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Abstract

In this paper we analyse the doublet-triplet splitting problem in the minimal non-super-
symmetric SU(5) GUT. We take into account the full symmetry breaking pattern with both
high scale SU(5) breaking and electroweak symmetry breaking. Our analysis shows that the
only phenomenologically acceptable model has three vevs, with a strong hierarchy determined
by the minimization conditions. The amount of fine-tuning in the model is then numerically
evaluated by looking at the effect of variation of input parameters on both the minimization
conditions and the bosonic masses. Regarding the vevs as output parameters, a large amount
of fine-tuning is required in this scenario, which is an expression of the doublet-triplet splitting
problem. We show that this problem is more general, since a model with coupled scalar sectors
will in general never realise a hierarchy in vevs. To avoid these problems we advocate imposing
the desired hierarchy in vevs as part of the theory. We argue for this viewpoint because the
SU(5) breaking and electroweak symmetry breaking need to be adjusted to each other anyway
and cannot be regarded as independent mechanisms. We suggest that not only the symmetry
breaking pattern needs to be imposed, but also the scales at which the breakings happen.
We show quantitatively that the generic theory with hierarchy imposed does not require any
fine-tuning of the free parameters which can all be natural and perturbative as desired.

1 Introduction

In the search for Beyond the Standard Model (BSM) physics, Grand Unified Theories (GUTs)
have been a prime candidate for a long time. These theories can provide a common origin for the
different forces we observe at low energy, and give an explanation for the quantization of charge.
The first GUT put forward was based on SU(5) symmetry [1]. It is currently considered ruled
out, because it leads to a too short lifetime of the proton compared to its experimental lower limit.
Besides this lack of phenomenological viability, it is also considered to suffer from a theoretical
problem common to many supersymmetric and non-supersymmetric GUTs: the doublet-triplet
splitting problem (DTSP) [2, 3]. This entails the problem of producing without fine-tuning masses
of very different scales for the triplet and the doublet part of the scalar sectors. Such fine-tuning
seems required already at leading order (classically). For specific GUTs there exist solutions to
the DTSP, e.g. the Dimopoulos-Wilczek solution for SO(10) [4], the missing partner mechanism
[5], the sliding singlet mechanism [6] and GIFT [7, 8]. These solutions often rely on including
additional representations in the model. Here we will reanalyse the problem in the minimal non-
supersymmetric SU(5) GUT and address the problem of fine-tuning quantatitively by investigating
both the equations that define the minimum of the potential and the masses of the scalars and gauge

∗d.boer@rug.nl
†r.j.c.peeters@rug.nl

1

ar
X

iv
:1

91
2.

09
36

9v
2 

 [
he

p-
ph

] 
 2

9 
A

pr
 2

02
0



bosons. We first investigate which symmetry breaking pattern is required for a phenomenologically
viable theory. Then we determine the fine-tuning, taking the vacuum expectation values (vevs) as
the output parameters of the model. After concluding that the model indeed needs a large amount
of fine-tuning, we analyse a similar situation in the two Higgs doublet model (2HDM) for which
one can analyse the problem analytically. This analysis shows that it is actually a general problem
to obtain a hierarchy in vevs in a model with coupled scalar sectors. We then argue for a different
viewpoint where the vevs have to be considered input parameters of the theory. This amounts to
not only imposing the orientation of the various vevs, as is done in the standard viewpoint, but
also imposing at which scales a specific symmetry breaking occurs. We evaluate the fine-tuning
using this approach, and find that the general theory with a hierarchy in vevs will not require
fine-tuning of the remaining free parameters. It must be pointed out that all this concerns leading
order and does not pertain to the standard hierarchy problem arising from loop corrections to the
scalar boson masses nor to the gauge hierarchy problem [9, 10, 11].

2 The doublet-triplet splitting problem

In order to discuss the doublet-triplet splitting problem (DTSP), we will start by recalling the
minimal Higgs potential of SU(5). This potential contains two fields: the Φ field in the adjoint
(24) representation, and the H field in the vector (5) representation [11, 12]. In terms of real
scalar fields we write:

H =
1√
2


H1 + iH2

H3 + iH4

H5 + iH6

H7 + iH8

H9 + iH10

 , Φ =

24∑
i=1

λi
2
φi, (1)

with Hi and φi real scalar fields, and λi the traceless generators of SU(5) satisfying Trλiλj = 2δij .

