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Instance-wise Grasp Synthesis for Robotic Grasping

Yucheng Xu1, Mohammadreza Kasaei1, Hamidreza Kasaei2, and Zhibin Li3

Abstract—Generating high-quality instance-wise grasp config-
urations provides critical information of how to grasp specific
objects in a multi-object environment and is of high importance
for robot manipulation tasks. This work proposed a novel Single-
Stage Grasp (SSG) synthesis network, which performs high-
quality instance-wise grasp synthesis in a single stage: instance
mask and grasp configurations are generated for each object
simultaneously. Our method outperforms state-of-the-art on
robotic grasp prediction based on the OCID-Grasp dataset, and
performs competitively on the JACQUARD dataset. The bench-
marking results showed significant improvements compared to
the baseline on the accuracy of generated grasp configurations.
The performance of the proposed method has been validated
through both extensive simulations and real robot experiments
for three tasks including single object pick-and-place, grasp
synthesis in cluttered environments and table cleaning task.

I. INTRODUCTION

In human-centered environments, robots are becoming in-
creasingly useful in a variety of applications related to manipu-
lating specific objects, thus a robust and efficient instance-wise
grasp synthesis approach is of great importance, as it provides
vital information (e.g., location and grasp configurations) for
manipulating target objects. Image-based instance-wise grasp
synthesis in cluttered environments is yet a very challenging
task. It aims at generating high-quality grasp configurations
for specific objects in the multi-object scenario using a single
image as the input. In this paper, we seek to leverage the
success of prior research on semantic instance segmentation
as well as generative grasp synthesis to design a novel model,
which solves instance-wise grasp synthesis tasks in a single-
stage manner for robotic manipulations.

Designing an image-based instance-wise grasp synthesis
model is difficult for two key reasons: (i) current 2D grasp
synthesis approaches either employ a region proposal network
to find graspable regions [1], [2], [3], [4], or adopt generative
model to predict pixel-wise grasp configurations [5], [6], [7],
[8]. Both of these approaches are limited to scene-level grasp
synthesis; in other words, they can only determine which parts
of the scene are graspable, but not which objects. (ii) Since
the grasp configurations are mostly generated from regional or
global features, the relationship between objects and grasps is
not clear. Thus, it is difficult to determine the grasp affiliations.

Recent research tackle instance-wise grasp synthesis tasks in
a two-stage way [9], [10], [11], [12]: (i) in the first stage, grasp
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configurations will be generated for all graspable regions of
the global input; (ii) then, the generated grasp configurations
will be assigned to specific objects with the help of additional
information, which is often derived from object detection or
semantic segmentation. Two-stage methods inherently lack
the relationship between predicted grasp configurations and
detected objects, since the object detection task and object
detection/segmentation task are completed separately. These
methods mostly suffer from inaccurate grasp assignment, lack
of class-specific information, and inefficiency stemmed from
its cascade structure [9], [12] (Details in Fig. 3, Section IV-A).

To address these limitations and solve instance grasp synthe-
sis tasks in a more efficient and accurate way, we proposed the
Single-Stage Grasp (SSG) synthesis model. The term “single-
stage” stands for the way of generating instance-wise grasp
configurations. The grasp configurations are generated for
each object instance directly without additional refinement or
assignment modules which are commonly used in previous
methods [9], [10], [11], [12].

Our proposed SSG formulates the instance-wise grasp syn-
thesis as two parallel tasks. The first task focuses on generating
a set of prototype masks for the input RGB-D image, which
can be regarded as vocabulary or global descriptors. The sec-
ond task is to detect objects in the image and predicts extra sets
of coefficients for each detected object. Finally, for each object
that survives Non-Maximum Suppression (NMS), those sets of
coefficients are used to linearly assemble prototype masks to
generate both instance segmentation and grasp masks. Here,
grasp masks refer to pixel-wise grasp configurations proposed
by [5], [6]. In our proposed method, SSG, bounding box, class
label, instance mask, and grasp masks are generated in parallel
for each detected object which strongly keep the relationship
between objects and grasps. The overall architecture (Fig. 1)
clearly delineates the unique process of the proposed method.

