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Abstract

Especially for the Euclidean (i.e. positive definite case) the notions of
Cayley chart is well known. With it the notion of complete Pfaffian can be
introduced. In this article we consider the link between Cayley charts, complete
Pfaffians, and outer exponentials both for the Euclidean and the non-definite
case.

Notations

We assume here that a standard basis for IR0n (or IRpq) is given, with the
inner product (·, ·):

(ei, ej) =

{
−δij if i ≤ p

δij if i > p

Notice that notation is chosen such that IR0n (also written IRn for short) is
Euclidean space with positive inner product, a notation which is a lot more
practical than the opposite sign convention. The generators of the Clifford
algebra then satisfy

e2
i = −(ei, ei),

and the dot product is defined by ~x · ~y = (1/2)(~x~y + ~y~x). The k-vector part of
a Clifford number a is written as [a]k. [a]0 is called the real or scalar part of
a. Following Lounesto and Ahlfors we define the wedge and dot products of
an r-vector a and an s-vector b by

a · b = [ab]|r−s| a ∧ b = [ab]r+s,

unless r or s is zero, in which case a·b = 0. Also the notation ∧kb =
(
∧k−1b

)
∧b,

where ∧0b = 1, comes from [2].
The main antiautomorphism on the algebra is defined by the transforma-

tion of the generators: ei = −ei, and of course ab = b̄ ā.
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Any transformation of IRpq can be expressed by a matrix using the basis
e1, . . . , en. Vectors in IRpq other than these basis vectors are written with a
vector arrow: ~x, ~y, . . .. n is the set {1, . . . , n}, σ(n) is its set of permutations,
and likewise for m. As usual n = p + q. If g is in the Clifford group, Pin(g) is
the orthogonal transformation of IRpq mapping ~x to g~xg′−1.

End−(IRpq) is the set of transformations s such that (s~x, ~y) = −(~x, s~y)
for all vectors, i.e. the set of all antisymmetric transformations.

1. The Cayley Chart

The Cayley chart is a mapping from End−(IRpq) to SO(p, q) defined by

Cays = (1 + s)(1− s)−1

for those s for which 1 − s is invertible. Originally it was considered as a
conformal mapping in C, which maps the imaginary axis to the unit circle
(the point ∞ is mapped to −1). However, multiplication with an imaginary
number is antisymmetric, and so the imaginary axis can be identified with
End−(IR2). Likewise the unit circle can be identified with SO(IR2). This way
the Cayley chart can be generalised into two directions: the one given above,
and as a conformal mapping in n-dimensional space mapping the unit sphere
to a hyperplane.

THEOREM 1.1 The image of the Cayley map consists of those elements A
of SO(n) such that 1 + A is invertible.

Proof.
Suppose first that A = (1 − s)−1(1 + s) for a certain s. Then for any ~x such
that A~x = −~x we have that (1+s)~x = (1−s)(−~x) or 2~x = 0. This proves that
1 + A is invertible. For the proof that A ∈ SO(p, q) we sketch the reasoning
given in [4]. First notice that the adjoint of (1− s) is (1 + s). It follows that

(Au, Av) = ((1− s)−1(1 + s)u, (1− s)−1(1 + s)v)

= ((1 + s)−1(1 + s)u, (1 + s)−1(1 + s)v)
= (u, v),

so A ∈ O(p, q). Moreover, since the determinant of the adjoint is the determi-
nant of the transformation, det(1− s) = det(1 + s). It follows that

det A = (det(1− s))−1 det(1 + s) = (det(1 + s))−1 det(1 + s) = 1.
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Suppose now that 1 + A is invertible. Put then

s = (A− 1)(1 + A)−1.

One sees immediately that A = (1 − s)−1(1 + s), but we still have to prove
that s is in End−(IRpq), i.e. that for arbitrary ~u and ~v, (s~u,~v) + (~u, s~v) = 0.
Put ~t = (1 + A)−1~u, ~w = (1 + A)−1~v, and the expression becomes

((A− 1)~t, (A + 1)~w) + ((A + 1)~t, (A− 1)~w)

which is zero, as an elementary calculation shows.

