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Abstract

Past work in natural language processing in-
terpretability focused mainly on popular clas-
sification tasks while largely overlooking gen-
eration settings, partly due to a lack of ded-
icated tools. In this work, we introduce In-
seq1, a Python library to democratize access
to interpretability analyses of sequence gener-
ation models. Inseq enables intuitive and opti-
mized extraction of models’ internal informa-
tion and feature importance scores for popu-
lar decoder-only and encoder-decoder Trans-
formers architectures. We showcase its poten-
tial by adopting it to highlight gender biases
in machine translation models and locate fac-
tual knowledge inside GPT-2. Thanks to its ex-
tensible interface supporting cutting-edge tech-
niques such as contrastive feature attribution,
Inseq can drive future advances in explainable
natural language generation, centralizing good
practices and enabling fair and reproducible
model evaluations.

1 Introduction

Recent years saw an increase in studies and tools
aimed at improving our behavioral or mechanis-
tic understanding of neural language models (Be-
linkov and Glass, 2019). In particular, feature attri-
bution methods became widely adopted to quantify
the importance of input tokens in relation to mod-
els’ inner processing and final predictions (Madsen
et al., 2022b). Many studies applied such tech-
niques to modern deep learning architectures, in-
cluding Transformers (Vaswani et al., 2017), lever-
aging gradients (Baehrens et al., 2010; Sundarara-
jan et al., 2017), attention patterns (Xu et al., 2015;
Clark et al., 2019) and input perturbations (Zeiler
and Fergus, 2014; Feng et al., 2018) to quantify
input importance, often leading to controversial
outcomes in terms of faithfulness, plausibility and

1Library: https://github.com/inseq-team/inseq
Documentation: https://inseq.readthedocs.io
This paper describes the Inseq v0.4.0 release on PyPI.
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Figure 1: Feature importance and next-step proba-
bility extraction and visualization using Inseq with a

Transformers causal language model.

overall usefulness of such explanations (Adebayo
et al., 2018; Jain and Wallace, 2019; Jacovi and
Goldberg, 2020; Zafar et al., 2021). However, fea-
ture attribution techniques have mainly been ap-
plied to classification settings (Atanasova et al.,
2020; Wallace et al., 2020; Madsen et al., 2022a;
Chrysostomou and Aletras, 2022), with relatively
little interest in the more convoluted mechanisms
underlying generation. Classification attribution is
a single-step process resulting in one importance
score per input token, often allowing for intuitive
interpretations in relation to the predicted class.
Sequential attribution2 instead involves a compu-
tationally expensive multi-step iteration producing
a matrix Aij representing the importance of ev-
ery input i in the prediction of every generation

2We use sequence generation to refer to all iterative tasks
including (but not limited to) natural language generation.
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outcome j (Figure 1). Moreover, since previous
generation steps causally influence following pre-
dictions, they must be dynamically incorporated
into the set of attributed inputs throughout the pro-
cess. Lastly, while classification usually involves a
limited set of classes and simple output selection
(e.g. argmax after softmax), generation routinely
works with large vocabularies and non-trivial de-
coding strategies (Eikema and Aziz, 2020). These
differences limited the use of feature attribution
methods for generation settings, with relatively few
works improving attribution efficiency (Vafa et al.,
2021; Ferrando et al., 2022) and explanations’ in-
formativeness (Yin and Neubig, 2022).

In this work, we introduce Inseq, a Python li-
brary to democratize access to interpretability anal-
yses of generative language models. Inseq central-
izes access to a broad set of feature attribution meth-
ods, sourced in part from the Captum (Kokhlikyan
et al., 2020) framework, enabling a fair compar-
ison of different techniques for all sequence-to-
sequence and decoder-only models in the popu-
lar Transformers library (Wolf et al., 2020).
Thanks to its intuitive interface, users can easily in-
tegrate interpretability analyses into sequence gen-
eration experiments with just 3 lines of code (Fig-
ure 2). Nevertheless, Inseq is also highly flexible,
including cutting-edge attribution methods with
built-in post-processing features (§ 4.1), support-
ing customizable attribution targets and enabling
constrained decoding of arbitrary sequences (§ 4.2).
In terms of usability, Inseq greatly simplifies access
to local and global explanations with built-in sup-
port for a command line interface (CLI), optimized
batching enabling dataset-wide attribution, and var-
ious methods to visualize, serialize and reload attri-
bution outcomes and generated sequences (§ 4.3).
Ultimately, Inseq’s aims to make sequence models
first-class citizens in interpretability research and
drive future advances in interpretability for genera-
tive applications.

