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Abstract

In this paper, we analyze a discrete-time GI-Geo-1 preemptive resume priority queue. We consider two classes of

packets which have to be served, where one class has preemptive resume priority over the other. We show that the use of

generating functions is beneficial for analyzing the system contents and packet delay of both classes. Moments and

(approximate) tail probabilities of system contents and packet delay are calculated. The influence of the priority

scheduling is shown by some numerical examples.
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1. Introduction

In recent years, there has been much interest devoted to incorporating multimedia applications in IP

networks. Different types of traffic need different quality of service (QoS) standards, but share the same

network resources, such as buffers and bandwidth. For real-time applications, it is important that mean

delay and delay-jitter are bounded, while for non-real-time applications, the loss ratio (LR) is the restrictive

quantity.
In general, one can distinguish two priority strategies, which will be referred to as Delay priority and

Loss priority. Delay priority schemes attempt to guarantee acceptable delay boundaries to delay-sensitive

traffic (such as voice/video). This can be achieved by giving it head-of-line (HOL) priority over non-delay-

sensitive traffic, and/or by sharing access to the server among the various traffic classes in such a way so that

each can meet its own specific delay requirements. Several types of Delay priority (or scheduling) schemes

(such as weighted-round-robin (WRR), weighted-fair-queueing (WFQ)) have been proposed and analyzed,

each with their own specific algorithmic and computational complexity (see e.g. [11,14] and the references

therein). On the other hand, Loss priority schemes attempt to minimize the packet loss of loss-sensitive
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traffic (such as data). An overview and classification of some Loss priority (or discarding) strategies can be
found in [3,11].

In this paper, we will focus on the effect of a specific type of Delay priority schemes, i.e., we will analyze a

queueing system with a preemptive resume priority scheduling discipline. We assume that delay-sensitive

traffic has preemptive priority over delay-insensitive traffic, i.e., when the server of the queueing system

becomes empty, a packet of delay-sensitive traffic, when available, will always be scheduled next. In the

remaining, we will refer to the delay-sensitive and delay-insensitive traffic as high and low priority traffic

respectively. Newly arriving high priority traffic interrupts the transmission of a low priority packet that has

already commenced, and the interrupted low priority packet can resume its transmission when all the high
priority traffic has left the system, i.e., the part of the packet that was already transmitted before the in-

terruption by high priority packets, does not have to be retransmitted.

In the literature, there have been a number of contributions with respect to queues with a priority

scheduling discipline. An overview of some basic priority queueing models can be found in [7,13,16,17], and

the references therein. Khamisy and Sidi [8], Laevens and Bruneel [10], Takine et al. [19] and Walraevens

et al. [20] have studied discrete-time priority queues with deterministic service times equal to one slot.

Khamisy and Sidi [8] analyses the system contents of the different classes, for a queue fed by a two-state

Markov modulated arrival process. Laevens and Bruneel [10] analyses the system contents and cell delay in
the case of a multiserver queue. In Takine [19], the system contents and the delay for Markov modulated

high priority arrivals and geometrically distributed low priority arrivals are presented. Walraevens et al. [20]

studies the system contents and cell delay, in the special case of an output queueing switch with Bernoulli

arrivals. All these models have a packet transmission time of a single slot in common. Furthermore, pre-

emptive resume priority queues have been analysed in Machihara [12], Sandhu and Posner [15] and Takine

and Hasegawa [18]. Machihara [12] analyzes waiting times when high priority arrivals are distributed ac-

cording to a MAP process. Sandhu and Posner [15] analyses a preemptive resume priority system where the

high priority packets cannot be stored in the queue. Takine and Hasegawa [18] studies the waiting times of
customers arriving to a queue according to independent MAP processes.

In this paper, we analyze the system contents and packet delay of high and low priority traffic in a

discrete-time single-server buffer with a preemptive resume priority scheduling discipline and per-slot i.i.d.

arrivals. The transmission times of the packets generated by both types are assumed to be geometrically

distributed (with class-dependent parameters). This is mainly done to make the analysis tractable, since the

geometrical distribution has the well-known memoryless property. A negative side-effect is of course that, if

transmission times of some types of customers are not geometric or arrivals are not i.i.d., the analysis

presented in this paper can merely be used as an approximation. However, even then some important
approximate performance measures that are practically useful can be calculated, and some important

qualitative conclusions can be drawn from the analysis of this model.

As far as the model is concerned, the main difference with the articles involved with HOL priority queues

listed above is that the arrival processes of the different types of packets are not mutually independent. This

type of arrival process occurs for instance in a multiclass output-queueing router/switch. Therefore the

different classes cannot be analyzed separately (i.e., as a model with server interruptions for low priority

cells, see e.g. [5]), which complicates the analysis.

We will furthermore demonstrate that an analysis based on generating functions is extremely suitable for
modelling this type of buffers with a priority scheduling discipline. From these generating functions, ex-

pressions for some interesting performance measures––such as means, variances and approximate tail

probabilities of system contents and packet delay––can be calculated. Determining the tail behavior of the

system contents and packet delay is one of the main contributions of the paper. Although these are im-

portant quantities in the evaluation of the QoS of high and low priority packet streams, this has received

only little attention up till now. We will also show that the distribution of the system contents and packet

delay of low priority packets not necessarily has a geometric asymptotic behavior.
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The remainder of this paper is structured as follows. In the following section, we present the mathe-
matical model. In Sections 3 and 4, we will then analyze the steady-state system contents and packet delay

of both classes. In Sections 5 and 6, we calculate expressions for some moments and approximate tail

probabilities respectively of the system contents and packet delay of both classes. Some numerical examples

are treated in Section 7. Finally, some conclusions are formulated in Section 8.
2. Mathematical model

We consider a discrete-time single-server system with infinite bufferspace. Time is assumed to be slotted.

There are two types of packets arriving to the system, namely packets of class 1 and packets of class 2. The

number of arrivals of class j during slot k are independent and identically distributed (i.i.d.) and are de-

noted by aj;k ðj ¼ 1; 2Þ. Their joint probability mass distribution is defined as
aðm; nÞ,Prob½a1;k ¼ m; a2;k ¼ n�:

Note that the number of arrivals of both classes during one slot can be correlated.

The joint probability generating function (pgf) of a1;k and a2;k is defined as
Aðz1; z2Þ,E½za1;k
1 za2;k

2 � ¼
X1
m¼0

X1
n¼0

aðm; nÞzm1 zn2:
The marginal pgfs of the number of per-slot arrivals of class j are denoted by AjðzÞ ðj ¼ 1; 2Þ and are given

by Aðz; 1Þ and Að1; zÞ respectively. The total number of arrivals during slot k is denoted by aT ;k ,a1;k þ a2;k

and its pgf is given by AT ðzÞ ¼ Aðz; zÞ. We will furthermore denote the mean arrival rate of class j packets

during a slot by kj,E½aj;k� ¼ A0
jð1Þ ðj ¼ 1; 2Þ and the mean total arrival rate by kT ,k1 þ k2.

The service times of class j packets are assumed to be i.i.d. and geometrically distributed with parameter

bj ðj ¼ 1; 2Þ. Their pgfs are thus given by
SjðzÞ,
ð1 	 bjÞz
1 	 bjz

;

with j ¼ 1; 2.