We will impose a Z2 symmetry that transforms Φ → −Φ. This will be justified later. When
imposing this symmetry, the potential is given by:

V (H,Φ) =− ν2

2
H†H +

λ

4
(H†H)2 − µ2

2
Tr Φ2 +

a

4
(Tr Φ2)2 +

b

2
Tr Φ4

+ αH†HTr Φ2 + βH†Φ2H

(2)

This SU(5) symmetric potential is broken to the Standard Model gauge group by setting the
vacuum expectation value of the Φ field: 〈Φ〉 = diag(v, v, v,− 3

2v,−
3
2v), where the factors − 3

2 are

necessary to ensure the tracelessness of Φ. This form can be achieved by setting 〈φ24〉 =
√

15v. If
we consider the potential with this vev, we can write down one condition defining the minimum of
the potential (a minimum equation):

µ2 =
15a+ 7b

2
v2 (3)

Now we can look at the masses of the doublet and triplet components of the H field. If we look
at the potential at the minimum of Φ, we can write down the purely H dependent part of the
potential, and write it in terms of the doublet ~H2 and the triplet ~H3:

V ( ~H2, ~H3) =

[
−ν

2

2
+

15α

2
v2 + βv2

]
~H†3

~H3 +

[
−ν

2

2
+

15α

2
v2 +

9β

4
v2
]
~H†2

~H2

+
λ

4

[
( ~H†3

~H3)2 + ( ~H†2
~H2)2 + 2 ~H†3

~H3
~H†2

~H2

] (4)

From this we can read of the masses of the doublet and triplet:

m2
~H2

= −ν
2

2
+

15α

2
v2 +

9β

2
v2 (5)

m2
~H3

= −ν
2

2
+

15α

2
v2 + βv2 (6)
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In order to discuss the amount of fine-tuning in this model, we need to write the masses in terms
of the input parameters. These are usually considered to be the mass parameters µ2 and ν2 and
the couplings in the Lagrangian. The vev is generally not considered an input parameter, as it
arises when the energy of the system is lowered and is determined by the other parameters using
the minimum equation (Equation 3). When replacing the vev we find:

m2
~H2

= −ν
2

2
+

15α+ 9β

15a+ 7b
µ2 (7)

m2
~H3

= −ν
2

2
+

15α+ 2β

15a+ 7b
µ2 (8)

The mass parameters µ2 and ν2 originate from the Φ and H sector respectively. When we consider
these sectors separately there is no reason that the mass parameters are of the same order of
magnitude. We would expect them to be quite different. The interactions between the Φ and H
sector do not change this reasoning, at least at tree-level. Applying this to Eqs. (7) and (8), we see
that both masses will in general be of the order of the highest scale. This also implies that these
masses are of the same order of magnitude.

However, phenomenological constraints require a hierarchy between the triplet and doublet mass.
The triplet can mediate proton decay, so its mass should be at least O(1014) GeV [11], which
is the typical scale at which the coupling constants become of the same order and could unify.
When we assume that the couplings are all O(1), i.e. natural and perturbative, and there are no
cancellations between a and b, this means that at least one of ν2 and µ2 has to be of the order
of this high scale. But the doublet should behave like the Standard Model Higgs doublet, giving
masses of O(100) GeV to the electroweak gauge bosons and the Higgs boson. Therefore we expect
m2
~H2
≈ 100 GeV. Now assuming that there is no large cancellation between α and β, it means that

the large contribution we needed for the heavy triplet now has to cancel with the other contribution
to a very high degree in order to result in a doublet that is much lighter than the triplet. This is
the essence of the doublet-triplet splitting problem. So in order to have the hierarchy between the
triplet and doublet mass, one either needs a cancellation between α and β if µ = O(v) � ν, or
there is a cancellation between the µ2 and ν2 term, in which case both have to be of the high scale
v. In either case there is fine-tuning required at tree-level. In conclusion, the generic case will not
lead to the desired hierarchy.

The discussion so far does not take into account electroweak symmetry breaking (EWSB), but that
is expected to play a role as it must be compatible with the SU(5) symmetry breaking and allow
for a phenomenologically viable scenario. In the next section we will investigate the role of EWSB,
and see which possibilities there are to realise EWSB in a satisfactory way. That discussion will
prompt us to reconsider the standard viewpoint of what should be considered input parameters at
high scales.

3 Including electroweak symmetry breaking

The most straightforward implementation of EWSB is by giving the H field a vev of the form:
〈H〉 = 1√

2
(0, 0, 0, 0, v0)T , in addition to the previously defined vev of Φ. In that case we obtain

three minimum equations:

ν2 = (15α+
9

2
β)v2 +

1

2
λv20 (9)

0 = −3

2
βvv0 (10)

µ2 = (
15

2
a+

7

2
b)v2 + (α+

3

10
β)v20 (11)

So this implies the additional constraint that β = 0. If we continue analyzing the model, and
calculate the masses of the scalars, we see that we get 21 massless modes, whereas one only
expects 15 Goldstone bosons (12 from the breaking of SU(5) and 3 from EWSB). The six additional
massless scalars arise since the potential has a larger symmetry when we set β = 0. In that case the
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H and Φ sector no longer mix, and there is an additional global SU(5) symmetry for the H field.
This symmetry remains unbroken when breaking the local SU(5) symmetry. But when H gets a
vev, it breaks from a global SU(5) to a global SU(4). This results in 9 massless modes. Three
of these are eaten by the electroweak gauge bosons, the other six remain present in the theory as
massless modes. This is phenomenologically not an acceptable scenario.

Besides phenomenological considerations, another reason to discard this scenario is that the input
parameter β needs to have a specific value to ensure a certain low energy outcome. The constraint
β = 0 only arises from the electroweak symmetry breaking, it is not present when only breaking
the SU(5) symmetry. So the theory at the GUT scale has to “know” already about the low energy
physics in order to satisfy the minimum equations and have β = 0.