2 Related Work

Feature Attribution for Sequence Generation
Work on feature attribution for sequence gener-
ation has mainly focused on machine translation
(MT). Bahdanau et al. (2015) showed how attention
weights of neural MT models encode interpretable
alignment patterns. Alvarez-Melis and Jaakkola
(2017) adopted a perturbation-based framework
to highlight biases in MT systems. Ding et al.

import inseq

# Load HF Hub model and attribution method
model = inseq.load_model(

"google/flan-t5-base",
"integrated_gradients"

)
# Answer and attribute generation steps
attr_out = model.attribute(

"Does 3 + 3 equal 6?",
attribute_target=True

)
# Visualize the generated attribution,
# applying default token-level aggregation
attr_out.show()

Figure 2: Computing and visualizing source and target-
side attributions using Flan-T5 (Chung et al., 2022).

(2019); He et al. (2019); Voita et al. (2021a,b) inter
alia conducted analyses on MT word alignments,
coreference resolution and training dynamics with
various gradient-based attribution methods. Vafa
et al. (2021); Ferrando et al. (2022) developed ap-
proaches to efficiently compute sequential feature
attributions without sacrificing accuracy. Yin and
Neubig (2022) introduced contrastive feature attri-
bution to disentangle factors influencing generation
in language models. Attribution scores obtained
from MT models were also used to detect hallucina-
tory behavior (Dale et al., 2022; Tang et al., 2022;
Xu et al., 2023), providing a compelling practical
use case for such explanations.

Tools for NLP Interpretability Although many
post-hoc interpretability libraries were released re-
cently, only a few support sequential feature at-
tribution. Notably, LIT (Tenney et al., 2020), a
structured framework for analyzing models across
modalities, and Ecco (Alammar, 2021), a library
specialized in interactive visualizations of model
internals. LIT is an all-in-one GUI-based tool to
analyze model behaviors on entire datasets. How-
ever, the library does not provide built-in support
for Transformers models, has a steep learning
curve due to its advanced UI, and does not sup-



port interactive evaluation of individual examples.
All these factors limit LIT usability for researchers
working with custom models, needing access to
extracted scores, or being less familiar with inter-
pretability research. On the other hand, Ecco is
closer to our work, being based on Transformers
and having started to support encoder-decoder mod-
els concurrently with Inseq development. Despite a
marginal overlap in their functionalities, the two li-
braries provide orthogonal benefits: Inseq’s flexible
interface makes it especially suitable for method-
ical quantitative analyses involving repeated eval-
uations, while Ecco excels in qualitative analyses
aimed at visualizing model internals. Other popu-
lar tools such as ERASER (DeYoung et al., 2020),
Thermostat (Feldhus et al., 2021), transformers-
interpret (Pierse, 2021) and ferret (Attanasio et al.,
2022) do not support sequence models.

3 Design

Inseq combines sequence models sourced from
Transformers (Wolf et al., 2020) and attribution

methods mainly sourced from Captum (Kokhlikyan
et al., 2020). While only text-based tasks are cur-
rently supported, the library’s modular design3

would enable the inclusion of other modeling
frameworks (e.g. fairseq (Ott et al., 2019)) and
modalities (e.g. speech) without requiring sub-
stantial redesign. Optional dependencies include

Datasets (Lhoest et al., 2021) and Rich4.

3.1 Guiding Principles

Research and Generation-oriented Inseq
should support interpretability analyses of a
broad set of sequence generation models without
focusing narrowly on specific architectures or
tasks. Moreover, the inclusion of new, cutting-edge
methods should be prioritized to enable fair
comparisons with well-established ones.

