
 

 

 University of Groningen

Are We Speeding Up or Slowing Down? On Temporal Aspects of Code Velocity
Kudrjavets, Gunnar; Nagappan, Nachiappan ; Rastogi, Ayushi

Published in:
Proceedings of MSR ‘23

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kudrjavets, G., Nagappan, N., & Rastogi, A. (2023). Are We Speeding Up or Slowing Down? On Temporal
Aspects of Code Velocity. Manuscript submitted for publication. In Proceedings of MSR ‘23: Proceedings of
the 20th International Conference on Mining Software Repositories (MSR 2023) arXiv.
https://arxiv.org/pdf/2303.04293

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-03-2023

https://research.rug.nl/en/publications/e9fe64dd-bac7-4c7c-b0aa-0b13988c6237
https://arxiv.org/pdf/2303.04293


Are We Speeding Up or Slowing Down?
On Temporal Aspects of Code Velocity

Gunnar Kudrjavets
University of Groningen

9712 CP Groningen, Netherlands
g.kudrjavets@rug.nl

Nachiappan Nagappan
Meta Platforms, Inc.

Menlo Park, CA 94025, USA
nnachi@meta.com

Ayushi Rastogi
University of Groningen

9712 CP Groningen, Netherlands
a.rastogi@rug.nl

Abstract—This paper investigates how the duration of various
code review periods changes over a projects’ lifetime. We study
four open-source software (OSS) projects: Blender, FreeBSD,
LLVM, and Mozilla. We mine and analyze the characteristics of
283,235 code reviews that cover, on average, seven years’ worth of
development. Our main conclusion is that neither the passage of
time or the project’s size impact code velocity. We find that (a) the
duration of various code review periods (time-to-first-response,
time-to-accept, and time-to-merge) for FreeBSD, LLVM, and
Mozilla either becomes shorter or stays the same; no directional
trend is present for Blender, (b) an increase in the size of the
code bases (annually 3–17%) does not accompany a decrease
in code velocity, and (c) for FreeBSD, LLVM, and Mozilla, the
30-day moving median stays in a fixed range for time-to-merge.
These findings do not change with variabilities in code churn
metrics, such as the number of commits or distinct authors of
code changes.

Index Terms—Code review, code velocity, developer produc-
tivity

I. INTRODUCTION

One critical goal in the software industry is to develop,
review, integrate, and deploy code changes fast. The software
industry focuses on increasing the code velocity [1], [2],
[3] using different tools or process enhancements. Various
adaptations of Continuous Integration (CI) and Continuous
Deployment (CD) [4] have become default practices for most
of the current projects in both industry and OSS communities.
Similarly, the lightweight Modern Code Review [5], [6] is
now a de facto standard process to conduct code reviews. For
existing non-agile projects, the initial switch from methodolo-
gies such as the waterfall model to CI/CD or mailing lists to
contemporary code collaboration tools can have an immediate
and noticeable impact on increasing code velocity [7], [8]. The
longevity of these improvements to code velocity has yet to
be thoroughly investigated.

We focus on studying the direction of a change in the
duration of various code review periods as the software
projects evolve. We intend to determine how the speed of
code reviews changes over time. We mine code review data
from four different OSS projects: Blender [9], FreeBSD [10],
LLVM [11], and Mozilla [12]. We analyze 283,235 code re-
views and evaluate how different code review periods (time-to-
first-response, time-to-accept, and time-to-merge) trend over
time. Our study suggests that the speed of code reviews
remains the same as the projects evolve.

II. BACKGROUND AND MOTIVATION

Different interpretations and scopes for code velocity exist.
A general definition is “the time between making a code
change and shipping the change to customers” [13]. In this
paper, we focus on a more quantifiable metric related to the
duration of code reviews. We use time-to-merge as a proxy
metric to quantify how fast code changes propagate. The time-
to-merge covers a period from when an engineer publishes a
set of code changes that are ready for code review till these
changes are merged to the target branch [14].

