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A B S T R A C T   

Elevated CO2 concentrations (eCO2) have been widely observed to stimulate microbial growth. However, the 
effect of eCO2 on soil microbial biomass may depend on several factors and their interactions, such as the in-
crease in atmospheric CO2 levels, experimental duration and mean annual precipitation (MAP). We conducted a 
global meta-analysis from 62 studies that included the responses of soil microbial biomass to eCO2. We found a 
significant positive eCO2 effect on the bacterial biomass (+9.1 %), fungi (+11 %), arbuscular mycorrhizal fungi 
(AMF) (+10.2 %) and actinomycetes (ACT) (+16.4 %). The positive effects were mainly observed in studies with 
low eCO2 levels (≤200 ppm) rather than high levels of eCO2 (>200 ppm), which could be attributable to soil N 
limitation. It was also found that eCO2 had a significant positive effect on soil microbial biomass in the short term 
(≤3 y) and under a high MAP (>800 mm). Importantly, we revealed interactive effects between the eCO2 levels, 
experimental duration on soil microbial biomass. With an increase in eCO2, the total microbial biomass (TMB), 
bacterial biomass and fungal biomass decreased over the long term (>3 y). These findings indicate the need to 
incorporate interactions between eCO2 and environmental factors into ecosystem models, to predict future global 
climate change effects more accurately and their impact on ecosystem functions.   

1. Introduction 

The global atmospheric CO2 concentration is likely to increase 
further as a consequence of fossil fuel combustion and land-use changes 
(IPCC, 2007). The CO2 fertilisation of plant growth due to elevated CO2 
concentrations (eCO2) sequesters carbon in plant biomass (Houghton 
et al., 2001; Carter et al., 2007; Arneth et al., 2010). Increased carbon 
sequestration offers more substrate for soil microorganisms (van Groe-
nigen et al., 2014; Brienen et al., 2015; Chen et al., 2016), and will 
therefore increase soil microbial activity (Chung et al., 2007). Although 
the importance of microbial responses to eCO2 have been recognised, 
there is a need to clarify the mechanisms behind the responses and to 
predict the likely outcomes of further increases in the atmospheric CO2 

concentration. 
Studies of eCO2 across multiple ecosystems have shown positive (Hu 

et al., 2001; Yang et al., 2021), small (Gorissen et al., 1995) or even 
negative effects (Luo et al., 2017) on soil microbial biomass. These 
contradictory findings could be explained by differences in experimental 
design, with the range of eCO2 varying widely, in addition to various 
experimental durations and environmental conditions (Blagodatskaya 
et al., 2010; Dunbar et al., 2012; Feng et al., 2010). The actual level of 
eCO2 used in experiments plays a decisive role in regulating soil mi-
crobial biomass (Luo et al., 2017; Hu et al., 2001; Yang et al., 2021). 
High eCO2 may lead to low soil nutrient availability by promoting plant 
nutrient uptake; therefore, suppressing soil microbes and reducing their 
biomass (Blagodatskaya et al., 2010; Eisenhauer et al., 2012; Xiao et al., 
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2017). For example, a negative response of soil microbial biomass to 
eCO2 (+400 ppm) was shown to be related to the decreasing concen-
tration of dissolved organic nitrogen in the rhizosphere soil (Xiao et al., 
2017). However, microbial biomass was increased in a grassland 
ecosystem where eCO2 (+180 ppm) was assumed to fuel microbes by 
increasing soil labile C (Eisenhauer et al., 2012). These opposite effects 
observed in published studies lead to the conclusion that an eCO2 effect 
always exists, but it has large variability in terms of the observed re-
sponses of soil microbial biomass because of the lack of realistic ex-
periments comparing several different CO2 gradients. 

