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Artificial Intelligence for Opportunistic 
Chest CT Screening and Prognostication

Nikos Sourlos, Peter M. A. van Ooijen, 
and Rozemarijn Vliegenthart

 Introduction

Low-dose chest computed tomography (CT) can help detect 
cancer in early stages and has been found to significantly 
improve the survival of long-term smokers [1, 2]. Trials have 
shown that low-dose CT screening prevented death due to 
lung cancer in up to 25% of cases [1, 2]. Since the publica-
tion of these large-scale trials, there has been increasing 
interest in implementation of lung cancer screening in 
healthcare practice. This has resulted in recommendations 
from major societies particularly in the USA [3], on the cri-
teria for individuals who are recommended to undergo chest 
CT screening, aimed at early lung cancer detection. In 
Europe, there is still more hesitation with regard to CT 
screening implementation, as a number of questions still 
need answering (ESR/ERS and EUPS statements [4, 5]).

Apart from early detection of lung cancer based on lung 
nodules, chest CT scans can also help in the early detection of 
emphysema, as a marker for chronic obstructive pulmonary 
disease (COPD). Presence of emphysema on CT has been 
found to be a predictor of mortality [6] and of lung cancer [7] 
in screening setting. Visual and quantitative evaluation of 
emphysema may provide complimentary information related 
to prognosis [8]. Moreover, chest CT can provide useful 
information on the presence and severity of coronary artery 
calcium (CAC), which is related to the risk of cardiovascular 
disease (CVD) [9]. While the standard method for evaluating 
the CAC score, as quantification of CAC, is an electrocardio-
graphically triggered cardiac CT scan, lung cancer screening 

studies have shown that a CAC estimate based on low-dose 
chest CT is also related to risk of CVD events [9].

For COPD and cardiovascular disease screening, results 
from randomized trials showing benefit of early detection, 
combined with early treatment, are lacking. The ROBINSCA 
trial aims to determine the benefit of CAC screening based 
on non-contrast cardiac CT [10]. For the foreseeable future, 
it is likely that if chest CT screening is indeed implemented 
in Europe, it will be aimed at long-term (ex-) smokers, and 
focused on early detection of lung cancer. This screening 
population would comprise a huge number of screenees, 
undergoing potential (bi-)annual CT screening. If eventually 
CAC screening would be implemented, the population that 
would qualify for that screening would likely be much larger 
than for lung cancer screening, as risk factors are much 
broader than smoking alone and include hypertension, diabe-
tes, and hypercholesterolemia, factors that are highly preva-
lent in the Western populations.

The challenges associated with CT screening of a large 
population group are numerous. These include logistics 
(invitations, administration of baseline and follow-up screen-
ings), capacity of CT systems, standardization of CT proto-
cols, image quality and evaluation protocols, and manpower 
to evaluate the CT scans [5]. All these issues contribute to 
screening costs. The screening workload can put a huge bur-
den on radiologists’ time to evaluate, register, and check the 
results of the scans [11]. This will result in fatigue, which in 
turn will decrease radiologist’s performance of detecting 
nodules and reading speed [12]. In addition, the scans of 
many of the individuals that will be screened will be without 
abnormalities, with a negative screening result. The question 
is whether image reading can be optimized with better selec-
tion of scans that need radiologist evaluation.

AI can help to address, among others, the abovemen-
tioned issues. It can automatically detect small lung nodules 
by finding complex patterns or even detect features that 
would otherwise be missed, reducing the time radiologists 
need to spend on reading CT scans, and so, reducing the total 
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cost of screening [13]. Moreover, it can prioritize the work-
flow by moving screenees with significant findings to the top 
of the list of scans that the radiologist will assess. In addition, 
it can save time by automatically quantifying the size of nod-
ules found. Furthermore, AI seems promising in reducing 
noise in reconstructed images, and so the dose required dur-
ing the scan can be further reduced and the acquisition time 
can be decreased [14, 15]. These topics are further explored 
in the remainder of this chapter.