There are two prevailing and contradictory theories within
industry about the direction of code velocity over time. The
first hypothesis states that due to an increase in the size and
complexity of a system (Lehman’s second law “Increasing
Complexity” [15]), e.g., increase in the complexity of com-
munication due to a bigger team, code velocity decreases.
A second hypothesis argues that code velocity increases over
time. The increase in code velocity is because engineers be-
come more familiar with the code base, interpersonal commu-
nication becomes more efficient, and the tooling infrastructure
improves.

Another of Lehman’s laws of software evolution is “Con-
tinuing Growth” [15]. Lehman’s sixth law states that the
“[f]unctional content of a program must be continually in-
creased to maintain user satisfaction over its lifetime” [16].
As a result of additional functionality, it is reasonable to
assume that the size of the code base increases. The size of
the code base is typically measured in source lines of code
(SLOC). Based on our industry experience, we also observe
that in conjunction with the new demands on a project, the
size of the development teams tends to increase rather than
decrease. According to Brooks’ law, “[a]dding manpower to a
late software project makes it late” [17]. While the software
project does not necessarily have to be late while developing
new features, it is unknown how increased code base and team
sizes impact code velocity. To investigate this subject further,
we formulate the following research question:

RQ: How does a project’s code velocity trend over time?
Does the code velocity increase, decrease, or stay neutral?

ar
X

iv
:2

30
3.

04
29

3v
1 

 [
cs

.S
E

] 
 7

 M
ar

 2
02

3



TABLE I: The p values from the modified Mann-Kendall (MK) test and magnitude of change for Sen’s slope (Theil-Sen
estimator). We present the 30-day moving median and all-time median for different code review periods. Statistically significant
Mann-Kendall p value indicates the presence of either an upward or downward monotonic trend. Sen’s slope (presented at a
95% confidence level) identifies the magnitude of the trend per unit time step. The time step is 30 days. The unit for code
review periods is hours.

Time-to-first-response Time-to-accept Time-to-merge

30-day median All-time median 30-day median All-time median 30-day median All-time median

Name MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s

Blender .231 .229 .715 .846 .609 .666
FreeBSD < .001 −0.003 < .001 −0.002 < .001 −0.011 < .01 −0.003 .193 < .05 0.006
LLVM < .001 0.000 < .001 0.000 < .001 −0.005 < .001 −0.002 < .001 −0.009 < .001 −0.002
Mozilla < .001 −0.001 < .001 −0.001 < .01 0.000 < .001 0.000 < .01 −0.001 .060

III. METHODOLOGY

A. Choice of data

Section II states that our primary code velocity metric of
interest is time-to-merge [14]. We also know that research from
both Google [18] and Microsoft [5] finds that time-to-first-
response and time-to-accept are additional code review metrics
important for developers.

Existing code review datasets focus either on GitHub [19] or
Gerrit [20], [21], [22]. By default, Gerrit immediately merges
changes once they are accepted. That behavior means that
treating time-to-accept and time-to-merge as separate events is
neither valuable nor valid. GitHub added the ability to approve
changes only in 2016 [23]. We randomly chose 100 GitHub
projects and inspected pull requests in those projects. The
adoption rate and consistent use of that feature still need to
be higher to yield valuable data.

One code collaboration tool that exposes a data model
that formally tracks various code review periods is Phabrica-
tor [24]. Based on public information about existing Phabri-
cator projects [25], we mine data for four major OSS projects
with a multi-year development history. Those projects are
Blender, FreeBSD, LLVM, and Mozilla. Our initial dataset
contains 283,235 code reviews. We removed the code reviews
where the Modern Code Review did not happen. Examples
of nonconforming code reviews are the ones that do not
contain any lines of code, where the author has accepted their
changes, or code reviews that were committed without any
acceptance. After filtering and applying consistency checks,
the final dataset contains 280,456 code reviews.

B. Statistical analysis

As a first step, we investigate if there is a trend in code
velocity. We use the Mann-Kendall test [26], [27] to determine
if there is a monotonic upward or downward trend. The
monotonic trend [28] means that “the variable consistently
increases (decreases) through time, but the trend may or
may not be linear” [29]. The null hypothesis (H0) for the
Mann-Kendall test is that there is no monotonic trend. The
alternative hypothesis (H1) is the presence of a monotonic
trend. Secondly, if a statistically significant Mann-Kendall

correlation is present, then we calculate the Sen’s slope (Theil-
Sen estimator) [30], [31] to evaluate the magnitude of the
trend. Sen’s slope indicates the rate of change per unit time
step.

