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Abstract

In this paper, we study a class of dynamic networks called Absolute Laplacian Flows under

small perturbations. Absolute Laplacian Flows are a type of nonlinear generalisation of classi-

cal linear Laplacian dynamics. Our main goal is to describe the behaviour of the system near

the consensus space. The nonlinearity of the studied system gives rise to potentially intricate

structures of equilibria that can intersect the consensus space, creating singularities. For the

unperturbed case, we characterise the sets of equilibria by exploiting the symmetries under

group transformations of the nonlinear vector field. Under perturbations, Absolute Laplacian

Flows behave as a slow-fast system. Thus, we analyse the slow-fast dynamics near the sin-

gularities on the consensus space. In particular, we prove a theorem that provides existence

conditions for a maximal canard, that coincides with the consensus subspace, by using the

symmetry properties of the network. Furthermore, we provide a linear approximation of the

intersecting branches of equilibria at the singular points; as a consequence, we show that,

generically, the singularities on the consensus space turn out to be transcritical.

Keywords: Laplacian dynamics, symmetries, consensus, singular perturbations.
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1 Introduction

Laplacian dynamical systems are among the most renowned subjects in dynamic networks

science. Indeed, given a graph structure, a linear Laplacian system, ẋ = −Lx, where L is the

graph Laplacian, describes a (linear) diffusion process on a network. In fact, the Laplacian

matrix plays the role of discrete counterpart of the Laplacian differential operator, ∆, present

for example in the heat equation, u̇ = ∆u. Unfolding the equations for a linear Laplacian

system, we obtain a set of ordinary differential equations that componentwise read as ẋi =∑
j aij(xj − xi), where xi represents the state of the ith-agent, or node of the network, and

aij encodes the graph structure and the ‘strength’ of interaction. A lot of effort has been

made to precisely analyse the behaviour of Laplacian systems, especially for the linear case

[44, 43, 36]. More recently, also nonlinear extensions of the Laplacian dynamics are being

explored [42, 3, 1, 24, 25]. The potential extensions from a linear Laplacian system to a

nonlinear one are various; in the present paper we aim to look at a class of nonlinear Laplacian

systems called Absolute Laplacian Flows (ALFs) [42, 3], defined by

ẋ = −LF (x) + εH(x,Λ), (1)

where F (x) is a nonlinear vector field, 0 < ε� 1, and H(x,Λ) is a perturbation; more precise

definitions follow in the next sections.

An ALF can be regarded as a discrete analogue of an extended system’s diffusion process,

namely the Fokker-Planck Equation (FPE) [37]. Let us recall that for an extended system on

the real line, the (one-dimensional) FPE reads

∂

∂t
u(x, t) =

∂2

∂x2
(D(x, t)u(x, t))− ∂

∂x
(µ(x, t)u(x, t)) , (2)

where u : R×R+ → R, D(x, t) is called the diffusion coefficient, and µ(x, t) the drift coefficient.

We notice that the term F (x) in (1) can be written as F (x) =: K(x)x, where K(x) is a diagonal

matrix, and the precise structure follows from the definition of the components of the vector

field F (x), see (4) below. Then, one can recognise a correspondence between FPE and a
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perturbed ALF, i.e.,

∂2

∂x2
(D(x, t)u(x, t)) 7→ −LF (x), − ∂

∂x
(µ(x, t)u(x, t)) 7→ εH(x,Λ). (3)

So, the first term of (1), −LF (x), can be interpreted as a nonlinear diffusion process on a

network, while the perturbation εH(x,Λ) describes a small drift.

The above is just one possible interpretation of a perturbed Absolute Laplacian Flow.

From another perspective, it is possible to recognise a connection with directed graphs with

state-dependent weights. If we consider the rewriting F (x) =: K(x)x, we can define a state-

dependent Laplacian, LK(x) := LK(x). The matrix LK(x) can be seen as the Laplacian of a

directed graph under the definition of out-degree Laplacian [2, 35]. Then, the diffusion term

in (1) is given by −LK(x)x, retrieving a form similar to the linear Laplacian dynamics but

for directed graphs with state-dependent weights. Let us notice that the form of the state-

dependent weights is constrained by the structure of the matrix K(x), and so in turn by the

definition of F (x).

Within the context of Laplacian dynamics the diffusion of ‘information’ among the agents

can lead the system to reach a common state, referred to as consensus. As such, Laplacian

systems find a remarkable application in consensus problems [36, 39, 12], which have been

extensively studied for their importance in several branches of science, e.g., synchronisation,

opinion dynamics, coordination of robots, rendezvous problems, among many others.

Recapping, the models we are going to study (1), called ALFs, are relevant in the study

of, for instance, nonlinear diffusion processes on networks, or state-dependent directed graphs.

We consider ALFs subject to a small perturbation that, as we have argued, acts as a small

drift in the undergoing nonlinear diffusion.

Let us now delineate the main contributions of the paper. Notice that it is quite natural

to consider graphs with positive weights, since, for example, they can represent the strength of

the interaction among the agents of the system. So, first we prove topological equivalence near

consensus between (unperturbed) ALFs with arbitrary positive weights and with unit weights

(proposition 5). Next, recall that linear Laplacian systems have well-known, simple, sets of

equilibria; but that is not the case for the ALFs we consider. Thus, we then characterise new

equilibria emerging from the invariance of F (x) under group transformations (proposition 6).
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Later, we consider the perturbation problem (1), which turns out to be a singular perturbation

problem [46]. Due to the more complicated structure of the equilibria, and the presence of

multiple timescales, we study the existence of canard solutions (theorem 2); and we characterize

the local geometry of the consensus space at the singular points (proposition 17). In particular,

such results show that under certain conditions related to the preservation of symmetry, ALFs

can only have transcritical singularities on the consensus space, and thus the possible canard

solutions are induced by such singularities. Along this paper, we make a strong connection

between dynamic behaviour and symmetry properties of the networked system (1). In that

regard, the cell-network formalism [19, 21] is a prominent relevant framework. Indeed, in

sections 3 and 7, we discuss the connections between ALFs and the cell-network formalism.

The paper is structured as follows: in section 2 we define the (unperturbed) ALF, and we

exploit some general properties. Section 3 is dedicated to understanding the role of symmetries

in ALFs. Later, in section 4 we introduce a perturbation term leading to (1). As we will see,

the perturbations, in general, give rise to a slow-fast behaviour of the system. A brief summary

of the main ideas of singular perturbation theory useful for the main analysis can be found in

appendix A; while the slow-fast consensus dynamics of ALFs with complete graph structure is

studied in section 5. In order to highlight our results, in section 6, we show some numerical

examples. A brief discussion and the conclusions are drawn in section 7.

2 Definitions and preliminaries

From a mathematical point of view, a network structure can be described by a graph, G =

{V, E}, which consists of a finite set of nodes (or vertices) V = {1, ..., n}, and a set of edges

eij ∈ E , where each eij represents a connection between the node j and i [18]. Furthermore, if we

assign a set of weights W to the graph G, then we obtain a weighted graph, Gw = {V, E ,W}.

We assume (unless otherwise stated) that the weights, wij ∈ W, are positive reals. Such a

choice is natural both for the algebraic properties that follow from it [4], and for the modelling

perspective, since often the weights represent some measure of distance, or strengths of the

coupling [33]. In other contexts negative weights are also considered [41], for example in models

involving inhibition, or antagonism; in the present paper we do not consider such situations.
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The edges and the weights are in one-to-one correspondence, in fact, we assign to each edge eij

a weight wij . If the network is directed then in general wij 6= wji, otherwise for an undirected

network we have wij = wji.

Definition 1. A simple graph is an undirected graph without self-loops or multiple edges.

Unless otherwise stated, we consider simple graphs. For weighted graphs, we assume a

simple unweighted structure, i.e., Gw \W is a simple graph. Moreover, we make no nomencla-

ture distinction between graphs and weighted graphs with unit weights, because the algebraic

structures in such cases are exactly the same.

We now recall a few well-known concepts of graph theory [33, 6, 18]. A path is a sequence

of edges that joins a sequence of distinct vertices. A connected component of a graph is a

sub-graph such that every pair of nodes is connected by a path. A relevant class of graphs is

given by the complete graphs.

Definition 2. A complete graph with n nodes, denoted by Kn, is a graph such that for all pair

of nodes there is an edge connecting them, i.e., ∀i, j ∈ V ∃ eij ∈ E.

Given a graph it is possible to define some algebraic structures on it, we recall here the ones

that are useful for the purpose of the paper.

• The adjacency matrix, A, of a graph is the n × n matrix with components Aij = wij if

eij ∈ E , and Aij = 0 if eij /∈ E .

• The degree matrix, ∆, of a graph is the n×n diagonal matrix with (diagonal) components

∆ii =
∑
j wij .