Beyond leading order gauge boson loops will induce a H†Φ2H term, leading to a non-zero value
for β. This can be seen from the SU(5) effective potential [13]1. Hence, beyond leading order the
above argument may not apply, because the Goldstone bosons may be absent and the minimum
equations will be different, but as mentioned in the introduction we restrict to a discussion of the
DTSP at tree level. Beyond leading order one has to deal with the hierarchy problems in addition.

The restriction on β can be lifted at leading order already by realizing that the Φ field can
also contribute to EWSB, see e.g. [14]. This is done by adding a vev v1, which leads to 〈Φ〉 =
diag(v, v, v,− 3

2v−
1
2v1,−

3
2v+ 1

2v1). TheH field has the same vev as before: 〈H〉 = 1√
2
(0, 0, 0, 0, v0)T .

When we write down the minimum equations in this case, we obtain:

ν2 = (15α+
9

2
β)v2 − 3βvv1 + (α+

1

2
β)v21 +

1

2
λv20 (12)

v1µ
2 =

1

2
(15a+ 27b)v2v1 +

1

2
(a+ b)v31 +

1

2
(2α+ β)v20v1 −

3

2
βvv20 (13)

vµ2 = (
15

2
a+

7

2
b)v3 + (

1

2
a+

9

10
b)v21v + (α+

3

10
β)v20v −

1

10
βv20v1 (14)

As mentioned before, in the standard viewpoint the vevs are regarded as the output parameters.
Therefore we should solve the minimum equations with respect to the vevs. However, doing so will
in general result in a theory with no hierarchy. If both mass parameters µ2 and ν2 are O(1014)
GeV then generally the vevs will also be of this scale. To ensure that the theory has a hierachy,
the values of v and v0 will be imposed, and the minimum equations will be solved for three other
parameters. Afterwards the fine-tuning necessary to obtain this hierarchy can be obtained by
solving the system for the vevs.

To see whether all three vevs are really necessary, we can check the situation where v0 = 0, so only
the Φ field gets a vev. In that case the minimum equations are given by:

µ2 =
3

2
(5a+ 9b)v2 +

1

2
(a+ b)v21 (15)

µ2 =
15a+ 7b

2
v2 +

(
1

2
a+

9

10
b

)
v21 (16)

Solving this system for the two vevs shows that both vevs will be O(µ), which makes sense since
it is the only scale present in the system. The exact solutions show that v1 = 5v, so the two vevs
will always be of the same order of magnitude and there is not even a possibility to fine-tune the
parameters in order to obtain a hierarchy in the vevs. The SU(5) symmetry will immediately be
broken to SU(3)C ×U(1)Q, and the electroweak gauge bosons will be super heavy. This situation
is clearly unwanted, and this option is therefore discarded.

Finally, it is also possible to break SU(5) directly to the Standard Model by setting v = 0 and
having both v1 and v0 non-zero. However this situation again leads to the constraint β = 0, so
this option is also discarded. Therefore we conclude that the only viable option is to have all three
vevs v, v0 and v1 non-zero.

1Note there must be an error in Eq. 2.4 of [13] because there is a non-zero contribution to the H†Φ2H term from
Higgs loops even when β = 0. This is impossible, since there are no terms present in the Higgs potential that mix
components of H. It was checked that the gauge boson loop really does give rise to an effective β parameter
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So we are forced to set both v1 6= 0 and v0 6= 0 and impose the hierarchy that v0 � v, with v0 ∼
O(100) GeV and v ∼ O(1014) GeV. However for v1 it is not clear how large it should be. Therefore
we will use the minimum equations to figure out how large v1 is. This is possible since we have
three minimum equations, which we can solve for the two mass parameters and for v1. Doing this
gives rise to three separate solutions, with the result for v1 for each of these solutions given by:

1) v1 = 5v (17)

2) v1 =
20bv2 + βv20 −

√
400b2v4 − 8bβv2v20 + β2v40

8bv
(18)

3) v1 =
20bv2 + βv20 +

√
400b2v4 − 8bβv2v20 + β2v40

8bv
(19)

We can approximate the second and third expression by expanding in small v0. Depending on the
sign of b, these expressions switch places, but the two results are:

v1 ≈
3βv20
20bv

(20)

v1 ≈ 5v +
βv20
10bv

(21)

So we see that in two out of the three cases v1 will be of the order of the high scale, while in
the other case v1 is very small. We will show that using phenomenological constraints from the ρ
parameter, the solutions with large values for v1 can be discarded.

