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Abstract. We investigate the sensitivity of the Laser Interferometer Space Antenna (LISA)
to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We first
discuss the main astrophysical and cosmological sources of SGWB which are characterized by
anisotropies in the GW energy density, and we build a Signal-to-Noise estimator to quantify
the sensitivity of LISA to different multipoles. We then perform a Fisher matrix analysis
of the prospects of detectability of anisotropic features with LISA for individual multipoles,
focusing on a SGWB with a power-law frequency profile. We compute the noise angular
spectrum taking into account the specific scan strategy of the LISA detector. We analyze
the case of the kinematic dipole and quadrupole generated by Doppler boosting an isotropic
SGWB. We find that β ΩGW ∼ 2× 10−11 is required to observe a dipolar signal with LISA.
The detector response to the quadrupole has a factor ∼ 103 β relative to that of the dipole.
The characterization of the anisotropies, both from a theoretical perspective and from a
map-making point of view, allows us to extract information that can be used to understand
the origin of the SGWB, and to discriminate among distinct superimposed SGWB sources.

Keywords: gravitational wave detectors, gravitational waves / sources, gravitational waves /
theory, physics of the early universe
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1 Introduction

One of the main targets of the LISA gravitational wave (GW) detector is the detection of a
stochastic gravitational wave background (SGWB), which can shed light on the physics of
the early universe and on astrophysical population properties not accessible with resolved
sources. There are many possible astrophysical and cosmological sources which contribute
to the stochastic background (see e.g., [1–3] for recent reviews), and up to now we have
only upper bounds on its amplitude in [4], and on parameters characterising its directional
properties [5, 6], by the LIGO/Virgo collaboration. On the other hand we have a recent
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claim of a possible detection of a SGWB signal in the nano-Hertz regime by the NANOGrav
collaboration [7]. Typically it is expected that each source is characterized by a specific
spectral shape [8, 9], however, given the plethora of sources (both resolved and unresolved)
which are present in the LISA band (i.e., milli-Hertz regime), it is important to study other
features which can allow for a better characterization and detection of this signal.

Interesting properties can be extracted by measuring the anisotropies in the SGWB. The
first attempts for extracting information on the anisotropies of the SGWB have been first done
in [10] for the case of ground-based interferometers, in [11] for space-based interferometers,
and in [12, 13] for pulsar timing arrays.

The aim of this work, developed within the LISA Cosmology Working Group, is to
analyze the capabilities of LISA [14] to detect anisotropies of the SGWB in the milli-Hertz
band, making use of current instrument specifications, as well as of the latest theoretical
characterizations of sources of SGWB anisotropies. The work is developed in two main
parts: the first part is more theoretical in nature, and reviews our present understanding of
cosmological and astrophysical sources for the SGWB and the properties of its anisotropies;
the second part contains new results on the characterisation of angular response functions for
LISA, accompanied by forecasts of the detectability of an anisotropic SGWB with LISA.

The theory part of our work starts with a review of a Boltzmann equation approach
for analyzing anisotropies of the SGWB [15–19], similarly to what is commonly done for the
Cosmic Microwave Background (CMB). This method is convenient for distinguishing effects
on anisotropies sourced at the moment of GW production, from anisotropies developed as GWs
propagate through our inhomogeneous universe. We then discuss early universe sources of the
SGWB, and we describe SGWB anisotropies produced from inflationary mechanisms and from
the formation of primordial black holes (PBH). Similarly to CMB photons, gravitons are also
affected by the Sachs-Wolfe and Integrated Sachs-Wolfe effects, both related to the propagation
of GW through a perturbed universe. Besides these contributions, we discuss the intrinsic
SGWB anisotropy generated at the moment of production, whose frequency-dependence
represents a peculiar signature of GW. We then discuss a case where GW anisotropies are
induced by primordial non-Gaussianity, showing that in certain scenarios such a contribution
can be relatively large. Then we study the anisotropies expected in some post-inflationary
mechanisms, like preheating in a scale invariant model [20, 21] — even if the GW background
in this model is typically peaked at larger frequencies [22], beyond the LISA frequency band.
We finally review another two main GW sources that are characterized by anisotropies: phase
transitions and topological defects. For phase transitions, if only cosmological adiabatic
perturbations are considered, the fluctuations in any causally produced GW background will
follow those in the CMB, and hence they are expected to be small [23, 24]. For GW sourced
by topological defects, anisotropies induced by a network of Nambu-Goto cosmic string loops
have been computed in [25–27]. It has been shown that while the angular power spectrum C`
— the quantity characterising the multipole decomposition of the SGWB spectrum — depends
on the model of the loop network, the anisotropies are driven by local Poisson fluctuations
in the number of loops, and the resulting angular power spectrum is spectrally white (i.e.,
C` = constant with respect to `), regardless of the particular loop distribution [25].

We then present the case of anisotropies generated from astrophysical sources of GWs.
LISA will be sensitive to several astrophysical sources such as Super Massive Binary Black
Holes (SMBBHs) with masses ∼ 104–107M�, stellar origin Binary Black Holes (SOBBHs),
Extreme Mass Ratio Inspirals (EMRIs) and Galactic white dwarf Binaries (GBs). Beyond
these resolvable sources, measurements by LISA will also be affected by a huge number of
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unresolvable events which will sum up incoherently, forming a SGWB [1, 28, 29]. At least two
SGWB components are guaranteed to be present in the LISA band: a contribution due mostly
due to GB inspirals in the low-frequency band of (up to ∼ 10−3 Hz), and a contribution from
extra-galactic BBH mergers expected at slightly higher frequencies (∼ 10−3–10−2 Hz). The
analytic derivation of the energy density anisotropies for an SGWB has been well studied in
the literature [15, 18, 19, 30–32]. Predictions for the energy density angular power spectrum
have been presented in [32–37] in the Hz band and in [37] in the mHz band (see [38] for a
recent numerical code to estimate the angular spectrum of the anisotropies of the astrophysical
GWB). Anisotropies show a range of variability depending on the underlying astrophysical
model for star formation, mass distribution and collapse, and on the considered cosmological
perturbation effects. Due to its stochastic nature, we characterise the anisotropies in terms
of their angular power spectrum taking into account all the cosmological and astrophysical
dependencies.

We then move to the second part of this paper containing original results on prospects of
detection of anisotropies of the SGWB with LISA, given the current instrument specifications.
The characterisation of the angular resolution of space-based detectors as LISA has been
pioneered in [39–41], and previous studies on LISA capabilities in detecting and characterising
SGWB anisotropies include [42–46]. We start our analysis computing the angular response
functions of LISA to the different multipoles for a statistically isotropic SGWB. We work
in the A, E, T Time-Delay-Interferometry basis (see [47–52], as well as the comprehensive
review [53]) and we compute the angular response as a function of frequency for the auto-
correlation channels (AA, EE, and TT) and cross-correlated ones (i.e. AE, AT). We also give
their analytic expression in the low frequency limit. We develop an estimator for the angular
power spectrum C`, giving a simple analytic tool to estimate the total sensitivity of LISA to
an anisotropic signal. With these tools we estimate the minimal amplitude of GW energy
density needed for detecting higher multipoles. As a concrete example, we analyse the case of
the kinematic dipole and quadrupole generated by boosting with a factor β ≡ v/c an isotropic
SGWB. We find that for one year of observation, β ΩGW ∼ 2× 10−11 is required to observe a
dipolar signal with LISA. We also find that the detector response to the quadrupole has a
factor ∼ 103 β relative to that of the dipole.