• The Laplacian matrix, L, of a graph is the n× n matrix defined by L := ∆−A.

For simple graphs, let us recall that the Laplacian matrix, L, is symmetric, degenerate and

semi-positive definite; moreover, the following proposition holds [4].

Proposition 1. The algebraic multiplicity of the 0 eigenvalue of L, µa(0), is equal to the

number of connected components of the graph. Furthermore, the vector 1 = (1, ..., 1)ᵀ is an

eigenvector of L with eigenvalue 0, i.e., 1 ∈ ker(L).

We now introduce the class of systems we are going to investigate in the present paper. Let
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us assign to each node of a graph, i ∈ V, a state xi ∈ R and a function

fi : R→ R

xi 7→ fi(xi),

(4)

which we call response function. So, given the set of nodes V, we obtain a state vector x =

(x1, ..., xn)ᵀ, and a response vector field F (x) = (f1(x1), ..., fn(xn))ᵀ. An Absolute Laplacian

Flow [42, 3] is defined by the equation

ẋ = −LF (x). (5)

Moreover, we say that an ALF is homogeneous if the response functions satisfy the equalities

f1 = · · · = fn. (6)

Remark 1. Due to proposition 1, the Laplacian decomposes in a direct sum L = L(1) ⊕ · · · ⊕

L(µa(0)), and therefore an ALF decomposes in µa(0) indipendent systems. So, in general, we

consider connected graphs.

Note that if we choose the response vector field to be the identity, i.e., F (x) = x, then (5)

becomes the widely studied (linear) Laplacian dynamics ẋ = −Lx, [44, 43, 36]. Indeed, the

ALF is a direct nonlinear generalisation of the linear Laplacian dynamics [42, 3, 1, 24]. ALFs

have received considerably less attention than the linear Laplacian dynamics, although they

still have strong relations with consensus problems. For example, ALFs have been considered

as models for nonlinear communications protocols in [47, 34].

Our objective is to exploit the symmetry properties of ALFs, and characterise the near

consensus behaviour for such systems under small perturbations.

2.1 General properties

ALFs have some generic properties deriving from the symmetric and degenerate structure of

the Laplacian.
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Proposition 2. ALFs are invariant under the transformation of the response vector field

F (x) 7→ F (x) + h(x)1, (7)

where h(x) : Rn → R is a k-differentiable function, k ≥ 1.

Proof. Let F (h)(x) = F (x) + h(x)1. Since 1 ∈ ker(L), we have LF (h)(x) = LF (x).

As a consequence of proposition 2 we have that the response vector field is not unique, in

fact there exist an infinite set of vector fields leading to the same dynamics. This freedom can

be used in practice to choose the “simplest” response field. Such property reminds in some

way a gauge freedom [30], where one can choose among a class of response fields F (h)(x) =

F (x) + h(x)1 without affecting the evolution equations (5).

Another important property of ALFs is the existence of a constant of motion.

Proposition 3. Given an ALF (5), there exists a constant of motion k,

k = 〈1,x〉, (8)

where 〈·, ·〉 is the usual Euclidean scalar product in Rn.

Proof. The time evolution of k is given by k̇ = 〈1, ẋ〉. Then we have 〈1, ẋ〉 = −1ᵀLF (x) =

−(L1)ᵀF (x) = 0. So, k is a constant (in time) value.

Let us notice that the constant of motion k is related to the arithmetic mean of the states,

k = n〈x〉, where 〈x〉 := 〈1,x〉/n. So, we can interpret the presence of the constant of motion k

as a conservation law for 〈x〉. More generally, every quantity of the form ck, with c a constant,

is a constant of motion for an ALF.

Proposition 4. The set of equilibria of an ALF is given by

E = {x ∈ Rn | f1(x1) = · · · = fn(xn)}. (9)

Proof. In order to have an equilibrium for (5) we need F (x) ∈ ker(L), which means f1(x1) =

· · · = fn(xn), implying in turn that x is an equilibrium if and only if x ∈ E.
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Corollary 1. Given a homogeneous ALF the set

C = {x ∈ Rn | x1 = · · · = xn} (10)

is a subset of equilibria of the system, i.e., C ⊆ E.

The set C is the so-called consensus space [25, 36, 39]. Notice that for heterogeneous ALFs

we can expect clustering, for example, if f1 = f2 = · · · = fn/2 6= fn/2+1 = · · · = fn, then

two clusters of equilibria arise. The present work is mainly concerned with homogeneous ALF,

for which we have a global consensus space. Although this assumption might seem restrictive,

we will see that the nonlinearity of the response function can lead to nontrivial structures of

equilibria.

As we already mentioned, one of our goals is to characterise the behaviour near the consensus

space (10). Our characterisation aims to be qualitative, in the sense of topological equivalence

[22, 48].

Definition 3. Two vector fields, X,Y , are said to be topologically equivalent if there exists a

homeomorphism which takes orbits of X to orbits of Y , preserving directions but not necessarily

time parametrisation.

It is known that for linear Laplacian dynamics, systems associated with weighted graphs are

topologically equivalent to the corresponding unweighted ones [7]. We show, for the nonlinear

case, that weighted homogeneous ALFs are topologically equivalent to simple homogeneous

ALFs near the consensus space.

Proposition 5. Let the response function f be fixed. Then, in a neighbourhood of the consensus

space, a homogeneous ALF with graph structure Gw is topologically equivalent to an ALF with

simple graph structure G.

Proof. Let Lw be the Laplacian of a weighted graph Gw. Then the Jacobian of the associated

homogeneous ALF on the consensus space is given by −LwDF (x∗), where DF (x∗) is the

Jacobian of F (x) evaluated at C. By setting all the weights to one on Gw we obtain the simple

graph G. So, for the homogeneous ALF with unweighted graph G the Jacobian is −LDF (x∗),

where L is the Laplacian matrix associated to G.
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Let us recall that the Laplacian matrix is a semi-positive definite matrix [4], which means

that its eigenvalues are all greater than or equal to zero, moreover such property holds for

both simple graphs and positive-weighted graphs. Then, the signs of the eigenvalues of Lw

and L are the same, compactly we write sgn(spec(Lw)) = sgn(spec(L)) ≥ 0. Now, since for

x∗ ∈ C it holds that x∗1 = · · · = x∗n := x∗, we have DF (x∗) = Id dxf(x∗), where dxf is a

short notation for the derivative of f with respect to x, and Id is the identity matrix. So,

the eigenvalues of the ALFs weighted and unweighted, at the consensus space C, are given by

dxf(x∗) spec(Lw) and dxf(x∗)spec(L) respectively. Let us first consider dxf(x∗) 6= 0. Since

we are assuming connectedness, the Laplacians have one zero eigenvalue associated with the

eigenvector 1 (independently of the weights), see proposition 1. The eigendirection associated

with the zero eigenvalue points along the consensus space, which is a line of equilibria. So,

along the nonhyperbolic eigendirection 1 the two systems are equivalent. Therefore considering

a Lyapunov–Schmidt reduction, along the other directions the topological equivalence follows

form Hartman-Grobman theorem [22]. It is clear that when dxf(x∗) = 0 the nonhyperbolic

nature is entirely determined by dxf(x∗), which is a common factor of the two systems.

Having in mind proposition 5, from now on we assume that homogeneous ALFs have all

weights equal to one, i.e., they are defined by a simple (unweighted) graph G. In general, we

also assume homogeneity of the response vector field without referring to it, but mentioning

only the graph structure.

The results we stated until this point rely mainly on the algebraic properties of the Lapla-

cian. For simple graphs it is particularly useful to exploit the symmetry properties induced by

the graph, which in turn can provide insightful information on the ALF.

3 Symmetries

Before introducing the role of symmetries in ALFs, it is worth recalling some basic notions

about group theory [38, 17].

Definition 4. Let Γ be a set and ? : Γ → Γ a binary operation. A group is a couple (Γ, ?)

satisfying the following properties

1. Associativity: (γi ? γj) ? γk = γi ? (γj ? γk), ∀γi, γj , γk ∈ Γ.
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2. Identity: ∃ e ∈ Γ such that e ? γ = γ ? e = γ, ∀γ ∈ Γ.

3. Inverse: ∀γ ∈ Γ, ∃ γ−1 ∈ Γ such that γ−1 ? γ = γ ? γ−1 = e.

The operation ? is called group operation. Note that, closure under the group operation

follows from the definition of the operation itself. Unless strictly necessary, we refer to a group

just by the set, e.g., Γ, implicitly considering it equipped with a group operation; we also omit

the group operation symbol, e.g., γiγj = γi ? γj .

Definition 5. A group is said to be finite if the set Γ has a finite number of elements. The

order of a finite group, Ord(Γ), is the number of elements in the group.