The contributions are summarized as follows: (1) A novel
Single-Stage Grasp (SSG) synthesis model, which solves the
challenging instance-wise grasp synthesis tasks in a single-
stage manner; (2) The proposed SSG outperforms state-of-
the-art on OCID-Grasp dataset, and performs competitively on
JACQUARD dataset, through the evaluation on extensive tests
and validations in both simulations and real robot experiments.

The proposed SSG succeeded in synthesizing instance-
wise grasp configurations in highly cluttered scenarios, where
objects had 10% to 25% of overlapped areas, while other
two-stage methods failed due to the mismatch between grasps
and objects, and segmentation errors. Further, we demonstrate
the scalability of the proposed method by extending it to
affordance detection tasks (See Section IV-D in details), and
show the proposed method can be used as a general pipeline
for multiple robot manipulation tasks.

ar
X

iv
:2

30
2.

07
82

4v
1 

 [
cs

.R
O

] 
 1

5 
Fe

b 
20

23



Post Processing & Grasp Inference



Task 2: Object Detection + Coefficients Prediction

Task 1: Prototypes GenerationInput Data & Feature Extraction

ProtoNet

Skip Connection

RGB

Depth

Anchor-based 
Detection 

Head

NMS

Detection1: cereal box   
Detection2: binder
Detection3: food bag
Detection4: Can

Object Class

Bounding Box

Coefficients for Instance Mask

C3: 
(68,68,512)

ResNet Backbone

Feature 
Pyramid

Linearly Combination of Prototypes

+– +–

+ – + –

+ + – –

+ +– –

Crop

Threshold

Semantic Grasp Position

Grasp Angle Gripper Width

Intermediate Results

Instance-wise 
Grasp prediction 
for object “Can”

Instance 
mask

Grasp
quality

Grasp
Angle

Gripper
width

Grasp 
Inference

Coefficients for Grasp Position Mask

Coefficients for Grasp Angle Mask

Coefficients for Gripper Width Mask

P7:
(5,5,256)

P6:
(9,9,256)

P5:
(17,17,256)

P4:
(34,34,256)

P3:(68,68,256)
C5:

(17,17,2048)

C4:
(34,34,2048)

B
ackbone Fe

at
ur

e 
P

yr
am

id

Layer P3

C2: (136,136,256)

C1: (136,136,64)

Input: (544, 544, 4)

Fig. 1: System structure of the proposed model. The grasp configurations is generated as follows: (1) Feature extraction; (2)
Generating of prototype masks; (3) Object detection, prediction of coefficients; (4) Linearly combination of prototypes with
different predicted coefficients to generate instance mask and grasp masks; (5) Post processing to infer grasp configurations
from generated grasp masks.

II. RELATED WORKS

Learning-based 2D robotic grasp synthesis has been in-
creasingly attracting attention in past years [13]. Modern
learning-based 2D grasp synthesis approaches can be roughly
categorized into detection-based and generative approaches.
Detection-based approaches adopt object detection pipelines
and treat grasp synthesis task as a detection task, since grasp
configurations can be represented as rotated rectangles in
image plane [1], [2], [3], [14], [15]. The work of [1] performed
transfer learning between object detection and grasp detection.
A Rotated Region Proposal Network (RRPN), which is pre-
trained on object detection dataset, is adopted to generate
graspable region proposals. A single-stage grasp detection
network purely based on Region Proposal Network (RPN) was
proposed in [2]. The grasp rectangles are directly regressed
and classified from oriented anchors which are generated from
RPN. ROI-GD [3] is a two-stage approach that detects grasp
synthesis for specific regions by leveraging features from the
object region rather than global input.