Scalable The library should provide an opti-
mized interface to a wide range of use cases, mod-
els and setups, ranging from interactive attributions
of individual examples using toy models to compil-
ing statistics of large language models’ predictions
for entire datasets.

Beginner-friendly Inseq should provide built-in
access to popular frameworks for sequence genera-
tion modeling and be fully usable by non-experts

3More details are available in Appendix B.
4https://github.com/Textualize/rich

Method Source f(l)

G

(Input ×) Gradient Simonyan et al. 3
DeepLIFT Shrikumar et al. 3
GradientSHAP Lundberg and Lee 7
Integrated Gradients Sundararajan et al. 3
Discretized IG Sanyal and Ren 7

I Attention Weights Bahdanau et al. 3

P
Occlusion (Blank-out) Zeiler and Fergus 7
LIME Ribeiro et al. 7

S

(Log) Probability -
Softmax Entropy -
Target Cross-entropy -
Perplexity -
Contrastive Prob. ∆ Yin and Neubig
µ MC Dropout Prob. Gal and Ghahramani

Table 1: Overview of gradient-based (G), internals-
based (I) and perturbation-based (P) attribution meth-
ods and built-in step functions (S) available in Inseq.
f(l) marks methods allowing for attribution of arbitrary
intermediate layers.

at a high level of abstraction, providing sensible
defaults for supported attribution methods.

Extensible Inseq should support a high degree of
customization for experienced users, with out-of-
the-box support for user-defined solutions to enable
future investigations into models’ behaviors.

4 Modules and Functionalities

4.1 Feature Attribution and Post-processing

At its core, Inseq provides a simple interface
to apply feature attribution techniques for se-
quence generation tasks. We categorize methods in
three groups, gradient-based, internals-based and
perturbation-based, depending on their underlying
approach to importance quantification.5 Table 1
presents the full list of supported methods. Aside
from popular model-agnostic methods, Inseq no-
tably provides built-in support for attention weight
attribution and the cutting-edge Discretized Inte-
grated Gradients method (Sanyal and Ren, 2021).
Moreover, multiple methods allow for the impor-
tance attribution of custom intermediate model lay-
ers, simplifying studies on representational struc-
tures and information mixing in sequential models,
such as our case study of Section 5.2.

Source and target-side attribution When using
encoder-decoder architectures, users can set the
attribute_target parameter to include or exclude

5We distinguish between gradient- and internals-based
methods to account for their difference in scores’ granularity.

https://github.com/Textualize/rich


the generated prefix in the attributed inputs. In
most cases, this should be desirable to account for
recently generated tokens when explaining model
behaviors, such as when to terminate the genera-
tion (Figure 2). However, attributing the source
side separately could prove useful, for example, to
derive word alignments from importance scores.

Post-processing of attribution outputs Aggre-
gation is often a fundamental step in attribution-
based analyses to obtain a single importance score
for every token pair in the attribution matrix. In-
seq includes several Aggregator classes to aggre-
gate attributions across various dimensions (e.g.
merge subword tokens, merge granular neuron-
level scores into coarse-grained token-level ones)
and allows to chain multiple aggregators using the
AggregatorPipeline class. Finally, multi-example
aggregation is also available (PairAggregator) to
simplify the conduction of contrastive analyses,
such as the one of Section 5.1.6

4.2 Customizing generation and attribution

Upon calling attribute, Inseq first generates target
tokens using Transformers and then attributes
them step by step. If a custom target is speci-
fied alongside model inputs, the generation step
is instead skipped, and the provided target is at-
tributed by constraining the decoding of its tokens7.
Constrained attribution can be used, among other
things, for contrastive comparisons of minimal
pairs and to obtain model justifications for desired
outputs.

Custom step functions A step function com-
putes a score of interest (e.g. probabilities, en-
tropy) at every attribution step by using models’
internal information. Inseq provides access to mul-
tiple built-in step functions (Table 1, S) and allows
users to create and register new custom ones. Step
scores are computed together with the attribution,
returned as separate sequences in the output, and
visualized alongside importance scores (e.g. the
p(yt|y<t) row in Figure 1).