Given a vector space, a representation, ψ, is a homomorphism from the group to the general

linear group of the vector space. Since the states, x, of an ALF belong to Rn, we are interested

on how Γ acts on Rn, therefore we consider representations ψ : Γ → GL(Rn). To avoid new

unnecessary notation, we omit to explicitly write the representation. It is implicit that when

we write a group element applied to a vector we are considering the representation on the

appropriate vector space, e.g., γx = ψ(γ)x.

Definition 6. Given two groups Γ(1), Γ(2), the direct product Γ(1) × Γ(2) is a group with set

of elements given by the Cartesian product

Γ(1) × Γ(2) =
{

(γ(1), γ(2)) | γ(1) ∈ Γ(1), γ(2) ∈ Γ(2)
}
, (11)

and operation defined as follows

(γ
(1)
i , γ

(2)
j )(γ

(1)
k , γ

(2)
l ) = (γ

(1)
i γ

(1)
k , γ

(2)
j γ

(2)
l ), (12)

∀γ(1)
i,k ∈ Γ(1) and ∀γ(2)

j,l ∈ Γ(2).

It follows that the direct product can be extended to an arbitrary number of groups, Γ(1)×

Γ(2) × · · · × Γ(n). Another important concept is the one of fixed-point space, i.e., the set of

points that are kept fixed by the action of the group.

Definition 7. Let Σ ⊆ Γ be a subgroup of Γ. The fixed-point space (under the action in Rn)

of the group Σ is denoted by Fix(Σ) and it is given by

Fix(Σ) = {x ∈ Rn | σx = x, ∀σ ∈ Σ} . (13)
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A direct interplay between graph theory and group theory is given by the graph’s automor-

phism group. For graphs the automorphism group is a subgroup of the (finite dimensional)

symmetric group Sn [40], i.e., the group of permutations of n symbols.

Definition 8. Given a (simple) graph G, the automorphism group, Aut(G), is the group of

permutations which preserves the adjacency structure of the vertices of G.

Remark 2. From definition 8 follows that a graph G has Aut(G) = Γ, with Γ ⊆ Sn, if and

only if [A, σ], ∀σ ∈ Γ, where [·, ·] represent the commutator of matrices, i.e., [A, σ] := Aσ−σA.

Consequently, the same statement holds if we substitute the adjacency matrix with the Laplacian

matrix.

In the following sections, we are going to look at how the group properties of response

functions and graphs affect the equilibria, and the dynamics of ALFs.

3.1 Equilibria of homogeneous ALFs

We have proven that the consensus space is always a subset of equilibria for a homogeneous

ALF. We now show that the group transformations leaving the response function invariant

induce new equilibria from the consensus space.

Definition 9. Let Γ be a group1. A function f is called Γ-invariant if

f ◦ Γ = f, (14)

where ◦ denotes the composition of maps.

Proposition 6. Let f be a Γ-invariant response function. Then, the group Γn := Γ× · · · × Γ︸ ︷︷ ︸
n-times

maps the consensus space C to equilibria, i.e.,

Γn(C) ⊆ E. (15)

Proof. Let us consider −LF (Γnx
∗), where x∗ ∈ C. Notice that Γx∗ 6= x∗ in general,

but thanks to homogeneity of the ALF and invariance of the response function, we have

1Notice that this is not related to Aut(G), we use the same symbol Γ for different groups in different context.
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−LF (Γnx
∗) = −LF (x∗) = 0, where in the last equality we used the fact that the consensus

space is an equilibrium. Then we have that Γn(C) is also a set of equilibria for the system.

Remark 3. From Proposition 6 it follows that any subgroup of Γn maps C to equilibria.

The invariance of the response function leads to a richer structure of the equilibria, similarly

to what happens for equivariant bifurcations [20, 9]. Such a richer structure can give rise, for

example, to bipartite consensus [49, 3, 31], where the agents converge to two separate clusters

of consensus. A simple exemplification of appearance of bipartite consensus in ALFs is given

by considering the response function f(x) = x2. It is clear that the symmetry group for such a

function is Z2, in particular we are considering the representation {1,−1}. From Proposition

6 we have that the set of equilibria consists of all the possible combinations ±x1 = ±x2 =

· · · = ±xn, and therefore we have bipartite consensus among the potential equilibria for the

system. Let us notice that the linear set-up for bipartite consensus requires negative weights

on the network structure in order to obtain such result, while for ALFs bipartite consensus

follows form nonlinearity, and symmetry properties of the response function. It is interesting

to notice that the lines of bipartite consensus, ±x1 = ±x2 = · · · = ±xn, arising from generic

even response functions are saddles; this property follows by straightforward computations of

the Jacobian.

3.2 Equivariant ALFs

The concept of symmetry, in dynamical systems theory, refers to the fact that there exists a

group mapping solutions to solutions. When a vector field is given, such a concept can be

translated in terms of equivariance of the vector field.

Definition 10. Let Γ be a group, and X a vector field. X is called Γ-equivariant if

X ◦ Γ = Γ ◦X, (16)

and γ ∈ Γ is called a symmetry of the vector field.

Remark 4. It is straightforward to see that if a system is Γ-equivariant, then Γ maps solutions

to solutions.
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A solution of a dynamical system is a simple example of an invariant set under the flow.

Invariant sets, in general, are extremely relevant in the study of ODEs, since they allow to

reduce the analysis to potentially simpler equations. We recall here the general definition of

invariant set under the flow induced by a vector field. Later we state the interplay between

symmetries and invariant sets.

Definition 11. Let φ be the flow generated by a vector field on Rn. A set M ⊂ Rn is said

to be invariant (respectively positively/negatively invariant) under the flow if for every x ∈M,

φt(x) ∈M, ∀t ∈ R (respectively ∀t ∈ R+/R−).

In order to keep a compact notation, we call a set invariant under the flow a φ-invariant set.

From equivariance of the vector field we can immediately infer the existence of a φ-invariant

set.

Proposition 7. The fixed-point space, Fix(Γ), is a φ-invariant set for Γ-equivariant systems

[20].

Since we are considering systems with a network structure, the symmetry group associated

to the equivariance properties will be a subgroup of the symmetric group. Moreover, if an

ALF is Sn ⊇ Γ-equivariant it follows that it is also equivariant under any subgroup Σ ⊂ Γ.

Therefore, also Fix(Σ) is a φ-invariant set, and Fix(Γ) ⊆ Fix(Σ). From such considerations, if

we are considering a Γ-equivariant ALF, the analysis of the dynamics can be reduced to the

fixed-point spaces Fix(Σ), for all Σ subgroups of Γ.

Let us now consider the particular case of homogeneous ALFs with a complete graph struc-

ture, we shortly call them Kn-ALFs. We notice that Aut(Kn) = Sn. As a consequence, we

show that Kn-ALFs are Sn-equivariant. Considering that the phase space of a Kn-ALF is Rn,

when acting on a state of a Kn-ALF we use the permutation representation of Sn in Rn. An

element of the permutation representation is called permutation matrix.

Definition 12. A permutation matrix σ ∈ Sn is an n× n matrix with components

σij =


1 if σ permutes the i-th element with the j-th element ,

0 otherwise.

(17)
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Proposition 8. Let L be the Laplacian matrix of a Kn graph. Then [L, σ] = 0 for all σ ∈ Sn,

where [·, ·] is the commutator.

Proof. The statement follows from the graph completeness and edges indistinguishability.

Equivalently, thanks to orthogonality of permutations, proposition 8 can be written as

σᵀLσ = L; in order words, the Laplacian is invariant under conjugacy by permutations.

Proposition 9. Kn-ALFs are Sn-equivariant.

Proof. We need to prove that LF (σx) = σLF (x), for all σ ∈ Sn. Let us start by considering

σLF (x). Thanks to proposition 8 we have that σLF (x) = LσF (x). Next, the permutation

applied to the vector field F (x) = (f(x1), . . . , f(xn))ᵀ exchanges the order of the components;

since the functions are indistinguishable, we have that σF (x) = F (σx). Therefore, σLF (x) =

LF (σx), which proves the statement.

Remark 5. In virtue of homogeneity of the response functions, the action of Sn on the (non-

linear) vector field F (x) is linear.

Proposition 10. The fixed-point space of the symmetric group is the consensus space, i.e.,

Fix(Sn) = C.

Proof. We proceed by contradiction. Suppose that x /∈ C, and x ∈ Fix(Sn). From definition

7, we have xσ(i) = xi, i = 1, . . . , n, ∀σ ∈ Sn. From the fact that Ord(Sn) = n! ≥ n, we obtain

x1 = · · · = xn, i.e., x ∈ C which is a contradiction.