On the other hand, generative approaches produce pixel-
wise grasp configurations for an input image [5], [6], [7], [8].
In this category, GG-CNN [5] approach aims to predict pixel-
wise grasp configurations from depth images using generative
neural network, where grasp configurations are embedded into
three target masks representing grasp quality, grasp angle, and
width of gripper respectively. Based on such representation
of grasp configurations, the work in [6] introduced residual
structure into generative neural network. Also, Guassian kernel
are introduced in [7], [8], [16] to better represent grasp config-
urations. In comparison with detection-based grasp synthesis
methods, generative grasp synthesis methods avoid the gener-

ation of redundant region proposals and discrete sampling.
Despite improvements in learning based grasp synthesis [3],

[6], instance-wise grasp synthesis is still challenging. Most ap-
proaches solve instance-wise grasp prediction problems indi-
rectly, by defining a set of surrogate detection and assignment
tasks [9], [10], [11], [12]. In such pipelines, additional seman-
tic segmentation or object detection branches are commonly
adopted to assign grasp candidates to a specific object.

Representative multi-task frameworks were proposed in [9],
[12] which include two networks for object detection and
grasp detection respectively. The results of object detection
were adopted to assign grasp candidates to specific objects.
TOG-CRFs proposed in [10] adds a Conditional Random
Field (CRF) to the grasp detection network, which models
semantic contents of object regions to enable task-oriented
grasp synthesis. Another work in [11] adds an semantic
segmentation branch alongside the grasp detection branch to
refine grasp candidates and assign them to target objects.

Mask-Grasp RCNN proposed in [17] is based on Mask-
RCNN [18]: a instance segmentation network. The method
in [17] adds additional regression heads to the Mask-
RCNN [18] to detect and regress grasps from aligned Regions-
of-Interest (RoIs) directly for each detected object instance.
Mask-Grasp RCNN [17] is the first single-stage instance-wise
grasp synthesis method, which is used in this work as a
baseline of a single-stage method for the comparison study.

III. PROPOSED METHOD

A. Problem Formulation

This work aims to synthesize grasp configurations for each
object from an RGB-D image in a single-stage way. The
task is defined as: to predict grasp configurations for each
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Fig. 2: 2D grasp rectangles are embedded into four different
masks to represent grasp quality, grasp position, grasp angle
and gripper width.

detected instance in an image plane. Grasp configurations in
an image plane are commonly represented as rotated rectan-
gle: Grasprect = (x, y, θ, w, q), such as the formulation in [1],
[2], [3], [14], [15], where (x, y) corresponds to the center of
grasp rectangle in the image coordinates, θ is the rotation in
camera’s frame of reference, w is the required width of gripper,
q is the quality of grasping. In our method, we formulated
an additional label (cls) for each grasp configurations that
indicate which object it belongs to.

To enable instance-wise grasp prediction, we adopted an
approach similar to [5], [6], and further developed a grasp
representation that can be integrated with the existing instance
segmentation framework. For each object instance, we embed
its ground truth grasp configurations into multiple masks in-
dicating grasp position, grasp quality, grasp angle and gripper
width (see Fig. 2). For a better representation of grasp quality,
for each pixel, we calculate the number of overlapped grasp
rectangles which include the pixel itself, and use Sigmoid
function to generate the grasp quality mask.

B. Architecture

We developed the SSG, a single-stage grasp synthesis
model, with insights from YOLACT [19]. Fig. 1 details the
sub-modules and the workflow of our proposed method. First,
a feature extraction module, consisting of ResNet-101 [20] and
Feature Pyramid Network (FPN) [21], is adopted to extract
shared multi-scale features from input RGB-D image. Deep
layers (C3, C4, C5) from ResNet-101 module are linked to
FPN. Then, the ProtoNet branch, which is a fully convolutional
network [22] with k-channel output, is used to generate a set
of 32 prototype masks (k = 32) for the entire input RGB-
D image. P3 layer of FPN is used as the input of ProtoNet
branch, as the largest and deepest feature layer of FPN, to
produce more robust and fine-grained prototype masks. The
concept of prototype masks is similar to those representation
learning concepts for object detection from [23], [24], [25].

We note an important observation here: the learned proto-
type masks (feature embeddings) are generalized to different
domains. We found that by using different coefficients to
linearly assemble the same set of prototype masks, we can
generate instance masks and grasp masks.