The ρ parameter is an electroweak observable that puts strong constraints on the Higgs sector.
After decomposing all Higgs multiplets into Standard Model representations, the ρ parameter is
given by:

ρ =

∑
i[4Ti(Ti + 1)− Y 2

i ]v2i ci∑
i 2Y 2

i v
2
i

, (22)

with Ti the isospin, Yi the hypercharge, vi the vev and ci = 1/2 (1) for real (complex) representa-
tions. The experimental value is ρ = 1.00039± 0.00019 [15], while the Standard Model (tree-level)
result is ρ = 1, so only very small deviations are still allowed. Explicitly, the decompositions of H
and Φ are given by:

5→ (3, 1,−1/2) + (1, 2, 1/2) (23)

24→ (8, 1, 0) + (1, 3, 0) + (1, 1, 0) + (3, 2,−5/6q) + (3∗, 2, 5/6q) (24)

The only contributions to ρ arise from representations that get a vev. So the (1, 2, 12 ) of H
contributes (just like in the Standard Model) with vev v0. The vev v is part of the (1, 1, 0) and
has T = 0 and Y = 0, so it does not contribute to ρ. The only remaining contribution comes from
v1. It is part of the SU(2) triplet field (1, 3, 0). Therefore ρ is given by:

ρ =

∑
i[4Ti(Ti + 1)− Y 2

i ]v2i ci∑
i 2Y 2

i v
2
i

=
2v20 + 4v21

2v20
= 1 + 2

v21
v20

(25)

So we see that to keep ρ ≈ 1, we need to have v1 � v0. Therefore we can justify using only the

v1 ∼ v20
v solution. This solution satisfies the bounds on ρ.

Now we can also justify our choice of imposing a Z2 symmetry on the potential. It is possible
to get a correct mass spectrum when setting v1 = 0 by omitting the Z2 symmetry [16]. In that
case there are two additional terms in the potential: Λ1Tr(Φ3) and Λ2H

†ΦH with Λ1 and Λ2

couplings with mass dimension one. When setting v1 = 0 the minimum equations fix Λ2 = 3βv.
This is independent of the inclusion of the Λ1 term. In this case there is tree-level non-decoupling,
meaning that there would be O(1) contributions to the quartic scalar coupling of H at low energy
arising from the exchange of heavy Φ bosons due to the new H†ΦH interaction [17]. Since this
non-decoupling is undesired, we see that also in the case without Z2 symmetry it is necessary to
include v1. Therefore we chose to impose the Z2 symmetry in order to simplify the discussion and
since this is the case most commonly discussed in the literature.
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4 Scalar masses

Now that we have a model where both SU(5) breaking and EWSB are properly taken into account,
with the hierarchy v � v0 � v1, we can take another look at the scalar masses. We will write these
masses in terms of the vevs, since this most clearly illustrates the hierarchy in masses. Since we are
interested in the doublet-triplet splitting problem we will focus on the masses of the components
of H. But these components will mix with components of Φ, so this mixing also needs to be taken
into account.

First we look at the triplet components of H. The real scalar field H1 mixes with φ11. After
inserting the minimization conditions for µ2 and ν2 we get:

M2(φ11, H1) =

(
1

10v [−4bvv1(v1 + 5v) + βv20(2v + v1)] −βv0(v−v1)
2
√
2

−βv0(v−v1)
2
√
2

− 1
4β(5v2 − 6vv1 + v21)

)
. (26)

Knowing that v1 ∼ v20/v, we can approximate these expressions, keeping only terms of O(v20) or
larger:

M2(φ11, H1) ≈

(
−2bv1v + 1

5βv
2
0 −βv0v

2
√
2

−βv0v
2
√
2

− 1
4β(5v2 − 6vv1)

)
. (27)

So the H-H component has mass of O(v2), while the φ-φ component has mass of O(v20). After
diagonalizing this mass matrix we get one massless mode and a mode with mass squared of O(v2).
This massless mode is a Goldstone boson arising from the breaking of the SU(5) symmetry. The
same result holds for the other components of the H triplet. This is an exact result, it is not due
to the approximation that was made.

For the components in the doublet we will discuss two cases: on the one hand we have the three
components that do not get a vev, while on the other hand there is the component that does get
a vev.

Each component that does not get a vev will mix with a component of Φ. As an example we can
look at the H7 component, which mixes with φ21:

M2(φ21, H7) =

(
1
2 [20bv2 − 4

5bv
2
1 + 2

5βv
2
0 +

v1v
2
0

5v β] − 3vv0
2
√
2
β

− 3vv0
2
√
2
β 3vv1β

)
(28)

We see that now the φ-φ component has mass O(v2), while the H-H component is much lighter
with mass O(v20). After diagonalizing we again get a massless mode and a mode with mass O(v2).
This massless mode arises from the breaking of the electroweak symmetry. The H8 and H10

components behave in the same way.

To finalise our discussion on the masses of the scalars, we look at the H9 component, which gets
a vev in EWSB. This component mixes with φ23 and φ24:

M2(φ23, φ24, H9) =
100bv3+(10a+6b)vv21+(2v+v1)βv

2
0

40v − 1
8

√
3
5 (10a+ 18bvv1 + βv20) − 1

4v0(−3βv + 2αv1 + βv1)

− 1
8

√
3
5 (10a+ 18bvv1 + βv20)

(150a+70b)v3+βv20v1
40v

1
4

√
3
5v0(10αv + 3βv − βv1)

− 1
4v0(−3βv + 2αv1 + βv1) 1

4

√
3
5v0(10αv + 3βv − βv1)

λv20
4


(29)

After inserting the expression for v1 and expanding in small v0, we find that there is one eigenvalue
of O(v20) and two eigenvalues of O(v2).