Step functions as attribution targets For meth-
ods relying on model outputs to predict input impor-
tance (gradient and perturbation-based), feature at-
tributions are commonly obtained from the model’s

6See Appendix C for an example.
7Constrained decoding users should be aware of its limi-

tations in presence of a high distributional discrepancy with
natural model outputs (Vamvas and Sennrich, 2021).

output logits or class probabilities (Bastings et al.,
2022). However, recent work showed the effec-
tiveness of using targets such as the probability
difference of a contrastive output pair to answer
interesting questions like “What inputs drive the
prediction of y rather than ŷ?” (Yin and Neubig,
2022). In light of these advances, Inseq users can
leverage any built-in or custom-defined step func-
tion as an attribution target, enabling advanced use
cases like contrastive comparisons and uncertainty-
weighted attribution using MC Dropout (Gal and
Ghahramani, 2016).

4.3 Usability Features
Batched and span-focused attributions The li-
brary provides built-in batching capabilities, en-
abling users to go beyond single sentences and at-
tribute even entire datasets in a single function call.
When the attribution of a specific span of interest
is needed, Inseq also allows specifying a start and
end position for the attribution process. This func-
tionality greatly accelerates the attribution process
for studies on localized phenomena (e.g. pronoun
coreference in MT models).

CLI, Serialization and Visualization The In-
seq library offers an API to attribute single exam-
ples or entire Datasets from the command line
and save resulting outputs and visualizations to a
file. Attribution outputs can be saved and loaded
in JSON format with their respective metadata to
easily identify the provenance of contents. Attri-
butions can be visualized in the command line or
IPython notebooks and exported as HTML files.

Quantized Model Attribution Supporting the
attribution of large models is critical given re-
cent scaling tendencies (Kaplan et al., 2020).
All models allowing for quantization using
bitsandbytes (Dettmers et al., 2022) can be loaded
in 8-bit directly from Transformers, and their at-
tributions can be computed normally using Inseq.8

A minimal manual evaluation of 8-bit attribution
outputs for Section 5.2 study shows minimal dis-
crepancies compared to full-precision results.

5 Case Studies

5.1 Gender Bias in Machine Translation
In the first case study, we use Inseq to investigate
gender bias in MT models. Studying social biases

8
bitsandbytes 0.37.0 required for backward method, see

Appendix D for an example.



embedded in these models is crucial to understand
and mitigate the representational and allocative
harms they might engender (Blodgett et al., 2020).
Savoldi et al. (2021) note that the study of bias in
MT could benefit from explainability techniques to
identify spurious cues exploited by the model and
the interaction of different features that can lead to
intersectional bias.

Synthetic Setup: Turkish to English The Turk-
ish language uses the gender-neutral pronoun o,
which can be translated into English as either “he”,
“she”, or “it”, making it interesting to study gender
bias in MT when associated with a language such
as English for which models will tend to choose a
gendered pronoun form. Previous works leveraged
translations from gender-neutral languages to show
gender bias present in translation systems (Cho
et al., 2019; Prates et al., 2020; Farkas and Németh,
2022). We repeat this simple setup using a Turkish-
to-English MarianMT model (Tiedemann, 2020)
and compute different metrics to quantify gender
bias using Inseq.

We select 49 Turkish occupation terms verified
by a native speaker (see Appendix E) and use them
to infill the template sentence “O bir ” (He/She
is a(n) ). For each translation, we compute at-
tribution scores for source Turkish pronoun (xpron)
and occupation (xocc) tokens9 when generating the
target English pronoun (ypron) using Integrated Gra-
dients (IG), Gradients (∇), and Input × Gradient
(I×G),10. We also collect target pronoun probabili-
ties (p(ypron)), rank the 49 occupation terms using
these metrics, and finally compute Kendall’s τ cor-
relation with the percentage of women working
in the respective fields, using U.S. labor statistics
as in previous works (e.g., Caliskan et al., 2017;
Rudinger et al., 2018). Table 2 presents our results.