Remark
The Cayley map is one to one. Moreover, for p = 0, (1−s) is always invertible,
and the condition can be omitted.

There is a bijective relation between the mappings in End−(IRpq) and the
bivectors of IRpq. Indeed, let b be a bivector, and let B be the mapping ~x → b·~x.
Then B ∈ End−(IRpq). Indeed (B~x, ~y) = [b · ~x~y]0 = [b~x~y]0 = −[~xb̄~y]0. On the
other hand (~x,B~y) = −[~xb~y]0. since b = −b̄, this means that B ∈ End−(IRpq).
On the other hand, for B ∈ End−(IRpq), we can put

b =
1
2

n∑
i,j=1

(Bei, ej)e−1
i e−1

j .

Hence we shall use also the notation Cay(b) where b is a bivector.

2. Wedge Products and Outer Exponentials

The definitions are taken from [2]. The results proved here also are inspired
by this article, where similar results were proved for the positive definite case.

Lemma 2.1. for any bivector b, any vector ~x, and any k > 0(
∧kb

)
· ~x = k

(
∧k−1b

)
∧ (b · ~x).

Proof.
Take first an arbitrary r-vector a and an s-vector b. Then

(a ∧ b) · ~x = (−1)s(a · ~x) ∧ b + a ∧ (b · ~x).
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This is easy to prove if a = eI , b = eJ , ~x = ei, since the four cases (i in I
or not, i in J or not) can be treated separately; the general case follows by
linearity. From this it then easily follows by induction on k that for a set of
elements of the even subalgebra ai(

∧k
i=1ai

)
· ~x = (a1 · ~x) ∧ a2 ∧ . . . ∧ ak + a1 ∧ (a2 · ~x) ∧ . . . ∧ ak+

. . . + a1 ∧ . . . ∧ (ak · ~x) .

Putting all ai = b, and noticing that the vector b · ~x commutes (for the wedge
product) with any even element, gives the result.

We now define the outer exponential function by

oexp(a) =
∞∑

k=0

1
k!
∧k a.

Lemma 2.2. Let b = [b]2 be a bivector, β = oexp(b), and let B be the linear
operator mapping ~x → b · ~x. If 1−B is invertible, then, for any ~x there exists
a unique ~y such that β~x = ~yβ. This ~y is given by Cay(B)~x = ~y. Moreover ββ
is real.

Proof.
Take x arbitrary. Since 1−B is invertible, it is possible to find ~y with (1+B)~x =
(1 − B)~y, and so ~y = Cay(~x). Notice that ~y · b = −B(~y) and b · ~x = B(~x), so
the identity can be written as

~x + b · ~x = ~y + ~y · b.

It must be shown that β~x = ~yβ. From the definition of oexp and the previous
lemma it follows that (β − 1) · ~x = β ∧ (b · ~x). Indeed

(β − 1) · ~x =
∞∑

k=1

1
k!

(
∧kb · ~x

)
=

∞∑
k=1

k

k!
(
∧k−1b ∧ (b · ~x)

)
= β ∧ (b · ~x)

Since 1 · ~x = 0,
β · ~x = β ∧ (b · ~x).



Advances in Applied Clifford Algebras 5, No. 1 (1995) 45

On the other hand, since ~x is a vector, β · ~x = β~x− β ∧ ~x which results in

β~x = β ∧ (~x + b · ~x) = (~x + b · ~x) ∧ β = (~y + ~y · b) ∧ β.

In a similar way ~yβ = (~y + ~y · b) ∧ β, and this proves that β~x = ~yβ.
We still must prove there is only one ~y satisfying this equation, i.e. that

if β~x = ~zβ, then ~z = ~y. Since [~zβ]1 = (1−B)~z = [~yβ]1 = (1−B)~y, and 1−B
is invertible, this is however immediately clear.

To prove that ββ̄ is real we start from the fact that for arbitrary ~x, β~x = ~yβ
for certain ~y. Multiplying with β gives ββ~x = β~yβ, taking the adjoint gives
~xββ = β~yβ. In other words, ββ commutes with all vectors, and must be in
the centre of the algebra. On the other hand ββ is even, so it must be real.