We then perform a Fisher matrix analysis aimed at forecasting the amplitude required
on the lowest multipoles of the SGWB angular power spectrum for being detectable with
LISA, given the current information on LISA strain and angular resolution sensitivity. We
consider a power-law SGWB spectrum peaking at some multiple ` characterised by a fiducial
amplitude and spectral tilt.

The peak in sensitivity for ` = 1 occurs at higher frequencies than that for ` = 0, 2.
Therefore, if we choose the pivot scale of the power-law signal to coincide with the peak
sensitivity frequency of the ` = 0, 2 multipoles, so that their detectability is only weakly
sensitive to the spectral index, we then find a greater sensitivity for ` = 1 in the case of a
positive spectral tilt.

Finally we apply the maximum likelihood map-making method for stochastic backgrounds
proposed in [54] to the LISA detector, in order to provide estimates for the noise angular
power spectrum N`. We simulate and map the noise directly in the sky domain, and we take
into account the specific scan strategy of LISA, which describes how the sky signal is sampled
as a function of time.

The structure of this paper is as follows: in section 2 and 3 we review the main
cosmological and astrophysical GW sources and their predicted angular power spectra; in
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section 4 we present the LISA angular response function to different multipoles and the
Signal-to-Noise (SNR) estimator for anisotropic signals. In section 5 we perform a Fisher
matrix analysis for the amplitude and spectral tilt of a SGWB signal characterized by a
power-law behaviour. Finally in section 6 we compute the noise angular power spectrum of
LISA for different multipoles using a map-making approach. A conclusion and some technical
appendices conclude the work.

2 Cosmological sources of anisotropies

2.1 Theoretical framework

The SGWB energy is controlled by the energy density spectrum ΩGW defined as

ΩGW ≡
dρGW

ρc,0 d ln q , (2.1)

with dρGW being the energy density in GW contained in the comoving momentum interval q to
q+dq, and ρc,0 corresponding to the critical energy density of the present-day universe. As we
are going to discuss, we expect that the quantity ΩGW is characterized by an averaged isotropic
component plus a direction-dependent component. Both the isotropic and the anisotropic
contributions are two key observables that can be targeted by the GW LISA detector. Several
cosmological sources can produce a monopole GW energy density within the reach of the
LISA sensitivity: inflationary models beyond vanilla single-field scenarios, where the inflaton
is coupled with extra (gauge) fields [55–61] to models with features in the scalar power
spectrum [62–64], or models where space-time symmetries are broken during inflation [65–
72], or scenarios where non-attractor phases characterize the Universe evolution, [73–75],
or second-order scalar induced GWs which are also responsible for PBH formation [76–95].
Also post-inflationary mechanisms can generate GW signals within the reach of the LISA
detector: expected signals come from first order phase transitions beyond the Standard Model
of particle physics, and from the subsequent generation of topological defects, including the
irreducible SGWB from any network of cosmic defects. Forecasts about the detection of the
isotropic monopole contribution have been performed in previous publications of the LISA
Cosmology Working group: for inflationary scenarios in [96], for phase transitions in [97, 98],
and for cosmic strings in [99].

All such backgrounds are also expected to display anisotropies (direction dependence)
in the GW energy density ΩGW(f, n̂), which can be generated either at the time of their
production [20, 21, 23, 100–103] or during their propagation in our perturbed universe [15–
17, 104]. For this reason anisotropies in the SGWB energy density can be considered as a new
tool to characterize and distinguish various generation mechanisms of primordial GW. At the
same time, they can be considered as a probe of the evolution of cosmological perturbations.

As shown in [15–17, 105], SGWB anisotropies show strong analogies with those of
the Cosmic Microwave Background (CMB), at least in the geometrical optics limit [106–
109]. For this reason they can be treated using the Boltzmann equation approach, i.e.,
computing and evolving the equation for the gravitons distribution function f in a perturbed
FLRW background, analogously to what is done for CMB photons. At zeroth order in the
perturbations, the isotropy and homogeneity of the background imply that the graviton
distribution depends only on time and on their frequency. The gravitons propagate freely,
and their physical momentum redshifts during the propagation, as CMB photons. There is
however a marked difference between the graviton and the photon distribution, namely the

– 4 –
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initial population of gravitons is not expected to be thermal, as we have in mind specific
production mechanisms, such as inflation [55, 56], phase transitions [23], or enhanced density
perturbations leading to primordial black holes (PBH) [84, 85, 101], occurring at energy
densities much smaller to what be required for the thermalization of the produced gravitons.
This induces a sort of ‘memory’ of the initial state in the distribution.

The production mechanism could occur inhomogeneously in the observed universe, in
a way that correlates to the large scale perturbations. This would result in an anisotropic
signal arriving on Earth. Besides this initial condition, an additional anisotropic contribution
is induced by the GW propagation in our perturbed universe. Working at the linearized level
in a regime of a large hierarchy q � k between the GW (comoving) momentum q and the
(comoving) momentum k of the large scale perturbations, the graviton propagation is affected
by a Sachs-Wolfe (SW) effect, which is dominating on large scales, and by an Integrated
Sachs-Wolfe (ISW), similarly to CMB photons. An important difference with respect to the
CMB photons is associated with the ‘decoupling’ time of the two species: while the CMB
temperature anisotropies are generated only at the last scattering surface, or afterward, the
universe is instead transparent to GWs at all energies below the Planck scale. For this reason,
the SGWB provides a snapshot of the universe right after inflation, and its anisotropies retain
precious information about the primordial cosmological evolution.

The Boltzmann equation for the graviton distribution function f(xµ, pµ), with xµ the
graviton position and pµ = dxµ/dλ its momentum, is given by

L[f ] = C[f(λ)] + I[f(λ)] , (2.2)

where L ≡ d/dλ is the Liouville operator, while C and I account, respectively, for the
collision of GWs along their path, and for their emissivity from cosmological and astrophysical
sources [15]. In the case of a cosmological SGWB, the emissivity term can be treated as an
initial condition on the GW distribution, while, as we will see in section 3, in the case of
an astrophysical background it is related to the astrophysical process that generate the GW
signal at various redshifts, such as the black hole merging. On the other hand, we disregard
the GW collision term since it affects the distribution at higher orders in an expansion series
in the gravitational strength 1/MPl, where MPl is the Planck mass. We assume that our
universe is well described by a perturbed FLRW metric

ds2 = a2(η)
[
−e2Φdη2 + (e−2Ψδij + hij)dxidxj

]
, (2.3)

where a(η) is the scale factor as a function of the conformal time η, Φ and Ψ scalar fluctuations,
and hij the transverse-traceless tensor fluctuations. We can then solve the Boltzmann
equation (2.2), at background and linear levels. The background Boltzmann equation simply
reads ∂f̄/∂η = 0, and it is solved by any distribution that is function only of the comoving
momentum q, namely f = f̄ (q). This implies that the physical momentum of the individual
gravitons redshifts proportionally to 1/a.