We established a link between Kn-ALFs and equivariant systems. Let us notice that, if we

have a dynamical system equivariant under a finite group, such dynamical system can be seen

as a cell-network [19]. A cell-network is a system of differential equations equivariant under

a group(oid), where the group(oid) is the automorphism group(oid) of a (multi)graph. So,

there is a strict correspondence between cell-networks and the ALF framework. For example,

a Kn-ALF is a cell-network with Kn graph structure. This alternative point of view, provides

an extra tool in the analysis of ALFs. Indeed, from proposition 7 follows that Fix(Sn) is

φ-invariant, and so, in turn, the consensus space, is an invariant space for the Kn-ALFs, or

in the language of cell-networks it is a pattern of synchrony, which is already known from
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corollary 1. Actually, corollary 1, not only holds for all homogeneous ALFs, but also tells us

that the consensus space is an equilibrium for the system, not just an invariant set. However,

proposition 10 does not rely on the algebraic structure of the Laplacian, it is a general result

for Sn-equivariant systems. Let us notice that, the results following from equivariance are, in

general, more robust than the algebraic ones. Therefore, the symmetry perspective could be

very useful when some transformation is applied to the system.

In general, a simple (connected) graph with n nodes can be regarded as a subgraph of Kn.

As such, a generic simple graph has a subgroup of Sn as automorphism group. So, a question

that we can ask is: what are the subgroups of Sn having C as a fixed-point space?

Proposition 11. Let Γ be a subgroup of Sn, if Ord(Γ) ≥ n then Fix(Γ) = C.

Proof. If Ord(Γ) ≥ n, then by considering the equations Γx = x, we have at least n independent

equalities that constrain all the components of x to be equal. Therefore Fix(Γ) = C.

When Ord(Γ) < n then dim Fix(Γ) > 1, so the fixed-point space is related to clustering,

and C ⊂ Fix(Γ); we illustrate such a case in the following second example. Let us first consider

the cycle graph Cn, for which Aut(Cn) = Zn, where Zn is the cyclic group. Since Ord(Zn) = n,

then Fix(Zn) = C; this can be practically seen by applying a generator of Zn to x, e.g.,

x1 = xn (18)

x2 = x1 (19)

... (20)

xn = xn−1, (21)

implying x1 = · · · = xn. As a second example, we consider the path graph Pn (n ≥ 2) which

has Z2 as group of symmetry. In this case Ord(Z2) = 2, therefore Pn has the consensus as

fixed-point space only if n = 2. In fact, if we consider the generic case we can see that the
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equalities imposed by Z2x = x are

x1 = xn (22)

x2 = xn−1 (23)

... (24)

xn−1 = x2 (25)

xn = x1, (26)

which do not lead to consensus in general, but to clustering {x ∈ Rn | x1 = xn, . . . , xn = x1}.

In summary, in this section we outlined a different perspective on the consensus space. Let

us recall that a homogeneous ALF, near the consensus space, is equivalent to an ALF with

simple graph structure (proposition 5). So, the ALF acquires the property of equivariance

under the automorphism group of the (simple) graph; the symmetry group is a subgroup of the

symmetric group. Therefore, an ALF possesses also a cell-network structure. At this point,

forgetting momentarily the specific properties of ALFs, we can study the connections between

the consensus space and the symmetry properties. It turns out that the consensus space arises

as an invariant space for a class of subgroups of Sn (proposition 11).

We conclude this section recalling a theorem highlighting the fundamental role of the graph

structure in the definition of a dynamic network. Although, as we have seen, graphs and

groups are intimately related, if we consider the logic flow of definitions for dynamic networks

the graph structure should be defined first.

Theorem 1 (Frucht [16]). For any finite group Γ there exists a finite graph G such that

Aut(G) ∼= Γ.

Theorem 1, ensures that for any given finite group we can construct a graph which is

invariant under the group. However, uniqueness is not provided, au contraire, in general there

are infinitely many graphs with such property [6]. For this reason, the definition of the graph

structure of a dynamic network precedes the group properties.
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4 Perturbations

A perturbation is a small ‘change’ of the differential equations governing the system. The order

of magnitude can be quantified by a parameter ε, 0 < ε� 1. A perturbation is called singular

if the solutions of the perturbed ODEs have a different qualitative behaviour with respect to

the solutions of the unperturbed system [46]. On the other hand, regular perturbations are

the ones that preserve the qualitative structure. For this reason, singular perturbations are the

most interesting if we aim to characterise qualitatively a system. In appendix A, we briefly

review some of the standard terminology of singular perturbations.

4.1 Perturbed ALFs

As already mentioned in the introduction, we now consider perturbations of ALFs given by:

ẋ = −LF (x) + εH(x,Λ), (27)

where 0 < ε� 1, H(x,Λ) = (h1(x,Λ), . . . , hn(x,Λ))ᵀ, and Λ is a set of parameters.

Since we are considering homogeneous ALF, the consensus space C is always an set of

equilibrium points for ε = 0 (corollary 1). Moreover, the consensus set is a one-dimensional

space, then generic perturbations are singular [46]. The system as written in (27) is in a non-

standard form. In many cases, it is useful to transform a singularly perturbed system into a

standard form, one reason among all is that a large amount of results in singular perturbation

theory are stated for standard forms.

Proposition 12. Given a perturbed ALF in the non-standard form (27), then the coordinate

transformation

xl (k, xj 6=l) = k −
∑
j 6=l

xj , (28)

where l ∈ {1, . . . , n} is arbitrary, and k is the constant of motion (8), transforms the system

into the standard form

ẋi = −
∑
j 6=l

Lijf(xj)− Lilf (xl (k, xj 6=l)) + εgi(xj 6=l, k,Λ) i 6= l

k̇ = ε
∑
j

gj(xj 6=l, k,Λ),

(29)
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where gi(xj 6=l, k,Λ) := hi (x1, . . . , xl (k, xj 6=l) , . . . , xn,Λ).

Proof. Performing the coordinate change (28) into (27) we obtain the set of equations for xi,

i 6= l. Then, the equation for k is retrieved evaluating the scalar product 〈1, ẋ〉.

Let us notice that the perturbation transforms the constant of motion into a slow variable of

the system. Since the constant k is related to the arithmetic mean of the states, 〈x〉, perturbing

the system, in general, means that the states’ density is changing, e.g., the concentration of the

system is increasing/decreasing. In other words, the perturbation acts as a drift/dissipation in

the undergoing diffusive evolution.

Lemma 1. If 〈1, H(x,Λ)〉 = 0, then equation (27) is a regular perturbation problem.

Proof. If 〈1, H(x,Λ)〉 = 0 then k̇ = 0. So, the standard form (29) is no more a slow-fast

system, and therefore the perturbation is regular.

Remark 6. Notice that lemma 1 holds also for heterogeneous ALFs.

As we already mentioned, we are interested in the singular perturbations because they are

the ones that could lead to a different qualitative behaviour of the system. In the follow-

ing section, we look at the near consensus behaviour under a singular perturbation, and we

characterise the dynamics for a selected class of systems.

5 Consensus dynamics

In this section, we further specialise our analysis by studying the consensus dynamics of (homo-

geneous) ALFs with a Kn graph structure, already introduced in section 3.2 for their symmetry

properties.

5.1 The layer problem

Let us consider a perturbed Kn-ALF in the standard form. The layer problem, obtained from

(29) by setting ε to zero, reads

ẋi = −

∑
j 6=l

Lijf(xj) + Lilf (xl (k, xj 6=l))

 i 6= l. (30)
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The system described by (30) is (n− 1)-dimensional with one parameter, k.

It is worth noting that although the graph structure in (30) seems to be lost, some infor-

mation is still readily available. On the one hand, the term
∑
j 6=l Lijf(xj) still corresponds to

a Kn−1-ALF, i.e., on a complete graph with n− 1 nodes. On the other hand, the scalar term

Lilf(xl), where in fact xl is a function of all other nodes and the constant k, can be interpreted

as a higher-order interaction [5] naturally arising from the reduction performed.

Furthermore, and for our specific purposes, there is a more relevant property that sur-

vives the transformation: the symmetry. In fact, starting with a Sn-equivariant unperturbed

system, after the transformation into the standard form we get a layer problem which is Sn−1-

equivariant. This is a first example of robustness of the symmetries. Since we are interested in

the consensus dynamics, we consider equation (30) on the invariant space given by Fix(Sn−1).

Let us notice that, in general, the invariant space Fix(Sn−1) is not globally stable. For exam-

ple, in a neighbourhood of an attracting branch of the consensus space it is stable. Instead,

in a neighbourhood of a repelling part of the consensus space it is unstable. This means that

the restriction to Fix(Sn−1) provides a robust description of the system only in the basin of

attraction of a stable region of Fix(Sn−1); in the unstable regions the restriction works only

if the initial conditions lie exactly in the invariant space and if the perturbation preserves

Fix(Sn−1). Then, restricting equation (30) on Fix(Sn−1) we obtain

ẋ = − [f(x)− f(k − (n− 1)x)] , (31)

where we used the fact that for a Kn-graph Lii = n− 1, and Li6=j = −1. So, in the invariant

space the system reduces to a one dimensional system (with one parameter). The former

consensus space, C = Fix(Sn), gives the equilibria of (31). This is a consequence of the fact

that the layer problem is a coordinate transformation of the unperturbed non-standard form

(5), for which we know the consensus space is a set of equilibria.