Remark
In the positive definite case it now follows easily that β is in the Clifford group.
Since ββ̄ 6= 0, β is invertible, β′−1 = β−1 = β̄/(ββ̄). With β~x = ~yβ this gives
β~xβ′−1 = ~y. In the general case we still have to prove that ββ̄ is different from
zero. To prove this the so called complete Pfaffian will be used, which is an
alternative expression for the outer exponent of a bivector.

3. The Pfaffian in the Definite Case

End−(IR0n) is given by the matrices for which s = −sτ (τ indicates the trans-
pose). The Pfaffian of s is defined to be 0 if n is odd and

pfs =
∑
π∈P

sgnπ
∏
i∈m

sπ(2i),π(2i+1)

if n is even, where m = n/2 and P is the set of permutations of n satisfying
(i) π(2i) < π(2i + 2) for all i < m.
(ii) π(2i) < π(2i + 1) for all i ≤ m.

An alternative formula for the Pfaffian is

pfsen =
1

2mm!

∑
π∈σ(n)

∏
i∈m

sπ(2i),π(2i+1)eπ(2i)eπ(2i+1)

This expression is given e.g. in [3] and [2] if one takes into account that∏
i∈m eπ(2i)eπ(2i+1) = sgnπen, which is easily checked.

The complete Pfaffian here is given by

Pfs =
∑
I⊂n

pfsIeI ,
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where sI is the matrix obtained retaining only the elements sij such that
{i, j} ⊂ I. We introduce some notations:

S(i1, . . . , ik) is the matrix obtained from s deleting the i1th, . . . and ikth
rows and columns.
I(i1, . . . , ik) = I \ {i1, . . . , ik}.

The following expression for the Pfaffian of s (given in [3]) will be used:

pfs =
n∑

i=1

sik(−1)i+k−1pfS(i, k). (1)

This expression is valid for any k.

THEOREM 3.1 The complete Pfaffian is in the Clifford group.

Proof.
It is sufficient to prove that, for arbitrary n and s, Pfs can be written as

Pfs = (1 + ~ven)PfS(n)

for some vector ~v, since then the theorem follows by induction on n (1 + ~ven

is in the Clifford group). Since Pfs ∈ IR0n, it has the form

Pfs = a + enb,

where a, b ∈ IR0,n−1, and it is easily checked that a = PfS(n), while enb is
linear in the sin:

enb =
∑

i

sinenbi,

and it is sufficient to prove that each of the coefficients enbi is of the form ~vien.
Explicitly however

sinenbi =
∑

{i,n}⊂I⊂n

sinpfsI(i,n)eieI(i,n)en

= sineiPfS(i, n)en

(it is easy to check that if i is the tth element in I, then eI = (−1)1+teieI(i,n)en.
Then use (1) for pfSI(i,n)). From the induction hypothesis there exists a vector
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~wi such that PfS(n) = (1+ ~wiei)PfS(i, n) and so there exist λ and ~u such that
(λ + ~uiei)PfS(n) = PfS(i, n), which results in

sinenbi = sinei(λ + ~uiei)PfS(n)en.

Since PfS(n) commutes with en, putting ~v = λei + ei~uiei proves the theorem.

COROLLARY 3.2 Let b be the bivector

b = −1
2

n∑
i,j=1

sijeij .

Then Pfs = oexp(b).

Proof.
Both Pfs and oexp(b) are in the Clifford group, have real part equal to one,
and have the same bivector part. Hence they are equal.

Remark
It is also possible to prove the equality of the complete Pfaffian and the outer
exponent of b on purely algebraic grounds. A sketch of a possible method is
the following: write the Pfaffian in r-vectors:

Pfs =
∞∑

k=0

[Pfs]2k.