The class 1 packets are assumed to have preemptive resume priority over the class 2 packets and within

one class the scheduling is FCFS. Due to the priority scheduling mechanism, it is as if class 1 packets (the

high priority packets) are stored in front of class 2 packets (the low priority packets) in the queue. So, if

there are any class 1 packets in the queue when the server becomes idle, the one with the longest elapsed

waiting time will be served next. If, on the other hand, no class 1 packets are present in the queue at that

moment, the class 2 packet with the longest elapsed waiting time, if any, will be served next. Since the

priority scheduling is preemptive resume, service of a low priority packet will be interrupted by newly
arriving high priority packets, and an interrupted low priority packet will transmit its not-yet-transmitted

part after all high priority packets have left the system. The mean service time of a class j packet, i.e., the

mean time a class j packet stays in the server is given by lj ¼ 1=ð1 	 bjÞ. Finally, the load offered by class j
packets is given by qj,kjlj. The total load offered to the queueing system is then given by qT ,q1 þ q2. We

assume a stable system, i.e., qT < 1.
3. System contents

We denote the system contents of class j packets at the beginning of slot k by uj;k ðj ¼ 1; 2Þ, i.e., at the

beginning of slot k there are uj;k class j packets in the system.
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Their joint pgf is defined as
Ukðz1; z2Þ,E½zu1;k
1 zu2;k

2 �:

Clearly the set fu1;k; u2;kg forms a Markov chain, since the arrival process is i.i.d. and the service times are
geometrically distributed. The following system equations can be established:

1. If u1;k ¼ u2;k ¼ 0:

u1;kþ1 ¼ a1;k;

u2;kþ1 ¼ a2;k;

i.e., the only packets present in the system at the beginning of slot k þ 1 are the packets that arrived

during the previous slot.

2. If u1;k ¼ 0, u2;k > 0:

u1;kþ1 ¼ a1;k;

u2;kþ1 ¼
u2;k þ a2;k with probability b2;

u2;k þ a2;k 	 1 with probability ð1 	 b2Þ;

(

i.e., the class 2 packet in service stays in the system (not necessarily in the server) with probability b2 and

leaves the system at the end of slot k with probability 1 	 b2.

3. If u1;k > 0:

u1;kþ1 ¼
u1;k þ a1;k with probability b1;

u1;k þ a1;k 	 1 with probability ð1 	 b1Þ;

(

u2;kþ1 ¼ u2;k þ a2;k;

i.e., the class 1 packet in service stays in the system with probability b1 and leaves the system at the end

of slot k with probability 1 	 b1.

Using these system equations, we can derive a relation between Ukðz1; z2Þ and Ukþ1ðz1; z2Þ. In the re-

mainder, we define E½XfY g� as E½X jY �Prob½Y �. We proceed as follows, taking into account the statistical

independence of the random variables ðu1;k; u2;kÞ and ða1;k; a2;kÞ:
Ukþ1ðz1; z2Þ,E½zu1;kþ1

1 zu2;kþ1

2 �
¼ E½za1;k

1 za2;k

2 fu1;k ¼ u2;k ¼ 0g� þ b2E½z
a1;k

1 zu2;kþa2;k

2 fu1;k ¼ 0; u2;k > 0g�
þ ð1 	 b2ÞE½z

a1;k
1 zu2;kþa2;k	1

2 fu1;k ¼ 0; u2;k > 0g�
þ b1E½z

u1;kþa1;k
1 zu2;kþa2;k

2 fu1;k > 0g� þ ð1 	 b1ÞE½z
u1;kþa1;k	1

1 zu2;kþa2;k
2 fu1;k > 0g�

¼ Aðz1; z2ÞProb½u1;k ¼ u2;k ¼ 0� þ Aðz1; z2Þ b2

�
þ 1 	 b2

z2

�
E½zu2;k

2 fu1;k ¼ 0; u2;k > 0g�

þ Aðz1; z2Þ b1

�
þ 1 	 b1

z1

�
E½zu1;k

1 zu2;k
2 fu1;k > 0g�

¼ Aðz1; z2ÞUkð0; 0Þ þ Aðz1; z2Þ b2

�
þ 1 	 b2

z2

�
½Ukð0; z2Þ 	 Ukð0; 0Þ�

þ Aðz1; z2Þ b1

�
þ 1 	 b1

z1

�
½Ukðz1; z2Þ 	 Ukð0; z2Þ�: ð1Þ
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We assume the system is stable and as a result Ukðz1; z2Þ and Ukþ1ðz1; z2Þ converge both to a common steady-

state value Uðz1; z2Þ. By taking the k ! 1 limit of Eq. (1), we obtain
Uðz1; z2Þ ¼
Aðz1; z2Þ

z2½ð1 	 b1Aðz1; z2ÞÞz1 	 ð1 	 b1ÞAðz1; z2Þ�
½z1ð1 	 b2Þðz2 	 1ÞUð0; 0Þ

þ ðð1 	 b2Þz1 	 ð1 	 b1Þz2 þ ðb2 	 b1Þz1z2ÞUð0; z2Þ�: ð2Þ
It now remains for us to determine the unknown function Uð0; z2Þ and the unknown parameter Uð0; 0Þ.
This can be done in two steps. First, we notice that Uðz1; z2Þ must be bounded for all values of z1 and z2 such

that jz1j6 1 and jz2j6 1. In particular, this should be true for z1 ¼ Y ðz2Þ, with Y ðz2Þ, ð1 	 b1Þ�
AðY ðz2Þ; z2Þ=ð1 	 b1AðY ðz2Þ; z2ÞÞ and jz2j6 1, since it follows by Rouch�e�s theorem that there is exactly one

solution for Y ðz2Þ, with jY ðz2Þj6 1 for all such z2. Notice that Y (1) equals 1. The above implies that if we
choose z1 ¼ Y ðz2Þ in Eq. (2), where jz2j6 1, the denominator of the right-hand side of this equation becomes

zero. The same must then be true for its numerator, yielding
Uð0; z2Þ ¼ Uð0; 0Þ Y ðz2Þð1 	 b2Þðz2 	 1Þ
ð1 	 b1Þz2 	 ð1 	 b2ÞY ðz2Þ 	 ðb2 	 b1ÞY ðz2Þz2

: ð3Þ
Finally, in order to find an expression for Uð0; 0Þ, we put z1 ¼ z2 ¼ 1 and use de l�Hospital�s rule in Eq. (2).