In the base case, we correlate the different met-
rics with how much the gender distribution deviates
from an equal distribution (50− 50%) for each oc-
cupation (i.e., the gender bias irrespective of the
direction). We observe a strong gender bias, with
“she” being chosen only for 5 out of 49 transla-
tions and gender-neutral variants never being pro-
duced by the MT model. We find a low correla-
tion between pronoun probability and the degree
of gender stereotype associated with the occupa-

9For multi-token occupation terms, e.g., bilim insanı (sci-
entist), the attribution score of the first token was used.

10We set approx. steps to ensure convergence ∆ < 0.05
for IG. All methods use the L2 norm to obtain token-level
attributions.

Base →

xpron xocc xpron xocc

p(ypron) 0.01 -0.44∗

∇ -0.16 0.25∗ 0.23∗ -0.00
IG -0.08 0.09 0.11 0.17

I×G -0.11 0.22∗ 0.22∗ -0.01

Table 2: Gender Bias in Turkish-to-English MT:
Kendall’s τ correlation of MT model metrics with U.S.
labor statistics. ∗ = Significant correlation (p < .05).

tion. Moreover, we note a weaker correlation for
IG compared to the other two methods. For those,
attribution scores for xocc show significant corre-
lations with labor statistics, supporting the view
of heavily gender-stereotyped occupations strongly
influencing the choice of pronouns in the target.

In the gender-swap case ( → ), we use the
PairAggregator class to contrastively compare at-
tribution scores and probabilities when translating
the pronoun as “She” or “He”.11 We correlate re-
sulting scores with the % of women working in the
respective occupation and find strong correlations
for p(ypron), supporting the validity of contrastive
approaches in uncovering gender bias.

Qualitative Example: English to Dutch We
conduct a qualitative analysis of biased MT outputs,
showing how attributions can help develop hypothe-
ses about models’ behavior. Table 3 (top) shows
the I × G attributions for English-to-Dutch trans-
lation using M2M-100 (418M, Fan et al., 2021).
The model mistranslates the pronoun “her” into
the masculine form zijn (his). We find that the
wrongly translated pronoun exhibits high probabil-
ity but does not associate substantial importance
to the source occupation term “teacher”. Instead,
we find good relative importance for the preceding
word and leraar (male teacher). This suggests a
strong prior bias for masculine variants, shown by
the pronoun zijn and the noun leraar, as a possible
cause for this mistranslation. When considering the
contrastive example obtained by swapping leraar
with its gender-neutral variant leerkracht (Table 3,
bottom), we find increased importance of the target
occupation in determining the correctly-gendered
target pronoun haar (her). Our results highlight
the tendency of MT models to attend inputs se-
quentially rather than relying on context, hinting
at the known benefits of context-aware models for
pronoun translation (Voita et al., 2018).

11An example is provided in Appendix C.



Source De leraar verliest zijn baan

The 0.10 0.08 0.04 0.03 0.02
teacher 0.11 0.20 0.06 0.03 0.05
loses 0.11 0.09 0.25 0.07 0.07
her 0.15 0.09 0.10 0.21 0.07
job 0.10 0.08 0.08 0.10 0.24

Target De leraar verliest zijn baan

De 0.23 0.05 0.06 0.04
leraar 0.17 0.13 0.03
verliest 0.18 0.08
zijn 0.26

p(yt) 0.69 0.28 0.35 0.65 0.29

Target De → ◦ verliest haar baan

De -0.07 -0.01 0.01 -0.01
→ ◦ 0.09 0.18 0.02

verliest -0.03 -0.00
haar 0.00

∆p(yt) 0.00 -0.23 0.13 0.20 0.00

Table 3: Top: Example of pronoun gender mistransla-
tion with M2M-100. Bottom: Target attribution differ-
ence when swapping the target noun gender ( → ◦)
from leraar (male) to leerkracht (gender-neutral).