Another difficulty in clinical practice is to evaluate all rel-
evant biomarkers related to B3 diseases. The National 
Institutes of Health Biomarkers Definitions Working Group 
defines a biomarker as “a characteristic that is objectively 
measured and evaluated as an indicator of normal biological 
processes, pathogenic processes, or pharmacologic responses 
to a therapeutic intervention” [16]. A biomarker should pro-
vide information about disease risk to a greater extent than 
the standard risk factors like age, smoking, etc. [17]. A chal-
lenge in implementing biomarkers is the fact that different 
CT systems, scan protocols, reconstructions, and software 
may yield differences in biomarker results [18]. Thus, stan-
dardization, for example, in image quality, is needed. Also, 
the value of a biomarker in relation to clinical disease and 
events needs to be determined for different populations in 
order to understand generalizability. Also, we should take 
into account the inherent correlation between biomarkers, 
and perform validation to make certain that the biomarker is 
reproducible and accurate [17].

Machine learning methods have started to allow auto-
matic extraction of useful features from images like nodule 
size, diameter, shape, etc., which help to derive new imaging 
biomarkers, some beyond the visual and (semi-)quantitative 
analysis by a radiologist. Before the rise of these methods, 
this task was usually performed manually, by experienced 
radiologists who used to spend a significant amount of time 
to find and extract these features. It is worth noticing that a 
biomarker will be more useful in clinical practice if it is more 
informative than just the imaging alone [19].

Finally, if biomarkers will be used to predict the outcome 
of a disease in a screenee, there are some indicators of how 
well they perform compared to other available biomarkers. 
These are their discrimination ability and their calibration 
and reclassification by evaluating statistical models with and 
without the biomarker [17].

 Potential for AI Role in B3 Screening

There are many ways in which AI can help in the workflow 
of B3 screening (either aimed at lung cancer, emphysema, 
CVD, or all three). Figure  45.1 shows the different steps 
where AI may have value in the future.

 Image Acquisition

The first step in the pipeline of low-dose chest CT screening 
is the image acquisition. Recently a system based on deep 
learning was developed that uses 3D cameras to find the opti-
mal position in which an individual should be positioned for 
the CT scan. By doing that, the right amount of dose will be 
delivered to the right location, and the image quality can also 
be improved and homogenized, since noise in the output 
image will be reduced [20].

 Image Pre-Processing

The next step in the pipeline is the pre-processing of the 
acquired CT images into a standard format (normalization, 
resizing, etc.) and to check if they have an adequate quality to 
perform diagnosis [21]. In this step noise reduction techniques 
are applied, in particular iterative reconstruction. AI can also be 
used instead of classic iterative reconstruction procedures, to 
improve image quality of low-dose CT scans by reducing noise 
and improving structural fidelity [22]. Image improvement 
algorithms which reduce noise and artifacts (Fig. 45.2) are of 
importance since radiation dose can be reduced, due to the fact 
that the decreased image quality can be compensated by the 
noise reduction algorithm. There may even be the possibility in 
the future to generate contrast- enhanced CT images out of non-
enhanced ones [23]. Also, images from different CT scanner 
vendors can be made more alike in quality, by using vendor-
neutral deep learning image reconstruction software [24].

Image 
Acquisition

Classification

Segmentation

Detection

Image 
Preprocessing and 

Quality Check

Prognosis and 
Risk Prediction

Image Post Processing

Fig. 45.1 Workflow steps in B3 screening which AI can contribute

N. Sourlos et al.



485

 Image Post-Processing

The next step is the post-processing. Here, the preprocessed 
images are fed to an AI algorithm which either detects the 
region of interest or segments the lesion or classifies the 
image according to the goals. After that, the scan result for 
the particular screenee is determined. Using the results from 
image post-processing, a risk prediction algorithm is then 
used to determine the risk of the screenee. The prognosis is 
estimated, and at the end, it is decided if another routine 
screening needs to be scheduled or if workup or short-term 
follow-up is required.

