W) = r(vb|W), we obtain
(a− 1, n +

⌊m
2
⌋
− a)=(n + m + 1− b, b− n−

⌊m
2
⌋
)

⇒ a− 1 = n + m + 1− b and n + bm
2 c − a = b− n− bm

2 c
⇒ a + b = n + m + 2 and a + b = 2n + 2bm

2 c, which is a contradiction.

Case 8. When va ∈ V3 and vb ∈ V4.
For contradiction, let us suppose that r(va|W) = r(vb|W), then
(n + 1− a, n + bm

2 c − a) = (b + 1− n, n +
⌊m

2
⌋
− b)

⇒ n + 1− a = b + 1− n and n + bm
2 c − a = n + bm

2 c − b
⇒ a + b = 2n and a− b = 0
⇒ b = n
but b ∈

{
n + 1, · · · , n + bm

2 c
}

, hence r(va|W) 6= r(vb|W).

Case 9. When va ∈ V3 and vb ∈ V5.
We claim that r(va|W) 6= r(vb|W). If this is not true, then r(va|W) = r(vb|W)
⇒ (n + 1− a, n + bm

2 c − a) = (n + m + 1− b, b− n− bm
2 c)

⇒ n + 1− a = n + m + 1− b and n + bm
2 c − a = b− n− bm

2 c
⇒b− a = m and a + b = 2n + m− 1.
Solving these, we get b = n + m− 1

2 , which is a contradiction.

Case 10. When va ∈ V4 and vb ∈ V5.
To obtain a contradiction, let r(va|W) = r(vb|W)
⇒ (a + 1− n, n + bm

2 c − a) = (n + m + 1− b, b− n− bm
2 c)

⇒ a + 1− n = n + m + 1− b and n + bm
2 c − a = b− n− bm

2 c
⇒ a + b = 2n + m and a + b = 2n + m− 1, a contradiction.

From the above discussion, we get that dim(Cn,m) ≤ 2. By Theorem 1(c), we have
dim(Cn,m) ≥ 2 and hence, dim(Cn,m) = 2.

Part 2. Let Cn,m be a bicyclic graph of type I, where n is even and m is odd. Let

W =
{

v1, vn+bm
2 c
}

.
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Let Vk be as given in the following:

Vk =



{
v1, v2, . . . , vb n

2 c
}

, for k = 1{
vb n

2 c+1, . . . , vn

}
, for k = 2{

vn+1, . . . , vn+bm
2 c
}

, for k = 3{
vn+bm

2 c+1, . . . , vn+m−1

}
, for k = 4.

(3)

Then, these Vk form a partition for V(Cn,m). We see that

r(va|W) =



(
a− 1,

⌊m
2
⌋
+ a
)

va ∈ V1(
n + 1− a, n +

⌊m
2
⌋
− a
)

va ∈ V2(
a + 1− n, n +

⌊m
2
⌋
− a
)

va ∈ V3(
n + m + 1− a, a− n−

⌊m
2
⌋)

va ∈ V4,

(4)

for all va ∈ V(Cn,m). We will show that va and vb have distinct representations for all
va 6= vb ∈ Cn,m. It is obvious that when va, vb are both in the same partition, then

r(va|W) 6= r(vb|W)

When va, vb are in different partitions, the following cases arise.

Case 1. When va ∈ V1 and vb ∈ V2.
We claim that r(va|W) 6= r(vb|W). If this is not the case, then r(va|W) = r(vb|W)
⇒ (a− 1, bm

2 c+ a) = (n + 1− b, n + bm
2 c − b).

This give us a + b = n + 2 and a + b = n, which is a contradiction.

Case 2. When va ∈ V1 and vb ∈ V3.
If we assume that r(va|W) = r(vb|W), we get,
(a− 1, bm

2 c+ a) = (b + 1− n, n + bm
2 c − b)

⇒ a− 1 = b + 1− n and bm
2 c+ a = n + bm

2 c − b
⇒ a− b = 2− n and a + b = n,
but b ∈ V3 =⇒ a + b 6= n, and hence r(va|W) 6= r(vb|W).