At linearized level, the evolution equation for f becomes [15–17]
∂f

∂η
+ ni

∂f

∂xi
+
[
∂Ψ
∂η
− n̂i ∂Φ

∂xi
+ 1

2 n̂
in̂j

∂hij
∂η

]
q
∂f

∂q
= 0 , (2.4)

where n̂i = q̂i is the direction of motion of the gravitons. The distribution function f is
related to the GW energy density by

ρGW (η0, ~x) = 1
a4

0

∫
d3q q f (η0, ~x, q, n̂) ≡ ρc,0

∫
d ln q ΩGW (η0, ~x, q) , (2.5)

– 5 –
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where we use the spectral energy density ΩGW introduced in eq. (2.1), which depends also
on the position ~x where the energy density is evaluated. The suffix 0 indicates a quantity
evaluated today. We can account for a possibly anisotropic dependence by defining the
quantity ωGW through

ΩGW(η0, ~x, q) =
∫
d2n̂ ωGW(η0, ~x, q, n̂)/4π , (2.6)

and then the bar quantity Ω̄GW(η0, q) is defined as spatial average (over the evaluation point
~x) of the above quantity ΩGW (η0, ~x, q). With these ingredients we can introduce the density
contrast

δGW (η0, ~x, q, n̂) ≡ δωGW(η0, ~x, q, n̂)
Ω̄GW(η0, q)

≡ ωGW(η0, ~x, q, n̂)− Ω̄GW(η0, q)
Ω̄GW(η0, q)

, (2.7)

where the homogeneous and isotropic fractional energy density is obtained from the zeroth
order distributions function f̄ .

We decompose, as for the CMB, the density contrast in spherical harmonics,

δGW (η0, ~x, q, n̂) =
∑
`

∑̀
m=−`

δGW,`m (η0, ~x, q) Y`m(n̂) , (2.8)

and, under the assumption of statistical isotropy, we define the multipole coefficients through〈
δGW,`mδ

∗
GW,`′m′

〉
= CGW

` (η0, q) δ``′ δmm′ . (2.9)

As shown in [15–17], it is useful to re-define the graviton distribution function as
δf ≡ −q ∂f̄∂q Γ (η, ~x, q, n̂) , to simplify the first order Boltzmann equation, that now in Fourier
space reads1

Γ′ + i k µΓ = Ψ′ − ik µΦ− 1
2n

inj h′ij , (2.10)

where the terms on the right hand side (r.h.s.) define the so-called source function S(η,~k, n̂),
prime denotes a derivative with respect to conformal time, and µ is the cosine of the angle
between ~k and n̂. The GW density contrast is related to the Γ and to the background energy
density fractional contribution Ω̄GW [16, 17],

δGW =
[
4− ∂ ln Ω̄GW (η0, q)

∂ ln q

]
Γ
(
η0, ~k, q, n̂

)
, (2.11)

where we recall that ~q = qn̂ is the graviton comoving momentum. Many of the cosmological
GW scenarios mentioned above have a GW spectrum well described by a simple power law in
frequency (i.e., Ω̄GW ∝ qnT ). In these cases the previous relation reduces to δGW = (4−nT )Γ,
where nT is the tensor spectral index.

The solution of the eq. (2.10) can be decomposed as

Γ
(
η, ~k, q, n̂

)
= ΓI

(
η, ~k, q, n̂

)
+ ΓS

(
η, ~k, n̂

)
+ ΓT

(
η, ~k, n̂

)
, (2.12)

where I, S, and T stand for Initial, Scalar and Tensor sourced terms respectively. The scalar
and tensor terms correspond to the induced anisotropies arising from the propagation of

1In the CMB case ΓCMB = δ T/T .
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GWs in a background with large-scale perturbations, and they are therefore ubiquitous for all
the cosmological (and astrophysical) sources. On the contrary, the initial term is related to
the initial anisotropy contribution, and it is therefore dependent on the specific mechanism
for the GW production (as we review in the next sections, it can for instance arise from
large scalar-tensor-tensor or tensor-tensor-tensor primordial non-Gaussianity, or in the case
of preheating).

Inserting the three terms of (2.8) into (2.11), and expanding in spherical harmonics, one
obtains the Initial, Scalar, and Tensor contributions to the correlators

CGW
` = CGW

`,I (q) + CGW
`,S + CGW

`,T , (2.13)

which evaluate to [16, 17]

CGW
`,I (q) = 4π

(
4− ∂ ln Ω̄GW

∂ ln q

)2 ∫
dk

k
[j` (k (η0 − ηin))]2 PI (q, k) ,

CGW
`,S = 4π

(
4− ∂ ln Ω̄GW

∂ ln q

)2 ∫
dk

k
T (S) 2
` (k, η0, ηin) Pζ (k) ,

CGW
`,T = 4π

(
4− ∂ ln Ω̄GW

∂ ln q

)2 ∫
dk

k
T (T ) 2
` (k, η0, ηin)

∑
λ=±2

Pλ (k) , (2.14)

where PI , Pζ , and Pλ are, respectively, the power spectrum of the initial condition term, of
the scalar primordial density perturbations, and of the tensor priomordial modes with helicity
λ [16, 17]. Moreover, j` are spherical Bessel functions, while the expressions for the scalar
and tensor transfer functions are

T S` (k, η0, ηin)≡TΦ (ηin, k) j` (k (η0−ηin))+
∫ η0

ηin
dη′

∂ [TΨ (η, k)+TΦ (η, k)]
∂η

j` (k (η−ηin)) ,

T T` (k, η0, ηin)≡
√

(`+2)!
(`−2)!

1
4

∫ η0

ηin
dη
∂χ(η, k)
∂η

j` (k (η0−η))
k2 (η0−η)2 , (2.15)

where TΦ and TΨ encode the evolution of the scalar perturbations in eq. (2.3) in terms of
the primordial variable ζ, namely Φ

(
η, ~k

)
≡ TΦ (η, k) ζ

(
~k
)
, and Ψ

(
η, ~k

)
≡ TΨ (η, k) ζ

(
~k
)
.

Analogously, the mode function h (η, k) encodes the time dependence of the tensor per-
turbations [16, 17]. As we discuss below, the spherical harmonic coefficients also have a
non-vanishing three point correlation function, that can be related to the primordial bispectrum
of the initial condition term and of the primordial scalar and tensor modes [16, 17].

2.2 Production mechanisms

2.2.1 Inflation
Inflation, a period of accelerated expansion in the very early universe, stands as one of the
main pillars of our understanding of the universe origin and evolution. Primordial quantum
fluctuations, magnified by the expansion, provide the seeds for structure formation. The
minimal (and observationally viable) implementation of the inflationary mechanism, comprises
of a single scalar field slowly rolling down its potential, at an energy scale E ∼

√
MPH, where

Mp and H, denote, respectively, the Planck mass and the energy scale during inflation. It is
generally assumed that general relativity is the theory of gravity at this energy scale. Upon
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considering perturbations around a homogeneous and isotropic solution, it becomes clear that
tensor fluctuations in the gravity sector, i.e. gravitational waves, are a universal prediction of
inflation.