How to handle autocorrelation is a challenge for time series
analysis. One popular approach is to aggregate the time series
to use coarser time granularities such as monthly or yearly
samples [32]. Another mitigation is to use a modified Mann-
Kendall test to adjust for autocorrelation [33], [34]. We use
both techniques to reduce the chance of falsely concluding that
a trend is present when it is not.

We conduct these calculations for three code review periods:
time-to-first-response, time-to-accept, and time-to-merge. We
look at the 30-day rolling (moving) and all-time median. The
all-time median is the median of the specific metrics up to a
given time. Both metrics help to evaluate the trend of a specific
variable [35]. We chose the median values as opposed to the
mean values because the median is more resistant to outliers.
We use an α level of .05 for our statistical tests.

IV. RESULTS

The results from the statistical analysis are displayed in
Table I. The main observations from that analysis are the fol-
lowing: (a) except for Blender, there is a statistically significant
monotonic trend for all the projects, (b) while a statistically
significant trend is present, based on its numeric values and
visual representation (see Figure 1), it is minimal, and (c) all
the 30-day median slope values are negative or zero, which
suggests a minor increase in code velocity.

Using a 30-day rolling mean or median is standard prac-
tice. Depending on the context, 90-day (quarterly) technical
indicators are also used to check for trends. We also calculate
the Mann-Kendall and Sen’s slope values as an additional data
point using the 90-day rolling median. The conclusions do not
change as a result.

Complimentary to the analysis above, the visualization of
the trend for 30-day rolling median time-to-merge is displayed
in Figure 1. Based on visual observation, we note that for
FreeBSD, LLVM, and Mozilla, most median values stay in a
relatively fixed range.

For Blender, there is a noticeable cluster of results that
indicate increased code velocity between 2017 and 2019.



Fig. 1: The trend of 30-day rolling medians of time-to-merge for different projects.

100.5

101

101.5

102

102.5

103

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Commit year

T
im

e
-t

o
-m

e
rg

e
 i
n

 h
o

u
rs

 (
lo

g
a

ri
th

m
ic

)

(a) Blender.

100.5

101

101.5

102

102.5

103

103.5

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Commit year

T
im

e
-t

o
-m

e
rg

e
 i
n

 h
o

u
rs

 (
lo

g
a

ri
th

m
ic

)

(b) FreeBSD.

101.5

102

102.5

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Commit year

T
im

e
-t

o
-m

e
rg

e
 i
n

 h
o

u
rs

 (
lo

g
a

ri
th

m
ic

)

(c) LLVM.

101

101.5

102

102.5

103

2018 2019 2020 2021 2022 2023
Commit year

T
im

e
-t

o
-m

e
rg

e
 i
n

 h
o

u
rs

 (
lo

g
a

ri
th

m
ic

)

(d) Mozilla.

To further investigate this result, we inspected 50 random
Blender code reviews between 2017 and 2019. We cannot find
conclusive evidence that explains the drop in 30-day rolling
median values. Based on the public information (“Blender now
has a much larger team of people working on core develop-
ment”), we speculate that a sudden increase in the number
of engineers may have caused a temporary increase in code
velocity [36]. The trend may have normalized in 2020 because
of “unprecedented number of 108 new contributors” [37].

Various data points and events can influence a project’s code

velocity. Only a few of these potential variables are formally
tracked. Decisions about feature development, project manage-
ment, organizational challenges, or changing business priori-
ties are not always documented and available to the public. We
have only limited insight into all the confounding variables.
To understand the potential impact of metrics associated with
project development, we mine the ones we can access. Our
findings are displayed in Table II. The only common indicator
between the projects is the continuous increase in the source
lines of code. We focus on objective characteristics that we



can mine from the source control management system and
defect database. We look at the annual change in total source
lines of code (calculated using scc [38]), number of commits,
number of distinct authors, and number of distinct committers.
We use each project’s default branch from the original Git
repository or an available GitHub read-only mirror.