Case 3. When va ∈ V1 and vb ∈ V4.
Assuming r(va|W) = r(vb|W), we obtain
(a− 1, bm

2 c+ a) = (n + m + 1− b, b− n− bm
2 c)

⇒ a− 1 = n + m + 1− b and bm
2 c+ a = b− n− bm

2 c
⇒ a + b = n + m + 2 and a− b = −(m− 1)− n
⇒ a + b = n + m + 2 and a− b = −m + 1− n.
Solving the above for a gives a = 3

2 , a contradiction. Hence, r(va|W) 6= r(vb|W).

Case 4. When va ∈ V2 and vb ∈ V3.
We claim that r(va|W) 6= r(vb|W). If this is not true, then r(va|W) = r(vb|W)
⇒ (n + 1− a, n + bm

2 c − a) = (b + 1− n, n + bm
2 c − b)

⇒ n + 1− a = b + 1− n and n + bm
2 c − a = n + bm

2 c − b
⇒ a + b = 2n and a− b = 0⇒ b = n,
but b ∈ V3 =⇒ b 6= n, a contradiction again. Hence, r(va|W) 6= r(vb|W).

Case 5. When va ∈ V2 and vb ∈ V4.
Proceeding in the same way as before and considering r(va|W) = r(vb|W), we get
(n + 1− a, n + bm

2 c − a) = (n + m + 1− b, b− n− bm
2 c)

⇒ n + 1− a = n + m + 1− b and n + bm
2 c − a = b− n− bm

2 c
⇒b− a = m and a + b = 2n + m− 1.
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Solving these, we get b = n + m− 1
2 , which is contradiction here, hence, r(va|W) 6=

r(vb|W).

Case 6. When va ∈ V3 and vb ∈ V4.
We claim that r(va|W) 6= r(vb|W). If not, then r(va|W) = r(vb|W)
⇒ (a + 1− n, n + bm

2 c − a) = (n + m + 1− b, b− n− bm
2 c)

⇒ a + 1− n = n + m + 1− b and n + bm
2 c − a = b− n− bm

2 c
⇒ a + b = 2n + m and a + b = 2n + m− 1, a contradiction.

From the above cases, we see that W =
{

v1, vn+bm
2 c
}

is indeed a resolving set of Cn,m.

Hence, dim(Cn,m) ≤ 2. Together with Theorem 1(c), this gives us, dim(Cn,m) = 2 for n even
and m odd.

Part 3. Let n and m be even. Consider the set W =
{

v1, vb n
2 c, vn+1

}
and consider the parti-

tions of V(Cn,m) as given in Equation set (3). Noting the representations of all va ∈ V(Cn,m)
from the vertices of W, and observing the fact that

⌊ n
2
⌋
= n

2 , we see that

r(va|W) =



(
a− 1, n

2 − a, a + 1
)

va ∈ V1(
n + 1− a, a− n

2 , n + 1− a
)

va ∈ V2(
a + 1− n, a− n

2 , a− n− 1
)

va ∈ V3(
n + m + 1− a, 3n

2 + m− a, n + m + 1− a
)

va ∈ V4.

(5)

To prove that W is a resolving set for Cn,m, we show that no two distinct vertices of
Cn,m have same representations with respect to W. It is obvious that when va, vb are either
both in V1 or V2, then r(va|W) 6= r(vbW), since

d(va, v1) 6= d(vb, v1) or d(va, v n
2
) 6= d(vb, v n

2
).

Similarly, when va, vb ∈ V3 or V4, it can be easily observed that

r(va|W) 6= r(vb|W).

When va, vb are from different partitions, the following cases arise.

Case 1. When va ∈ V1 and vb ∈ V2.
We claim that r(va|W) 6= r(vb|W). If this is not the case, then r(va|W) = r(vb|W)

⇒ (a− 1, n
2 − a, a + 1) = (n + 1− b, b− n

2 , n + 1− b)
⇒ a− 1 = n + 1− b, n

2 − a = b− n
2 and a + 1 = n + 1− b

⇒ a + b = n + 2 and a + b = n.
This is a contradiction. Hence, r(va|W) 6= r(vb|W).

Case 2. When va ∈ V1 and vb ∈ V3.
If we assume that r(va|W) = r(vb|W), we get
(a− 1, n

2 − a, a + 1) = (b + 1− n, b− n
2 , b− n− 1)

⇒ a− 1 = b + 1− n, n
2 − a = b− n

2 and a + 1 = b− n− 1
⇒ a− b = 2− n and a− b = −n− 2.
This is a contradiction. Hence, r(va|W) 6= r(vb|W).