Proposition 13. The consensus states of the form

x∗k =
k

n
(32)

are equilibria of (31).
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Proof. Inserting x∗k into (31) we obtain ẋ = 0, which proves that x∗k is an equilibrium. To prove

that it correspond to consensus, we recall that, since we are in the invariant space Fix(Sn−1),

then n− 1 states are already equal to each other. The only state left to check is the one given

by (28), and by inserting xj 6=l = k/n, we obtain xl = k/n, which proves the statement.

Remark 7. Recalling that k = n〈x〉, we have that the equilibrium is exactly the mean value of

the states of the system, 〈x〉.

Since the equilibria of the layer equation constitute the critical manifold for the slow-fast

system, then the consensus space is a (part of the) critical manifold of the system. We use the

notation x∗k := (x∗k, . . . , x
∗
k) for the points in C having the form (32).

Proposition 14. The stability of the consensus (32) is determined by the derivative of the

response function. In particular, we can decompose the consensus into three components,

Ca = {x∗k ∈ C | dxf(x∗k) > 0} ,

Cr = {x∗k ∈ C | dxf(x∗k) < 0} ,

Cs = {x∗k ∈ C | dxf(x∗k) = 0} ,

(33)

where Ca is attracting (stable), Cr is repelling (unstable), and Cs is singular.

Proof. By straightforward computations we obtain the Jacobian of the system evaluated at the

consensus, −dxf
(
k
n

)
n, which implies the proposition.

Thanks to theorem 3 (Fenichel), the regions Ca/r are diffeomorphic to invariant regions of

the singularly perturbed system (29). For the singularities Cs we need further analyses. We

are going to consider the case of transcritical singularities which, as we will show, turn out to

be generic due to the geometric properties of the problem.

5.2 The slow-fast dynamics around the consensus space

We start by considering some symmetry condition on the perturbation, in order to preserve

the restriction to the invariant space.

Lemma 2. Let H(x,Λ) be a perturbation such that hi = hj := h, ∀i, j 6= l, and hl =: h̃. Then,

Fix(Sn−1) is an invariant space for the perturbed system (29).
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Assuming a perturbation satisfying lemma 2, we are allowed to continue our analysis on

the invariant space Fix(Sn−1). Indeed, under the chosen perturbation the perturbed system

(29) becomes Sn−1-equivariant, preserving the invariant space Fix(Sn−1). We remark once

again that, in a neighbourhood of a stable regions of Fix(Sn−1), the reduction is robust;

while in unstable regions the reduction is preserved only by fine tuning of initial conditions

and perturbation. For the perturbed system the invariant space reads Fix(Sn−1) = {(x, k) ∈

R2 | x := xi = xj , ∀i, j 6= l}, which we call (x, k)-plane. Then, the perturbed equations (29)

evaluated on the (x, k)-plane, take the form

ẋ = − [f(x)− f(k − (n− 1)x)] + εg(x, k,Λ)

k̇ = ε(n− 1)g(x, k,Λ) + εg̃(x, k,Λ),

(34)

where g(x, k,Λ) := h(x, . . . , k−(n−1)x, . . . , x,Λ), and g̃(x, k,Λ) := h̃(x, . . . , k−(n−1)x, . . . , x,Λ).

We now state the conditions for (nondegenerate) transcritical singularities.

Proposition 15. Let xsk ∈ Cs be a singular consensus point, and assume that lemma 2 holds.

If

d2
xf(xsk) 6= 0, (35)

n 6= 2, (36)

〈1, H(xsk,Λ)〉 6= 0, (37)

then xsk is a transcritical singularity of (34)

Proof. We check the conditions for transcritical singularities on planar systems provided by

Krupa and Szmolyan [27]. Given a planar system of the form (67) then the origin is a trans-
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critical singularity if

f(0, 0, 0) = 0, (38)

∂xf(0, 0, 0) = 0, (39)

∂yf(0, 0, 0) = 0, (40)∣∣∣∣∣∣∣
∂2
xf(0, 0, 0) ∂2

xyf(0, 0, 0)

∂2
yxf(0, 0, 0) ∂2

yf(0, 0, 0)

∣∣∣∣∣∣∣ < 0, (41)

∂2
xf(0, 0, 0) 6= 0, (42)

g0 := g(0, 0, 0) 6= 0. (43)

We now prove that these conditions applied to our system lead to the conditions of the state-

ment. Conditions (38), (39), (40) are satisfied because xsk is a singular consensus point. For

the non-degeneracy condition (41), we obtain

d2
xf(xsk) 6= 0. (44)

The transversality condition (42) gives,

n(n− 2)d2
xf(xsk) 6= 0, (45)

which implies n 6= 2. Finally, the last condition (43) leads to 〈1, H(xsk,Λ)〉 6= 0.

As previously mentioned, we consider the case where all the singularities on the consensus

space are transcritical, i.e., the conditions of proposition 15 are met on Cs. Notice, however,

that at least the first two conditions of proposition 15 are rather mild, we in fact argue about

genericity later. The first says that the singularity is non-degenerate, while the second refers

to networks of at least three nodes. So, in our current setting, the consensus space consists of

a cascade of transcritical singularities changing the stability from attracting to repelling, and

vice-versa. If at xsk the stability transition is from attracting to repelling, we call xsk: type-1
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transcritical point. Type-1 transcritical points are characterised by the sign ratio

ρ :=
sgn

(
d2
xf(xsk)

)
sgn (〈1, H(xsk,Λ)〉) = −1. (46)

If at xsk the stability transition is from repelling to attracting, we call xsk: type-2 transcritical

point. Type-2 transcritical points are characterised by the sign ratio ρ = 1.

At this point, we are going to study the continuation of the consensus space after a tran-

scritical point. A trajectory reaching a transcritical point could proceed in three different

manners:

1. Being attracted to the stable branch of the critical manifold (a curve of equilibria crossing

the consensus),

2. Being repelled along the fast flow,

3. Continuing along the consensus space (even if it is unstable).

The third characteristic behaviour is called canard, and acts as a separating case between the

other two. Usually, the presence of a canard in a planar system is associated to a critical value

for the parameters of the system. We are going to show that for ALFs the condition for canards

is geometrical in nature, and can be stated as an algebraic condition on the perturbation,

without specific requirements on the system’s parameters.

Proposition 16. Let xsk ∈ Cs, if the perturbation satisfies the property

H(xsk,Λ) ∝ 1, (47)

then, for ε sufficiently small, the system (29) admits canard solutions.

We call critical, Hcrit(x,Λ), a perturbation satisfying such a property.

Proof. We use again the results from [27] to check that our statement holds. Considering

a system of the form (67), satisfying conditions (38)-(43), then there exist a parameter λ

controlling the behaviour at the transcritical singularity (which we remind to be at the origin

for this benchmark system). The parameter λ is given by

λ =
1

|g0|
√
β2 − γα

(δα+ g0β), (48)
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where

α =
1

2
∂2
xf(0, 0, 0), β =

1

2
∂2
xyf(0, 0, 0),

γ =
1

2
∂2
yf(0, 0, 0), δ = ∂εf(0, 0, 0).

So, the parameter λ for the system (34), at a transcritical point xsk, reads

λ = −ρh(xsk,Λ) + (n− 1)h̃(xsk,Λ)

h̃(xsk,Λ) + (n− 1)h(xsk,Λ)
. (49)

For type-1 transcritical points, we have ρ = −1, and the condition for canards is λ = λcrit := 1.

So, we obtain the equation

(n− 2)h̃(xsk,Λ) = (n− 2)h(xsk,Λ). (50)

Since the case n = 2 is excluded by proposition 15, we have h̃(xsk,Λ) = h(xsk,Λ). Therefore

the critical perturbation Hcrit(x,Λ) at xsk reads

Hcrit(xsk,Λ) = (h(xsk,Λ), . . . , h(xsk,Λ), . . . , h(xsk,Λ))ᵀ

= h(xsk,Λ)1,

which agrees with the statement. In order to complete the proof, we show that for a type-2

transcritical point a critical perturbation admits faux-canards. Let us recall that faux-canards

for planar systems are generic, and appear for λ < λcrit [27]. By using the fact that for a type-2

transcritical point ρ = 1, we get λ = −1.

In figure 1 we sketch the blow-up of the transcritical points under a critical perturbation [27,

32, 26]. The blow-up picture makes clear the different behaviour of the type-1/2 transcritical

points and illustrates how the continuation of the consensus space occurs.