For the object detection branch, a typical anchor-based
object detection branch is extended by adding N extra heads
predicting N × k coefficients for each detected objects. For
each object that survives NMS, we predict its class, bound-
ing box, k coefficients for assembling its instance mask, k
coefficients for assembling its grasp position mask, 2 × k
coefficients for assembling its grasp angle masks (represented
in sin(2θ) and cos(2θ), θ is the valid grasp angle), and k

coefficients for assembling its width mask. These predicted
sets of coefficients will be used to linearly assemble prototype
masks generated from ProtoNet and form target output masks:
semantic instance mask, grasp quality mask, grasp angle masks
and gripper width mask.

C. Post Processing

Target Masks Generation. As shown in Fig. 1, the Pro-
toNet branch will generate h × w × k prototype masks P
for the input RGB-D image, where h,w denote the size of
the prototype mask. N × k coefficients C are predicted for
every detected object (N = 5). Then prototype masks P
are linearly assembled with coefficients C to generate target
masks, M = Activation(PC>). In this study, M is composed
of five masks corresponding to instance mask, grasp quality
mask, grasp angle masks and gripper width mask. For instance
mask, grasp quality mask and gripper width mask, Sigmoid
activation function is used to limit the output range from 0 to
1. For grasp angle masks, tanh activation function is used to
limit the output range from −1 to 1.

Mask Crop. Generated target masks for each object are
cropped using its bounding box. The ground truth bounding
boxes are used in training, while the predicted ones are used
during evaluation.

Grasp Configuration Inference. The grasp configurations
are inferred based on the grasp masks obtained by linearly
assembling prototype masks and cropping with bounding
boxes. For each object instance, firstly a local maximum point
is searched in its grasp quality map to find the point with the
highest grasp quality and its pixel coordinates, then the grasp
angles and gripper width are obtained from corresponding
masks with pixel coordinates of the best grasp point.

D. Loss Function

Our loss function is composed of five different losses as:
object classification (`cls), bounding box regression (`box),
global semantic segmentation (`smask), instance segmenta-
tion (`imask), and grasp synthesis (`gr). `cls, `box and `imask

are defined the same as in [19]. `smask is used to accelerate the
convergence of our model. `g consists of five losses including
grasp quality loss (`gr−q), grasp position loss (`gr−p), grasp
angle loss (in sin and cos, `gr−sin, `gr−cos) and gripper width
loss (`gr−w). `gr−q , `gr−sin, `gr−cos and `gr−w are calculated
using smooth-L1 loss, `gr−p is calculated using binary cross
entropy loss. The total loss L is summed as:

L =αcls`cls + αbox`box + αimask`imask

+ αgr`gr + αsmask`smask

, (1)

where `gr = αp`gr−p+αq`gr−q+αsin`gr−sin+αcos`gr−cos+
αw`gr−w.

IV. EVALUATION

We evaluate and benchmark the performance of the pro-
posed method on instance-wise robotic grasp detection dataset
OCID-Grasp [11], and class-agnostic robotic grasp detection
dataset JACQUARD [26]. Moreover, a set of simulations and



TABLE I: Simulations results: 20 simulated tests were conducted for each object.

Objects Apple Banana Lemon Mug Bowl Bottle Marker Cereal Box
Success Rate [%] 90 85 85 80 75 75 90 90

Objects Sponge Soda Can Juice Box Cup Spatula Knife Soap Power Driller
Success Rate [%] 85 90 80 80 80 75 80 85

Results from two-stage method [11] Results from our methodInput

+

+

+

Results from two-stage method [11] Results from our method

+

+

+

Input

Fig. 3: Failure cases of two-stage method, compared to the correct results from the proposed single-stage method: (left) Failures
of two-stage method caused by inaccurate grasp assignment; (right) Failures of two-stage method caused by segmentation errors.

TABLE II: Results of grasp accuracy on OCID-Grasp
Dataset [11].

Method Grasp Accuracy Speed (FPS)
Deg Seg RGB[11] 89.02 % 31

Deg Seg RGBD[11] 89.84 % 31
SSG RGB (ours) 91.97 % 39

SSG RGBD (ours) 92.93 % 39
Image Bounding Box Instance Mask Grasp Quality Mask Grasp Angle Mask Grasp Width Mask Final Results

M
ug

B
an

an
a

Fig. 4: Test results on OCID-Grasp dataset where grasp
configurations were generated for each target object.

real robot experiments have been conducted to validate the
performance of the proposed method for real-world robotics
applications.