Case 3. When va ∈ V1 and vb ∈ V4.
We claim that r(va|W) 6= r(vb|W), otherwise r(va|W) = r(vb|W)
⇒ (a− 1, n

2 − a, a + 1) = (n + m + 1− b, 3n
2 + m− b, n + m + 1− b)

⇒ a− 1 = n + m + 1− b, n
2 − a = 3n

2 + m− b and a + 1 = n + m + 1− b
⇒ a + b = n + m + 2 and a + b = n + m, which is a contradiction.

Case 4. When va ∈ V2 and vb ∈ V3.
Considering r(va|W) = r(vb|W), we obtain
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⇒ (n + 1− a, a− n
2 , n + 1− a) = (b + 1− n, b− n

2 , b− n− 1)
⇒ n + 1− a = b + 1− n, a− n

2 = b− n
2 and n + 1− a = b− n− 1

⇒ a + b = 2n and a + b = 2n + 2, which is again a contradiction.
Hence, r(va|W) 6= r(vb|W).

Case 5. When va ∈ V2 and vb ∈ V4.
We claim that r(va|W) 6= r(vb|W), for if not, then r(va|W) = r(vb|W)
⇒ (n + 1− a, a− n

2 , n + 1− a) = (n + m + 1− b, 3n
2 + m− b, n + m + 1− b)

⇒ n + 1− a = n + m + 1− b, a− n
2 = 3n

2 + m− b and n + 1− a = n + m + 1− b
⇒ b− a = m and b + a = 2n + m.
Solving for b, we get b = n + m.
This is a contradiction, since Cn,m contains vertices only up to n + m− 1.

Case 6. When va ∈ V3 and vb ∈ V4.
We claim that r(va|W) 6= r(vb|W). If this is not the case, then r(va|W) = r(vb|W)
⇒ (a + 1− n, a− n

2 , a− n− 1) = (n + m + 1− b, 3n
2 + m− b, n + m + 1− b)

⇒ a + 1− n = n + m + 1− b and a− n
2 = 3n

2 + m− b and a− n− 1 = n + m + 1− b
⇒ a + b = 2n + m and a + b = 2n + m + 2, again a contradiction.

The above discussion ensures that W is a resolving set for Cn,m, for even n and m. We
now prove that W is indeed a minimal resolving set. For this, consider the set W1 = W −
v1 =

{
vb n

2 c, vn+1

}
and consider the vertices, v1, vn−1 /∈W1. It is easily observable that W1

does not resolve v1 and vn−1. Similarly, considering the set
W2 = W − vb n

2 c = {v1, vn+1} and taking the vertices vn−1, vn+m−1, we see that W2 does

not resolve these two. Lastly, considering W3 =
{

v1, vb n
2 c
}

, we see that it does not resolve
vn+1 and vn+m−1. This concludes our result for this part.

4. Results on Bicyclic Graphs of Type II

In this section, we will work with the metric dimensions of base bicyclic graph of type
II. Ahmad et al. used the term “Kayak Paddles graph” KP(l, m, n) to represent these graphs
and calculated their metric dimension [29]. They showed that whenever G = KP(l, m, n),
then dim(G) = 2. For completeness, we also provide a proof for these graphs. The com-
binatorial approach used herein, differs from their proof, and serves as a verification for
their result.

Let Cn,r,m be a base bicyclic graph of type II. Let the vertices be labeled as in Figure 2.

Theorem 3. Let Cn,r,m be a base bicyclic graph of type II, n, m ≥ 3 and r ≥ 1. Then,

dim(Cn,r,m) = 2.

Proof. We will discuss the proof for different cases of n, m, namely, when both are odd/even
or one is odd and the other is even.

Part 1. Let n, m both be even in Cn,r,m. Let us consider the set W = {v1, vn+r+1}.
Let Vk be as given in the following:

Vk =



{
v1, v2, . . . , vb n

2 c

}
for k = 1{

vb n
2 c+1, . . . , vn

}
for k = 2{

vn+1, . . . , vn+r+bm
2 c

}
for k = 3{

vn+r+bm
2 c+1, . . . , vn+m−1

}
for k = 4

(6)

Then these Vk form a partition for the vertices of the given graph.
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We observe that

r(va|W) =


(a− 1, r + a + 1) va ∈ V1

(n + 1− a, n + r + 1− a) va ∈ V2

(a + 1− n, |a− n− r− 1|) va ∈ V3

(n + m + 2r + 1− a, n + m + r + 1− a) va ∈ V4.