The response of soil microbial biomass to CO2 fertilisation effects are 
likely to be restrictive over time. The N limitation feedback hypothesis 
suggests that negative impacts of eCO2 on soil N availability can 
constrain the responses to eCO2 (Oren et al., 2001). For example, in a 
one-year cross-biome study, eCO2 increased the biomass of bacteria, 
fungi and actinomycetes (ACT) by increasing the soil C concentration 
(Song et al., 2012). However, in a long-term study (13 y), in a forest 
ecosystem, eCO2 did not alter the soil fungal biomass due to the N 
limitation of the ecosystem (Feng et al., 2010). Through long-term 
monitoring of the response of the soil microbial biomass to eCO2, new 
information on system function prediction may be provided. However, 
most published studies were not long enough to assess whether there 
could be any shift from positive to negative feedback over the long term. 

Divergent empirical findings on the effects of eCO2 on soil microbial 
biomass might also result from differences in climate (temperature and 
precipitation), the methods of CO2 enrichment, ecosystem type, and the 
soil depth that was sampled (Yue et al., 2017; Chen et al., 2020). For 
example, combining eCO2 and precipitation can increase microbial ac-
tivity (Rodriguez-Caballero et al., 2018) by enhancing the soil water 
content (Luo et al., 2017). However, such positive effects may be offset 
by the negative effect of higher temperatures (Hayden et al., 2012; 
Delgado-Baquerizo et al., 2017). High temperatures increase soil evap-
oration, which will strongly influence soil microbial communities (Sheik 
and Beasley, 2011; Hayden et al., 2012). The methods of eCO2 present in 
the soil add an additional complexity to the soil processes due to form a 
special microclimate (Huang et al., 2017). Unlike the situation in natural 
ecosystems, the soil microbial biomass response to eCO2 may positive in 
controlled environment due to the absence of nutrient limitations (Hu 
et al., 2017). Furthermore, soil microbial biomass is generally lower in 
the deeper soil layers than in topsoil because of the greater plant 
biomass and root inputs (Chen et al., 2020). Although the effects of eCO2 
on soil microbial biomass have been studied extensively, our under-
standing of the regulating factors and their interactions is still limited. 

To determine how eCO2 affects soil microbial biomass, we conducted 
a global meta-analysis from 62 studies (up to April 2022). The aim of the 
study was to address three important questions. 1) how does eCO2 affect 
soil microbial biomass? 2) what are the interactive effects between the 
actual level of eCO2, experimental duration and environmental factors? 
3) what are the potential factors driving the effects of eCO2 on soil mi-
crobial biomass? 

2. Materials and methods 

2.1. Data collection 

A meta-analysis method was used to analyse the published data of 
terrestrial ecosystems (Hedges et al., 1999; Morgan et al., 2018) 
(Table S1). Data were searched using CNKI (China National Knowledge 
Infrastructure) (https://www.cnki.net/), Google Scholar (https://scho 
lar.google.com/), and the Web of Science (https://apps.webofknowl 
edge.com/). The terms used were “Elevated CO2” OR “carbon dioxide 
enrichment” OR “carbon dioxide” AND “microbial biomass” OR “mi-
crobial abundance” OR “microbial community” OR “fungi” OR “bacte-
ria” OR “litter decomposition” OR “microbial respiration” OR “soil 
respiration” OR “microbial activity”. Data extration a total of 62 pub-
lications including 61 English articles and 1 Chinese articles worldwide 