5.2 Identifying Factual Knowledge in GPT-2
Layers with Contrastive Attribution

For our second case study, we experiment with a
layer attribution method to locate factual knowl-
edge encoded in the layers of GPT-2 1.5B (Radford
et al., 2019). Specifically, we aim to reproduce the
results of Meng et al. (2022), showing the influence
of intermediate layers in mediating the recall of fac-
tual statements such as ‘The Eiffel Tower is located
in the city of → Paris’. Meng et al. (2022) estimate
the effect of network components in the prediction
of factual statements as the difference in probabil-
ity of a correct target (e.g. Paris), given a corrupted
subject embedding (e.g. for Eiffel Tower), before
and after restoring clean activations for some input
tokens at different layers of the network. Apart
from the obvious importance of final token states
in terminal layers, their results highlight the pres-
ence of an early site associated with the last subject
token playing an important role in recalling the net-
work’s factual knowledge (Figure 3, top). To verify
such results, we adopt the contrastive attribution
paradigm proposed by Yin and Neubig (2022) to
attribute minimal pairs of correct and wrong fac-
tual targets (e.g. Paris vs. Rome for the example
above), using Layer Gradient × Activation, a layer-
specific variant of Input × Gradient, to propagate
gradients up to intermediate network activations
instead of reaching input tokens. The resulting at-
tribution scores hence answer the question “How
important are layer L activations for prefix token t
in predicting the correct factual target over a wrong

0.05

0.00

0.10

0.15

AIE

Figure 3: Top: Estimated causal importance of GPT-
2 XL layers for predicting factual associations, as re-
ported by Meng et al. (2022). Bottom: Average GPT-2
XL Gradient × Layer Activation scores obtained with
Inseq using contrastive factual pairs as attribution tar-
gets.

one?”. We compute attribution scores for 1000
statements taken from the Counterfact Statement
dataset (Meng et al., 2022) and present averaged
results in Figure 3 (bottom).12 Our results closely
match those of the original authors, providing fur-
ther evidence of how attribution methods can be
used to identify salient network components and
guide model editing, as shown by Dai et al. (2022).

6 Conclusion

We introduced Inseq, an easy-to-use but versatile
toolkit for interpreting sequence generation models.
With many libraries focused on the study of clas-
sification models, Inseq is the first tool explicitly
aimed analyzing systems for tasks such as machine
translation, code synthesis and dialogue generation.
Researchers can easily add interpretability evalu-
ations to their studies using our library, with the
goal of identifying unwanted biases and interest-
ing phenomena in their models’ predictions. We
plan to provide continued support and explore fur-
ther developments for Inseq,13 with the ultimate
goal of providing simple and centralized access to
a comprehensive set of thoroughly-tested imple-
mentations for the interpretability community. In
conclusion, we believe that Inseq has the poten-
tial to drive real progress in explainable language
generation by accelerating the development of new
analysis techniques, and we encourage members of

12Figure 6 of Appendix D presents some examples.
13Planned developments available in Appendix F.



this research field to join our development efforts.
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Reliability of Attribution Methods The plausi-
bility and faithfulness of attribution methods sup-
ported by Inseq is an active matter of debate in
the research community, without clear-cut guaran-
tees in identifying specific model behaviors, and
prone to users’ own biases (Jacovi and Goldberg,
2020). We emphasize that explanations produced
with Inseq should not be adopted in high-risk and
user-facing contexts. We encourage Inseq users to
critically approach results obtained from our toolkit
and validate their effectiveness on a case-by-case
basis.

Technical Limitations and Contributions In-
seq currently does not provide explicit ways of eval-
uating the quality of produced attributions. More-
over, many recent methods still need to be included
due to the rapid pace of interpretability research
in natural language processing and the small size
of our development team. To foster an open and
inclusive development environment, we encourage
all interested users and new methods’ authors to
contribute to the development of Inseq by adding
their interpretability methods of interest.