(7)

Proceeding as before and assuming that va, vb are either both in V1 or V2, we can easily
see that r(va|W) 6= r(vb|W). Similarly, when va, vb are both from V3 or V4, we again see
that r(va|W) 6= r(vb|W).

When va, vb are in different partitions Vk, we proceed as follows.

Case 1. When va ∈ V1 and vb ∈ V2.
Assuming r(va|W) = r(vb|W), we get
(a− 1, r + a + 1) = (n + 1− b, n + r + 1− b).
This produces a contradiction, whereas, we get a + b = n + 2 and a + b = n.
Hence, r(va|W) 6= r(vb|W).

Case 2. When va ∈ V1 and vb ∈ V3.
We claim that r(va|W) 6= r(vb|W). If not, then r(va|W) = r(vb|W)
⇒ (a− 1, r + a + 1) = (b + 1− n, |b− n− r− 1|)
If b > n + r + 1, we get,
a− 1 = b− n + 1 and r + a + 1 = b− n− r− 1
⇒ a− b = 2− n and a− b = −n− 2r− 2, a contradiction.
If b < n + r + 1, we get, a− b = 2− n and a + b = n. Solving these for b gives the

contradiction b = n
2 − 1.

Case 3. When va ∈ V1 and vb ∈ V4.
We claim that va and vb have distinct representations with respect to W. If this is not

the case, then r(va|W) = r(vb|W) gives us the contradiction a + b = n + m + 2r + 1 and
a + b = n + m.

Case 4. When va ∈ V2 and vb ∈ V3.
If we consider r(va|W) = r(vb|W), we get,
(n + 1− a, n + r + 1− a) = (b + 1− n, |b− n− r− 1|).
If b > n + r + 1, we get the contradiction a + b = 2n and a + b = 2n + 2r + 2.
If b < n + r + 1, we get a + b = 2n and a = b, but a 6= b.
Hence, r(va|W) 6= r(vb|W).

Case 5. When va ∈ V2 and vb ∈ V4.
Proceeding as before and considering r(va|W) = r(vb|W), we get
(n+ 1− a, n+ r+ 1− a) = (n+m+ 2r+ 1− b, n+m+ r+ 1− b). This again produces

a contradiction. Hence, r(vi|W) 6= r(vj|W).

Case 6. When va ∈ V3 and vb ∈ V4.
We claim that r(va|W) 6= r(vb|W). If not, then r(va|W) = r(vb|W)
⇒ (a + 1− n, |a− n− r− 1|) = (n + m + 2r + 1− b, n + m + r + 1− b).
If a > n + r + 1, we obtain,
a + 1− n = n + m + 2r + 1− b and a− n− r− 1 = n + m + r + 1− b
⇒ a + b = m + 2n + 2r and a + b = m + 2n + 2r + 2, which is a contradiction.
If a > n + r + 1, we obtain the contradiction b = n + m + r.

The above discussion concludes that dim(G) ≤ 2. Together with Theorem 1(c), we
obtain dim(G) = 2.
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Part 2. Let G = Cn,r,m be a bicyclic graph of type II with n, m odd. Considering the set

W = {v1, vn+r+1}.

Considering Vk as given in the following,

Vk =



{
v1, v2, . . . , vb n

2 c

}
for k = 1{

vb n
2 c+1

}
for k = 2{

vb n
2 c+2, . . . , vn

}
for k = 3{

vn+1, . . . , vn+r+bm
2 c

}
for k = 4{

vn+r+bm
2 c+1

}
for k = 5{

vn+r+bm
2 c+2, . . . , vn+r+m−1

}
for k = 6

(8)

we see that these Vk form a partition for V(Cn,r,m).

r(va|W) =



(a− 1, r + a + 1) va ∈ V1

(a− 1, n + r + 1− a) va ∈ V2

(n + 1− a, n + r + 1− a) va ∈ V3

(a + 1− n, |a− n− r− 1|) va ∈ V4

(n + m + 2r + 1− a, a− n− r− 1) va ∈ V5

(n + m + 2r + 1− a, n + m + r + 1− a) va ∈ V6.