Let us notice that the critical perturbation preserves the full symmetry of the system on

the consensus space, i.e., Hcrit(xsk,Λ) is Sn-equivariant. Indeed, a similar result can be stated

in terms of equivariant dynamical systems theory.

Theorem 2. Let G be a graph with Aut(G) = Γ ⊆ Sn, where Ord(Γ) ≥ n. Let HΓ(x,Λ) be
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x̄s,+
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r

k̄+r

x̄s,−
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r

k̄+a

k̄−a

Type − 1 Type − 2

Figure 1: Sketch of blown-up transcritical points on the consensus space.
The picture displays typical blow-up phase portraits for a type-1 transcritical point (left), and a type-2
transcritical point (right); in both cases we are considering a critical perturbation. For a detailed exposition

on the blow-up phase portraits for transcritical singularities see [27, 32]. The points x̄
s,−/+
a/r correspond to

the singularity on the consensus space (solid lines), while the points k̄
−/+
a/r correspond to the singularity on

the branch of the critical manifold crossing the consensus space (dashed lines). The labels −/+ indicate
if we are below, or above, the transcritical point, and the labels a/r stand for attracting, and repelling,
respectively. The attracting curves of equilibria are shown in green, while the repelling ones in red. The
blue points are entering or exit points depending on the direction of the curves drawn.
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a Γ-equivariant perturbation of a G-ALF, such that HΓ(Fix(Γ),Λ) 6= 0. Then the consensus

space is a trajectory of the perturbed system.

Proof. From proposition 11 we have that Fix(Γ) = C. So, projecting equation (27) onto the

invariant space C we have

ẋ∗ = εHΓ(x∗,Λ), (51)

x∗ ∈ C. Since HΓ(x∗,Λ) 6= 0, ∀x∗ ∈ C, and dim(C) = 1, then C is a trajectory for the

system.

In essence, theorem 2 gives some conditions under which a perturbed equivariant ALF (27)

exhibits a maximal canard. Let us also notice that theorem 2 holds for a class of Γ-equivariant

ALFs where Ord(Γ) ≥ n, and it does not make any particular assumption on the singularities of

the consensus space. This means that in possibly more complicated cases where the singularities

along the consensus space are not transcritical, the consensus space is still a maximal canard

under the appropriate perturbation.

5.3 Polynomial response functions

Until this point, we considered a generic response function f(x). Let us now consider a more

specific class of functions: polynomials. A polynomial response function can be written as

f(x) =

N∑
j=0

ajx
j , (52)

where aj are real constant coefficients, and N ≥ 2. We know that the consensus space, for a

homogeneous ALF, does not depend on the particular choice of the response function. On the

other hand, the remaining equilibrium sets, that together with C give rise to the full critical

manifold, depend on the form of the response function. By choosing a polynomial form for f ,

we are able to study in further detail the nature of the equilibria crossing the consensus space.

We focus our analysis on a neighbourhood of the consensus space. So, in order to have a local

picture, it is sufficient to understand the shape of the linear approximation of the intersecting

branches of equilibria.
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Proposition 17. For a polynomial response function (52), in the (x, k)-plane (34), the branches

of the critical manifold intersecting the consensus space locally have the form

κ(x) = 2xsk + (n− 2)x. (53)

Proof. Let us consider the function φ̃(x, y) := −[f(x)− f(y + x)] and the auxiliary system

ẋ = φ̃(x, y)

ẏ = 0,

(54)

where y acts as a parameter. We are going to evaluate the slope of the tangents of the curves

of zeros of φ̃(x, y) intersecting the line y = 0. Considering a polynomial response function (52),

we expand f(x+ y) by using the binomial theorem,

f(y + x) =

N∑
j=0

aj(y + x)j

=

N∑
j=0

ajx
j +

N∑
j=0

j∑
k=1

(
j

k

)
ajy

kxj−k.

So, we can rewrite φ̃(x, y) as

φ̃(x, y) = y

N∑
j=0

j−1∑
l=0

(
j

l + 1

)
ajy

lxj−l−1, (55)

where we factored out y, and set l = k − 1. We regularise φ̃(x, y) by removing the line y = 0

from the set of zeros, i.e. φ̃(x, y) =: yφ̃reg(x, y), where

φ̃reg(x, y) =

N∑
j=0

j−1∑
l=0

(
j

l + 1

)
ajy

lxj−l−1. (56)

Then, the regularized auxiliary system reads

ẋ = φ̃reg(x, y)

ẏ = 0.

(57)
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Let us compute the Jacobian, J , for the regularised auxiliary system,

J =

 ∂φ̃reg

∂x
∂φ̃reg

∂y

0 0

 , (58)

where

∂φ̃reg

∂x
=

N∑
j=0

j−1∑
l=0

(
j

l + 1

)
aj(j − l − 1)ylxj−l−2, (59)

∂φ̃reg

∂y
=

N∑
j=0

j−1∑
l=0

(
j

l + 1

)
aj ly

l−1xj−l−1. (60)

Since we are interested on what happens at the intersection with y = 0, we evaluate the

Jacobian on that line, namely

J0 := J
∣∣
y=0

=

N∑
j=0

j(j − 1)ajx
j−2

1 1
2

0 0

 . (61)

The eigenvalues of J0 are determined by the equation det(J0 − µ Id) = 0, which in our case

reads

−µ

[
N∑
j=0

j(j − 1)ajx
j−2 − µ

]
= 0, (62)

and so the eigenvalues are

µ1 = 0, (63)

µ2 =

N∑
j=0

j(j − 1)ajx
j−2. (64)

Let us notice that, in general, for the regularised auxiliary system the Jacobian J0 cannot

be interpreted as the linearisation of the system, because y = 0 is no more an equilibrium.

However, there could be other equilibria on the line y = 0 at the intersections with the other

curves of equilibria. At such points the eigenvector with zero eigenvalue gives the direction

of the tangent of the intersecting curve of zeros. The eigenvector ṽ(µ1) = (ṽ
(µ1)
x , ṽ

(µ1)
y )ᵀ must
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satisfy the equation J0ṽ
(µ1) = 0, that is

N∑
j=0

j(j − 1)ajx
j−2(ṽ(µ1)

x +
1

2
ṽ(µ1)
y ) = 0.

Therefore ṽ
(µ1)
x = − 1

2
ṽ

(µ1)
y , and so ṽ(µ1) ∝ (1,−2)ᵀ. Notice that ṽ(µ1) does not depend on x,

that means wherever the intersection takes place, then the tangent will have the direction of

ṽ(µ1). At this point, we need to obtain the equivalent vector for the system of our interest

(31). Note that the equation y = k − nx puts in relation the auxiliary system with the layer

problem (31). Thanks to this relation we can construct the transformation connecting the

tangent vectors of the two systems, in particular we have

Π :=

 ∂x(x,k)
∂x

∂x(x,k)
∂k

∂y(x,k)
∂x

∂y(x,k)
∂k

 =

 1 0

−n 1

 ,

and then the inverse transformation reads

Π−1 =

1 0

n 1

 . (65)

So, the tangents of the critical manifold at the intersections with the consensus space, in the

original system, have direction given by vµ1 = Π−1ṽµ1 ∝ (1, n−2), which proves that the slope

of the tangent in the (x, k)-plane is n − 2. Therefore, the tangent lines have an equation of

the form κ(x) = κ̃+ (n− 2)x. In order to find κ̃, we use the fact that κ(xsk) = nxsk, obtaining

κ̃ = 2xsk; the statement is proven. A sketch of the result of this proposition is shown in figure

2.

Proposition 17 tells us that, up to linear approximation, all other branches of equilibria

of the critical manifold crossing the consensus space are parallel to each other and are in fact

transverse to the consensus space. Moreover, we notice that proposition 17 is in agreement

with the transversality condition, n 6= 2, for transcritical points. Indeed, for n = 2 we have

that the tangents (53), of the branches of the critical manifold intersecting the consensus,

are parallel to the fast foliation. As a consequence of proposition 17 we have that pitchfork

singularities are not possible on the consensus space for the class of ALFs under examination,
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Figure 2: Local structure of the critical manifold near the consensus space in the (x, k)-plane.
In the figure, the (x, k)-plane is rigidly rotated in order to visualise the consensus space as a horizontal
line. The black dots represent singular points, the coloured lines crossing the consensus space at the
singular points are other branches of the critical manifold. We draw in red the unstable sections of the
critical manifold, while the stable ones are drawn in green. We emphasise that, in general, the branches of
equilibria that cross the consensus manifold are not straight lines, but due to proposition 17 they are all
parallel to each other.

this statement is also confirmed by checking the conditions for pitchfork singularities [27]. By

a similar reasoning, fold singularities on the consensus space are also excluded. Finally, Hopf

singularities do not appear either by the fact that the layer system has always real eigenvalues.