To evaluate and quantify the accuracy of predicted grasp
configurations of each object on datasets, we applied an
extended version of metrics by adding a new condition, based
on the Jacquard Index proposed in [26]. That is, a grasp
candidate is valid if the following conditions are satisfied: (i)
The predicted class label of the grasp candidate is correct; (ii)
The angle difference between the predicted grasp candidate
and ground truth grasp is within 30◦; (iii) The Intersection
over Union (IoU) of the predicted grasp rectangle and the
ground truth is greater than 0.25.

A. Evaluation on OCID-Grasp Dataset

The OCID-Grasp dataset is an extension of Object Clutter
Indoor Dataset (OCID) [27] annotated by [11], which consists
of 1763 selected RGB-D images with over 11.4K segmented
instance masks and 75K hand-annotated grasp rectangles with
corresponding object class information. Objects in OCID-
Grasp dataset are classified into 31 different categories. For
each scenario, RGB image, depth image, semantic segmen-
tation mask, and grasp annotation with instance labels are
provided.

On OCID-Grasp dataset, our model is trained on the official
train set and validated on the test set. To augment the size
of datasets for training our network, based on OCID-Grasp,
we applied random data augmentation including random pho-
tometric distortion, random clip and multi-scale resize. We
outperform state-of-the-art on OCID-Grasp dataset with an
overall grasp accuracy of 92.9%. The results are summarised
in TABLE II.

In comparison with the two-stage baseline method as
in [11], our method perform instance segmentation and
instance-wise grasp synthesis simultaneously to synthesize
grasp configuration in a single stage, with the accuracy of
92.9% and the inference speed of 39 frames per second –
which has outperformed the baseline with a significant margin
by 3.91% in accuracy and 25% in inference speed. Fig. 4
shows the results of two representative test samples from the
OCID-Grasp dataset. To better support the advance of our
proposed method, representative cases are show in Fig. 3
in which two-stage method [11]) failed while our proposed
method succeeded.

TABLE III: Comparison of grasp accuracy ([%]) on
JACQUARD Dataset [26], with different IoU thresholds and
angle threshold of 30◦. Results for [11], [28], [29] are taken
from [11]. Results of [6] are reproduced.

Method IoU 25% IoU 30% IoU 35%
Method of [28] 81.95 78.26 74.33
Method of [29] 85.74 82.58 78.71

Mask-Grasp RCNN [17] 89.80 - -
Method of [2] 91.5 89.7 87.3
Gr-ConvNet [6] 91.83 89.55 85.99

Det [11] 92.69 91.29 88.99
Det-Seg-Refine [11] 92.95 91.33 88.96

SSG(Ours) 91.8 89.95 88.49

B. Evaluation on JACQUARD Dataset

The JACQUARD Dataset is built on a subset of
ShapeNet [30] which is a large CAD model dataset. It consists
of 54485 different scenes from 11619 distinct objects. In
total, it has over 4.9M grasp annotations (from over 1.1M



TABLE IV: Comparison of grasp accuracy ([%]) for
JACQUARD Dataset [26], with different angle thresholds
and IoU threshold of 25%. Results of [11], [28], [29] are
referenced from [11], and results of [6] are reproduced.

Method 30◦ 25◦ 20◦ 15◦ 10◦ 5◦

Method of [28] 81.95 81.76 81.27 80.23 77.79 -
Method of [29] 85.74 85.55 85.01 83.65 80.82 -

Mask-Grasp RCNN [17] 89.80 - - - - -
Gr-ConvNet [6] 91.83 90.00 87.34 83.45 77.94 63.67

Det [11] 92.68 92.34 92.08 91.40 88.12 56.23
Det-Seg-Refine [11] 92.95 92.88 92.42 91.52 88.12 72.79

SSG(Ours) 91.8 91.11 90.05 87.97 81.68 60.87

Fig. 5: Simulation and experiment setups.

unique locations). For each scenario, a render RGB image, a
segmentation mask, two depth images and grasp annotations
are provided.