Therefore we will need to know the value of Y 0ð1Þ. By taking the derivative of both sides of the definition of

Y ðz2Þ and by substituting z2 by 1, we obtain
Y 0ð1Þ ¼ k2

1 	 b1 	 k1

: ð4Þ
Using this expression, we obtain the expected result for Uð0; 0Þ:

Uð0; 0Þ ¼ 1 	 qT : ð5Þ
A fully determined expression for Uðz1; z2Þ can now be derived from Eq. (2) together with Eqs. (3) and (5):
Uðz1; z2Þ ¼
ð1 	 qT Þð1 	 b2ÞS1ðAðz1; z2ÞÞðz2 	 1Þðz1 	 Y ðz2ÞÞ

ðz1 	 S1ðAðz1; z2ÞÞÞðð1 	 b2ÞY ðz2Þðz2 	 1Þ 	 ð1 	 b1Þz2ðY ðz2Þ 	 1ÞÞ : ð6Þ
From the two-dimensional pgf Uðz1; z2Þ, we can easily derive an expression for the pgf of the total system

contents at the beginning of an arbitrary slot––denoted by UT ðzÞ––yielding
UT ðzÞ, lim
k!1

E½zuT ;k � ¼ Uðz; zÞ ¼ ð1 	 qT Þð1 	 b2ÞS1ðAT ðzÞÞðz	 1Þðz	 Y ðzÞÞ
ðz	 S1ðAT ðzÞÞÞðð1 	 b2ÞY ðzÞðz	 1Þ 	 ð1 	 b1ÞzðY ðzÞ 	 1ÞÞ : ð7Þ
We can also derive expressions for the pgf of the steady-state system contents of class 1 and class 2 packets
at the beginning of an arbitrary slot––denoted by U1ðzÞ and U2ðzÞ respectively––yielding
U1ðzÞ, lim
k!1

E½zu1;k � ¼ Uðz; 1Þ ¼ ð1 	 q1Þ
S1ðA1ðzÞÞðz	 1Þ
z	 S1ðA1ðzÞÞ

; ð8Þ

U2ðzÞ, lim
k!1

E½zu2;k � ¼ Uð1; zÞ ¼ ð1 	 qT Þð1 	 b2ÞS1ðA2ðzÞÞðz	 1Þð1 	 Y ðzÞÞ
ð1 	 S1ðA2ðzÞÞÞðð1 	 b2ÞY ðzÞðz	 1Þ 	 ð1 	 b1ÞzðY ðzÞ 	 1ÞÞ : ð9Þ
We conclude that the system contents of class 1 packets is not influenced by class 2 packets and that its pgf

is the same as for a single class system with an identical packet arrival and service process described by A1ðzÞ
and S1ðzÞ respectively. This is of course due to the preemptive priority scheduling. For high priority packets,

it seems as if no low priority packets are present in the system.

In the special case that bj ¼ 0 ðj ¼ 1; 2Þ, the service times of the packets are deterministic and equal to 1

slot. By substituting b1 and b2 by 0 in Eq. (6), we obtain
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Uðz1; z2Þ ¼ ð1 	 kT Þ
Aðz1; z2Þðz2 	 1Þðz1 	 Y ðz2ÞÞ
ðz1 	 Aðz1; z2ÞÞðz2 	 Y ðz2ÞÞ

; ð10Þ
with Y ðzÞ ¼ AðY ðzÞ; zÞ. This is the same expression as obtained in [20], in which a discrete-time ATM queue
with a priority scheduling discipline was analyzed.
4. Delay

The packet delay is defined as the total amount of time a packet spends in the system, i.e., the number of

slots between the end of the packet�s arrival slot and the end of its departure slot. We can analyze the packet

delay of class 1 packets as if they are the only packets in the system. This is e.g. done in [1] and the pgf of the

packet delay of class 1 packets is given by
D1ðzÞ ¼
1 	 q1

q1

zðA1ðS1ðzÞÞ 	 1Þ
z	 A1ðS1ðzÞÞ

: ð11Þ
The analysis of the packet delay of a class 2 packet is more complicated. The packet delay can be divided

into two mutually independent parts. The first part dð1Þ
2 is the time a class 2 packet spends in the system

from its arrival slot till it enters the server for the first time. The second part of the delay, denoted by dð2Þ
2 ,

begins when the tagged packet enters the server for the first time and ends when it leaves the system. So

denoting the pgfs of dð1Þ
2 and dð2Þ

2 by Dð1Þ
2 ðzÞ and Dð2Þ

2 ðzÞ respectively, the pgf of the delay of a tagged class 2

packet is given by
D2ðzÞ ¼ Dð1Þ
2 ðzÞDð2Þ

2 ðzÞ; ð12Þ
since dð1Þ
2 and dð2Þ

2 are independent. The first part is furthermore independent of the fact whether the priority
scheduling is preemptive or non-preemptive, i.e., independent of the fact whether newly arriving class 1

packets can interrupt an on-going transmission of a class 2 packet (since dð1Þ
2 only accounts for the waiting

time in the queue before the tagged class 2 packet enters the server for the first time). The system with a

non-preemptive priority scheduling was already analyzed in [21]. We will reconstruct this analysis for the

preemptive priority buffer. In order to calculate Dð1Þ
2 ðzÞ, an equivalent virtual system with an altered service

discipline is considered. We assume that from the arrival slot of the tagged packet on, denoted by slot k, the

order of service for class 1 packets (those in the queue at the end of slot k and newly arriving ones) is LCFS

instead of FCFS in the equivalent system (the transmission of class 2 packets remains FCFS) and that the
priority scheduling is non-preemptive. Let us refer to the packets in the system at the end of the tagged

packet�s arrival slot, but that have to be served before the tagged packet as the ‘‘primary packets’’. So, a

primary packet can enter the server, when the system becomes free (for the first time) of class 1 packets that

arrived during and after the service time of the primary packet that predecessed it according to the new

service discipline. Let vðiÞ1;m denote the length of the time period during which the server is occupied by the

mth class 1 packet that arrives during slot i and its class 1 ‘‘successors’’, i.e., the time period starting at the

beginning of the service of that packet and terminating when the system becomes free (for the first time) of

class 1 packets which arrived during and after its service time. Analogously, let vðiÞ2;m denote the length of the
time period during which the server is occupied by the mth class 2 packet that arrives during slot i and its

class 1 ‘‘successors’’. The vðiÞj;ms ðj ¼ 1; 2Þ are called sub-busy periods, caused by the mth class j packet that

arrived during slot i.
It is clear that the length of the sub-busy periods caused by class 1 packets are i.i.d. and thus have the

same pgf V1ðzÞ. Also the length of the sub-busy periods caused by class 2 packets are i.i.d., and their pgf is

denoted by V2ðzÞ. Using the same techniques as in [21], it can then be proven that
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Dð1Þ
2 ðzÞ ¼ 1 	 qT

k2

AðV1ðzÞ; V2ðzÞÞ 	 A1ðV1ðzÞÞ
zA1ðV1ðzÞÞ 	 AðV1ðzÞ; V2ðzÞÞ

ð1 	 b2zA1ðV1ðzÞÞÞ; ð13Þ
with VjðzÞ ¼ ð1 	 bjÞzA1ðV1ðzÞÞ=ð1 	 bjzA1ðV1ðzÞÞÞ ðj ¼ 1; 2Þ, and where we have explicitly used the ex-
pressions of the pgfs of the geometrical service times.

The second part of the delay of the tagged class 2 packet begins when the tagged packet enters the server

for the first time. If class 1 packets arrive before the service of the tagged packet is finished, the packet

cannot be fully transmitted and it has to wait to continue its service until all class 1 packets have left the

system. So, each class 1 packet that arrives during the service of the tagged packet, starts a sub-busy period.