Gender Bias Case Study The case study of Sec-
tion 5.1 assumes a simplified concept of binary
gender to allow for a more straightforward evalu-
ation of the results. However, we encourage other
researchers to consider non-binary gender and dif-
ferent marginalized groups in future bias studies.
We acknowledge that measuring bias in language
models is complex and that care must be taken
in its conceptualization and validation (Blodgett
et al., 2020; van der Wal et al., 2022; Bommasani

and Liang, 2022), even more so in multilingual set-
tings (Talat et al., 2022). For this reason, we do not
claim to provide a definite bias analysis of these
MT models – especially in light of the aforemen-
tioned attributions’ faithfulness issues. The study’s
primary purpose is to demonstrate how attribution
methods could be used for exploring social biases
in sequence-to-sequence models and showcase the
related Inseq functionalities.
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and conducted the case study of Section 5.2.

Nils Feldhus Developed perturbation-based
methods and contributed to the writing and
validation of the case study of Section 5.2.

Ludwig Sickert Developed the attention-based
attribution method and contributed to the writing
and revision of the paper.

Oskar van der Wal Conducted the experiments
in the gender bias case study of Section 5.1 and
contributed to the writing and revision of the paper.

B Additional Design Details

Figure 4 presents the Inseq hierarchy of models
and attribution methods. The model-method con-
nection is established to enable out-of-the-box attri-
bution with the selected method. The presence
of framework-specific and architecture-specific
classes enables the straightforward extension of
Inseq to new modeling backbones and network ar-
chitectures.

C Example of Pair Aggregation for
Contrastive MT Comparison

An example of gender translation pair using the
synthetic template of Section 5.1 is show in Fig-
ure 5, highlighting a large drop in probability when
switching the gendered pronoun for highly gender-
stereotypical professions, similar to Table 2 results.

D Example of Quantized Contrastive
Attribution of Factual Knowledge

Figure 6 presents code used in Section 5.2 case
study, with visualized attribution scores for con-
trastive examples in the evaluated dataset.

E Gender Bias in Machine Translation

Table 4 shows the list of occupation terms used
in the gender bias case study (Section 5.1). We
correlate the ranking of occupations based on
the selected attribution metrics and probabilities
with U.S. labor statistics14 (bls_pct_female col-
umn). Table 3 example was taken from the BUG
dataset (Levy et al., 2021).

14https://github.com/rudinger/winogender-schemas

Turkish English Turkish English

teknisyen technician memur officer
muhasebeci accountant patolog pathologist
süpervizör supervisor öğretmen teacher
mühendis engineer avukat lawyer
işçi worker planlamacı planner
eğitimci educator yönetici practitioner
katip clerk tesisatçı plumber
danışman consultant eğitmen instructor
müfettiş inspector cerrah surgeon
tamirci mechanic veteriner veterinarian
müdür manager kimyager chemist
terapist therapist makinist machinist
resepsiyonist receptionist mimar architect
kütüphaneci librarian kuaför hairdresser
ressam painter fırıncı baker
eczacı pharmacist programlamacı programmer
kapıcı janitor itfaiyeci firefighter
psikolog psychologist bilim insanı scientist
doktor physician sevk memuru dispatcher
marangoz carpenter kasiyer cashier
hemşire nurse komisyoncu broker
araştırmacı investigator şef chef
barmen bartender doktor doctor
uzman specialist sekreter secretary
elektrikçi electrician

Table 4: List of the 49 Turkish occupation terms and
their English translations used in the gender bias case
study (Section 5.1).

Method Source

G Guided Integrated Gradients Kapishnikov et al.
LRP Bach et al.

I

Attention Rollout & Flow Abnar and Zuidema
Attention × Vector Norm Kobayashi et al.
Attention × Attn. Block Norm Kobayashi et al.
GlobEnc Modarressi et al.
ALTI+ Ferrando et al.
Attention × Trans. Block Norm Kobayashi et al.

P
Information Bottlenecks Jiang et al.
Value Zeroing Mohebbi et al.
Input Reduction Feng et al.

Table 5: Gradient-based (G), internals-based (I) and
perturbation-based (P) attribution methods for which
we plan to include support in future Inseq releases.