However, the JACQUARD Dataset only contains single-
object scenes without class labels for grasp annotations. Thus,
we applied minimal adaptation of our method and make
it a class-agnostic one, we labeled all objects as “object”.
Our model was trained on JACQUARD dataset in a class-
agnostic way and evaluated using several metrics with different
thresholds. Detailed results are summarised in TABLE IV and
TABLE III (Unavailable results were denoted as “-”).

The evaluation on the JACQUARD Dataset show that our
method is generalized and can predict both high-quality in-
stance masks and grasp masks for general objects without
class-specific information. Despite the lack of class-specific in-
formation, our approach was very competitive among learning-
based 2D grasp synthesis approaches. Further, we have con-
ducted ablation study to support the importance of class-
specific information (Details in Section V). Replacing the de-
tection and segmentation heads with a class-agnostic one, such
like [31], could be a potential way to boost the performance
of our method on the JACQUARD Dataset.

We note that our proposed method, the SSG, significantly
surpasses the Mask-Grasp RCNN [17] which is another single-
stage instance-wise grasp synthesis method based on Mask-
RCNN [18]. Our method has reached 91.8% grasp accuracy on
the Jacquard dataset [26] which outperforms the Mask-Grasp
RCNN [17] by 2%. Moreover, our method can run inference
at 39FPS rate, which is almost three times faster than the
Mask-Grasp RCNN [17] (14FPS).

C. Simulation and Real Robot Experiments

A set of simulations and real robot experiments have been
conducted to validate that our model can be used to generate
high-quality grasp candidates for robotic manipulators: (i) sin-
gle object pick-and-place task in simulation; (ii) table cleaning
task using a real robot.

Fig. 6: Real robot performing the table cleaning task in three
different levels of difficulties: highly cluttered, cluttered and
isolated real-world scenarios.

Our simulations and experiments focused on table top
domains, where objects are in arbitrary spatial arrangements
on the table. The simulation setup used a synthetic dataset
from [32] which contains 90 simulated house-hold objects,
imported from different resources, e.g., YCB dataset [33],
Gazebo repository. The whole setup is composed of a dual
arm robot with two UR5 manipulators and a Kinect sensor to
acquire RGB-D images. For real robot experiments, we used
exactly the same setup (see Fig. 5). We trained a model using
OCID-Grasp dataset [11] which is used for both simulations
and experiments.

In the first task, 16 objects, including 6 unseen objects (Juice
Box, Cup, Spatula, Knife, Soap and Power Driller) have been
selected. In each trial, one of them was randomly put on a
table for 20 rounds of pick-and-place. A grasp configuration
is considered successful if the object can be grasped, lifted up
and placed at the designed place. The success rate for each
object has been summarized in TABLE I.

The second task is focused on validating the proposed
method on a real robot for table cleaning. In this task, an
operator randomly places a set of unseen objects on the
table and the robot should remove and place them into the
predefined targets one by one. This task has been repeated in
3 different levels of difficulties: isolated (less than 3 objects),
cluttered (less than 10 objects) and highly cluttered (more
than 15 objects). A set of snapshots is shown in Fig. 6. We
performed ten rounds of experiments per level, and assessed
the performance by the success rate, where the attempt is
considered as a success if the target object can be grasped
and moved to the target successfully. The results showed that
the robot is able to accomplish the task with success rates of
84.0%, 79.4% and 71.3%, respectively. It should be noted that
in some failure cases in (highly) cluttered environments, al-
though the grasp predictions were correct, execution of grasps
were not feasible due to either the limitation of the motion
planning or prevention of the grasp action in presence of the
surrounding objects, rather than due to the grasp predictions
themselves. The video of our experiments is available at
https://youtu.be/riBXMgrupUw.

D. Scalability

The success of our proposed SSG shows the potential and
scalability of feature assembling using linear coefficients. To

https://youtu.be/riBXMgrupUw.


TABLE V: Ablation study on OCID-Grasp Dataset [11].