Taking this into account, the following expression for Dð2Þ
2 ðzÞ can be found:
Dð2Þ
2 ðzÞ ¼ ð1 	 b2Þz

1 	 b2zA1ðV1ðzÞÞ
: ð14Þ
Finally, using (13) and (14) in Eq. (12), we find
D2ðzÞ ¼
1 	 qT

q2

zðAðV1ðzÞ; V2ðzÞÞ 	 A1ðV1ðzÞÞÞ
zA1ðV1ðzÞÞ 	 AðV1ðzÞ; V2ðzÞÞ

; ð15Þ
with VjðzÞ ¼ ð1 	 bjÞzA1ðV1ðzÞÞ=ð1 	 bjzA1ðV1ðzÞÞÞ ðj ¼ 1; 2Þ.
5. Calculation of moments

The functions Y ðzÞ, V1ðzÞ and V2ðzÞ can only be explicitly found in case of some simple arrival processes.

Their derivatives, necessary to calculate the moments of the system contents and the packet delay, on the

contrary, can be calculated in closed-form. For example, Y 0ð1Þ is given by Eq. (4) and the first derivatives of

VjðzÞ for z ¼ 1 are given by
V 0
j ð1Þ ¼

1

1 	 bj 	 k1

;

with j ¼ 1; 2. Let us define kij as
kij,
o2Aðz1; z2Þ
ozi ozj

����
z1¼z2¼1

;

with i; j ¼ 1; 2. Now we can calculate the mean total system contents, the mean system contents of class 1

and class 2 packets and the mean packet delay of both classes by taking the first derivatives of the respective

pgfs for z ¼ 1. We find
E½uT � ¼ kT þ
qT ð1 	 q1Þ 	 q1q2 	 k1ð1 	 qT Þ

ð1 	 qT Þð1 	 q1Þ
	 k2ð1 	 b1 	 q1Þ
ð1 	 b1Þð1 	 qT Þð1 	 q1Þ

þ ðð1 	 b1Þð1 	 qT Þ þ k2Þk11

2ð1 	 b1Þ
2ð1 	 qT Þð1 	 q1Þ

þ k12

ð1 	 b1Þð1 	 qT Þ
þ k22

2ð1 	 b2Þð1 	 qT Þ
; ð16Þ
for the mean total system contents,
E½u1� ¼
ð1 	 k1Þq1

1 	 q1

þ 1

2

k11

ð1 	 b1Þð1 	 q1Þ
; ð17Þ
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for the mean system contents of class 1 packets and
E½u2� ¼ k2 þ
q2

1 	 qT
	 k2ð1 	 b1 	 q1Þ
ð1 	 b1Þð1 	 qT Þð1 	 q1Þ

þ k22

2ð1 	 b2Þð1 	 qT Þ
þ k12

ð1 	 b1Þð1 	 qT Þ

þ k2k11

2ð1 	 b1Þ
2ð1 	 qT Þð1 	 q1Þ

; ð18Þ
for the mean system contents of class 2 packets. It is easily verified that Eqs. (16)–(18) satisfy

E½uT � ¼ E½u1� þ E½u2�. Furthermore, we find
E½d1� ¼
1

1 	 b1

þ b1q1

ð1 	 b1Þð1 	 q1Þ
þ k11

2k1ð1 	 b1Þð1 	 q1Þ
; ð19Þ
for the mean packet delay of a class 1 packet and
E½d2� ¼ 1 þ 1

ð1 	 b2Þð1 	 qT Þ
þ k22

2k2ð1 	 b2Þð1 	 qT Þ
þ k12

k2ð1 	 b1Þð1 	 qT Þ

	 ð1 	 b1 	 q1Þ
ð1 	 b1Þð1 	 qT Þð1 	 q1Þ

þ k11

2ð1 	 b1Þ
2ð1 	 qT Þð1 	 q1Þ

; ð20Þ
for the mean packet delay of a class 2 packet. Note that Eqs. (17)–(20) satisfy Little�s law E½dj� ¼ E½uj�=kj.

In a similar way, expressions for the variance (and higher moments) of the random variables of interest

can be calculated by taking the appropriate derivatives of the respective generating functions as well. These

expressions are however too elaborate to show, but figures of variances of system contents and packet delay
of both classes will be shown in Section 7.
6. Tail behavior

Not only the moments of the system contents and packet delay are important performance measures, but

also, and especially, the tail distribution of these quantities, which are often used to impose statistical

bounds on the guaranteed QoS for both classes.
From the generating functions of the total system contents, and of the system contents and packet delay

of class 1 and class 2 packets derived in Sections 3 and 4, approximations of the tail probabilities can be

derived using complex contour integration and residue theory. The procedure to find the corresponding

probability mass function of a pgf, frequently used in the remainder of this section, is described in general

terms in Appendix A.

In order to determine the asymptotic behavior of the tail distribution, the dominant singularity of the

respective generating functions is important. In e.g. [2] (wherein a single-class ATM queue with a FIFO

scheduling discipline is analyzed), it is proven that the dominant singularity lies on the positive real axis and
is larger than 1.

First we concentrate on the system contents of class 1. Provided that the pgfs A1ðzÞ and S1ðzÞ exhibit no

long-tail behavior, which is assumed to be the case here, the dominant singularity zH of U1ðzÞ is a zero of

z	 S1ðA1ðzÞÞ and this singularity is a single pole. In the neighbourhood of this pole, we can approximate

U1ðzÞ by
U1ðzÞ �
K1

zH 	 z
; ð21Þ
where K1 can be found by substituting z ¼ z1 in (21). Using residue theory, the tail probability is easily

found to yield
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Prob½u1 ¼ n� � ð1 	 q1Þ
zH 	 1

S0
1ðA1ðzH ÞÞA0

1ðzHÞ 	 1
z	n
H ; ð22Þ
for large enough n.

The tail behavior of the system contents of class 2 packets is a bit more involved, since it is not a priori

clear what the dominant singularity of U2ðzÞ is. This is due to the occurrence of the function Y ðzÞ in (9),

which is only implicitly defined. First we take a closer look at that function Y ðzÞ. The first derivative of Y ðzÞ
is given by
Y 0ðzÞ ¼ ð1 	 b1ÞAð2ÞðY ðzÞ; zÞ
ð1 	 b1AðY ðzÞ; zÞÞ

2 	 ð1 	 b1ÞAð1ÞðY ðzÞ; zÞ
; ð23Þ
with AðjÞðy; zÞ,oAðz1; z2Þ=ozjjz1¼y;z2¼z ðj ¼ 1; 2Þ. Consequently, Y ðzÞ has a singularity, denoted as zB, where

the denominator of Y 0ðzÞ becomes 0, i.e., ð1 	 b1AðY ðzBÞ; zBÞÞ
2 ¼ ð1 	 b1ÞAð1ÞðY ðzBÞ; zBÞ. Since Y ðzÞ remains

finite in the neighborhood of zB, this singularity is not a simple pole. Applying the results from [4] one can

show that in the neighbourhood of zB, Y ðzÞ is approximately given by
Y ðzÞ � Y ðzBÞ 	 KY
ffiffiffiffiffiffiffiffiffiffiffiffi
zB 	 z

p
; ð24Þ
with
KY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 	 b1ÞAð2ÞðY ðzBÞ; zBÞ