TABLE II: Median annual increase or decrease percentage in
various code churn metrics per project. The scope is a code
review period covered in Figure 1. We separate the roles of
an author and a committer because they can differ.

Project Period SLOC Commit Distinct Distinct
count author committer

Blender 2014–2022 6.2% −2.7% 13.5% 2.3%
FreeBSD 2014–2022 3.5% −1.2% 0.5% −4.3%
LLVM 2014–2022 17.4% 6.8% 18.5% 15.6%
Mozilla 2017–2022 11.1% −4.8% −6.9% −13.8%

We investigate the contents of defect-tracking databases
associated with the projects we analyze. We find the metrics
related to defects to be an unreliable indicator of the project’s
workload. We find no formal rules related to defect counts and
their implication for the development process. In addition, we
do not observe that developers use the defects assigned to them
as a primary list of work items.

V. DISCUSSION

Our main finding is that there is no significant change in
the trend for various code review periods. The lack of trend
applies to all the projects regardless of the increase or decrease
in commit count, number of distinct authors, and number of
distinct committers. The median annual change in code base
size for all the projects is an increase of 3–17%. At the same
time, the 30-day median and all-time median for different code
review periods change only in a second or third decimal place
(see Table I). If anything, there is a minor decrease in the
duration for time-to-first-response, time-to-accept, and time-
to-merge.

The main finding is surprising. The conventional wisdom
in software engineering is that communication and processes
slow down with an increase in the project’s size and age.
There could be multiple explanations for the results that we
see. One possibility is that while the code complexity and
team size continue to increase, engineers get more familiar
and efficient while working in the project’s code base. With
time the developers also build better interpersonal relationships
that improve communication efficiency. It is reasonable to
assume that development infrastructure also improves. Those
factors can counteract the time spent on tasks such as complex
debugging issues or the comprehension speed for the code sent
for review.

Another possibility is that regardless of the project size, the
code velocity stays in a specific range due to factors such
as human nature. Engineers will get to reviewing the code
when they get to it. Developers will spend a fixed amount
of time on code reviews regardless of their familiarity with

the code or other parallel priorities. The “flatness” or lack
of a trend is visible in Figure 1 for FreeBSD, LLVM, and
Mozilla. The Blender project has more variability in time-
to-merge. The variability can be explained by Blender being
the smallest of all the projects we investigate. For example,
the median number of commits and distinct authors across
the years in Blender are 8,589 and 89, respectively, while in
LLVM, it is 29,555 and 592.

One more explanation is related to organizational self-
correcting behavior. Each product we study has an informal or
formal core team. The core team contains the most active or
senior project members. Based on our experience with OSS,
the code velocity falling into a specific range can also result
from core team members ensuring that code reviews get a
timely response and the number of pending issues decreases.

VI. THREATS TO VALIDITY

Our study is subjected to a specific category of threats. One
threat relates to application of our findings in other contexts
or external validity [39]. The projects that we investigate
are all OSS. The incentive structure in OSS development is
different from industrial projects. In addition, because of the
code review granularity that we target, the project selection is
limited to the ones that use Phabricator for code collaboration.
We do not recommend generalizing these results without
further replication in the target environment.

Another threat relates to internal validity. This threat type
relates to the interpretation of the results and if correct
conclusions are drawn from the data. We use the standard
recommended nonparametric statistical apparatus to draw our
conclusions. The metrics such as rolling 30-day means and
median are widely used in quantitative finance as trend indi-
cators [35]. We corroborate our findings by calculating 90-day
and all-time medians that indicate a similar trend.

VII. CONCLUSIONS AND FUTURE WORK

We investigate the trend for code velocity in four major OSS
projects: Blender, FreeBSD, LLVM, and Mozilla. Our analysis
is based on 283,235 code reviews that span, on average, seven
years of development activity per project. We find that code
velocity does not decrease over time. While the size of the code
base in these projects increases on median between 3–17%
annually, the code velocity either stays the same or slightly
improves.

We intend to replicate our findings for other code collab-
oration tools such as Gerrit and GitHub. While they do not
provide the same granularity level as Phabricator, the findings
will help invalidate or strengthen our claims. In addition, our
observation about the code velocity falling into a specific range
is worth additional research.