(9)

Case 1. When va ∈ V1 and vb ∈ V2.
We claim that r(va|W) 6= r(vb|W). If this is not the case then, r(va|W) = r(vb|W) gives

us, a− 1 = b− 1 and r + a + 1 = n + r + 1− b⇒ a = b and a + b = n.
Solving the above equations for b gives b = n

2 , which is a contradiction.

Case 2. When va ∈ V1 and vb ∈ V3.
Assuming r(va|W) = r(vb|W), we get (a− 1, r + a + 1) = (n + 1− b, n + r + 1− b).
This produces a contradiction, whereas, we get a + b = n + 2 and a + b = n.
Hence, r(va|W) 6= r(vb|W).

Case 3. When va ∈ V1 and vb ∈ V4.
We claim that r(va|W) 6= r(vb|W). If not, then r(va|W) = r(vb|W)
⇒ (a− 1, r + a + 1) = (b + 1− n, |b− n− r− 1|).
If b > n + r + 1, we get a− 1 = b− n + 1 and r + a + 1 = b− n− r− 1
⇒ a− b = 2− n and a− b = −n− 2r− 2, a contradiction.
If b < n + r + 1, we obtain a− b = 2− n and a + b = n.
This produces the contradiction b = n− 1.

Case 4. When va ∈ V1 and vb ∈ V5.
We claim that r(va|W) 6= r(vb|W). If not, then r(va|W) = r(vb|W)
⇒ (a− 1, r + a + 1) = (n + m + 2r + 1− b, b− n− r− 1)
⇒ a− 1 = n + m + 2r + 1− b and r + a + 1 = b− n− r− 1
⇒ a + b = n + m + 2r + 2 and b− a = n + 2r + 2.
Solving the above equations for a gives b = m

2 , which is a contradiction.

Case 5. When va ∈ V1 and vb ∈ V6.
We claim that va and vb have distinct representations with respect to W. If this is not

the case, then r(va|W) = r(vb|W) gives us the contradiction a + b = n + m + 2r + 1 and
a + b = n + m.
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Case 6. When va ∈ V2 and vb ∈ V3.
We claim that r(va|W) 6= r(vb|W), otherwise r(va|W) = r(vb|W) gives us,
a− 1 = n + 1− b and n + r + 1− a = n + r + 1− b.
⇒ a + b = n + 2 and a = b.
Solving the above equations for b gives b = n

2 + 1, an obvious contradiction.

Case 7. When va ∈ V2 and vb ∈ V4.
If we consider r(va|W) = r(vb|W), we get,
(a− 1, n + r + 1− a) = (b + 1− n, |b− n− r− 1|).
Two possibilities arise for b. If b > n + r + 1, we get,
b− a = n− 2 and a + b = 2n + 2r + 2.
Solving the above equations for a gives a = n

2 + r + 2, which is a contradiction.
On the other hand, if b < n + r + 1, we obtain b− a = n− 2 and a = b. Solving these,

we get, n = 2, which is again a contradiction.
Hence, r(va|W) 6= r(vb|W).

Case 8. When va ∈ V2 and vb ∈ V5.
Considering r(va|W) = r(vb|W), we get,
(a− 1, n + r + 1− a) = (n + m + 2r + 1− b, b− n− r− 1).
This gives us the contradiction a + b = n + m + 2r + 2 and a + b = 2n + 2r + 2.

Case 9. When va ∈ V2 and vb ∈ V6.
If we consider r(va|W) = r(vb|W), we get,
(a− 1, n + r + 1− a) = (n + m + 2r + 1− b, m + n + r + 1− b)
=⇒ a + b = n + m + 2r + 2 and b− a = m.

Solving the above equations for a gives, a = n
2 + r + 1, an obvious contradiction.

Case 10. When va ∈ V3 and vb ∈ V4.
Assuming r(va|W) = r(vb|W), gives us the contradiction a + b = 2n and a + b =

2n + 2r + 2, when b > n + r + 1. On the other hand, if b < n + r + 1, we obtain a + b = 2n
and a = b. This is the desired contradiction since va, vb are distinct vertices.

Case 11. When va ∈ V3 and vb ∈ V5.
Proceeding as before and considering r(va|W) = r(vb|W), we get,
(n + 1− a, n + r + 1− a) = (n + m + 2r + 1− b, b− n− r− 1)
=⇒ b− a = m + 2r and a + b = 2n + 2r + 2.