Below, a few specific applications of AI in image post- 
processing of B3 diseases are presented:

 1. Object detection: Object detection algorithms identify 
specific objects in an image by drawing a bounding box 
around them. Examples of these algorithms are the 
R-CNN, the fast R-CNN, the faster R-CNN, and the mask 
R-CNN [25]. An application of such algorithms could be 
to find a region of interest in an image (Fig. 45.3). Lung 
nodules can also be detected using CNNs. An example of 
lung nodule detection can be seen in Fig.  45.4. Using 
maximum intensity projection CT images, the number of 
false positives per scan can be reduced significantly [26]. 
Except from the higher sensitivity, a recent study has 
shown that an AI system can have better performance 
compared to radiologists in the lung nodule detection task 
[27]. Based on the findings and on risk factors [28], the 
AI will then decide if additional screening is needed.

 2. Segmentation: Segmentation is a per-pixel classification 
task. A label is given to each pixel as belonging to one of 
a set of predefined categories, and at the end, a mask is 

applied to segment the region of the image that contains 
the pixels of a specific category [30, 31]. An example of a 
segmentation algorithm is the U-net which can be used to 
segment coronary artery calcium, a predictor of cardio-
vascular events [30]. The Dice coefficient can be used to 
evaluate the results of the segmentation to the ground 
truth (e.g., manual segmentation) [30]. In Fig. 45.5 a seg-
mentation of the heart is presented.

 3. Classification: Classification algorithms classify patients 
to one of a set of predefined categories (e.g., patients with 

a b

Fig. 45.2 AI for noise reduction. On the left (a) the regular chest CT image and on the right (b) the improved, reduced-noise version, generated 
by the AI algorithm [13]

Fig. 45.3 Object detection algorithm outputs a bounding box around 
the heart [13]

45 Artificial Intelligence for Opportunistic Chest CT Screening and Prognostication
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or without myocardial infarction). A deep neural network 
(DNN) can be used to directly classify lung nodules in an 
image as benign or malignant. Nodule features can be 
extracted from these networks and fed into a machine 
learning classifier.

Next, another algorithm can be used to further improve 
the performance of the model [32]. The whole process is 
demonstrated in Fig. 45.6.

 Prognosis and Risk Prediction

Prognosis and risk prediction algorithms based on AI have 
recently become available. These algorithms output a con-
tinuous function with a numerical output indicating, e.g., the 
cardiovascular disease risk and/or the survival time of 
patients [33]. Inputs can also be biomarkers instead of 
images. For assessing the risk of individuals, methods like 
the Framingham risk score (FRS) and body mass index 

Fig. 45.4 Bounding box around a lung nodule on chest CT, with a magnified view on the right [29]

a b

Fig. 45.5 Segmentation of the heart. On the left (a) the input image and on the right (b) the binary segmented image projected over the original 
CT image [13]

N. Sourlos et al.
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(BMI) for CVD are commonly used. These methods  consider 
a number of biomarkers like cholesterol levels to evaluate the 
risk score [34, 35]. A recent study showed that automated 
CT-based biomarkers derived from image processing algo-
rithms are more accurate in predicting cardiovascular events 
compared to FRS and BMI [36]. Moreover, one other study 
revealed the potential of using AI methods to uncover new 
predictive factors in CVD [37]. For lung cancer, the risk can 
be estimated from an AI algorithm including lung nodule 
volume [38].

It is worth noting that there are also some cluster analysis 
algorithms that help us find patterns in data without any prior 
knowledge about the patterns that exist in the data. An exam-
ple of these algorithms is hierarchical clustering that is used 
for heterogenous cardiac diseases; these algorithms could help 
us understand the mechanisms that cause heart failure [39].

 Clinical Implementation

AI has revolutionized the medical field. Nevertheless, there 
are many challenges to applying AI algorithms in clinical 
practice. Below the most important ones are presented.