All in all we find that after breaking SU(5) to the Standard Model and then to SU(3) × U(1),
we get 15 massless modes: 12 from breaking SU(5) to the Standard Model and 3 more because of
EWSB. The other scalars will be massive, with masses of O(v2), except for one scalar which takes
the role of the SM Higgs boson, with a mass of O(v20). This is exactly as desired. Note that there
are no scalars with a mass of O(v21).
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Parameter Range
v [1014,1016] GeV
v0 [200,300] GeV
α [-1,1]

β, b, λ [0,1]
a [-b,1]

Table 1: Parameter ranges for calculating the Dekens measure in Figure 1, 2 and 3 .

5 Amount of fine-tuning in the minimal SU(5) GUT

Now we have all the ingredients to quantitatively assess the amount of fine-tuning in the minimal
SU(5) GUT in the standard viewpoint. In this section we will compare the results of two different
fine-tuning measures in this viewpoint.

The Dekens measure [18] can be used to find fine-tuning present in the minimum equations. To
apply this measure, one has to separate the set of parameters into two sets: the dependent param-
eters qj and the independent parameters pi. The minimum equations relate the qj to the pi. The
amount of fine-tuning is then defined as:

∆D = max
i,j

∆D(pi, qj) = max
i,j

∣∣∣∣piqj ∂qj∂pi

∣∣∣∣ (30)

When the qj are polynomials in the pi, this expression compares the size of each single contribution
to the size of qj . If ∆D is large, there are contributions that are much larger than the size of qj ,
which means that there needs to be a large cancellation between independent terms, implying
fine-tuning.

In the original description of the Dekens measure, there is no prescription for which parameters
should be used as the qj . In the original paper, all possibilities are checked, and the set of qj
which gives the maximum amount of fine-tuning is selected. But as argued in section 3, in the
standard viewpoint, the vevs are regarded as output parameters. Even though the minimum
equations might be solved for a different set of parameters, this is just a calculational tool used
to consistently obtain a hierarchy in vevs. So the proper way to apply the Dekens measure in the
standard viewpoint is to use the vevs as the qj .

While the minimum equations in our model are a complicated coupled system of equations in terms
of v, v0 and v1, we can use the knowledge about the hierarchy to simplify the system. Writing
v1 ∼ v20/v, and keeping only terms in the minimum equations of O(v20) and larger, we get:

ν2 = (15α+
9

2
β)v2 − 3βvv1 +

1

2
λv20 (31)

v1µ
2 =

1

2
(15a+ 27b)v2v1 +

1

2
(2α+ β)v20v1 −

3

2
βvv20 (32)

vµ2 = (
15

2
a+

7

2
b)v3 + (α+

3

10
β)v20v (33)

This system of equations can be solved analytically for the vevs, which means the Dekens measure
can also be evaluated analytically. The analytical result is not very insightful however. It is easier
to do a numerical study. We start from sampling the vevs v and v0 in the ranges v = 1014 − 1016

GeV, v0 = 200− 300 GeV. The coupling constants are sampled in the range −1 to 1, taking into
account some constraints to ensure the potential is bounded from below. The exact parameter
ranges are shown in Table 1. These values are used to determine µ2, ν2 and v1. Then these values
are used in the formula for the Dekens measure, where the mass parameters are now taken as input
parameters. This gives the result shown in Figure 1.

We see that the Dekens measure consistently shows a large amount of fine-tuning of the order v2

v20
.

This result agrees with results in the literature on the gauge hierarchy problem, see e.g. [11]
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Figure 1: The result of calculating the Dekens measure in a minimal SU(5) GUT using the vevs
as dependent parameters. 500 points were sampled using the parameter ranges in Table 1.

The other fine-tuning measure we will investigate is the Barbieri-Giudice (BG) measure ∆BG

[19, 20], which determines the amount of fine-tuning in an observable with respect to the input
parameters pi of the model. We will use the scalar masses as observables, so our expression for the
BG measure is:

∆BG = max
i,j

∣∣∣∣∣ pim2
j

∂m2
j

∂pi

∣∣∣∣∣ (34)

Note that in order to calculate the fine-tuning, we need to write all the masses in terms of the input
parameters. These expressions are too elaborate to show here, and calculating the derivatives has
to be done numerically. The results are shown in Figure 2.

We see that the results for the Dekens measure and the BG measure are extremely similar. This
makes sense because we saw in the previous section that the masses are all proportional to a vev,
so the results for the BG measure and the Dekens measure should agree up to some factors due to
converting from the vevs to the masses.