Solving the above equations for b gives b = n + 2r + 1 + m
2 , which is a contradiction.

Case 12. When va ∈ V3 and vb ∈ V6.
If we assume r(va|W) = r(vb|W), we get,
(n + 1− a, n + r + 1− a) = (n + m + 2r + 1− b, n + m + r + 1− b). This produces the

contradiction b− a = m + 2r and b− a = m.

Case 13. When va ∈ V4 and vb ∈ V5.
We claim that r(va|W) 6= r(vb|W). If not, then r(va|W) = r(vb|W)
⇒ (a + 1− n, |a− n− r− 1|) = (n + m + 2r + 1− b, b− n− r− 1).
If a > n + r + 1, we get,
a + 1− n = n + m + 2r + 1− b and a− n− r− 1 = b− n− r− 1
⇒ a + b = m + 2n + 2r and a = b.
Solving the above equations for b gives, b = n + r + m

2 , which is a contradiction.
If a < n + r + 1, we get, a + b = m + 2n + 2r and a + b = 2n + 2r + 2. This produces

the contradiction m = 2. Hence, r(va|W) 6= r(vb|W).

Case 14. When va ∈ V4 and vb ∈ V6.
If we assume that r(va|W) = r(vb|W), we obtain,
(a + 1− n, |a− n− r− 1|) = (n + m + 2r + 1− b, n + m + r + 1− b).
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If a > n + r + 1, we get,
a + 1− n = n + m + 2r + 1− b and a− n− r− 1 = n + m + r + 1− b
⇒ a + b = m + 2n + 2r and a + b = m + 2n + 2r + 2, an obvious contradiction.
On the other hand, if a < n + r + 1, we obtain a + b = m + 2n + 2r and b− a = m.

Solving for b gives, b = n + m + r, a contradiction.

Case 15. When va ∈ V5 and vb ∈ V6.
If we take r(va|W) = r(vb|W), we get,
(n + m + 2r + 1− a, a− n− r− 1) = (n + m + 2r + 1− b, n + m + r + 1− b)
⇒ n + m + 2r + 1− a = n + m + 2r + 1− b and a− n− r− 1 = n + m + r + 1− b
⇒ a = b and a + b = m + 2n + 2r + 2.
Solving the above equations for b gives b = n + r + 1 + m

2 , a contradiction.

All the above cases ensure that dim(Cn,r,m) ≤ 2. This, together with Theorem 1(c),
gives dim(Cn,r,m) = 2 for n, m odd.

Part 3. Let us take Cn,r,m, n odd, and m even. Let us consider the set W = {v1, vn+r+1}.
If we take Vk as given in the following,

Vk =



{
v1, v2, . . . , vb n

2 c

}
for k = 1{

vb n
2 c+1

}
for k = 2{

vb n
2 c+2, . . . , vn

}
for k = 3{

vn+1, . . . , vn+r+bm
2 c

}
for k = 4{

vn+r+bm
2 c+2, . . . , vn+r+m−1

}
for k = 5,

(10)

we see that these Vk form a partition of V(Cn,r,m). Noting the distances of these Vk from W,
we get,

r(va|W) =



(a− 1, r + a + 1) va ∈ V1

(a− 1, n + r + 1− a) va ∈ V2

(n + 1− a, n + r + 1− a) va ∈ V3

(a + 1− n, a− n− r− 1) va ∈ V4

(n + m + 2r + 1− a, n + m + r + 1− a) va ∈ V5.

(11)

The rest of the proof pattern is again similar to Part 1 and/or Part 2.

5. Perturbation in Metric Dimension of Bicyclic Graphs After Edge/Vertex Deletion

In this section, we consider the change in the metric dimension of bicyclic graphs type
I and II, when an edge is removed. We only consider the cases when such a graph is still
connected. Before proceeding further, we introduce some notations and definitions used in
this section. The degree of a vertex v of a simple connected graph G, denoted by d(v), is
the number of edges incident at v. By G− e, we mean that the edge e has been removed
from the graph G. By a “pendant path”, we mean a path x1x2 · · · xk such that every xi is of
degree 2 except xk, which is of degree 1, and the vertex x1 is attached to a vertex v of G,
where d(v) ≥ 3. These ideas are evident in Figure 4.
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v1 v2

v3

x1

G

x2

x3

v1 v2

v3

x1

G − {v2v3}

x2

x3

Figure 4. Graph G with a pendant path x1x2x3 and Graph G− e where e = {v2v3}.