2b1ð1 	 b1AðY ðzBÞ; zBÞÞAð1ÞðY ðzBÞ; zBÞ þ ð1 	 b1ÞAð11ÞðY ðzBÞ; zBÞ

s
;

which can be found by taking the limit z ! zB of (24). AðijÞðy; zÞ is defined as o2Aðz1; z2Þ=ozi ozjjz1¼y;z2¼z (for

i; j ¼ 1; 2). From Eq. (24) it becomes obvious that zB is a square-root branch point of Y ðzÞ. Y ðzÞ has thus

two real solutions when z < zB (the solution we are interested in is the one where Y ðzÞ < 1, if z < 1), which
coincide at zB, and has no real solution when z > zB. zB is then of course also a branch point of U2ðzÞ. A

second potential singularity zL of U2ðzÞ on the real axis is given by the positive zero of the denominator

which is a zero of ð1 	 b2ÞY ðzÞðz	 1Þ 	 ð1 	 b1ÞzðY ðzÞ 	 1Þ.
The tail behavior of the system contents of class 2 packets is thus characterized by zL or zB, depending on

which is the dominant (i.e., smallest) singularity. Three types of tail behavior may thus occur, namely when

zL < zB, zL ¼ zB and zL does not exist. In those three cases, U2ðzÞ can be approximated in the neighbourhood

of its dominant singularity by:
U2ðzÞ �

Kð1Þ
2

zL 	 z
if zL < zB;

Kð2Þ
2ffiffiffiffiffiffiffiffiffiffiffiffi

zB 	 z
p if zL ¼ zB;

U2ðzBÞ 	 Kð3Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
zB 	 z

p
if zL does not exist;

8>>>>><
>>>>>:
where the constants KðiÞ
2 ði ¼ 1; 2; 3Þ can be found by investigating the behavior of U2ðzÞ in the neigh-

bourhood of this dominant singularity. Using residue theory, we find the tail probabilities for the three

possible cases:
Prob½u2 ¼ n� �

ð1 	 qT Þ
ð1 	 b2ÞS1ðA2ðzLÞÞðzL 	 1Þð1 	 Y ðzLÞÞz	n

L

zLðS1ðA2ðzLÞÞ 	 1ÞQ1ðzLÞ
;

1 	 qT

KY

ffiffiffiffiffiffiffi
1

zBp

s
ð1 	 b2ÞS1ðA2ðzBÞÞðzB 	 1Þð1 	 Y ðzBÞÞn	1=2z	n

B

ðS1ðA2ðzBÞÞ 	 1Þðð1 	 b2ÞðzB 	 1Þ 	 ð1 	 b1ÞzBÞ
;

ð1 	 qT ÞKY

2

ffiffiffiffiffi
zB
p

r
ð1 	 b2Þ

2S1ðA2ðzBÞÞðzB 	 1Þ2n	3=2z	n
B

ðS1ðA2ðzBÞÞ 	 1ÞðQ2ðzBÞÞ2
;

8>>>>>>>><
>>>>>>>>:

ð25Þ
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for large enough n, if zL < zB, if zL ¼ zB, and if zL does not exist respectively. The functions QjðzÞ ðj ¼ 1; 2Þ
are defined as
Q1ðzÞ ¼ ð1 	 b2ÞðY 0ðzÞðz	 1Þ þ Y ðzÞÞ 	 ð1 	 b1ÞðY ðzÞ 	 1 þ zY 0ðzÞÞ;

Q2ðzÞ ¼ ð1 	 b2ÞY ðzÞðz	 1Þ 	 ð1 	 b1ÞzðY ðzÞ 	 1Þ;
respectively. The first expression of (25) (as well as expression (22)) constitutes a typical geometric tail

behavior (i.e., an exponential decay), the third expression is a typical non-geometric tail behavior, while the

second expression gives a transition between geometric and non-geometric tail behavior. Eq. (25) is found

from the approximations of the generating functions by applying the Theorem from Appendix B (which is a

theorem stated in [6]).

The tail behavior of the total system contents is similar to the tail of the low priority system contents.

The important singularities of UT ðzÞ are the same as for U2ðzÞ, i.e., zL and zB. So, UT ðzÞ can be approximated
in the neighbourhood of its dominant singularity by:
UT ðzÞ �

Kð1Þ
T

zL 	 z
if zL < zB;

Kð2Þ
Tffiffiffiffiffiffiffiffiffiffiffiffi

zB 	 z
p if zL ¼ zB;

UT ðzBÞ 	 Kð3Þ
T

ffiffiffiffiffiffiffiffiffiffiffiffi
zB 	 z

p
if zL does not exist;

8>>>>><
>>>>>:
where the constants KðiÞ
T ði ¼ 1; 2; 3Þ can again be found by investigating the behavior of UT ðzÞ in the

neighbourhood of this dominant singularity. Using residue theory, we find the tail probabilities for the

three cases:
Prob½uT ¼ n� �

ð1 	 qT Þð1 	 b2ÞS1ðAT ðzLÞÞðzL 	 1ÞðzL 	 Y ðzLÞÞz	n
L

zLðS1ðAT ðzLÞÞ 	 zLÞQ1ðzLÞ
;

1 	 qT

KY
ffiffiffiffiffiffiffi
zBp

p
ð1 	 b2ÞS1ðAT ðzBÞÞðzB 	 1ÞðzB 	 Y ðzBÞÞn	1=2z	n

B

ðS1ðAT ðzBÞÞ 	 zBÞðð1 	 b2ÞðzB 	 1Þ 	 ð1 	 b1ÞzBÞ
;

ð1 	 qT ÞKY

2
ffiffiffiffiffiffiffiffiffiffi
p=zB

p ð1 	 b2Þðb2 	 b1ÞS1ðAT ðzBÞÞðzB 	 1Þ2n	3=2z	nþ1
B

ðzB 	 S1ðAT ðzBÞÞÞðQ2ðzBÞÞ2
;

8>>>>>>>><
>>>>>>>>:

ð26Þ
for large enough n, if zL < zB, if zL ¼ zB, and if zL does not exist respectively.

Let us now consider the packet delay. The dominant singularity of D1ðzÞ is a zero of z	 A1ðS1ðzÞÞ,
denoted by ẑH , and we can thus approximate the tail behavior of the delay of class 1 packets by
Prob½d1 ¼ n� � ð1 	 q1Þ
q1

ẑH 	 1

A0
1ðS1ðẑH ÞÞS0

1ðẑH Þ 	 1
z	n
H ; ð27Þ
for large enough n. The calculation of these tail probabilities is similar to the calculation of (22). The tail
behavior of the delay of class 2 packets is again a bit more involved because of the appearance of the

function V1ðzÞ (and V2ðzÞ) in (15), which is only implicitly known. The first derivative of V1ðzÞ is given by
V 0
1 ðzÞ ¼

ð1 	 b1ÞA1ðV1ðzÞÞ
ð1 	 b1zA1ðV1ðzÞÞÞ2 	 ð1 	 b1ÞzA0

1ðV1ðzÞÞ
; ð28Þ
which, similar as before, indicates that V1ðzÞ also has a square root branch point ẑB, with ð1 	 b1ẑBA1 �
ðV1ðẑBÞÞÞ2 ¼ ð1 	 b1ÞẑBA0

1ðV1ðẑBÞÞ. In the neighbourhood of ẑB, V1ðzÞ is approximately given by
V1ðzÞ � V1ðẑBÞ 	 KV

ffiffiffiffiffiffiffiffiffiffiffiffi
ẑB 	 z

p
; ð29Þ
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with
KV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 	 b1ÞA1ðV ðẑBÞÞ
ẑB½2b1ð1 	 b1ẑBA1ðV1ðẑBÞÞÞA0

1ðV1ðẑBÞÞ þ ð1 	 b1ÞA00
1ðV ðẑBÞÞ�

s
:

A second singularity of D2ðzÞ is given by the dominant zero ẑL of zA1ðV1ðzÞÞ 	 AðV1ðzÞ; V2ðzÞÞ on the real
positive axis.