This concludes the quantitative discussion of the doublet-triplet splitting in the standard view-
point. Let us summarise the findings thus far. We have first considered how to break the SU(5)
symmetry, and later also the ways to subsequently break the electroweak symmetry. We described
all possible ways to achieve this in the minimal SU(5) model and reached the conclusion that in
the standard viewpoint they should all be discarded because it requires fine-tuning of the param-
eters in the Lagrangian or it led to phenomenologically unacceptable side effects, like additional
Goldstone bosons or large ρ parameter corrections. It is clear that in none of the scenarios, a
phenomenologically viable hierarchy of vevs will result from the generic theory with natural and
perturbative parameters. The DTSP is an expression of this problem. But as we will show in
the next section this problem is not unique to the SU(5) GUT. Similar problems arise in simpler
extensions of the SM with two coupled scalar sectors like the two Higgs doublet model (2HDM).

6 Hierarchies in the 2HDM

The Higgs sector of the 2HDM is constructed by adding an additional doublet to the Standard
Model Higgs sector [21, 22]. The two doublets are defined as:

Φ1 =

(
φ+1
φ01

)
, Φ2 =

(
φ+2
φ02

)
. (35)
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Figure 2: The result of calculating the BG measure in a minimal SU(5) GUT in the standard
viewpoint. 500 points were sampled using the parameter ranges in Table 1.

In order to simplify our discussion, we demand CP invariance and impose a Z2 symmetry on the
potential. Under these constraints, the Higgs potential has the form:

V = −µ2
1A− µ2

2B + λ1A
2 + λ2B

2 + λ3C
2 + λ4D

2 + λ5AB,

where the invariants A,B,C and D are defined as:

A = Φ†1Φ1, C =
1

2

(
Φ†1Φ2 + Φ†2Φ1

)
,

B = Φ†2Φ2, D =
1

2i

(
Φ†1Φ2 − Φ†2Φ1

)
.

The vacuum expectation values (vevs) for the two doublets are given by:

〈Φ1〉 =
1√
2

(
0
v1

)
, 〈Φ2〉 =

1√
2

(
0
v2

)
. (36)

In the standard phenomenological analyses of the 2HDM, the two vevs are required to satisfy the
relation v21 + v22 = v2 = (246 GeV)2, which precludes a large hierarchy except for one of the vevs
extremely close to zero. Here we will not impose this constraint in order to see if a large hierarchy
of vevs can result from the general theory with parameters of O(1).

Contrary to the SU(5) GUT, we can analytically solve the minimum equations of the 2HDM for
the vevs. Assuming that both v1 and v2 are non-zero, we find:

v21 =
λ2µ

2
1 − λ+µ2

2

λ1λ2 − λ2+
,

v22 =
λ1µ

2
2 − λ+µ2

1

λ1λ2 − λ2+
,

(37)

where λ+ ≡ 1
2 (λ3 + λ5). To investigate how natural a hierarchy in vevs is, we will investigate

two scenarios for the mass parameters µ2
i : the case where there is a large hierarchy in the mass

parameters, say µ2
1 � µ2

2, and the case where they have very similar values, µ2
1 ∼ µ2

2.

For a large hierarchy in the mass parameters, we see from Eq. (37) that in the generic model
both vevs will have values of O(µ1). So in general a hierarchy in the mass parameters will not
translate into a hierarchy in the vevs. In that case there will not be any fine-tuning, neither in the
BG measure nor in the Dekens measure with the vevs taken as output parameters. It is possible
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though to obtain a hierarchy in vevs in the special case that λ5 ≈ −λ3 when there are actually
two contributions of O(µ2

1) to v2 that cancel to give a much smaller value. The Dekens measure
will show a large fine-tuning in this case and moreover, a slight variation in one of the parameters
will lead to the hierarchy disappearing.

When the two mass parameters have similar values, again the generic model will have two vevs
with similar values. There is no fine-tuning present then. But also in this case it is possible to
obtain a hierarchy, although there is a different cancellation necessary to achieve this. When one
of the two numerators in Eq. (37) is very small, there will be a hierarchy in vevs. This again
comes at the price of fine-tuning, due to a large cancellation between the contributions of the mass
parameters.

So we can say in general that independent of the values one takes for the mass parameters, the
generic theory will have no hierarchy in vevs. The reason for this is the coupling between the two
scalar sectors. If the two sectors had been completely decoupled, a hierarchy in mass parameters
would translate directly into a hierarchy in vevs. But due to the coupling λ+, which relates the
two sectors, any hierarchy in the µ2

i gets nullified. This is also the key fine-tuning aspect of the
DTSP in the SU(5) GUT and a general problem when trying to achieve a hierarchy in vevs in
BSM theories with extended scalar sectors.

The example with a cancellation between λ5 and λ3 shows that if the coupling between the scalar
sectors is very small, a hierarchy in the mass parameters can still translate into a hierarchy in vevs.
We note that small λ+ is also possible when λ3, λ5 � 1. If these small couplings are technically
natural, for instance in case they arise effectively from an intermediate (portal) channel between
the scalar sectors, the resulting hierarchy can be considered natural. But in the case of the SU(5)
GUT, and other GUTs, this does not work, because in order for the doublet and triplet fields to
have masses of different scales, sufficiently large coupling between the Φ and H fields is necessary,
such that α and β cannot both be small. This is another aspect of the DTSP in the SU(5) GUT,
which makes it harder to obtain a viable model in a natural way. All in all, we conclude that it
is not possible to achieve a viable hierarchy in both vevs and scalar masses in a model like the
minimal SU(5) GUT with natural parameters and without fine-tuning.