(Asian (10), Europe (31), Oceania (1), North America (22)) (Fig. S1, 
Fig. S2, Table S2 and Supplementary Data). Overall, the dataset included 
broad variations in ecosystem types (cropland, desert, forest, grassland, 
controlled environment). We used the following criteria to select rele-
vant observations. (1) Studies had to include control and elevated CO2 
treatments (all the eCO2 levels are above current levels). (2) The control 
and treatment plots were established in the field under the same abiotic 
and biotic conditions. (3) At least one of the selected variables was 
measured. (4) The means and sample sizes were reported or were 
possible to calculate. (5) To make sure the independence in our meta- 
analysis, the final measurement was collected if multiple repeated 
measurements were reported. Measurements from different ecosystems, 
treatment levels, species, plant organs and the final year in each study 
were considered as independent observations (Yuan and Chen, 2015). 
The Engauge software 4.1 was used to obtain data that were graphically 
presented. The global distribution of the experimental sites is shown in 
Fig. S2. The observations were categorised according to the following six 
factors: CO2 concentration change (ΔCO2) (≤200, and > 200 ppm), 
duration of the experiment (≤3 y and > 3 y), MAP (≤400, 400–800, and 
> 800 mm), ecosystem type (cropland, forest, grassland and controlled 
environment), the method of elevated CO2 ((Free-Air CO2 Enrichment) 
FACE, (Opten-Top Champer) OTC and (Closed-Top Champer) CTC and 
the sampled soil depth (≤15 and > 15 cm). Due to data limitation, we 
were unable to perform related analysis for some categories. 

2.2. meta-analysis 

The effect size of the eCO2 treatment on soil microbial biomass was 
evaluated by a log response ratio (lnRR) according to the method pre-
sented by Hedges et al. (1999): 

lnRR = ln(Xe/Xc) (1)  

where Xe and Xc are the means of the concerned variable in the treat-
ment and control, respectively. In addition, the SD and sample size of 
each treatment were used to calculate lnRR. Violin plots were used to 
visualize the density distributions of InRR across all the studies (Fig. 1a). 
For the statistical test, the variance (v), weighting factor (wij), weighted 
mean response ratio (RR++), and the confidence interval (95 % CI) were 
calculated as follows: 

v =

(
S2

e

neX2
e

)

+(
S2

c

ncX2
c
) (2)  

where Se and Sc are the SDs and Ne and Nc are the sample sizes of the 
eCO2 treatment and control treatment, respectively: 

Wij =
1
v

(3)  

RR++ =

∑m
i=1

∑k
j=1wijRRij

∑m
i=1

∑k
j=1wij

(4)  

(RR++) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

∑m

i=1

∑k

j=1
wij

√
√
√
√
√

(5)  

95%CI = RR++ ± 1.96S(RR++) (6) 

The metawin software 2.1 was used to evaluate the variables. The 95 
% CI value of RR++ for a variable including zero indicated that the eCO2 
treatment had no significant effect. The results for the data with sample 
size <3 are not presented. The actual percentage change transformed 
from lnRR and its corresponding CI was calculated as: 
(
eLnRR − 1

)
× 100% (7) 

The paired t-tests and Holm-Bonferroni correction were conducted to 
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compare the response of soil microbial parameters to eCO2 among 
different classes of various categorical moderators. 

3. Results 

3.1. Effects of eCO2 on soil microbial biomass 

Across all the studies, eCO2 significantly increased bacterial biomass, 
fungal biomass, AMF biomass, and ACT biomass by an average of 9.1 %, 
11 %, 10.2 %, and 16.4 %, and reduced the gram-positive bacteria (GP) 
biomass by 9.6 %, respectively (Fig. 1b). However, there was no sig-
nificant effect on the total soil microbial biomass (TMB), gram-negative 
bacteria (GN) biomass, fungi/bacteria (F/B) ratio, and GP/GN ratio 
(Fig. 1b). When ΔCO2 concentration was ≤ 200 ppm, the bacterial 
biomass, fungal biomass and ACT biomass increased by 14.9 %, 13.4 % 
and 16.4 %, respectively, but the GP biomass decreased significantly 
(14.8 %) at high ΔCO2 concentration (>200 ppm) (Fig. 2a). 

The duration of the experiment had various effects on the response of 
soil microbial biomass. The eCO2 significantly increased bacterial 
biomass and fungal biomass by 14.5 %, and 15 %, respectively, during 
the short term. The GP biomass decreased significantly (11.1 %) over 
periods > 3 y. No significant effects were observed for total microbial 
biomass (TMB), F/B ratio, AMF biomass, ACT biomass, GN biomass and 
GP/GN ratio (Fig. 2b). 