The existence of a cosmological stochastic gravitational wave background (SGWB) can
be tested across a wide range of scales, from its effects on the CMB B-mode polarisation, all
the way to direct detection via laser interferometers. In what follows, we shall focus on the
latter possibility and clarify how anisotropies in the GW energy density, imprinted at the
epoch of the SGWB generation, may directly probe inflationary dynamics.

These anisotropies, encoded in the first contribution ΓI(ηin, k, q) in eq. (2.8), carry
the imprints from the initial conditions because the Universe is essentially transparent to
GWs. This is to be compared to CMB photons for which anisotropies at the initial epoch “ηin”
are erased by the multiple collisions photons suffer prior to the recombination epoch. We stress
that, interestingly, anisotropies due to initial condition are strongly model dependent and
thus provide the opportunity to test and distinguish among different inflationary models. To
give one example, in the case of single-field adiabatic initial conditions (and for scale-invariant
primordial gravitational waves) one would get, in the language of eq. (2.8):

Γ (ηin, k) = −1
2Φ(ηin, k) , (2.16)

where Φ(ηin, k) is the gravitational potential perturbation (in Poisson gauge), see [16, 17, 105,
110].

Anisotropies provide a precious handle on the particle content of the very early Universe.
We would like now to single out the two necessary conditions underlying the effectiveness
of anisotropies specifically as a probe of inflationary interactions: (i) naturally, a primordial
GW spectrum amplitude at small scales that is well-above the sensitivity curve of laser
interferometers such as LISA; (iia) a sufficiently sizeable long-short mode coupling (i.e. squeezed
primordial non-Gaussianity) [16, 17, 101, 111, 112], or (iib) an anisotropic background tout
court [16, 17].

Each of the property in (i) and (ii) are unlikely to characterize single-field slow-roll
(SFSR) models of inflation. Indeed, the typical frequency profile of SFSR realisations is that
of a slightly red-tilted GW spectrum, with a signal below the LISA sensitivity threshold.2
Non-Gaussianities associated to the same SFSR paradigm are also small. Remarkably, there is
a growing literature on multi-field inflationary realisations that comply with both requirements.
Interesting examples of anisotropies induced by primordial non-Gaussianities include those
occurring in models with light spin-2 field(s) during inflation [114, 115] and set-ups with a non-
standard symmetry breaking patterns (see e.g. [65, 116, 117]). For examples of anisotropies
engendered by an anisotropic background we refer the reader to [16, 17], where the case of GWs
sourced by gauge fields in axion inflation is discussed. This set-up leads to anisotropies with
a significant frequency dependence, in contradistinction to what happens for CMB photons.

A general treatment of anisotropies from initial (i.e. inflationary) conditions is made
possible by the Boltzmann equation and the theoretical framework expounded in section 2.1. In
the remainder of this subsection, we shall describe and highlight the importance of anisotropies
as a probe of primordial non-Gaussianities in the sense of (iia) defined above. We will put
aside (iib) as well as assume, and later quantify, a sufficiently large primordial bispectrum
so as to render the anisotropy via long-short mode coupling the leading contribution. It is

2Noteworthy exceptions include models where an attractor phase is preceded by non-attractor evolution,
see e.g. [113].
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convenient, before elaborating on the explicit form of non-Gaussianities-induced anisotropies,
to make contact with the form they take in the context of the Boltzmann treatment. The
effect of a squeezed scalar-tensor-tensor (STT) primordial bispectrum on GW anisotropies is
captured by the “initial conditions” term ΓI in eq. (2.8) via:[

4− ∂ ln Ω̄GW(q)
∂ ln q

]
ΓI(ηin,kL, q, n̂) = FNL(kL, q)ζ(kL) , (2.17)

where kL underscores the specific bispectrum configuration (squeezed) under scrutiny and
FNL is a placeholder for primordial non-Gaussianity of the STT type. An analogous relation
exists for anisotropies induced by TTT-type correlators, i.e. GW non-Gaussianities.

The anisotropies of the GW energy density induced by, respectively, squeezed STT and
TTT non-Gaussianity, have the following form [102, 118, 119]:

δSTT
GW (q, n̂) =

∫
kL�q

d3kL

(2π)3 e
−id n̂·kLF STT, sq

NL (kL,q)ζ(kL) , (2.18)

and

δTTT
GW (q, n̂) =

∫
kL�q

d3kL

(2π)3 e
−id n̂·kLFTTT, sq

NL (kL,q)
∑
s

γs(kL)εsij(k̂L)n̂in̂j , (2.19)

where d = η0 − ηin is the elapsed from horizon re-entry to the present for the mode q, and the
non-linearity parameters have been defined as

F STT, sq
NL (kL,q) ≡ Bsq

STT(kL,q − kL/2,−q − kL/2)
Pζ(kL)Pγ(q) , (2.20)

FTTT, sq
NL (kL,q) ≡ Bsq

TTT(kL,q − kL/2,−q − kL/2)
Pγ(kL)Pγ(q) , (2.21)

and the bispectra Bsq are understood as defined in standard fashion from the squeezed limit
of the three-point function in Fourier space.

The bispectrum component that appears in eqs. (2.18)–(2.19) is the leading physical
contribution to the three-point functions. It is often the case that those bispectrum diagrams
that include interactions mediated by additional (w.r.t. the single-field slow-roll case) fields
give the largest contribution in terms of non-Gaussianities, squeezed or otherwise.

In order to identify the regime where non-Gaussianities provide the leading contribution
to anisotropies, it suffices to report here that, schematically:

δSTT
GW ∼ F STT, sq

NL ×
√
AS , δTTT

GW ∼ FTTT, sq
NL ×

√
r AS , (2.22)

where AS is the amplitude of the primordial scalar power spectrum and r is the tensor-to-scalar
ratio. The regimes of interest are then, respectively, those where the conditions F STT, sq

NL � 1
and FTTT, sq

NL
√
r � 1 hold true. It is instructive to recall, for illustrative purposes, the

analytical approximation to the angular power spectrum of STT-induced anisotropies:

CGW,STT
` =

(
F STT, sq

NL

)2 2πAS
`(`+ 1) , (2.23)

which has been obtained under the simplifying assumptions of a direction-independent, scale-
invariant, F STT, sq

NL as well as a scale-invariant Pζ . Note that, in the large F sq
NL limit, due
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diligence requires that one implements the constraints on the same quantities available at
CMB scales.

The dependence of certain contributions to anisotropies on primordial scalar modes (as
e.g. eqs. (2.16) and (2.17) indicate), provide the intriguing opportunity of cross-correlation with
CMB temperature anisotropies. Naturally the latter are also dependent on scalar perturbations,
as e.g. the following expression, obtained in the Sachs-Wolfe limit, indicates [106]:

δSW
`m = 4π

5 i`
∫

d3p

(2π)3Y
∗
`m(p̂)j`(p rlss) ζ(p) . (2.24)

We refer the interested reader to the literature in [102, 103, 110, 112, 120] for a thorough
treatment of the topic. We find it worthwhile to briefly mention the following notion. In
the case of primordial non-Gaussianity, the effectiveness of cross-correlations as a tool to
constrain the non-linearity parameter hinges on two independent aspects: the amplitude and
the angular dependence of the bispectrum. For example, a quadrupolar angular dependence
cross-correlated with temperature anisotropies may well be suppressed with respect to the
case of a monopolar δGW.