The analysis of the SU(5) GUT so far has assumed that the different symmetry breaking steps
are independent, and that the scales at which the different symmetries break follow from the
Lagrangian. But one may wonder whether one really can view the symmetry breaking pattern
as independent steps and consider the vevs as pure output parameters? In the next section we
will argue for a different viewpoint, where the hierarchy in vevs is used as input, and where all
problems mentioned above are solved simultaneously.

7 Alternative viewpoint on hierarchy and fine-tuning

We showed in section 3 and 4 that in order to have a hierarchy of triplet and doublet masses,
without introducing additional Goldstone bosons or large corrections to the ρ parameter, it is
necessary to introduce a vev in the Φ field that breaks the electroweak symmetry. This means that
already at the GUT breaking scale a (tiny) EWSB term is introduced, so the electroweak symmetry
is actually never present below the SU(5) breaking scale. This means that the two breaking
mechanisms are not independent, since there is EWSB simultaneously with the breaking of the
GUT. Therefore the theory at the GUT scale already has to “know” about the implementation of
EWSB at low energy. To incorporate this, we advocate a viewpoint where besides the orientation
of vevs (〈Φ〉 = diag(v, v, v,− 3

2v −
1
2v1,−

3
2v + 1

2v1) and 〈H〉 = 1√
2
(0, 0, 0, 0, v0)T in this case) also

the scale at which each breaking occurs is specified. In other words, the values of the vevs are
imposed, or at least their relative values i.e. the hierarchy in vevs.

Note that it is standard practice to impose the symmetry breaking pattern by specifying the orien-
tation of the vevs. This does not follow from the Lagrangian. Even in the case of just one vev this
orientation must be imposed, since 〈Φ〉 = diag(v, v, v,− 3

2v,−
3
2v) and 〈Φ〉 = diag(v, v, v, v,−4v)

amount to different breakings. Since one has to tie the SU(5) symmetry breaking to the EWSB, a
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specific implementation is selected (imposed). If one would consider a generic theory with SU(5)
breaking at a high scale, followed at a lower scale by a random further breaking, then this will not
be EWSB in general and certainly not EWSB at a much lower scale. By requesting the latter,
one needs to fine-tune the parameters of the theory. But why not accept the fact that the second
breaking is not random and explicitly select theories that have this breaking pattern and hierarchy
of scales built in from the start? Instead of imposing symmetry A at scale a and expecting that
generically symmetry B will result at scale b, we simply accept that we need to restrict to theories
that have symmetry A at scale a and symmetry B at scale b. The presence of the required third
vev v1 in the SU(5) case makes it unavoidable that the two breakings need to be adjusted to each
other, but even in absence of v1 the same line of reasoning can be made.

Just like imposing a symmetry will result in less free parameters, imposing a hierarchy on the
vevs that break the symmetry will result in less free parameters. So in this viewpoint we are
considering a specific subset of theories with less free parameters than the fully generic theory. We
will adopt this viewpoint next and ask the more restricted question whether there is particular
tuning needed within the subset of theories that lead to the desired hierarchy, or phrased differently,
does the generic theory with the imposed constraints lead to the desired hierarchy for natural and
perturbative parameters?

Since we propose to consider the vevs as input parameters, for illustration purposes we make them
part of the Lagrangian via Lagrange multipliers, although this is not needed (the orientation of
vevs is also not implemented in the Lagrangian). Using Lagrange multipliers (alternatively, one
could consider constraint effective potentials [23]), we can impose the values of the vevs in the
following way (for simplicity we restrict to the case v1 = 0):

L = L0 + ∆(Tr(Φ2)− 15

2
v2) + ∆0(H†H − v20

2
), (38)

where v and v0 are to be understood as input parameters and ∆ and ∆0 are Lagrange multipliers.
These constraints are imposed in an SU(5) invariant way2. At the GUT breaking scale, we minimise
the potential for both Φ and ∆, which ensures that the GUT breaking minimum is located at the
scale v. Then at the EWSB scale, we minimise with respect to H and ∆0, ensuring the proper
scale for v0. In this way, the vevs are already present at the level of the Lagrangian.

Alternatively, we could write the constrained Lagrangian as:

L = L0 + ∆(xTr(Φ2)−H†H) (39)

where x quantifies the hierarchy in vevs: x =
v20

15v2 . In this case we minimise with respect to ∆
only at the EWSB scale. The difference between the two approaches is that when we only impose
the hierarchy, there is only one free parameter less, as opposed to two free parameters when we
impose the value of both vevs. Since the doublet-triplet splitting problem only depends on the
hierarchy, and not on the individual scales, it is enough to just add a constraint for the hierarchy.
From now on we will work with this approach, but in practice there is no difference with imposing
the values of the vevs, since the value of v does not require fine-tuning, and imposing both v and
x is equivalent to imposing the value of v and v0.