There were contrasting responses of the soil microbial biomass to 

eCO2 under different precipitation regimes. The eCO2 significantly 
increased the total microbial biomass, bacterial biomass and fungal 
biomass by 16.3 %, 14.4 % and 12.6 %, respectively, under > 800 mm 
precipitation, but the fertilisation effect did not occur under other MAP 
levels. The eCO2 dereased GP biomass by 12.2 % under 400–800 mm 
precipitation. In contrast, eCO2 had no significant effect on AMF, ACT, 
GN, F/B, and GPN in any precipitation group (Fig. 2c). 

A comparison of the application CO2 method revealed a significant 
increase in bacterial biomass (13.2), fungal biomass (8 %), AMF biomass 
(10.2 %), ACT biomass (16.4 %) with the method of OTC. There were 
significant decreases in GP biomass (14.9 %) by the method of FACE in 
response to eCO2 (Fig. 3a). Moreover, eCO2 significantly increased the 
bacterial biomass, fungal biomass and ACT biomass, in the ≤15 cm soil 
layers. No significant effects were observed in the soil microbial biomass 
response to eCO2 at >15 cm soil depth (Fig. 3b). 

In cropland ecosystems, fungal biomass, and ACT biomass increased 
by 16.1 %, in response to eCO2. The stimulation of bacterial biomass by 
eCO2 increased by 24.6 % and 11.7 in forests and grassland, respectively 
(Fig. 3c). 

3.2. Correlations between soil microbial biomass and climatic factors 

Averaged across eCO2 levels and duration treatments, the effect of 
eCO2 on TMB, bacterial biomass and fungal biomass also varied with 
experimental duration, with the highest sensitivity at >3 y (Fig. 4). We 

Fig. 1. Effects of eCO2 on soil microbial biomass. In a, the ln Response ratios of eCO2 for all studies carried out in the context. In b, Response ratios (RR) for eCO2 on 
soil microbial biomass. Error bars represent ± 95 % confidence intervals of the percentage effects between the CO2 addition and control treatments. The number of 
observations is in parentheses. AMF, ACT, GP, GN and MR represent the biomass of arbuscular mycorrhizal fungi, actinomycetes, gram-positive bacteria, gram- 
negative bacteria and microbial respiration, respectively. Solid circles indicate significant, empty circles indicate non-significant. 
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found significant negative correlations between the RRs of the C/N ratio 
and the RRs of TMB, and bacterial and fungal biomass (Fig. 5). Addi-
tionally, we found significant positive correlations between the RRs of 
the C/N ratio and eCO2 treatment levels (Fig. 5). 

4. Discussion 

In total, 62 peer-reviewed publications reporting results from global 
terrestrial ecosystems, from tropical to boreal regions, were included in 
the database (Fig. S2). Most experiments included in our meta-analysis 
were conducted in the northern hemisphere. The ΔCO2 concentration 
ranged between 40 and 450 ppm. Thus, the magnitudes of eCO2 in our 
synthesis are consistent with projections of the end of the century 
(Table S1). This study presents the first global-scale empirical evidence 
that the effect of eCO2 on soil microbial biomass depends on the actual 
level of the eCO2. The range of eCO2 (≤200 ppm) stimulated soil mi-
crobial biomass, while the range of eCO2 (>200 ppm) had a neutral or 
even negative effect. Importantly, complex interactive effects occurred 
between the eCO2, treatment levels and experimental duration, (>3yr) 
although they were not ubiquitous. Understanding how changes in eCO2 
interact with experimental duration to impact soil microbial biomass is 
therefore crucial for predicting microbiome responses to climate change. 
This highlights the need for future long-term field studies that apply 
different eCO2 treatment levels and precipitation-associated changes 
that are likely to occur in a given region. 