VIII. DATA AVAILABILITY

The Phabricator data, various R scripts that are used to
perform statistical analysis, and relevant SQL queries are
available on Figshare.1

1https://figshare.com/s/4558d92adc8d5d262bd6

https://figshare.com/s/4558d92adc8d5d262bd6


REFERENCES

[1] C. Maddila, S. S. Upadrasta, C. Bansal, N. Nagappan, G. Gousios, and
A. v. Deursen, “Nudge: Accelerating Overdue Pull Requests Towards
Completion,” ACM Trans. Softw. Eng. Methodol., May 2022. [Online].
Available: https://doi.org/10.1145/3544791

[2] P. Riggs. (2022, Nov.) Move faster, wait less: Improving code review
time at Meta. [Online]. Available: https://engineering.fb.com/2022/11/
16/culture/meta-code-review-time-improving/

[3] L. Chen, P. C. Rigby, and N. Nagappan, “Understanding Why We
Cannot Model How Long a Code Review Will Take: An Industrial
Case Study,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2022. New York, NY, USA: Association
for Computing Machinery, 2022, pp. 1314–1319. [Online]. Available:
https://doi.org/10.1145/3540250.3558945

[4] M. Fowler. (2006, May) Continuous Integration. [Online]. Available:
https://martinfowler.com/articles/continuousIntegration.html

[5] C. Bird, T. Carnahan, and M. Greiler, “Lessons Learned from Building
and Deploying a Code Review Analytics Platform,” in 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories (MSR). Los
Alamitos, CA, USA: IEEE Computer Society, May 2015, pp. 191–201.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/MSR.
2015.25

[6] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern Code Review: A Case Study at Google,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, ser. ICSE-SEIP ’18. Gothenburg, Sweden:
Association for Computing Machinery, May 2018, pp. 181–190.
[Online]. Available: https://doi.org/10.1145/3183519.3183525

[7] M. M. Jha, R. M. F. Vilardell, and J. Narayan, “Scaling Agile Scrum
Software Development: Providing Agility and Quality to Platform
Development by Reducing Time to Market,” in 2016 IEEE 11th
International Conference on Global Software Engineering (ICGSE),
2016, pp. 84–88. [Online]. Available: https://doi.org/10.1109/ICGSE.
2016.24

[8] K. Kaur, M. Khurana, and Manisha, “Impact of Agile Scrum
Methodology on Time to Market and Code Quality—A Case Study,”
in 2021 3rd International Conference on Advances in Computing,
Communication Control and Networking (ICAC3N), 2021, pp. 1673–
1678. [Online]. Available: https://doi.org/10.1109/ICAC3N53548.2021.
9725375

[9] Blender Foundation. (2023) Blender’s Phabricator. [Online]. Available:
https://developer.blender.org/

[10] FreeBSD Foundation. (2023) FreeBSD’s Phabricator. [Online].
Available: https://reviews.freebsd.org/

[11] LLVM Foundation. (2023) LLVM’s Phabricator. [Online]. Available:
https://reviews.llvm.org/

[12] Mozilla Foundation. (2023) Mozilla’s Phabricator. [Online]. Available:
https://phabricator.services.mozilla.com/

[13] Microsoft Research. (2019, May) 14th IEEE/ACM International
Workshop on Automation of Software Test. Montreal, Canada.
[Online]. Available: https://www.microsoft.com/en-us/research/event/
14th-ieee-acm-international-workshop-on-automation-of-software-test/

[14] D. Izquierdo-Cortazar, N. Sekitoleko, J. M. Gonzalez-Barahona, and
L. Kurth, “Using Metrics to Track Code Review Performance,” in
Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, ser. EASE’17. Karlskrona,
Sweden: Association for Computing Machinery, Jun. 2017, pp.
214–223. [Online]. Available: https://doi.org/10.1145/3084226.3084247

[15] M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980. [Online].
Available: https://doi.org/10.1109/PROC.1980.11805

[16] M. M. Lehman, “Software Engineering, the Software Process and
Their Support,” Softw. Eng. J., vol. 6, no. 5, pp. 243–258, Sep. 1991.
[Online]. Available: https://doi.org/10.1049/sej.1991.0028

[17] F. P. Brooks, Jr, The Mythical Man-Month: Essays on Software Engi-
neering, 2nd ed. Boston, MA, USA: Addison Wesley, Aug. 1995.