So, D2ðzÞ can be approximated in the neighbourhood of his dominant singularity by:
D2ðzÞ �

K̂ð1Þ
2

ẑL 	 z
if ẑL < ẑB;

K̂ð2Þ
2ffiffiffiffiffiffiffiffiffiffiffiffi

ẑB 	 z
p if ẑL ¼ ẑB;

D2ðẑBÞ 	 K̂ð3Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
ẑB 	 z

p
if ẑL does not exist;

8>>>>><
>>>>>:
where the constants K̂ðiÞ
2 ði ¼ 1; 2; 3Þ can be found by investigating D2ðzÞ in the neighbourhood of its

dominant singularity. By using residue theory once again, the asymptotic behavior of D2ðzÞ is given by
Prob½d2 ¼ n� �

ð1 	 qT ÞA1ðV1ðẑLÞÞðẑL 	 1Þẑ	n
L =q2

dAðV1ðzÞ; V2ðzÞÞ
dz

����
z¼ẑL

	 A1ðV1ðẑLÞÞ 	 ẑLA0
1ðV1ðẑLÞÞV 0

1 ðẑLÞ
;

ð1 	 qT ÞðẑB 	 1ÞA1ðV1ðẑBÞÞð1 	 b2ẑBA1ðV1ðẑBÞÞÞ2n	1=2ẑ	n
B

q2KV

ffiffiffiffiffiffiffiffiffiffi
p=ẑB

p
ðQ3ðẑBÞ 	 ẑBA0

1ðV1ðẑBÞÞÞð1 	 b2ẑBA1ðV1ðẑBÞÞÞ2
;

ð1 	 qT ÞKV

2q2

ffiffiffiffiffiffiffiffiffiffi
p=ẑB

p ẑBðẑB 	 1ÞQ4ðẑBÞn	3=2ẑ	n
B

ðẑBA1ðV1ðẑBÞÞ 	 AðV1ðẑBÞ; V2ðẑBÞÞÞ2
;

8>>>>>>>>>><
>>>>>>>>>>:

ð30Þ
if ẑL < ẑB, if ẑL ¼ ẑB, and if ẑL does not exist respectively. QjðzÞ ðj ¼ 3; 4Þ are defined as follows:
Q3ðzÞ ¼ Að1ÞðV1ðzÞ; V2ðzÞÞ þ
ð1 	 b2ÞzA0

1ðV1ðzÞÞAð2ÞðV1ðzÞ; V2ðzÞÞ
ð1 	 b2zA1ðV1ðzÞÞÞ2

;

Q4ðzÞ ¼ A1ðV1ðzÞÞQ3ðzÞ 	 AðV1ðzÞ; V2ðzÞÞA0
1ðV1ðzÞÞ:
The first expression of (30) has a typical geometric tail behavior, the third expression has a typical non-
geometric tail behavior and the second expression gives a transition between the two former situations.

A quantity of practical interest is the probability that a packet has a delay that exceeds a bound D. We

find
Prob½d1 > D� � Prob½d1 ¼ Dþ 1�ẑH
ẑH 	 1

; ð31Þ
for the probability that the delay of a class 1 packet is larger than a bound D. This can be found by

summing Eq. (27) for all appropriate values of n. Analogously, we can calculate the probability that a class

2 packet exceeds a bound D by summing Eq. (30) for the appropriate values of n. We find
Prob½d2 > D� �

Prob½d2 ¼ Dþ 1�ẑL
ẑL 	 1

if ẑL < ẑB;

Prob½d2 ¼ Dþ 1�ẑB
ẑB 	 1

if ẑL ¼ ẑB;

Prob½d2 ¼ Dþ 1�ẑB
ẑB 	 1

if ẑL does not exist;

8>>>>>><
>>>>>>:
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where we used the approximation that
P1

n¼Dþ1 n
	az	n � ðDþ 1Þ	a P1

n¼Dþ1 z
	n, with a ¼ 1=2 or 3/2 and

which holds for large enough D. Some similar expressions can be found for the probability that the system

contents exceeds a certain bound.

Since the results obtained in this section are approximate (due to the dominant pole approximative

method), the question remains if the expressions are accurate. From the analysis in [2], it follows that the

approximation of the tail probabilities, obtained through the dominant pole method, are better when the

dominant pole is more dominant (i.e., the higher the moduli of the other poles compared to the modulus of

the dominant pole, the better the quality of the approximation) and for higher values of the random
variable under study (i.e., coefficient n in expressions (22), (25)–(27) and (30) is higher). We will show in

Section 7 that the approximate results for the tail probabilities obtained in this section are more than

satisfactory.
7. Numerical examples

7.1. An N � N switch

In this subsection, we present some numerical examples. We assume the traffic of the two classes to be

arriving according to a two-dimensional binomial process. Its two-dimensional pgf is given by
Aðz1; z2Þ ¼ 1

�
	 k1

N
ð1 	 z1Þ 	

k2

N
ð1 	 z2Þ

�N

: ð32Þ
The arrival rate of class j traffic is thus given by kj ðj ¼ 1; 2Þ. This arrival process occurs for instance at an

output queue of an N � N output queueing switch fed by a Bernoulli process at the inlets (see [20]). Notice

also that if N ! 1, the arrival process is a superposition of two independent Poisson streams. In the re-

mainder of this section, we assume that N ¼ 16.
In Figs. 1 and 2, the mean and variance of the system contents of class 1 and class 2 packets is shown as a

function of the total load qT , when b1 ¼ b2 ¼ 0:5 (i.e., l1 ¼ l2 ¼ 2). The fraction of the class 1 load in the

total load, denoted by a, is 0.25, 0.5 and 0.75 respectively. We clearly see the influence of the priority

scheduling. The mean and variance of the system contents of class 1 packets remains low, even if the
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Fig. 1. Mean system contents versus the total load when the fraction of the class 1 load equals 0.25, 0.5 and 0.75.
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Fig. 2. Variance of the system contents versus the total load when the fraction of the class 1 load equals 0.25, 0.5 and 0.75.
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Fig. 3. Mean packet delay versus the total load when the fraction of class 1 load equals 0.25, 0.5 and 0.75.

142 J. Walraevens et al. / European Journal of Operational Research 157 (2004) 130–151
fraction of class 1 packets is high. The mean and variance of the system contents of class 2 packets on the
other hand is large.

In Figs. 3 and 4, the mean value and variance of the packet delay of class 1 and class 2 packets is shown

as a function of the total load qT , when again b1 ¼ b2 ¼ 0:5 and a ¼ 0:25, 0:5 and 0.75 respectively. In order

to compare with FIFO scheduling, we have also shown the mean value and variance of the packet delay in

that case. Since, in this example, the service times of the class 1 and class 2 packets are equal, the packet

delay is the same for class 1 and class 2 packets, and can thus be calculated as if there is only one class of

packets arriving according to an arrival process with pgf AT ðzÞ. This has already been analyzed, e.g., in [1].