In addition to the widely presented positive effects of eCO2 on soil 

microbial biomass (Eisenhauer et al., 2012), our results just found a 
positive effect on bacterial biomass, fungal biomass, AMF biomass and 
ACT biomass (Fig. 1b). Soil microorganisms can be divided into copio-
trophic and oligotrophic classes, with the former having a lower biomass 
C to nutrient ratio, thus, needing more nutrients (Zechmeister-Bolten-
stern et al., 2015; Delgado-Baquerizo et al., 2017). The eCO2 induces 
more C and less N into soil by stimulating plant growth, which provides 
a competitive advantage to oligotrophic organisms (Andrews and Har-
ris, 1986). Therefore, some microbes can quickly gain a big competitive 
advantage due to their insensitivity to nutrient-limitation when the 
ecosystem faces eCO2 (Zechmeister-Boltenstern et al., 2015; Delgado- 
Baquerizo et al., 2017). As a result, given the differing sensititivities 
among different microbial groups in our database when facing CO2 
enrichment (Zechmeister-Boltenstern et al., 2015; Delgado-Baquerizo 
et al., 2017), there was no apparent change or even a decline in TMB, 
F/B, GP biomass, GN biomass and GP/GN (Fig. 1b). These results suggest 
various CO2 sensitivies among different microbial groups, with bacterial 
biomass, fungal biomass, AMF biomass and ACT biomass more sensitive 
to eCO2 than others. 

In our synthesis, there were more positive effects of eCO2 on most 
microbes at the ranges of eCO2 levels (≤200 ppm) than of high eCO2 
(>200 ppm) (Fig. 2a), which indicated that eCO2 did not stimulate CO2 
fertilization of soil microbial biomass when the concentration exceeds a 
certain threshold level. This was a unique observation that has not been 
reported in previous synthesis. The likely explanation is attributable to 
the reduction in soil nutrition availability under high treatment level of 

Fig. 2. Effects of eCO2 on soil microbial biomass. The variables are categorised into different groups according to the eCO2 level, duration of the experiment, soil 
depth, and mean annual precipitation (MAP). Error bars represent ± 95 % confidence intervals of the percentage effects between the CO2 addition and control 
treatments. The number of observations is in parentheses. * indicate significant differences among different treatments (P < 0.05 after Holm-Bonferroni adjustment; 
paired t-test). 
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eCO2 (Oren et al., 2001). Indeed, at the ecosystem level, individual CO2 
experiments show complex results for the magnitude of the growth and 
biomass response to eCO2 with nutrient limitation, such as N, P or other 
element limitation in other studies (Norby, 2010). Similarly, experi-
mental CO2 enrichment generally enhanced the ratios of C/N by stim-
ulating plant growth and nutrient uptake, although it was nonsignificant 
in some cases due to the limited observations (Hu et al., 2001; Sulman 
et al., 2014; Jin et al., 2019). Collectively, CO2 enrichment probably 
leading to significant lower amounts of N being available in soil when 
CO2 concentration exceed certain limit (Xiao et al., 2017). The consis-
tent increase in CO2 fertilizer efficiency when enough N is available 
suggests that N limtation significantly reduces the capacity of soil mi-
crobial biomass to CO2 enrichment (Hu et al., 2001; Sulman et al., 2014; 
Grover et al., 2015). The pattern corresponded to a negative effect of 
eCO2 levels on soil N availability in our study (Fig. 5d). Thus, extrapo-
lating our observation of the decreased microbial biomass in N-limited 
soils to naturally fertile or fertilised soils resulted in a greater global 
increase in the effect of eCO2. 

As our study did for eCO2, Dunbar et al. (2012) found a positive long- 
term (>3 y) effect on microbial biomass after fertiliser additions, which 
suggests an interaction between the CO2 fertilisation effect and 
increased soil nutrient concentrations in ecosystems. However, our 
framework found that eCO2 had a significant positive effect on bacterial 
and fungal biomass in the short term (≤3 y) rather than the long term 
(>3 y) (Fig. 2). In addition, based on the evidence from both treatment 
levels and experimental duration changes we found an interaction effect 
on bacterial and fungal biomass when facing long-term CO2 enrichment 

(Fig. 4). The diminished CO2 fertilisation effect may be attributed to the 
negative impacts of eCO2 on N cycling, constraining the soil microbe 
responses to eCO2 (Hu et al., 2001; Sulman et al., 2014). The increased 
inputs of CO2 stimulated net N mineralisation and hence plant N uptake 
over time (Drake et al., 2011; Phillips et al., 2011), aggravating the 
nutrient limitation of eCO2 on soil microbial biomass. Thus, our syn-
thesis do support the notion that the interactive effects of eCO2 treat-
ment levels and long experimental duration on soil microbial biomass 
weaken the eCO2 effect under long term treatments. 