[18] Google. (2023) Speed of Code Reviews. [Online]. Available:
https://google.github.io/eng-practices/review/reviewer/speed.html

[19] G. Gousios, “The GHTorrent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories, ser. MSR
’13. San Francisco, CA, USA: IEEE Press, May 2013, pp. 233–236.
[Online]. Available: https://dl.acm.org/doi/10.5555/2487085.2487132

[20] M. Mukadam, C. Bird, and P. C. Rigby, “Gerrit Software Code Review
Data from Android,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, ser. MSR ’13. IEEE Press, 2013, pp.
45–48. [Online]. Available: https://doi.org/10.1109/MSR.2013.6624002

[21] M. Paixao, J. Krinke, D. Han, and M. Harman, “CROP: Linking code
reviews to source code changes,” in 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), 2018, pp. 46–49.
[Online]. Available: https://doi.org/10.1145/3196398.3196466

[22] X. Yang, R. G. Kula, N. Yoshida, and H. Iida, “Mining the
Modern Code Review Repositories: A Dataset of People, Process
and Product,” in Proceedings of the 13th International Conference on
Mining Software Repositories, 2016, pp. 460–463. [Online]. Available:
https://doi.org/10.1145/2901739.2903504

[23] C. Wanstrath. (2016, Sep.) A whole new GitHub Uni-
verse: Announcing new tools, forums, and features. [On-
line]. Available: https://github.blog/2016-09-14-a-whole-new-github-
universe-announcing-new-tools-forums-and-features/

[24] Phacility. (2021, Jun.) Phacility—Home. [Online]. Available: https:
//www.phacility.com/

[25] Phabricator. (2021, Jan.) Organizations using Phabricator. [Online].
Available: https://secure.phabricator.com/w/usage/companies/

[26] H. B. Mann, “Nonparametric tests against trend,” Econometrica,
vol. 13, no. 3, pp. 245–259, 1945. [Online]. Available: https:
//doi.org/10.2307/1907187

[27] M. Kendall, Rank correlation methods, 4th ed. London, England:
Hodder Arnold, Jan. 1976.

[28] R. M. Hirsch, J. R. Slack, and R. A. Smith, “Techniques of trend
analysis for monthly water-quality data,” U.S. Geological Survey, Tech.
Rep., 1981. [Online]. Available: https://doi.org/10.3133/ofr81488

[29] Pacific Northwest National Laboratory. (2022, Dec.) Mann-Kendall
Test For Monotonic Trend. [Online]. Available: https://vsp.pnnl.gov/
help/vsample/design_trend_mann_kendall.htm

[30] P. K. Sen, “Estimates of the regression coefficient based on
Kendall’s Tau,” Journal of the American Statistical Association,
vol. 63, no. 324, pp. 1379–1389, 1968. [Online]. Available:
https://doi.org/10.1080/01621459.1968.10480934

[31] R. O. Gilbert, Statistical methods for environmental pollution
monitoring. Nashville, TN, USA: John Wiley & Sons, Feb. 1987.
[Online]. Available: https://www.osti.gov/biblio/7037501

[32] M. C. Coen, E. Andrews, A. Bigi, G. Martucci, G. Romanens, F. P. A.
Vogt, and L. Vuilleumier, “Effects of the prewhitening method, the
time granularity, and the time segmentation on the Mann–Kendall trend
detection and the associated Sen's slope,” Atmospheric Measurement
Techniques, vol. 13, no. 12, pp. 6945–6964, Dec. 2020. [Online].
Available: https://doi.org/10.5194/amt-13-6945-2020

[33] K. H. Hamed and A. R. Rao, “A modified Mann-Kendall trend test
for autocorrelated data,” Journal of Hydrology, vol. 204, no. 1-4, pp.
182–196, Jan. 1998. [Online]. Available: https://doi.org/10.1016/s0022-
1694(97)00125-x