2.2.2 Preheating and phase transitions

In standard preheating scenarios, a daughter or ‘preheat’ field χ is coupled to an inflaton φ via
some interaction term involving the two fields. If the inflaton potential exhibits a monomial
shape at the stages following inflation, the inflaton oscillates around the minimum of its
potential after inflation, inducing a non-adiabatic time evolution in the interactive mass of the
preheat field. This leads to an efficient resonant production of the daughter species [121–125],
the efficiency of which depends on the inflaton-daughter coupling, as well as on the details of
the inflaton potential (see e.g. [126, 127] for more recent analysis). This particle production
mechanism is known as parametric resonance, and it corresponds to a non-perturbative,
non-linear, and out-of-equilibrium effect [128]. We speak about broad resonance when the
choice of interaction and inflationary model leads to an excitation of the χ field modes within
broad band(s) of momenta. In this case, a significant production of gravitational waves (GWs)
takes place [22, 129–132].

In large field inflationary models, the daughter field is typically ‘heavy’ during inflation,
as the inflaton field takes super-Planckian amplitudes. It is possible however, to find some
coupling values for which the daughter field is light during most of the inflationary era, but
becomes heavy only towards the last e-foldings of inflation (when the inflaton rolls down
its potential towards smaller values). In this case, after inflation ends, χ displays amplified
perturbations on super-horizon scales, just as the inflaton. At the onset of preheating, sub-
horizon vacuum fluctuations serve as an initial condition for parametric resonance, but these
are super-imposed over almost homogeneous values χi of the daughter field.3 This is precisely
the crucial ingredient for the development of anisotropies in the GW background. The value
of χi changes at super-horizon scales according to a variance σ2

χ ∼
H2

inf
4π2 ∆N , where ∆N is

the number of e-folds for which χ is a light degree of freedom, and Hinf is the inflationary
Hubble scale. Initial quantum fluctuations of the daughter field χ at sub-horizon scales are
exponentially stimulated via parametric resonance. When non linearities become relevant in

3Such initial values are actually constant over regions that extend beyond the Hubble radius, as they are
generated by super-Hubble fluctuations. The super-Hubble scale at which χi varies spatially depends on the
modelling, and it is determined essentially by the number of e-folds during which χ remains light.
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the system, i.e. when χ back-reacts on the inflaton φ, the dynamics of the sub-horizon modes
χk are influenced by the value of χi within each given patch. The spatial distribution of the
field χ, and hence of the source of the GWs, will be then different at causally disconnected
regions. As a result, a different amount of GWs is produced at each super-horizon region, in
correspondence with the different values of χi.

The anisotropies in the GW energy density spectrum from preheating have been studied
in detail in the scale invariant model V (φ) = 1

4λφ
4 + 1

2φ
2χ2 [20, 21], chosen because of

its computational convenience. GW anisotropies should be however a relatively common
phenomenon arising in other preheating scenarios, as long as the appropriate conditions
are met. In the mentioned scenario, the lightness of χ before the last e-folds of inflation is
guaranteed if the coupling constant is taken to be g2/λ ∼ O(1). The dynamics of preheating
proceeds as usual, but the initial conditions at the onset of parametric resonance are such that
at each super-horizon volume there are different values χi, drawn from a Gaussian distribution
with variance σ2

χi ∼
H2

inf
4π2 ∆N . In practice one just needs to run simulations with free values of

χi, simply restricted to χi > Hinf/2π.
Employing the ‘separate Universe’ approach, refs. [20, 21] compared the peaks of the

GW energy density spectrum from simulations with different initial values of χi, run for the
choice g2/λ = 2. While the GW backgrounds were always peaked at the same frequency, as
expected, the peak amplitudes of the GW spectra differed significantly. For example, in the
left panel of figure 1 we show two GW spectra obtained for slightly different values of χi,
and it is clearly appreciated that one amplitude is larger than the other by a factor ∼ 2–3.
In other words, the actual value of χi influences the evolution of the sub-horizon gradients
of χ, and hence the production of GWs. To be concrete, ΩGW was observed to vary up
to a factor ∼ 5 between slightly different values of χi (the non-linear dynamics is actually
chaotic [133], so small variations of χi can lead to a large variation of sub-horizon dynamics
of the modes χk). The level of anisotropy produced in the energy density of the resulting GW
background is characterized by the angular power spectrum CGW` of the relative GW spectral
energy-density fluctuation [cf. eq. (2.9)], which can be written as a function of the χi values.
A general formula applicable to all scenarios characterized by a light spectator field during
inflation is [20, 21]4

` (`+ 1)CGW
` = H2

inf
8π
〈δχi ΩGW(χi)〉2

σ4
χi〈ΩGW〉2

, (2.25)

where δχi ≡ χi − χi, with χi the mean value over the currently observable universe. This
implies that the angular power spectrum of the GW energy density anisotropy is scale invariant,
i.e. characterised by a plateau at small multi-poles, ` (`+ 1)CGW` ∝ const., analogous to the
large angular scale Sachs-Wolfe plateau for the temperature anisotropies in the CMB. In the
analysed preheating scenario, the relative amplitude of the GW energy density spectrum, for
a reference value of χi = 3.42 · 10−7MPl (here MPl ' 1.22× 1019 GeV is the Planck mass), was
found to have spatial fluctuations as

√
l (l + 1)CGW

` = 0.017± 0.003. For other values of χi
the anisotropy amplitude is also similar, always at the O(1) % level, see right panel of figure 1.
For comparison, recall that the relative amplitude of the CMB temperature fluctuations is of
the order of O(0.001) %. The GW anisotropies obtained in this model are therefore very large.

4From eqs. (31), (33) and (34) of [21] one can verify that the quantities CGW
` entering in this relation

coincide with those defined here in eq. (2.9).
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Figure 1. Left: energy density spectrum of GW background from preheating for χi = 3.4× 10−8MPl
(upper, blue curves) and χi = 1.0 × 10−8MPl (lower, black curves), averaged over five random
realizations of the initial sub-horizon fluctuations of χ (dashed and solid lines are simulations with
N = 512 and N = 1024 points per dimension, respectively). Right: relative amplitude of angular
power spectrum of the GW background from preheating as a function of the average field value χi.
The red dot shows the amplitude for the reference value χi = 3.42× 10−7MPl. Both plots are taken
from ref. [21].