For any given x value, the Lagrangian will thus contain one free parameter less, which is fully
determined by the other parameters and the vevs. As our earlier analysis shows, variation of just a
single parameter will result in a change of x that generically will tend to be of O(1). In that sense
small x values are not stable under variation of a single parameter. But it can be stable when
variation of one parameter is accompanied by variation of another one. The question then arises
whether that should be considered fine-tuning. As argued in [22] we would not call this fine-tuning
if changes in one natural parameter requires changes in another one of exactly the same order.

This can then quantitatively be checked in an analysis of the Dekens measure, where the vevs are
now considered input parameters. Now the question arises again what the proper way is to apply
the Dekens measure: which choice should we make for the dependent parameters qj? As argued

2With v1 6= 0 the first constraint becomes TrΦ2 = 15
2
v2 + 1

2
v21 . So in order to fix both the value of v and v1,

one needs to impose a second independent constraint on Φ, e.g. ∆1(Tr Φ4 − 1
8

(
105v4 + 54v2v21 + v41

)
).
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Figure 3: The result of calculating the Dekens measure in a minimal SU(5) GUT using µ2, ν2

and v1 as dependent parameters. 500 points were sampled using uniform distributions for the
parameters with the ranges given in Table 1.

in [22], we will adopt the approach that we first solve the minimum equations for a certain set of
parameters, and then apply the Dekens measure using these same parameters as the dependent
parameters. If there is a set of parameters that leads to little or no fine-tuning, we argue that
there is no fine-tuning necessary to maintain the hierarchy in vevs.

For the minimal SU(5) case, this means that we can take e.g. µ2, ν2 and v1 as dependent param-
eters. Taking these parameters as the qj , and imposing the hierarchy on the vevs as described
above, the results for the Dekens measure are shown in Figure 3. This shows that there is no
fine-tuning present now, meaning that it is possible to maintain the hierarchy in vevs by adjusting
parameters by the same order of magnitude.

The BG measure will also not show any fine-tuning in this scenario. All scalar masses are propor-
tional to a vev, and the mass spectrum is exactly like it should be if the vevs have the proper values.
So by imposing the vevs we ensure the correct mass spectrum and there will be no fine-tuning.

8 Remarks on a large hierarchy in vevs

In the previous section, we imposed the values of the vevs and their hierarchy and concluded
that there is no fine-tuning necessary to maintain this hierarchy under variations of the remaining
free parameters. But if one views the vevs as input parameters, that could even be part of the
Lagrangian through constraint terms, then one may wonder if a large hierarchy of vevs should
not be considered unnatural to begin with. The x values in the numerical study of the previous
section are of the order 10−23–10−25. For such small values one might wish to have an explanation
in terms of an enhanced symmetry when x → 0, in accordance with the technical naturalness
argument proposed by ’t Hooft [24]. Typically setting a vev to zero indeed enlarges the symmetry
from a subgroup H of a group G to the full group G. However, in the case considered in this
paper setting v0 or v1 to zero does not enhance the symmetry, unless one sets them both to zero.
But even in that case one may wonder whether the symmetry is really enhanced, since the full
group G is still nonlinearly realised in the broken phase [25]. In this sense the full symmetry is
still present in the underlying description of the theory and no enhanced symmetry ever arises if
vevs are set to zero. If the symmetry argument can then not be applied to vevs, it is also not
required to apply ’t Hooft’s naturalness criterion to them. This is the viewpoint we advocate,
because the only alternatives are to only accept hierarchies of O(1) or to view the vevs as output
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parameters, which effectively boils down to the same conclusion when one starts from the most
general unconstrained theory with natural and perturbative parameters. Imposing the hierarchy
as part of the theory, on top of imposing the symmetry breaking pattern, would then be a way to
obtain a viable model.

9 Conclusion

We have studied the symmetry breaking pattern in the minimal SU(5) GUT, and confirmed in line
with the DTSP that it is not possible to obtain the desired hierarchy of vevs without fine-tuning
in a theory with all natural and perturbative parameters. We also showed that this is actually
a general problem of coupled scalar sectors: the coupling between the two sectors will prevent a
hierarchy in mass parameters to translate into a hierarchy in vevs. We advocate for a different
viewpoint, since it is not possible to view the breaking of the GUT symmetry separate from the
EWSB, which implies that the theory at the GUT scale has to be adjusted to the low-energy physics
by imposing the orientations of the vevs. We argue that also the hierarchy needs to be imposed
such that the vevs are not considered output parameters anymore. For illustration purposes we
incorporated this idea by imposing the hierarchy in vevs by using a Lagrangian multiplier. We find
that the generic theory with a large hierarchy in vevs will not need any fine-tuning of the remaining
free parameters in order to produce the correct mass spectrum. This means that changes in one
natural parameter can be countered by changes in another natural parameter of the same order of
magnitude. Furthermore, we argue that a large hierarchy in vevs need not be considered unnatural
to begin with, even though a large hierarchy will in general not arise from a generic unconstrained
theory (and even if it does, a small change in the parameters would remove the hierarchy again).
Finally, we emphasise once more that our discussion only applies to the classical level and does
not shed any light on issues due to loop corrections.
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