[34] S. Yue, P. Pilon, B. Phinney, and G. Cavadias, “The influence of
autocorrelation on the ability to detect trend in hydrological series,”
Hydrological Processes, vol. 16, no. 9, pp. 1807–1829, 2002. [Online].
Available: https://doi.org/10.1002/hyp.1095

[35] R. J. Hyndman, “Moving averages,” in International Encyclopedia
of Statistical Science, M. Lovric, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 866–869. [Online]. Available: https:
//doi.org/10.1007/978-3-642-04898-2_380

[36] T. Roosendaal. (2019, Dec.) Blender top 16 highlights of 2019. [Online].
Available: https://www.blender.org/press/blender-top-16-highlights-of-
2019/

[37] F. Siddi. (2021, Jul.) Blender by the Numbers—2020. [Online].
Available: https://www.blender.org/news/blender-by-the-numbers-2020/

[38] B. E. C. Boyter. (2022, Mar.) Sloc Cloc and Code (scc). [Online].
Available: https://github.com/boyter/scc/

[39] F. Shull, J. Singer, and D. I. K. Sjøberg, Guide to Advanced Empirical
Software Engineering. London, England: Springer, 2008.

https://doi.org/10.1145/3544791
https://engineering.fb.com/2022/11/16/culture/meta-code-review-time-improving/
https://engineering.fb.com/2022/11/16/culture/meta-code-review-time-improving/
https://doi.org/10.1145/3540250.3558945
https://martinfowler.com/articles/continuousIntegration.html
https://doi.ieeecomputersociety.org/10.1109/MSR.2015.25
https://doi.ieeecomputersociety.org/10.1109/MSR.2015.25
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/ICGSE.2016.24
https://doi.org/10.1109/ICGSE.2016.24
https://doi.org/10.1109/ICAC3N53548.2021.9725375
https://doi.org/10.1109/ICAC3N53548.2021.9725375
https://developer.blender.org/
https://reviews.freebsd.org/
https://reviews.llvm.org/
https://phabricator.services.mozilla.com/
https://www.microsoft.com/en-us/research/event/14th-ieee-acm-international-workshop-on-automation-of-software-test/
https://www.microsoft.com/en-us/research/event/14th-ieee-acm-international-workshop-on-automation-of-software-test/
https://doi.org/10.1145/3084226.3084247
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1049/sej.1991.0028
https://google.github.io/eng-practices/review/reviewer/speed.html
https://dl.acm.org/doi/10.5555/2487085.2487132
https://doi.org/10.1109/MSR.2013.6624002
https://doi.org/10.1145/3196398.3196466
https://doi.org/10.1145/2901739.2903504
https://github.blog/2016-09-14-a-whole-new-github-universe-announcing-new-tools-forums-and-features/
https://github.blog/2016-09-14-a-whole-new-github-universe-announcing-new-tools-forums-and-features/
https://www.phacility.com/
https://www.phacility.com/
https://secure.phabricator.com/w/usage/companies/
https://doi.org/10.2307/1907187
https://doi.org/10.2307/1907187
https://doi.org/10.3133/ofr81488
https://vsp.pnnl.gov/help/vsample/design_trend_mann_kendall.htm
https://vsp.pnnl.gov/help/vsample/design_trend_mann_kendall.htm
https://doi.org/10.1080/01621459.1968.10480934
https://www.osti.gov/biblio/7037501
https://doi.org/10.5194/amt-13-6945-2020
https://doi.org/10.1016/s0022-1694(97)00125-x
https://doi.org/10.1016/s0022-1694(97)00125-x
https://doi.org/10.1002/hyp.1095
https://doi.org/10.1007/978-3-642-04898-2_380
https://doi.org/10.1007/978-3-642-04898-2_380
https://www.blender.org/press/blender-top-16-highlights-of-2019/
https://www.blender.org/press/blender-top-16-highlights-of-2019/
https://www.blender.org/news/blender-by-the-numbers-2020/
https://github.com/boyter/scc/

	I Introduction
	II Background and motivation
	III Methodology
	III-A Choice of data
	III-B Statistical analysis

	IV Results
	V Discussion
	VI Threats to validity
	VII Conclusions and future work
	VIII Data Availability
	References