The details of the GW anisotropy, if ever observed, could provide a powerful way to
differentiate between different inflationary and preheating sectors. The GW background from
scale invariant preheating just discussed, is however peaked at very large frequencies [22],
way above the observational frequency window accessible to LISA (or to any other ground- or
space-based planned detector for this matter). So the example mentioned only serves as a
proof of principle, at least for what can be detected in the foreseeable future. On top of this,
it is important to remember that a quartic potential model is also ruled out by CMB data

The mechanism just described corresponds to the imprint of intrinsic anisotropies in
the energy density of the GW background from preheating. However, in general, other
effects causing anisotropy can be also present. As a matter of fact, any causally sourced GW
background will exhibit, in general, anisotropies in the spatial distribution of its energy density
at large scales. This is simply due to Doppler, Sachs-Wolfe, and Integrated Sachs-Wolfe
effects [15], similarly as the anisotropies arising in the photons of the CMB. This type of
anisotropies concern actually not only preheating, but also GW backgrounds from cosmological
phase transitions, and in general from any causally driven mechanism creating GWs after
inflation (as well as inflationary GWs themselves). For cosmological adiabatic perturbations,
the fluctuations in any causally produced GW background will simply follow those in the CMB,
and hence they are expected to be very small [23, 24], of the order of ∼ 10−5. If primordial
fluctuations carry however an isocurvature component, this need no longer be true. Ref. [24]
has recently shown that in non-minimal inflationary and reheating settings leading to large
non-Gaussian perturbations, a non-Gaussian GW background is also expected, even when
the rest of the cosmological fluids inherit predominantly Gaussian fluctuations. Primordial
isocurvature perturbations can survive in the GW background say from a cosmological phase
transition, exhibiting significant non-Gaussianity, while obeying observational bounds from
the CMB or Large-Scale Structure surveys. Probing such inherited non-Gaussianity in causally
generated GW backgrounds seems to be however a marginal possibility at LISA [24], and
rather more futuristic proposals such as the detectors DECIGO or BBO are needed.
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2.2.3 Topological defects

Gravitational wave sources with an inhomogeneous spatial distribution would lead to
anisotropies in the SGWB, in addition to the anisotropies induced by the nature of spacetime
along the line of propagation of the GWs. An inhomogeneous distribution of cosmic strings,
formed generically [134] in the early Universe as a result of a phase transition, followed by a
spontaneous symmetry breaking characterized by a vacuum manifold with non-contractible
closed curves, will lead to anisotropies in the SGWB.

Several studies [25–27] in the literature have calculated the anisotropies induced by a
network of Nambu-Goto cosmic string loops, addressing the question of whether the model
for the loop distribution will affect the angular power spectrum. It has been shown that
while the amplitude of the resulting power spectrum C` depends on the model of the loop
network, the anisotropies are driven by local Poisson fluctuations in the number of loops, and
the resulting angular power spectrum is spectrally white (i.e., C` = constant with respect to
`), regardless of the particular loop distribution [25].

We show in figure 2 the amplitude of the SGWB angular power spectrum as a function
of the string tension Gµ for three cosmic string loop distributions, dubbed “Model 1, 2, 3”.
The first, Model 1, is the original one-scale model where all loops have the same size set by
a free parameter α, chosen here to be α = 10−12. While this model is rather obsolete, we
illustrate it here since it has been shown that it leads to significant anisotropies in the PTA
frequency band [26]. Models 2 [135, 136] and 3 [137, 138] are based on different computer
simulations and they differ on the way they model the production and cascade of loops from
the super-horizon cosmic string network.

We find that, regardless of the adopted cosmic string loop model and the considered
string tension, the predicted angular power spectrum C` is too small to be detected with
LISA. Note that in both models 2 and 3, the monopole should be detectable by LISA for
Gµ & 10−17 [99] (though the presence of astrophysical foregrounds reduces the sensitivity
somewhat to Gµ & 10−16 [139]).

Aside from the extra-galactic population of cosmic string loops discussed above, several
authors have studied the possibility of a population of loops being captured in the halo of
the Milky Way [140–142]. These loops would then give rise to an anisotropic SGWB signal
which would trace the density profile of the galactic halo. Using the results from ref. [142] we
calculate here the corresponding C` spectrum, which is shown in figure 3. Again, this signal
is too weak to be detected by LISA.

2.2.4 Primordial black holes

In this section we review the amount of angular anisotropies inherited by the induced SGWB
from primordial scalar perturbations in the scenario associated to the production of Primordial
Black Holes (PBHs), see ref. [101] for details. The standard formation scenario of PBHs
requires an enhancement of curvature perturbations at small scales (denoted λPBH ≈ 1/kPBH in
this section) producing the collapse of large overdense region in the early (radiation-dominated)
universe. This also predicts a copious amount of GWs induced at second order by the same
scalar perturbations leading to a potential GW signature of the PBH production [76, 77, 79–
91, 93, 94]. Since the GW emission in this mechanism mostly occurs when the corresponding
perturbation scales cross the horizon, one can relate the GWs frequency to the PBHs mass
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Figure 2. Amplitude of the SGWB anisotropies for different cosmic string network models, as a
function of the string tension. We use a representative LISA-band GW frequency of 1 mHz. Note that
the spectra here are not normalised with respect to the monopole, so

√
C` is proportional to ΩGW. As

discussed in the text, the spectra are `−independent.
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Figure 3. Angular power spectrum from a hypothetical population of cosmic string loops in the Milky
Way halo.
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MPBH as (see for example [81])

f ' 6mHz√γ
(

MPBH

10−12M�

)−1/2
, (2.26)

where γ is an efficiency factor relating the horizon scale and the PBH mass at formation
epoch. Therefore, the SGWB peak frequencies fall within the LISA sensitivity band for PBH
masses between around MPBH ∼ 10−15M� and MPBH ∼ 10−8M� [83, 84, 86, 143, 144].

Following subsection 2.1, we adopt the following definition of the line element

ds2 = a2
{
− (1 + 2Ψ) dη2 +

[
(1− 2Ψ) δij + 1

2hij
]

dxidxj
}
, (2.27)

in terms of the scalar Ψ and tensor hij perturbation in the Newtonian gauge, assuming no
anisotropic stress. From the Einstein equation one can write down the equation of motion for
the GWs as

h′′ij + 2Hh′ij −∇2hij = −16Tij`m
[
Ψ∂`∂mΨ + 2∂`Ψ∂mΨ− ∂`

(Ψ′

H
+ Ψ

)
∂m

(Ψ′

H
+ Ψ

)]
,

(2.28)
where the source term on the r.h.s. is evaluated assuming a radiation dominated era. The
prime denotes derivative with respect to conformal time η, and H ≡ a′/a is the conformal
Hubble parameter.