 Technical Considerations

The mechanisms that lead most of the AI algorithms to their 
predictions are not well understood. This is the so-called 
“black box” problem with AI systems, which means that the 
processes and calculations that take place may not be easily 
interpreted by humans. The algorithms lack explainability, 
and so their predictions cannot be treated without suspicion 
by the clinicians [40, 41]. For detection objectives, one pos-
sible solution to address the lack of explainability is to use 
Grad-CAM method. In that method the areas in the output 
image that influenced the output of the algorithm the most 
are visualized [42]. Furthermore, by having more GPU 
memory, it is possible to train 3D CNNs which will be able 
to better detect the regions of interest in images (e.g., nod-
ules) [31].

 Population Characteristics

The deep learning training process is highly dependent on 
the input data and the corresponding labels in that the deep 
learning network can only learn from examples provided to 
it. Therefore, imbalance in these input data might influence 
the decision-making capacity of the deep learning network 
or make it less generalizable. The influence of imbalance on 
the deep learning network could, for example, lead to dis-
crimination of certain minority groups in the training data 
either causing bad performance in certain groups or resulting 
in misclassification. The decrease in generalizability can 
lead to decreased performance of a deep learning network 
when deployed in another environment. For example, one 
study showed that there is a significant difference in cardio-
metabolic biomarkers between women and men [43]. It is 
therefore possible that these differences between biomarkers 
in women and men will lead to variations in development 
and complications of CVD and, so, in potential gender- 
specific early misdiagnosis [44]. If this is the case, we would 
have bias even if the dataset is balanced in terms of the popu-
lation of each sex. Another example could be the presence of 
a specialized doctor for a particular type of rare lung cancer 
in a hospital. This will lead patients from all around the 
country to this hospital to be examined by this specialist. 
Since this is a rare cancer, it is likely that patients who do not 
live close to the hospital are having this type of cancer, while 
those who live near that area are not having it. It seems like 
there is an inverse correlation between distance to the hospi-
tal and having the rare cancer, even though these two vari-
ables are independent [45]. So, living in a country in which a 
specialized doctor is only available in one hospital from 
which data were collected and used to train an AI algorithm 
could make the algorithm learn wrong patterns. This can 

Dataset

Classification with Deep 
Convolutional Neural 

Networks
 

Image 
Augmentation  

Algorithm to Further 
Improve Performance

 

Feature Extraction  

Fig. 45.6 To classify chest CT images with deep learning models, aug-
mentation is often used to increase the examples in the training set; 
features are extracted after the model is trained. These features are used 
as input to another algorithm to further improve the performance of the 
deep learning network
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only be avoided by adding data from other hospitals and 
from different countries as well, since in those data it is likely 
that this correlation does not exist and, so, it would be pos-
sible to make the algorithm generalize better.

 Dataset Challenges

Acquisition characteristics should be taken into account dur-
ing dataset creation. If the dataset consists of images from 
multiple CT systems, it may be the case that they do not have 
the same characteristics. The resolution, the slice thickness, 
the reconstruction kernel, etc. may differ between images of 
different datasets, and so their quality will not be the same 
[46]. This can severely impact the performance of our AI 
algorithm since, for example, it may only be able to localize 
small nodules in high-resolution images.

In addition to that, many medical experts should take part 
in the annotation procedure of the dataset to ensure that it is 
done properly [47]. This will inevitably introduce interob-
server variability which should be resolved [47]. Lastly, it is 
essential to preprocess the images that are fed to the model to 
ensure that they are in the format that the AI algorithm was 
trained on [39]. Otherwise, wrong results will be obtained.

 Application Area

During training of an AI algorithm, the dataset should be rep-
resentative of the type of data and of the population that the 
algorithm will see in the future [47]. If, for example, the goal 
is to detect skin cancer in the general population, the dataset 
should consist of people of all colors, so that minorities are 
also included, to prevent selection bias. In addition to that, 
specific medical requirements should be taken into account. 
For example, it may be more important to have less false 
positives even at the cost of increased false negatives and 
vice versa. It is also very important to notice that an AI algo-
rithm is likely to be trained with more images of patients 
than of healthy individuals and, so, be biased in favor of 
diagnosing disease instead of healthiness. In screening, it is 
not known in advance if someone is healthy or not. It is likely 
that the individual is healthy since screening is mainly per-
formed on asymptomatic individuals. Therefore, AI software 
may fail to work in screening because of that class imbal-
ance. It would be better to train AI algorithms with equal 
amounts of data from each class (here diseases and healthy 
individuals). One way to test the performance of the algo-
rithm in class imbalance problems is to train it with different 
splits of images between healthy and diseased. For example, 
a training set may consist of 40% diseased and 60% healthy 
individuals or 30% and 70% or any other split. It should be 
noted that there may be a decrease in accuracy if bias is 