If we write Pk = [Pfs]2k for short, we have to prove that Pk+1 = (1/(k +
1))Pk ∧ b. This is obvious for 2k + 2 > n, where both terms are zero. As an
example we prove this for 2k + 2 = n, where n is supposed to be even. In this
case we develop pfs w.r.t. every row, and take the average:

Pk+1 = pfsen

=
1
n

∑
i,j

pfS(i, j)sijen\{i,j}eij

=
1

2(k + 1)

 ∑
|J|=n−2

pfsJ

 ∧
∑
i,j

sijeij

=
1

k + 1
Pk ∧ b.
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For the general case each factor sIeI where |I| = 2k + 2 has to be developed
in a similar way.

COROLLARY 3.3 1 + Pin(g) is invertible if and only if the real part of g is
different from zero.

Proof.
If 1 + Pin(g) is invertible, there exists an s such that Cays = Pin(g). Hence
g = λPfs for real λ, and the real part of g is not zero.

Conversely, assume that [g]0 6= 0. We can assume it to be 1 after rescaling,
and then g = Pfs, where the s is easily determined from the bivector part of
g. Hence Cay s = Pin(g), and so 1 + Pin(g) is invertible.

4. The Indefinite Case

Let Ipq be the matrix

Ipq =
(
−Ip 0
0 Iq

)
.

End−(IRpq) is given by the matrices s for which sij = e2
ijsji, or alternatively

by the matrices s such that Ipqs is antisymmetric. To find out anything about
the Pfaffian we look for the bivector a =

∑
i<j aijeij such that a ·~x = s~x. One

easily finds that

aij = −sij if j ≤ p,
aij = sij if i > p,
aij = −sij if i ≤ p and j > p,

or simply aij = −e2
i sij . If we define the antisymmetric matrix t by t = Ipqs,

then aij = tij . We define the complete Pfaffian for s in this case as being
formally equal to the one of t in the positive definite case, that is

Pfs =
∑
I⊂n

pftIeI .

Also in this case we have

Lemma 4.1. Let b be the bivector

b = −1
2

n∑
i,j=1

tijeij .

Then Pfs = oexp(b).
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Proof.
The inner product is used neither in the definition of the outer exponent, nor in
the definition of the Pfaffian of t (in the positive definite case of course t = s).
.

Of course Pfs is defined even in the case where 1− s is not invertible. We
prove that Pfs is invertible (and hence in the Clifford group) if and only if 1−s
is invertible. In order to prove this the following development of a determinant
w.r.t. the diagonal will be used: let a = (aij). Then

det a =
∑
I⊂n

det aI

∏
i 6∈I

aii,

where aI is obtained keeping only the aij with i and j in I from a, and
replacing the diagonal elements by zero. To prove this expression, let for
I ⊂ n, P (I) = {π ∈ σ(n) : i ∈ I ⇔ π(i) 6= i}. Then

det a =
∑

π∈σ(n)

sgnπ
n∏

i=1

aiπ(i)

=
∑
I⊂n

∑
π∈P (I)

sgnπ
n∏

i=1

aiπ(i)

=
∑
I⊂n

∏
i 6∈I

aii

∑
π∈P (I)

sgnπ
∏
i∈I

aiπ(i)


=

∑
I⊂n

det aI

∏
i 6∈I

aii.

THEOREM 4.2
PfsPfs = det(1− s).

Proof.
Assume first that 1 − s is invertible. Then, according to lemma 2.2 already
PfsPfs is real. Developing the determinant of Ipq− t = Ipq(1− s) with respect
to the elements of the diagonal gives

(−1)p det(1− s) = det(Ipq − t) =
∑
I⊂n

det tIF (I)
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where F (I) is the product of diagonal elements with indices not in I. This is
clearly (−1)p−k where k is the number of elements of I smaller than or equal
to p, in other words: F (I) = (−1)peIeI . On the other hand PfsPfs is equal to
its real part ∑

I⊂n

(pftI)2eIeI = (−1)p
∑
I⊂n

det tIF (I).

This proves the formula in the case 1−s is invertible. Both sides of the equation
however are polynomials in the sij . By continuity the relation must hold even
if 1− s is not invertible.

COROLLARY 4.3 Pfs ∈ Γ(p, q) if and only if 1− s is invertible.
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