So, one can conclude that for Kn-ALFs transcritical singularities are generic on the consensus

space, in the sense of codimension one bifurcations; while on other branches of the critical

manifold it is possible to have other singularities, see some examples in section 6.

6 Examples and simulations

In this section, we present explicit examples of ALFs, and show numerical simulations for such

concrete systems.

6.1 Example 1

For the first example, we choose the response function f(x) = (x − 1)2(x + 1)2, see figure 3.

Let us notice that f(x) is an even function, and so it is invariant under the symmetry group

Z2; this implies that we expect a nontrivial critical manifold for the ALF. In fact, if we set the
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number of nodes n = 3 we can visualise the critical manifold in R3, see figure 4.

Figure 3: Response function f(x) = (x− 1)2(x+ 1)2.

Following the analysis of section 5.2, we consider a symmetry preserving perturbation and

we look at the behaviour of the system in the (x, k)-plane. Considering (34), we fix the

perturbation parameter ε = 1/10, and a critical perturbation g(x, k,Λ) = g̃(x, k,Λ) = −1,

that is, the slow-flow is directed downwards in figure 5. We numerically simulate the system

by tracking some characteristic canard solutions, see figure 5. It is worth recalling now a few

issues with numerical simulations of transcritical points, see more details in [14]. Let us notice

that, although the simulations are performed with a working precision of 50 digits they still

suffer of numerical problems. In particular we refer to the fact that a canard solution, under an

appropriate perturbation, should spend the same time ‘close’ to the attracting part as to the

repelling part. In this examples, such a time symmetry should be visible as a spatial symmetry

in correspondence of a transcritical point on the consensus manifold. As one can see in figure

5, the symmetry described is not very well reproduced by the numerical simulation. There

are several factors that induce such problem, first, we have that the symmetry is exact only

in the limit for ε → 0, so we expect that a numerical simulation will just approximate such

symmetry. On the more numerical side, we have that the ε parameter is quite large to clearly

see this effect, however lowering ε would imply to further increase the working precision, leading

to problems with the time performance of the CPU. Since our present work has a theoretical
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Figure 4: Critical manifold for n=3 and f(x) = (x− 1)2(x+ 1)2

focus, we do not dive deeper in the numerical analysis of these delicate systems, leaving the

problem of highly accurate simulations for future works. However, there is another detail to take

into account: in figure 5 we have canard solutions that cross three transcritical points on the

consensus space without leaving the repelling intermediate section (light blue and pink curves);

here the question is: where should we expect the canards to leave the consensus manifold? As

we just discussed, we expect some symmetry, but here we need to be more careful stating

with respect to which transcritical point. We argue that, for these particular solutions, the

intermediate section has a null effect, and therefore the solution should leave the consensus after

the third transcritical point (counting top to bottom) after a distance (approximately) equal to

the distance travelled close to the attracting section before the first transcritical point. In order

to prove the aforementioned statement, we use the slow-divergence integral [13, 11, 10]. So,

let us consider the slow-divergence integral along the consensus manifold for the system under

analysis. Since the perturbation is constant the divergence of the vector field in the (x, k)-

plane, evaluated on the consensus space, is simply −ndxf(k/n). Therefore the slow-divergence

integral becomes

−n
∫

dxf(k/n)dk. (66)

We now notice two facts: first the intermediate section is divided in two spatially equal sections

by a transcritical point. Second, on the first subsection dxf(k/n) > 0 and on the second

32



subsection dxf(k/n) < 0. Therefore the slow-divergence integral on the intermediate section

of the consensus space is null, so on the intermediate section the attracting and repelling effect

compensate each other. The considerations we have done hold for the dynamics near consensus

under a constant critical perturbation. It is worth mentioning that the nonlocal interaction of

transcritical singularities via hysteresis processes could give rise to an enhanced delay for the

canard [15, 45].

(a) Critical manifold in the (x, k)-plane (b) Canards solutions

Figure 5: On the left, figure 5a, we can see in blue the consensus space, and in red dashed the other
branches of the critical manifold. This critical manifold is obtained from the critical manifold of figure 4.
On the right, figure 5b, we computed numerically four canard solutions for a critical perturbation. Namely,
in green we have a canard crossing two transcritical points (only one on the consensus space), after the
first transcritical point it leaves the consensus space; in light blue and pink we have two canard solutions
that cross three transcritical points without leaving the intermediate unstable section of the consensus
space; in purple we have a solution that after the first transcritical point leaves the consensus space,
after crossing a second transcritical point (not on consensus) due to the particular shape of the critical
manifold it is attracted again to consensus and finally crosses a third transcritical point on the consensus.
Notice that all the solutions, when crossing transcritical points on the consensus space, show the typical
canard behaviour. We remark that not all the solutions displayed are robust, in particular this depends
on the stability properties of the (x, k)-plane. We can expect that solutions starting in a neighbourhood of
attracting branches of the consensus are robust, and so the reduction is representative of the dynamics. In
the unstable regions the reduction still applies if we consider ad-hoc perturbations and initial conditions.
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6.2 Example 2

Let us consider the larger network, K10, in figure 6. We keep the same response function

f(x) = (x − 1)2(x + 1)2 as in example 1, but now the perturbation is randomly generated,

H = (r1, . . . , rn), where r1, . . . , rn are random reals between 0 and 1. For this example, we

consider the equations in the non-standard form (27), and we compute the time-series for each

node state with initial conditions randomly chosen between −1 and 0, see figure 7. Moreover,

we also compute the timeseries for a weighted counterpart of a K10-ALF in order to highlight

the equivalence between the weighted and unweighted ALFs near consensus.

Figure 6: K10

The timeseries in figure 7 show a characteristic two-timescale behaviour, alternating long

periods of slow drift and short fast transitions of regime. In particular after an initial fast

convergence to consensus, then the system slowly reaches the first transcritical point, there

we can see that the system starts a sequence of fast transitions that bring the system out

of consensus. Finally, due to the geometry of the critical manifold the system converges to

consensus again.

6.3 Example 3

As a final example, we consider the phenomenon of symmetry breaking. We briefly recall

what we mean by (spontaneous) symmetry breaking. Let us consider a dynamical system
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(a) (b)

(c) (d)

Figure 7: Timeseries for a K10-ALF under a random constant and positive perturbation. Figures 7a, 7c
display time in a logarithmic scale, while in figures 7b, 7d time is linear. Different colours represent different
node’s states. Figures 7a and 7b represent a simulation for a weighted K10-ALF, where the weights are
randomly chosen between 1 and 5; on the other hand, in figures 7c and 7d one can see the behaviour for a
(unweighted) K10-ALF. The plots confirm the topological equivalence proved in proposition 5. The black
dots represent the simulation for the same system under a critical perturbation, where the expected canard
solution takes place. Let us remark that the initial conditions for the weighted and for the unweighted case
are not the same but they are chosen randomly in the same interval, between −1 and 0. Such random
initial conditions are chosen nearby an attracting branch of the consensus space, implying the robustness
of the solutions. Indeed, the behaviour of the two simulations is similar, and well predicted by the reduced
system.
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equivariant under a group Γ. Then, if there are equilibria that are not fixed under Γ we say

that the symmetry is broken. As we have seen in section 3.1, for ALFs the symmetries of the

response function induce, in general, a set of equilibria larger than the consensus space, which

is the fixed-point space for groups of permutations of order greater than or equal to n. So, when

we have a response function with nontrivial symmetry we should expect symmetry breaking.

What we just mentioned works for unperturbed ALFs. When we perturb the system, in general,

we destroy the symmetry of the unperturbed system and the behaviour changes dramatically.

However, if we consider the particular case of a symmetry preserving perturbation, then the

maximal canard becomes the solution fixed under the symmetry group replacing, in some sense,

the role of the consensus space in the unperturbed system.

Let us consider the response function f(x, λ) = (x − λ)(x + λ)2. We can construct a

bifurcation diagram by plotting the critical manifold on the (x, k)-plane for a range of values

of λ, i.e., {(x, k, λ) ∈ R3 | − [f(x, λ)− f (k − (n− 1)x, λ)] = 0}, see figure 8a.

(a) (b)

Figure 8: Bifurcation diagram for the response function f(x, λ) = (x−λ)(x+λ)2, figure 8a, and bifurcation
diagram for the response function f(x, λ) = (x− λ)2(x+ λ)2, figure 8b; in both cases we fixed n = 3. We
show in orange the consensus manifold, in green the branches of the critical manifold arising by varying
λ common to both response functions. Notice that, in figure 8b, there is an extra branch of the critical
manifold (shown in blue), this is due to the Z2 invariance of the response function, or, in other words, it is
due to an extra degeneracy of the response function.