The influence of priority scheduling on the packet delay becomes obvious from these figures: mean and
variance of the delay of class 1 packets reduces significantly. The price to pay is of course a larger mean and

variance of the delay of class 2 packets. If this kind of traffic is not delay-sensitive, as assumed, this is not a

too big a problem. Also, the smaller the fraction of high priority packets in the overall traffic mix, the lower

the mean and variance of the packet delay of both classes will be.
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Fig. 4. Variance of the packet delay versus the total load when the fraction of class 1 load equals 0.25, 0.5 and 0.75.
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Fig. 5 (Fig. 6 respectively) shows the mean delay of high and low priority packets as a function of the

mean service time of the low priority packets (high priority packets respectively), i.e., l2 (l1 respectively),

when l1 ¼ 2 (l2 ¼ 2 respectively), qT ¼ 0:75 and a ¼ 0:25, 0.5 and 0.75. The figures show that the mean

packet delay of high priority packets is not influenced by the mean service time of class 2 packets, while it is
proportionally increasing with the mean service time of class 1 packets (when the load of high and low

priority packets is kept constant). The mean packet delay of class 2 packets on the other hand is pro-

portionally increasing with the mean service time of class 2 packets (Fig. 5) and with the mean service time

of class 1 packets (Fig. 6). Because of the preemptive priority scheduling, mean delay of high priority

packets is only influenced by its own arrival and service process, while the mean delay of low priority

packets is influenced by the arrival and service processes of both classes.

In Fig. 7, the mean delay of both classes is shown as a function of the number of in- and outlets N , for

bj ¼ 0:5 ðj ¼ 1; 2Þ. We have also plotted the mean delay of the low priority packets when the correlation
between the number of arrivals of both classes is neglected (in which case the joint pgf of the number of

packet arrivals of both classes is set equal to the product of their respective marginal pgfs). The figure shows
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Fig. 5. Mean packet delay versus the mean service time of class 2 packets when the fraction of class 1 load equals 0.25, 0.5 and 0.75.
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that the mean delay of both classes grows with the number of inlets for approximately N < 16 and stays
constant for higher N since, for high enough values of N , the joint arrival process evolves towards two

independent Poisson processes, as explained before. It also shows that if the correlation between the

number of arrivals of both classes was neglected there would be an overestimation of the mean low priority

delay for small N . For higher number of inlets, this correlation factor is neglegible. Since E½d1� does not

depend on the arrival process of class 2 packets, the curves for the mean high priority packet delay are the

same with or without the correlation.

In the next figures, we illustrate the tail behavior of the packet delay distribution. The tail behavior of the

system contents distribution is similar (see Section 6) and will not be shown here. We have shown in Section
6 that the tails of the class 2 packet delay distribution can have 3 types of asymptotic behavior, depending

on which singularity of the respective pgf�s is dominant. In case of the output queueing switch considered in

this section, Fig. 8 shows for which combination of class 1 and class 2 loads the transition type behavior

occurs for the class 2 packet delay, i.e., for which combination of arrival rates the regular pole and the

branch point coincide, when b1 ¼ 0:5 and for varying values of b2. In the region above the curves, the class
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2 tail behavior is geometric for the respective q1 and q2, while below the curves the class 2 tail behavior is

typically non-geometric. Note that in the area above the line defined by q1 þ q2 ¼ 1 in Fig. 8, the total load

is larger than 1, and as a result, the system becomes unstable. As can be seen, the higher b2 the smaller the

region where the class 2 tail behavior is non-geometric.

Fig. 9 shows the tail behavior of the packet delay of class 1 and class 2 packets with k1 ¼ 0:2,

b1 ¼ b2 ¼ 0:5, and k2 ¼ 0:05 (non-geometric behavior), approximately 0.116 (transition type behavior) and

0.2 (geometric behavior) respectively. Tail behavior of packet delay of class 1 packets is of course the same

for the three cases, since the arrival process of class 1 packets is identical and class 2 packets are �invisible�
for the high priority packets. We have also compared our approximations with simulation results (marks in

the figures). The figures show that the approximations for the class 1, the geometric and transition type tail

behavior of class 2 delay is very good in these cases. The approximations of the tails for the non-geometric

case are not as good, but still more than satisfactory (for large enough n).

To conclude this section, we analyse the following case-study. Consider two traffic classes generating

packets that arrive in a common multiplexer buffer where they are temporarily stored before transmission.

The packet arrival process of both classes is described by a joint pgf given by expression (32). The mean

service time of both classes is equal to 2. For both classes, their respective packet delay must satisfy the
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Fig. 9. Tail behavior of the high and low priority packet delay for some combinations of class 1 and class 2 arrival rates.
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constraint Prob½dj > Tj� < 10	Xj , i.e., the fraction of packets of class j that have a delay larger than the
threshold Tj may not exceed 10	Xj , where Tj and Xj depend on the application under consideration. It is

assumed that class 1 packets are delay-sensitive, implying that they are given priority over class 2 packets

(and T1 < T2, since it makes no sense to have a higher delay threshold for delay-sensitive traffic). Class 2

traffic may be loss-sensitive, and the amount of packets that is rejected due to a delay threshold being

exceeded must be sufficiently small. Therefore, in the remainder we will set X2 ¼ 9 and X1 � X (where the

latter may be varied). It is clear that the performance of both traffic classes, in particular their delay

characteristics, can be studied using the results derived throughout this paper.

The question we wish to answer is the following: what is the maximal load (denoted by qT ;max), as a
function of the traffic mix a, that still fulfils the two constraints? In Fig. 10, we show the maximal load as a

function of a when T1 ¼ 20, T2 ¼ 100 and several values of X . The constraint for the delay of class 2 packets

is the same for all X , i.e., Prob½d2 > 100� < 10	9. For X < 5, we see that this constraint is the decisive one.

We notice that the maximal load suddenly lowers a reasonable amount when a reaches approximately 0.45.

At this point, the tail behavior changes from geometric to non-geometric tail behavior. The sudden change

near 0.45 is probably due to the lack of accurateness in the tail behavior of the class 2 delay near the

transition. Near this value for a, the maximal load we find is thus not that accurate, but one can see that the

incorrectness is in the order of a few percentages. For higher X ðX ¼ 5Þ, the constraint for the delay of the
high-priority traffic becomes decisive for high a, i.e. when more class 1 packets arrive. For even higher X ,

the class 1 constraint can only be fulfilled for very low class 1 loads. The reason for this is that Prob½s1 > 20�
(with s1 the service time of a class 1 packet) is very close to 10	X . Since the service time of a class 1 packet is

part of its delay, Prob½d1 > 20� < 10	X can only be fulfilled when there�s nearly no queueing for class 1

packets, i.e., for low a and low qT . In Fig. 11, we show qT ;max as a function of a when X ¼ 4, T2 ¼ 100 and

T1 P 14. The constraint for the delay of class 2 packets is again the same for all T1. For T1 > 17, we see that

this constraint is the decisive one. For lower T1, the constraint for the delay of the high priority traffic

becomes decisive for high a, i.e. when more class 1 packets arrive. Finally, in Fig. 12, the maximum load as
a function of a is shown, when X ¼ 4, T1 ¼ 17 and several values of T2. For low T2, the constraint for the

low priority traffic is always the most stringent, while for T2 P 100, the constraint for the high priority

traffic is decisive for high a.