Model SSG
SSG

without
instace segmentation

SSG
without

class prediction
SSG

SSG
without

instance segmentation

SSG
without

class prediction
Input Modalities RGB RGB RGB RGB+Depth RGB+Depth RGB+Depth
Grasp Accuracy 91.97% 90.92% 90.31% 92.93% 92.09% 90.81%
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Fig. 7: Results of a set of tests in clutter environments on
simulated and real objects.

further prove the scalability of our method, we re-train our
model on Object Stacking Grasping Dataset (OSGD) [9],
which includes additional affordance annotations from total
11 different types of grasping actions including cut, write,
hammer, fork, shovel, wrench, pinch, screw, ladle, brush and
hand-over. Here, the affordance annotation refers to the correct
grasping action (e.g., knife – cut, screwdriver – screw, etc.).

For each object sample from OSGD dataset, its class label,
bounding box, grasp annotations (in rectangles) and affordance
annotations are provided. To generate additional affordance
masks for each detected object, we add 11 extra heads in the
object detection branch to predict 11 sets of coefficients to
linearly assemble the shared prototype masks, and generate
11 target affordance masks. Since this dataset does not pro-
vide the instance semantic masks, our architecture is adopted
accordingly: the global semantic segmentation head and the
instance mask head are removed. Moreover, the OSGD dataset
only provides depth image as input, thus the input channel of
the feature extraction module is changed and no pre-trained
model is used to initialize the feature extraction module.

As is shown in Fig. 8, correct affordance masks as well
as grasp configurations are generated for different target ob-
jects which prove the scalability and extendability of the our
proposed model. It can be extended to predict extra target
masks by simply adding more coefficients predicting heads
without changing the overall complexity. This feature of our
methodology, in our opinion, will have an great impact on the
field of robotic grasping synthesis research.

E. Ablation Study

A set of ablation study was conducted to support the current
design. The detection head of our model is composed of
three modules: object detection, instance segmentation, and
generation of grasp maps. To validate the proposed network
design, we have retrained and tested two additional models on
the OCID-Grasp dataset [11]: (1) a model without predicting
object class label; (2) a model without generating instance
mask. The detailed results are shown in the TABLE V.

It can be seen from TABLE V that the depth channel
brings useful information and increases the performance. The

Grasp Quality Mask Grasp Angle Mask Grasp Width Mask

Brush

Affordance Masks

Hand-over

Pinch Hand-over

Hammer Hand-over

Write Hand-over

Fig. 8: Validation results on the OSGD dataset [9], further
showing our method can generate additional affordance masks
by predicting more sets of coefficients and assembling proto-
type masks with these coefficients.

instance segmentation module and the class prediction module
also play an important role for grasp synthesis. Without
instance segmentation head, the overall grasp accuracy of our
model on OCID-Grasp dataset [11] decreases from 91.97% to
90.92% (with RGB input), and from 92.93% to 92.09% (with
RGB-D input). Without class prediction head, the overall grasp
accuracy of our model on OCID-Grasp dataset [11] decreases
from 91.97% to 90.31% (with RGB input), and from 92.93%
to 90.81% (with RGB-D input). The results of the ablation
study has shown the benefits of our proposed network design:
Generating different target masks by linearly assembling the
same set of learned feature maps with different coefficients,
which is able to exchange features across different domains,
and also to make the learned feature maps more general and
robust. V. CONCLUSION

This work developed a novel single-stage grasp synthesis
model – SSG – for tackling instance-wise grasp synthesis
task in a single-stage manner. Our method formulated the
instance-wise grasp synthesis as two sub-tasks: first, a set
of learned feature embeddings is generated, which captures
general features of the input RGB-D image; second, anchor-
based object detection is conducted. For each detection, five
sets of coefficients are predicted that will be used to linearly
assemble generated feature embeddings to form a semantic
instance mask and four grasp masks, simultaneously. We eval-
uated our method on the well-known JACQUARD dataset and
a more challenging OCID-Grasp dataset. The results showed
that our method outperforms the state-of-the-art on OCID-
Grasp dataset and performs competitively on JACQUARD
dataset. Moreover, the proposed method has been extensively
tested both in simulation and on the real robot, using isolated,
cluttered and highly cluttered scenarios. All these extensive
results validated that our method can generate valid grasp
configurations for target objects in multi-object scenarios.
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