We notice, by looking at figure 8a, that for λ = 0 the critical manifold consists of the
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consensus space only. Then, for λ > 0, another manifold appears breaking the symmetry of the

system. If we think for a moment at the response function alone, we could consider another

bifurcation diagram: the one given by {(x, λ) ∈ R2 | f(x, λ) = 0}. This reasoning allows us

to compare what the bifurcation diagram of the critical manifold on the (x, k)-plane is, and

the bifurcation described by an hypothetical one dimensional system, ẋ = f(x, λ), which we

call response bifurcation. For the function f(x, λ) = (x − λ)(x + λ)2 the response bifurcation

diagram is the one of a degenerate transcritical singularity. On the other hand, if we consider

the response function f(x, λ) = (x − λ)2(x + λ)2, it is also representative of a degenerate

transcritical singularity; in particular for λ = 1 it becomes the response function considered

in the first and second examples. It is interesting to notice that, if we compare the response

bifurcation diagrams for the function f(x, λ) = (x−λ)2(x+λ)2 and f(x, λ) = (x−λ)(x+λ)2 the

branches of equilibria have the same structure of degenerate transcritical bifurcations. However,

if we consider the bifurcation diagrams of the critical manifold on the (x, k)-plane induced by

those functions, we notice that the degeneracy induces different critical manifolds, see figure 8.

Thus, with this example, we have argued that the network structure plays a highly non-trivial

part when qualitatively studying networked dynamics and their bifurcations.

7 Conclusions and discussion

This paper has been dedicated to the analysis of a class of nonlinear Laplacian dynamical

systems, ALFs, and their perturbations. The analysis starts by looking at (unperturbed) ALFs

on graphs with positive weights. We emphasise the importance of the topological equivalence

proved in proposition 5. Indeed, a weighted graph, in general, loses the symmetry properties

that its own unweighted counterpart has. The fact that a positive-weighted graph induces

dynamics of the ALF that are topological equivalent to the one induced by the unweighted

counterpart, allows us to consider unweighted simple graphs. In turn, an ALF with simple graph

structure inherits the symmetry properties of the underling graph, enabling us to use the tools

of equivariant dynamical systems theory. In such a context, the cell-network formalism was

developed with the purpose of exploiting network symmetries in dynamical systems, actually

going even beyond the group symmetries. In the language of cell-networks, the linear invariant
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spaces arising from the symmetry properties of the underlying network are referred to as pattern

of synchrony. So, in fact, the result of theorem 2 is a particular case of a robust pattern of

synchrony; indeed, the existence of a maximal canard is obtained by using the symmetry

properties of the network. We note that theorem 2 brings more stringent conditions for the

consensus than being just an invariant space. Specifically, when the system is unperturbed,

given the specific form of the ALF’s equation, we know that the the consensus space is a set of

equilibria. When a perturbation is switched on, we require the perturbation not only to preserve

the symmetry, but also to be non-zero along the consensus space. So, asking the consensus

space to be a robust pattern of synchrony is a necessary, but not a sufficient, condition to have

a maximal canard. It is also worth remarking that, theorem 2 does not rely on specific tools of

slow-fast systems, which are the classical techniques used to determine the existence of canards.

Several new directions arise from the results of our paper. For example, one could consider

response functions (F (x)) depending also on “neighbouring” nodes; in such a case the network

structure appears also inside the response vector field, and not only through the Laplacian ma-

trix. Moreover, one may be interested in studying the case of heterogeneous response functions,

i.e., different nodes might contribute differently to the mutual interaction. Regarding the graph

structure, one may take into account negative weights, which even for the linear case give rise

to much richer dynamics than the positive-weights case; directed graphs could be considered

as well. Another possibility is to study Laplacian systems where the states have dimension

greater than one, for example, one might consider Laplacian systems where the states evolve in

the real plane, or even in a two-dimensional manifold. The dynamics of planar systems entail

interesting phenomena, such as periodic orbits, that could potentially give rise to new phenom-

ena unseen in the one-dimensional framework. For similar reasons, states of dimension three

might be relevant as well, since it is well-known that it is for three-dimensional systems that

chaos, at the level of the nodes, may appear. In all aforementioned cases, a natural question

is to investigate, and if possible classify, the possible singularities that arise and the influence

of the network on them (for example in this paper we showed that complete ALFs can only

have transcritical singularities along the consensus manifold). Moreover, one would then be

interested in the behaviour under small perturbations, which as seen here, is also closely related

to the network structure.
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A Singular perturbations

In general, the symbols used in this section are not related to those in the main text.

A singularly perturbed system of ODEs, in the standard form, is also called slow-fast system

and it has the form

ẋ = f(x, y, ε)

ẏ = εg(x, y, ε),

(67)

where 0 < ε� 1, x ∈ Rn, y ∈ Rm, and the time-parametrization t is called fast-time. Equation

(67) is said to be in the standard form because the time separation between the fast-variables,

x, and the slow-variables, y, is explicit. In the non-standard form a singularly perturbed system

has the form

ż = F (z, ε), (68)

where z ∈ Rn+m, and the vector field F (z, 0) has at least one equilibrium of dimension greater

than zero [46].

Defining the slow-time, τ := εt, equation (67) can be rewritten as

εx′ = f(x, y, ε)

y′ = g(x, y, ε).

(69)

Setting ε to zero in equation (69), we obtain the reduced system

0 = f(x, y, 0)

y′ = g(x, y, 0),

(70)

which is a set of constrained differential equations. Instead, setting ε to zero in equation (67)

we obtain the layer problem

ẋ = f(x, y, 0)

ẏ = 0,

(71)

where the slow-variables, y, play the role of parameters.

Definition 13. The critical manifold is defined as the set

C0 = {(x, y) ∈ Rn × Rm | f(x, y, 0) = 0}. (72)
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Remark 8. Although the commonly accepted name, the critical manifold it is not necessarily

a manifold.

The critical manifold is the constraint space for the reduced system (70), or equivalently, it

is the set of equilibria of the layer problem (71).

Definition 14. A point x∗ ∈ C0 is called hyperbolic if the Jacobian matrix at x∗ has no

eigenvalues with zero real part.

Lemma 3. A subset M0 ⊆ C0 such that x∗ ∈ M0 is hyperbolic, ∀x∗ ∈ M0, is a normally

hyperbolic invariant manifold (NHIM) [23].

Theorem 3 (Fenichel). For ε sufficiently small, compact subsets of NHIMs of the layer system

(71) are diffeomorphic to compact subsets of NHIMs of the singularly perturbed system (67) (or,

equivalently (69)).

Remark 9. Theorem 3 is restricted to the results relevant for the present paper. An exhaustive

version can be found in [28].

Another way to state theorem 3 is that normally hyperbolic critical manifolds persist as

slow manifolds, and inherit all stability properties of the critical manifold. For nonhyperbolic

points, x∗ ∈ C0, also known as singularities, Fenichel’s theorem does not provide information

about the perturbed system in a neighbourhood of x∗. The process of analysis of the system

in a neighbourhood a singularity is called desingularization. We briefly introduce the blow-up

(desingularization) for nilpotent singularities [26].

Definition 15. A point x∗ ∈ C0 is a nilpotent singularity if all the eigenvalues of the Jacobian,

at x∗, are zero.

When a singular point has a mixture of zero eigenvalues, and non-zero (real part) eigenvalues

it is possible to reduce the problem to a nilpotent singularity via a center manifold reduction

[8].

Definition 16. Let x∗ be a nilpotent singularity. The spherical blow-up is a (local) coordinate

transformation

β : Rn+m+1 → Sn+m
x∗ × I

(x, y, ε) 7→ (x̄, ȳ, ε̄, r),

(73)
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where Sn+m
x∗ is the n + m-dimensional sphere (embedded in Rn+m+1) centred at x∗, (x̄, ȳ, ε̄) ∈

Sn+m
x∗ , and r ∈ I ⊆ R≥0, 0 ∈ I.

Let us notice that, in a neighbourhood of the singularity the transformation (73) is a

diffeomorphism. Instead at the singular point the blow-up transforms the point x∗ into a

n+m-dimensional sphere. The core idea of the blow-up is to analyse the induced flow on the

sphere and deduct the behaviour of the singularity. However, the blow-up transformation by

itself does not desingularize the system. After the blow-up it is necessary to perform a con-

formal transformation (time reparametrization) in order to regularise the system, i.e., retrieve

hyperbolicity. We described the spherical blow-up, but several other blow-up transformations

are possible, e.g., quasihomogeneous, directional, or even to other manifolds, not necessarily

spheres [29]. The choice of the appropriate blow-up should be done by considering the regulari-

sation, and feasibility of the analysis. Since this work is not concerned with a direct application

of the blow-up, but rather with the implementation of results involving the blow-up technique,

we presented the spherical set-up which provides the most clear geometrical visualisation.
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