The behavior depicted in these three figures can be explained as follows. For a ¼ 0, the traffic mix

consists of low priority packets only, and qT ;max is relatively high, depending on the value of T2. As a in-

creases, qT ;max gradually decreases (but is still determined by T2) since the growing fraction of high priority
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Fig. 10. Maximum load versus the fraction of class 1 load for several values of X .
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packets causes the mean low priority packet delay to rise. Then, as a further increases, a transition point is

reached, which is defined as the value of a and qT for which Prob½d1 > T1� ¼ 10	X and Prob½d2 > T2� ¼ 10	9.

Beyond this transition point, the bounding set by T1 becomes predominant, and qT ;max further decreases due

to the ever increasing presence of high priority packets in the traffic mix. These figures show that the

maximum allowable load can strongly depend on the delay boundaries T1 and T2 set on the high and low

priority packet delays, and the traffic mix a.
7.2. Impact of the correlation between both classes

Fig. 7 shows the impact of neglecting the correlation in an N � N switch. In this subsection, we will

further study the impact of the correlation factor of the number of per-slot arrivals of both classes on the

mean delay of class 2 packets. Therefore, we assume a simple arrival process as follows: the marginal

distribution of the class j packets are Bernoulli distributed and thus given by: Prob½aj;k ¼ 0� ¼ 1 	 kj and

Prob½aj;k ¼ 1� ¼ kj, j ¼ 1; 2. The joint pgf Aðz1; z2Þ of the number of arrivals of both classes is given by
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Aðz1; z2Þ ¼ 1 	 k1 	 k2 þ q12 þ ðk1 	 q12Þz1 þ ðk2 	 q12Þz2 þ q12z1z2;
with q12 a parameter. The correlation factor qa1a2
is given by
qa1a2
¼ q12 	 k1k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1k2ð1 	 k1Þð1 	 k2Þ
p :
By varying q12, the correlation factor can be varied, while keeping the arrival rates of both classes constant

(k1 and k2 respectively). In Fig. 13, we show the mean delay of class 2 packets versus the total load, for

b1 ¼ b2 ¼ 0:5 and a ¼ 0:25, 0.5 and 0.75 respectively. For the three cases, we vary the correlation factor
from its minimal value ðq12 ¼ 0Þ to zero ðq12 ¼ k1k2Þ to its maximal value ðq12 ¼ maxðk1; k2ÞÞ. We see that

the influence of the correlation factor is limited for negative correlation factors, while it is significant for

positive correlation factors, especially when the total load is high and the number of class 1 packets in the

overall traffic mix is large. The reason for the higher mean class 2 delay for positive correlation between the

number of arrivals of both classes is the increasing probability that in the arrival slot of a particular class 2

packet a class 1 packet arrives as well. The class 2 packet is served after this class 1 packet, thus increasing

its mean delay.

7.3. Comparing with continuous-time results

In this subsection, we briefly compare our discrete-time results with continuous-time results. The slots in

the discrete-time case are of length T . In the continuous-time case, we assume a Poisson arrival process for

both classes, i.e., the number of arrivals of class j ðj ¼ 1; 2Þ during a time-period T is exponential and its pgf

is given by ekjT ðz	1Þ, j ¼ 1; 2 respectively. The same arrival process is assumed in the discrete-time case, i.e.,

the joint generating function of the number of both classes during a slot is given by eðk1þk2ÞT ðz	1Þ. The service

process for both classes (high and low priority) is the same. In the continuous-time case it is assumed to be
exponentially distributed with departure rate l. In the discrete-time case, it is assumed to be geometrically

distributed with parameters bj given by 1 	 lT (thus the service rate is also l in the discrete-time queue).

Summarizing, the arrival process is identical in both cases, while there are some differences in the service

processes. Firstly, in the continuous case, more than one departure can occur in one slot, while this is not

the case in the discrete-time system. Secondly, in the discrete-time queue, a packet cannot begin service in its
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departure slot, while this is possible in the continuous-time system. So, we will expect that both systems will

converge when T goes to zero, while big differences are to be expected when T is rather big.

To illustrate this, we show in Fig. 14 the mean delay of both priority classes versus the slot length T in

both continuous-time (results obtained from [9]) and discrete-time (results from this paper), when

k1 ¼ k2 ¼ 0:08 second	1 and l ¼ 0:2 second	1. For T ¼ 0, both the continuous-time as the discrete-time

result is the same as expected. The continuous time results are independent of the slot length T , while the

mean delay of both classes decreases with increasing T . This is mainly because of the decreasing variance of
the service time with increasing T . Indeed, the variance of the (geometrical) service times is equal to

ð1 	 lT Þ=ðlT Þ2
, and thus decreases with increasing T . When T reaches 1=l, the variance reaches 0, which

means that the service times become deterministically equal to T . We see quite a big difference for the low

priority delay for high T , as expected.
8. Conclusion

In this paper, we have analyzed a discrete-time GI-Geo-1 queue with a preemptive resume priority

scheduling discipline and two priority classes. We have derived the joint generating function of the system

contents of both classes and the generating functions of the packet delay of both classes. These pgfs are not

explicitly found, but we have shown that the moments and the (approximate) tail probabilities of the system

contents and packet delay can be found explicitly in terms of the system parameters. We have finally

discussed the impact of priority scheduling on the performance characteristics by an extensive number of

examples.
Appendix A. Calculation of the probability mass function

Given a generating function X ðzÞ,
P1

n¼0 xðnÞzn, the question is how to find an explicit, practically usable

expression for its corresponding pmf xðnÞ. From the definition of X ðzÞ it follows that xðnÞ is the coefficient

of zn in the expansion of X ðzÞ about z ¼ 0, or equivalently the coefficient of z	1 in the expansion of z	1	nX ðzÞ
about z ¼ 0. xðnÞ is thus by definition the residue of the function z	1	nX ðzÞ in the point z ¼ 0. Since the

multiplicity of the pole z ¼ 0 of z	1	nX ðzÞ depends linearly on n, calculating the residue in z ¼ 0 is nearly
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impossible for large n (since evaluating the residue in an k-multiple pole requires k derivations). Using the
residue theorem of Cauchy however, it is proven that
xðnÞ ¼ Resz¼0½X ðzÞz	1	n� ¼ 1

2pi

I
C1

X ðzÞz	1	n dz	
Xm

j¼0

Resz¼zjX ðzÞz	1	n;
with i ¼
ffiffiffiffiffiffiffi
	1

p
, C1 a contour with infinite radius and zj, the poles of X ðzÞ. The contour integral in the former

expression is normally easy to calculate (in most cases the term equals zero). The sum of residues can be

approximated by the residue in the dominant pole of X ðzÞ. As a result, an easy, practically usable formula

to calculate approximate tail probabilities is obtained.
Appendix B. Inversion of (1) z)a

Theorem 1. Assume that, with the sole exception of the singularity z ¼ 1,
F ðzÞ,
X1
n¼1

f ðnÞzn;
is analytic in the domain
D ¼ fz : jzj6 1 þ g; jArgðz	 1ÞjP hg n f1g;

in which g is a positive real number and 0 < h < p=2. Assume further that as z tends to 1 in D,
F ðzÞ ¼ Kð1 	 zÞa;

with a 62 N. Then, as n ! 1,
f ðnÞ ¼ K
Cð	aÞ n

	a	1:
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