Using the equations of motion at first order in perturbation theory one can express the
scalar perturbation as a function of the gauge invariant comoving curvature perturbation [145].
Employing the standard decomposition of the tensor perturbation in terms of the polarization
tensors eλij and helicity modes hλ, one finds [146]

hλ(η, ~k) = 4
9k3η

∫
d3p

(2π)3 e∗λ(~k, ~p)ζ(~p)ζ(~k − ~p) [Ic(x, y) cos (kη) + Is(x, y) sin (kη)] , (2.29)

where we have introduced the dimensionless variables x = p/k and y = |~k−~p|/k, the contracted
polarization tensors eλ(~k, ~p) ≡ eij,λ(k̂)~pi~pj , and the two oscillating functions Ic,s [146, 147]

Ic(x, y) = −36π (s2 + d2 − 2)2

(s2 − d2)3 θ(s− 1) , (2.30)

Is(x, y) = −36(s2 + d2 − 2)
(s2 − d2)2

[
(s2 + d2 − 2)

(s2 − d2) log (1− d2)
|s2 − 1| + 2

]
, (2.31)

in terms of d ≡ |x− y|/
√

3, s ≡ (x+ y)/
√

3 with (d, s) ∈ [0, 1/
√

3]× [1/
√

3,+∞).
The energy density associated to the gravitational modes is given by [148–150]

ρGW =
M2
p

4 〈ḣab (t, ~x) ḣab (t, ~x)〉T , (2.32)

where the angular brackets denotes a time average on a timescale T , much smaller than the
cosmological timescale (TH � 1) but much larger than the GW phase oscillations (Tki � 1).
Adopting the standard assumption of a Gaussian scalar curvature perturbation ζ, one finds
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the fractional GW energy density

〈ρGW (η, ~x)〉≡ ρc,0(η)
∫
d lnkΩGW (η, k)

=
2π4M2

p

81η2a2

∫
d3k1d

3p1

(2π)6
1
k4

1

[
p2

1−(~k1 ·~p1)2/k2
1

]2
p3

1

∣∣∣ ~k1−~p1
∣∣∣3 Pζ(p1)Pζ(| ~k1−~p1|)

[
I2
c (~k1, ~p1)+I2

s (~k1, ~p1)
]
,

(2.33)

in terms of the critical energy density of a spatially flat universe ρc = 3H2M2
p and the

curvature perturbation power spectrum Pζ .
The predicted amount of angular anisotropies can be determined by the two-point

correlation function of the density field ρGW in different angular directions. For a Gaussian
curvature perturbation one expects those to be undetectable, given the capability of the LISA
experiment to measure anisotropies between spatial points separated by non-negligible fractions
of the present horizon [101]. Indeed, according to the Equivalence Principle, the anisotropies
will be highly suppressed by a factor (kPBH|~x− ~y|)−2 � 1, since the characteristic scales of
the scalar perturbations are much smaller than those spatial distances, kPBH |~x− ~y| � 1, and
the emission takes place near horizon crossing.

This conclusion does not hold in the presence of primordial non-Gaussianity correlating
short (ζPBH) and long scales (ζL). Indeed, large scale modulation of the power spectrum may
lead to anisotropies at large-scales imprinted at formation [101]. Assuming a local, scale-
invariant, shape of non-Gaussianity ζ = ζg + 3

5fNL ζ
2
g and keeping into account propagation

effects (see section 2.3 for details), one can compute the two-point correlation function of the
GW energy density contrast in spherical harmonics δGW,`m as in eq. (2.9), obtaining√

` (`+ 1)
2π CGW

` (k) ' 3
5

∣∣∣1 + f̃NL (k)
∣∣∣ ∣∣∣∣4− ∂ ln ΩGW(η, k)

∂ ln k

∣∣∣∣ P1/2
ζL
, (2.34)

in terms of the power spectrum at large scales PζL and the momentum dependent non-Gaussian
parameter

f̃NL (k) ≡ 8 fNL

4− ∂ ln ΩGW(η, k)
∂ ln k

. (2.35)

Non-Gaussianity in the curvature perturbation is constrained to fall in the range −11.1 ≤
fNL ≤ 9.3 at 95% C.L. [151] by the Planck collaboration. It is important to stress that its
presence would also generate a significant variation of the PBH abundance on large scales given
the impact of long modes inducing a modulation of the power on small scales. As isocurvature
modes in the DM density fluid are strongly constrained by CMB observations [152], one can
put an upper bound on the fraction of the Dark Matter (DM) in our universe composed by
PBHs formed in the presence of non-Gaussianities [153, 154].

For a monochromatic and lognormal power spectra of curvature perturbations at small
scales, peaked at the LISA maximum sensitivity frequency, the GW anisotropy are plotted in
figure 4, where the coloured region identifies the range of parameters allowed by the Planck
constraints and the dot-dashed lines identify the present epoch GWs abundance evaluated
at the peak frequency. The non-linear parameter has been assumed to be fNL > −1/3 to
avoid the inconsistency of the perturbative approach in the PBH abundance computation
happening at larger negative values, see the related discussion in [155, 156]. The main finding

– 16 –



J
C
A
P
1
1
(
2
0
2
2
)
0
0
9

0.

2.×10-4

4.×10-4

6.×10-4

8.×10-4

1.×10-3

2.5×10-4

5.×10-4

7.5×10-4

1.×10-3

1.25×10-3

Figure 4. Contour plot of the GW anisotropy in the parameter space of fPBH and fNL allowed by the
Planck constraints for a monochromatic (left) and lognormal (right) power spectrum at small scales.
We fixed the SGWB characteristic scale around the maximum sensitivity of LISA. The dot-dashed
lines identify the corresponding present day GWs abundance. Figure taken from ref. [101] (with Ĉ` (k∗)
corresponding to our CGW

` ).

is that a large fraction of DM composed by PBHs would imply a highly isotropic and Gaussian
SGWB, up to propagation effects. On the other hand, the detection of a sizeable amount of
anisotropy in the signal related to the PBH scenario would imply that PBHs can account
only for a small fraction of the DM in the universe [101].

2.3 Propagation effects

Independently from the initial anisotropies in the SGWB of cosmological origin, we do expect
a minimal level of anisotropies in all of the scenarios described above due to the propagation of
GWs through (large-scale) cosmic inhomogeneities, while travelling from the generation surface
till the observation point. Such anisotropies represent an unavoidable, irreducible contribution
which indeed carries precious cosmological information, being sensitive to the evolution of
cosmological perturbations and to the initial conditions from which cosmic structures formed.
Employing the general formalism of Boltzmann equations explained above, the underlying
cosmological perturbations leave specific imprints in the statistics of the SGWB anisotropies
in terms of, e.g., angular power spectra.

From eqs. (2.15), we can infer some properties about the SGWB anisotropies due to their
propagation through cosmological perturbations: similarly to CMB, gravitons are affected by
the Sachs-Wolfe contribution, which represents the energy lost by a graviton which escapes
from a potential well, and by the Integrated Sachs-Wolfe (ISW) effect, due to tensor and
scalar perturbations, the latter producing an anisotropy which is roughly proportional to the
total variation of the potentials ∆Φ + ∆Ψ. An important point to stress here is the “initial”
time ηi, which has an impact both on the SW and on the ISW contributions. The numerical
evaluation of the angular power spectrum for the cosmological SGWB has been performed
in [109] (see also [120]), modifying the publicly available code CLASS, usually employed for
the computation of CMB anisotropies [157] and adapting it to the SGWB.

In figure 5 we report the angular power spectrum of the cosmological SGWB due to
propagation effects sourced by scalar perturbations and we compared it to the CMB one
coming from temperature anisotropies. We can see that the SGWB spectrum shows a larger
amplitude compared to the CMB. This can be explained considering the graviton “decoupling”
time, which occurs earlier compared to CMB photons and so gravitons feel for longer time
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Figure 5. Left plot: SW, ISW and total contribution to the angular power-spectrum of the cosmological
SGWB. Right plot: comparison between the SGWB spectrum and the CMB one.

the propagation effects. In such a figure, we also report the contribution from the SW and
the ISW separately, to show their behaviour at different angular scales.