F Planned Developments and Next Steps

We plan to continuously expand the core function-
ality of the library by adding support for a wider
range of attribution methods. Table 5 shows a
subset of methods we consider including in fu-
ture releases. Besides new methods, we also in-
tend to significantly improve result visualization
using an interactive interface backed by Gradio
Blocks (Abid et al., 2019), work on interoperability
features together with ferret developers (Attana-
sio et al., 2022) to simplify the evaluation of se-
quence attributions, and include instance attribu-
tion approaches (Koh and Liang, 2017), focusing
specifically on variants optimized for sequential
tasks (Lam et al., 2022; Jain et al., 2022).

https://github.com/rudinger/winogender-schemas/blob/master/data/occupations-stats.tsv
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Figure 4: Inseq models and attribution methods. Concrete classes combine abstract framework and
architecture attribution models classes, and are derived from abstract attribution methods’ categories .

import inseq
from inseq.data.aggregator import AggregatorPipeline, SubwordAggregator,

SequenceAttributionAggregator, PairAggregator

# Load the TR-EN translation model and attach the IG method
model = inseq.load_model("Helsinki-NLP/opus-mt-tr-en", "integrated_gradients")

# Batch attribute with forced decoding. Return probabilities, no target attr.
out = model.attribute(

["O bir hemşire", "O bir hemşire"],
["She is a nurse.","He is a nurse."],
step_scores=["probability"],
# The following attributes are specific to the IG method
internal_batch_size=100,
n_steps=300

)

# Aggregation pipeline composed by two steps:
# 1. Aggregate subword tokens across all dimensions: [l1, l2, dim] -> [l3, l4, dim]
# 2. Aggregate hidden size to produce token-level attributions: [l1, l2, dim] -> [l1, l2]
subw_aggregator = AggregatorPipeline([SubwordAggregator, SequenceAttributionAggregator])

# Aggregate attributions using the pipeline
masculine = out.sequence_attributions[0].aggregate(aggregator=subw_aggregator)
feminine = out.sequence_attributions[1].aggregate(aggregator=subw_aggregator)

# Take the diff of the scores of the two attributions, show it and return the HTML
html = masculine.show(aggregator=PairAggregator, paired_attr=feminine, return_html=True)

Figure 5: Comparing attributions for a synthetic Turkish-to-English translation example with underspecified source
pronoun gender using a MarianMT Turkish-to-English translation model (Tiedemann, 2020). Values in the visual-
ized attribution matrix show a 57.9% lower probability of producing the masculine pronoun in the translation and
a relative increase of 21.8% in the importance of the Turkish occupation term compared to the feminine pronoun
case.



import inseq
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer

# The model is loaded in 8-bit on available GPUs
model = AutoModelForCausalLM.from_pretrained("gpt2-xl", load_in_8bit=True, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("gpt2-xl")
# Counterfact datasets used by Meng et al. (2022)
data = load_dataset("NeelNanda/counterfact-tracing")["train"]

# GPT-2 XL is a Transformer model with 48 layers
for layer in range(48):

attrib_model = inseq.load_model(
model,
"layer_gradient_x_activation",
tokenizer="gpt2-xl",
target_layer=model.transformer.h[layer].mlp,

)
for i, ex in data:

# e.g. "The capital of Second Spanish Republic is"
prompt = ex["relation"].format{ex["subject"]}
# e.g. "The capital of Second Spanish Republic is Madrid"
true_answer = prompt + ex["target_true"]
# e.g. "The capital of Second Spanish Republic is Paris"
false_answer = prompt + ex["target_false"]
contrast = attrib_model.encode(false_answer)
# Contrastive attribution of true vs false answer
out = attrib_model.attribute(

prompt,
true_answer,
attributed_fn="contrast_logits_diff",
contrast_ids=contrast.input_ids,
contrast_attention_mask=contrast.attention_mask,
step_scores=["contrast_logits_diff"],
show_progress=False,

)
# Aggregation and plotting omitted for brevity
...

Figure 6: Top: Example code to contrastively attribute factual statements from the Counterfact Tracing dataset,
using Layer Gradient× Activation to compute importance scores until intermediate layers of the GPT2-XL model.
Bottom: Visualization of contrastive attribution scores on a subset of layers (23 to 48) for some selected dataset
examples. Plot labels show the contrastive pairs of false→ true answer used as attribution targets.