Let G be a bicyclic graph of type I. Let us now consider the graph G − e. If e is an
edge incident with a vertex of degree 4, G− e is a unicyclic graph with one pendant path.
Meanwhile, when e is any other edge, G− e is a unicyclic graph with two pendant paths,
we name these configurations A and B, respectively; these are shown in Figure 5.

vn

vn+1 vn+m−2 vn+m−1

A
B

v1

v2

vn−2

vn−1

vn

v1

v2

vn−2

vn−1

vn+1

vn+r

vn+m−1

vn+r+1

Figure 5. Configurations A and B of G− e when G = Cn,m.

Note that the connected graph G− v(v ∈ V(G)) gives us the same configurations. We
will only discuss the case of G− e here, keeping in mind that the same results are applicable
to G− v.

We denote the cycle in G− e by Cn, even interchanging n and m if necessary. We now
introduce the following lemma.

Lemma 1. For a unicyclic graph G with a pendant path of length m− 1, dim(G) = 2.

Proof. Let us denote the cycle in G by Cn. Let the vertices be labeled as in Figure 5,
Configuration A. Let W =

{
v1, vb n

2 c
}

.
When n is even, we have,

r(vi|W) =


(
i + 1− n,

⌊ n
2
⌋
+ i− n

)
∀ vi ∈ {vn+1, vn+2, · · · , vn+m−1}(

i− 1,
⌊ n

2
⌋
− i
)

∀ vi ∈
{

v1, v2, · · · , vb n
2 c
}

(
n + 1− i, i−

⌊ n
2
⌋)

∀ vi ∈
{

vb n
2 c+1, · · · , vn

}
,

and when n is odd, we obtain,

r(vi|W) =



(
i + 1− n,

⌊ n
2
⌋
+ i− n

)
∀ vi ∈ {vn+1, vn+2, · · · , vn+m−1}(

i− 1,
⌊ n

2
⌋
− i
)

∀ vi ∈
{

v1, v2, · · · , vb n
2 c
}

(
i− 1, i−

⌊ n
2
⌋)

vi = vb n
2 c+1(

n + 1− i, i−
⌊ n

2
⌋)

∀ vi ∈
{

vb n
2 c+2, · · · , vn

}
.
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In both cases, it can easily be concluded that no two vertices of G have the same
representation with respect to W. This together with Theorem 1(c) gives us, dim(G) = 2.

For configuration B, we see that there are two pendant paths attached at vn. One can
see that the vertices on both paths equidistant to vn, e.g., vertices vn+1 and vn+m−1 can not
be distinguished from any vertex of the cycle Cn. Similarly, vertices of Cn at equal distance
from vn, e.g., v1 and vn−1, can not be distinguished from the vertices of attached paths.
This brings us to the following lemma.

Lemma 2. Let G be a unicyclic graph with two pendant paths attached to a vertex of the cycle in
G, then dim(G) = 3.

Proof. Let us denote the vertices of the cycle Cn by v1, v2, · · · vn. Let the two pendant paths
attached at vn be vn+1vn+2 · · · vn+r and vn+m−1vn+m−2 · · · vn+r+1. This representation of
vertices is given in Figure 5, Configuration B.

Since the cycle Cn in G has dimension 2, and no vertices of Cn distinguish vertices of
both the pendant paths, dim(G) > 2 =⇒ dim(G) ≥ 3. Let W = {vi, vj} ⊂ V(Cn) be the
basis for Cn and let W ′ = W ∪ {vn+r}. Since W resolves Cn, and vn+r resolves both pendant
paths; W ′ resolves all vertices of G. Hence, dim(G) ≤ 3 and we obtain our result.

Combining the results of Lemmas 1 and 2, we obtain the following.

Theorem 4. Let G− e be a graph obtained by deleting an edge from G = Cn,m. Then,

dim(G− e) =

{
2 if e is incident with a vertex of degree 4
3 otherwise.