reduced, considering that having less training data of dis-
eased may not allow the algorithm to achieve the detection 
performance that would have if the training set consisted of 
equal amounts of images of diseased and of healthy individ-
uals. Another way to deal with the decreased performance is 
to use techniques like oversampling of the minority class, in 
which more copies of the minority class are added in the 
training set, or undersampling of the majority class, in which 
some of the data of the majority class are removed, or, simi-
lar to upsampling, generate new examples of the minority 
class [48]. Moreover, data augmentation could be an option 
for the examples of the minority class.

 Legal Challenges

Another limitation that may prevent the use of AI in clinical 
practice is the massive datasets required to train a model, 
which are difficult to be acquired, especially when they con-
tain sensitive screenee information. It is important to respect 
privacy regulations and secure the anonymity of the individ-
uals [47]. Another legal aspect could be the accepted role of 
AI in a screening setting. AI could play a major role in the 
cost-effectiveness of large population screening programs if 
it could safely discriminate between participants who do not 
have disease and participants who are suspected of having 
disease with a varying likelihood. The legal issue however 
would be if an AI system, although capable of doing so with 
very high accuracy, could be allowed to discard screening 
participants from further investigation without any human 
intervention. The question is whether a human expert check 
would still be required, also for those participants of which 
the algorithm is 100% sure they do not have any of the dis-
eases screened for. Since most AI nowadays are aimed at a 
single defined task, it could, for example, be argued that a 
screening AI that safely rules out lung nodules, COPD, and 
coronary calcification could miss something a human 
observer would be able to detect (e.g., thoracic aorta aneu-
rysm). Having AI systems trained and implemented for all 
possible pathologies that could show up in screening would 
be very challenging and increase the cost dramatically.

 AI Benchmarking

To avoid many of the above problems, validation of software 
based on a benchmark dataset should be performed. This 
dataset should be created trying to avoid as many biases as 
possible. The characteristics of the population data that were 
collected along with the characteristics of the CT systems 
used to acquire the data can significantly affect the perfor-
mance of the AI algorithm. Therefore, standardization/nor-
malization of the data should be performed. Moreover, it 
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should be ensured that the dataset is representative in terms 
of resolution of images, slice thickness, etc. of the data that 
will be given as input to the AI algorithm in the clinical prac-
tice. Additionally, this dataset should be tailored to a specific 
area of application (e.g., lung nodule detection) and to a spe-
cific target population (e.g., white individuals of ages 30–40). 
Moreover, harmonization of annotated data from different 
studies should be performed since each study may have a 
unique annotation protocol. Furthermore, batch effects and 
human observer difference may arise because of the different 
times the annotations were performed and of the different 
radiologists that contributed in the annotation tasks, respec-
tively. Statistical tests can help check the coherence of these 
data as well as test their variation. Only if all the above sug-
gestions are followed, the generalization of the algorithm as 
well as its broad coverage can be tested. At the end, there 
may still be some inherent biases that cannot be avoided.

 Conclusion

Even though AI’s potential in assisting medical experts in B3 
screening, prediction, diagnosis, and many other tasks is 
promising, with specific tasks having proven benefit in many 
studies, a lot of work needs to be done before AI algorithms 
can be implemented in chest CT screening. It is important to 
ensure that most of the potential biases are avoided, that the 
algorithm can be generalized to the scan protocol, and that 
the dataset it was trained on resembles the target population. 
AI algorithm validation is an essential step before allowing 
algorithms to be used in medical practice.
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