Our results also showed that the ranges of precipitation (>800 mm) 
increased the effect of eCO2 on TMB, bacteria biomass, fungi biomass 
and ACT biomass (Fig. 3c). When water resources were at their highest, 
the effect of eCO2 on soil biomass was even higher with an increase in 
the eCO2 (Maestre et al., 2015; Dacal et al., 2019). There was evidence 
that water limitation could be responsible for increasing the eCO2 fer-
tilisation effect. Studies conducted in a grassalnd showed CO2 fertil-
llzation effects can be enhanced when rainfall is high, because high 
rainfall also leads to improved soil water availablity (Egea et al., 2012). 
High nutrient accumulations have been observed in soil under high 
precipitation levels (Han et al., 2011). These findings suggest that the 
CO2 fertilisation effect on soil microbes will be enhanced in high pre-
cipitation regions, which will have a further impact on microbe- 
mediated ecosystem functions (Dacal et al., 2019). 

Under experimental CO2 enrichment, the positive effect on soil mi-
crobial biomass was attributed the method of OTC (Fig. 3a). The 
methods of OTC may be the primary modulator of soil microbial biomass 
responses to eCO2 by regulating microclimate (Huang et al., 2017). 

Fig. 3. Effects of eCO2 on soil microbial biomass. The variables are categorised into different groups according to eCO2 method, sampled depth and ecosystem. Error 
bars represent ± 95 % confidence intervals of the percentage effects between the CO2 addition and control treatments. The number of observations is in parentheses. 
* indicate significant differences among different treatments (P < 0.05 after Holm-Bonferroni adjustment; paired t-test). 
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Finally, the results showed that soil microbial responses were signifi-
cantly increased in the topsoil (Fig. 3b), which was probably because 
most roots grow in topsoil, increasing the organic matter input (Chen 
et al., 2020). Based on a meta-analysis of published studies, the existing 
framework describes the different effects of eCO2 on soil microbial 
biomass over a wide range of ecosystem types, including croplands, 
forests, grasslands and controlled environment (Li et al., 2004; Kandeler 
et al., 2008; Godbold et al., 2015). However, no significant effect of eCO2 
on the of soil microbial biomass variables only occurred in majority 
ecosystems (Fig. 3c). This implies that the maintenance of maximal soil 
microbial growth through CO2 enrichment requires optimal nutrient 
concentrations, and in majortiy the abundance of CO2 applications 
aggravate nutrient limitations (Soussana and Lemaire, 2014). Our 
findings revealed that, for a diverse range of ecosystem types, with 
varying soil depth and climates, the CO2 fertilisation effects on soil 
microbial community composition vary depending on the exact CO2 
level. 

5. Conclusions 

Our results suggest that ongoing increasing atmospheric CO2 con-
centrations will have profound effects on soil microbes. The positive 
effects of eCO2 on soil microbial biomass and composition varied with 
the exact level of eCO2. The impacts of eCO2 levels on soil microbes were 
strongly linked to the experimental duration. Furthermore, these CO2 
fertilisation effects shifted across different terrestrial biomes, including 
forests, grasslands, croplands and controlled environment. Our meta- 
analysis reconciled conflicting evidence on the eCO2 fertilisation effect 
across scales and provided an empirical estimate of soil microbial 
biomass sensitivity to eCO2 that may help to predict soil microbial 
changes under future increasing atmospheric CO2 concentrations. 
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