Let us now consider the bicyclic graph of type II, i.e., G = Cn,r,m. G− e again gives us
two configurations depending on whether e is incident with a vertex of degree 2 or 3. One
of the configurations we obtain is similar to A, while we name the other one as C, given in
Figure 6.

vn

vn+1 vn+r

vn+r+s+1

vn+r+m−1

C

vn+r+1

vn+r+s

Figure 6. Configuration C when an edge incident at vertices of degree 2 is removed from G = Cn,r,m.

We again mention here that the connected graph G− v gives us the same configura-
tions, and the results for G− e can easily be applied to G− v.

We now present the following lemma for configuration C.

Lemma 3. Let G be a unicyclic graph with two pendant paths Pk and Pl , of lengths k and l,
respectively, attached to a vertex of the cycle in G. Let |V(Pk) ∩V(Pl)| > 1, then dim(G) = 3.

Proof. Let us label the vertices of the cycle Cn in G by v1, v2, · · · , vn. Let |V(Pk) ∩V(Pl)| = r
and let these vertices be labeled as vn+1, vn+2, · · · , vn+r. For an easier proof, we relabel the
remaining vertices from Figure 6 as u1, u2, · · · , uk−r and w1, w2, · · · , wl−r. This representa-
tion is given in Figure 7.
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vn

vn+1 vn+r

wl−r

w1

C

u1

uk−r

Figure 7. Configuration C of Cn,r,m − e relabeled.

Let G1 be the induced subgraph of G on the vertices v1, v2, · · · , vn+r, and let G2 be the
induced subgraph on the vertices V(G)−V(G1) ∪ {vn+r}. Since G1 is a unicyclic graph
with an attached pendant path, by Lemma 1, dim(G1) = 2. Following a similar argument to
Lemma 2, we conclude that dim(G) ≥ 3. Let W = {vi, vj} ⊂ V(G1) be the basis for G1 and
let W ′ = W ∪ {uk−r}. Since W resolves G1, and uk−r resolves G2, W ′ resolves all vertices of
G. Hence, dim(G) ≤ 3 and we obtain our result.

Lemmas 1 and 3 give us the following theorem.

Theorem 5. Let G− e be a connected graph, obtained by deleting an edge from G = Cn,r,m. Then,

dim(G− e) =

{
2 if e is incident with a vertex of degree 3
3 otherwise.

If we continue to remove edges from G− e to obtain a connected graph, equivalently,
if we remove more than one edge from G in such a way that the final graph is connected
(G is bicyclic graph of type I or type II), we either arrive at one of the configurations A, B,
or C, or we obtain a tree. In both cases, their metric dimension can easily be concluded by
already established results of Lemmas 1–3, or by ([4] Theorem 5).

6. Summary

We studied the resolving set and metric dimension of base bicyclic graphs and showed
that they are constant for type I and II base bicyclic graphs. Particularly,

dim(Cn,m) =


2 when n, m are odd
2 when n is even and m is odd
3 when n, m are even

where n, m ≥ 3 and

dim(Cn,r,m) = 2 for all n ≥ 3, m ≥ 3, r ≥ 1.

We also considered the problem of removing an edge/vertex from these graphs and
obtained results for dim(G− e).

7. Conclusions

Unicyclic graphs have been studied extensively under varying graph invariants related
to metric dimensions. Bicyclic graphs have not enjoyed the same level of interest from
researchers till now. In this article, we showed that the base bicyclic graphs of type I and II
have constant metric dimensions. This opens up new avenues for researchers to discuss
other graph invariants for these types of graphs.

In the future, the following problems are an effective way of extending this research.
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Problem 1: Studying the bicyclic graph of type III and providing a generalized proof
that they have constant metric dimension.

Problem 2: Studying various other graph invariants, e.g., local metric dimensions,
mixed metric dimensions, and k-metric dimensions for bicyclic graphs.

Problem 3: Studying the characterization of a bigger class of graphs with metric
dimension 2.

It was observed in [30] that the metric dimension problem is NP-complete for pla-
nar graphs. Diaz et al. also proposed an algorithm to calculate the metric dimension of
outerplanar graphs in polynomial time. Since bicyclic graphs of type I and type II are
also outerplanar graphs, their metric dimension can also be calculated in polynomial time.
Following the results from this article, there is no need to apply a generalized algorithm to
calculate the metric dimension of bicyclic graphs of type I and II. This effectively reduces
the computational time for anyone who wants to use the metric dimension of these graphs
in their applications/research.
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