From the left plot we can see that at large angular scales (i.e., low `), the SW contribution
is dominating while moving to smaller scales (i.e., ` & 100), the ISW contribution starts to be
larger. On the other hand, from the right plot we can quantify the expected difference among
the CMB and SGWB anisotropies.

Interestingly enough, by measuring or constraining angular anisotropies of the SGWB, it is
also possible to probe the level of primordial non-Gaussianity possibly present both in the scalar
and tensor cosmological perturbations through which the SGWB propagates. Indeed such
primordial non-Gaussianity will left be imprinted into the GWs passing through the background
large-scale underlying inhomogeneities, similarly to what happens for CMB photons. This
entails to go beyond the power spectra statistics and to compute higher-order correlation
functions, such as the angular bispectra of the GW energy density fluctuations [16, 17]

〈δGW,`1m1δGW,`2m2δGW,`3m3〉 ≡
(
`1 `2 `3
m1 m+ 2 m3

)
bGW
``′`′′ , (2.36)

where bGW
``′`′′ is the so-called reduced bispectrum (see e.g. [158, 159]). For example, as shown

in [16, 17], in the case of primordial local non-Gaussianity in the curvature perturbations

ζ (~x) = ζg (~x) + 3
5 fNL ζ

2
g (~x) , (2.37)

ζg (~x) being the linear Gaussian part of the perturbation, one finds

bGW
`1`2`3,S '

2 fNL

4− ∂ ln Ω̄GW
∂ ln q

[
CGW
`1,S C

GW
`2,S + CGW

`1,S C
GW
`3,S + CGW

`2,S C
GW
`3,S

]
. (2.38)

It is important to stress that similar results follow in the case of primordial non-
Gaussianity in the large-scale tensor perturbations. Therefore the 3-point correlation function
of GW energy density anisotropies provides for the first time a way to probe at interferometers
primordial non-Gaussianity of large-scale tensor modes through the imprints that the latter
leave in the spatial distribution of GW energy density as described by the second equation
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in (2.15). Indeed, for a sufficiently high SGWB, it might happen that primordial (scalar/tensor)
non-Gaussianity can be measurable through the detection of the SGWB anisotropies at
interferometers, even in cases where such primordial non-Gaussianity are not measurable at
CMB scales.

As it is clear from the previous discussion, the seeds that give rise to anisotropies
during the propagation, are the same for photons and gravitons. This naturally induces a
cross-correlation among these two messengers. Recently, the cross-correlation between CMB
and SGWB anisotropies induced during the propagation has been studied in [110, 120], and
focusing on the initial anisotropy in [102, 103]. All these studies have shown that such a
cross correlation signal will be within the reach of the LISA detector, and it will be extremely
useful to extract information on cosmological parameters, pre-recombination physics and the
non-linear parameter fNL to measure primordial non-Gaussianity.

3 Astrophysical sources of anisotropies

The astrophysical stochastic gravitational-wave background (AGWB) is generated by the
incoherent superposition of signals emitted by a large number of resolved and unresolved
astrophysical sources. In different frequency bands, several astrophysical sources can contribute
to the AGWB, as merging stellar-mass black hole (SOBHB) or binary neutron stars (BNS) [160–
167], super-massive black hole binaries (SMBHB) [168], rotating neutron stars [169–171],
stellar core collapse [172, 173] and population III binaries [174] (see, e.g., [1] for a review).
As the cosmological GW background, also the AGWB is characterized by an isotropic energy
density contribution and through the spatial angular power spectrum encoding its anisotropy.

Based on the recent observations of merging black holes and neutron star binaries by
the LIGO and Virgo detectors [175–180], it is estimated that the stochastic background from
unresolved stellar-mass compact binaries may be detected within a few years of operation of
such a network [181]. Its anisotropic component is constrained by LIGO/Virgo observations
up to ` = 4 [182] which results in upper limits on the amplitude of the dimensionless energy
density per units of logarithmic frequency in the range ΩGW(f = 25Hz,Θ) < 0.64–2.47× 10−8

sr−1 for a population of merging binary compact objects, where Θ denotes the angular
dependence. Methods to measure and map the AGWB in the LIGO and LISA frequency
ranges are discussed in [5, 10, 11, 53, 54, 183–187].

Traditionally, the energy density of the AGWB has been modeled and parameterized
under the assumption that both our universe and the distribution of sources are homogeneous
and isotropic (see e.g. refs. [1, 164]). This is a rather crude approximation: GW sources are
located in galaxies embedded in the cosmic web; moreover, once a GW signal is emitted,
it is deflected by the presence of massive structures, such as galaxies and compact objects.
It follows that the energy flux from all astrophysical sources has a stochastic, directional
dependence.

The first prediction of the AGWB angular power spectrum was presented in [33, 34]
following the framework introduced in refs. [30, 31]. This framework is flexible and splits
the cosmological large-scale structure and sub-galactic scales so that it can be applied to
any source contributions and any frequency band. The astrophysical dependence of the
angular power spectrum on the detail of the underlying astrophysical model has been studied
in [25, 35–37, 188–191] and different formal aspects of the derivation of anisotropies and their
interpretation are discussed in [15, 18, 19, 32, 187]. The relative importance of cosmological
and astrophysical effects depends on the frequency band chosen, hence offering the possibility
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to distinguish different astrophysical processes. Due to their stochastic nature, anisotropies
can be statistically characterized in terms of their angular power spectrum and they also
correlate with other cosmological observables such as weak lensing, galaxy number counts
and CMB anisotropies.

The study of the cross correlations with electromagnetic observables provides comple-
mentary information and might improve the signal to noise of the anisotropic searches [36,
187, 192, 193]. Moreover, cross-correlating the background that collects contribution from
sources at all redshifts along the line of sight, with EM observables (such as galaxy number
counts) at a given redshift, allows one to get a tomographic reconstruction of the redshift
distribution of sources [33, 36, 187, 192].

3.1 GW energy density for astrophysical sources

The total present-day GW energy density per logarithmic frequency fo (where fo = q, see
the previous section) and solid angle Ωo along the line-of-sight ŝ (note that ŝ = −n̂) of the
AGWB is defined as [149, 194].

ωtot
GW (fo, ŝ)

4π = fo
ρc,0

dρtot
GW

dfodΩo
(fo, ŝ) , (3.1)

and it represents the fractional contribution of GWs to the critical energy density of the
Universe today ρc,0 = 3H2

0/(8πG); dρtot
GW is the total energy density of GWs in the frequency

interval of today {fo, fo + dfo}. See also the definition in eq. (2.6). Such a quantity contains
both a background (monopole) contribution in the observed frame, which is homogeneous
and isotropic, i.e. ω̄tot

GW = Ω̄tot
GW, and a direction-dependent contribution ∆ωGW(fo, ŝ) =

ωGW(fo, ŝ)− ω̄GW(fo).
As usual, we consider the local wave zone approximation at the source position: in other

words, the observer “at the emitted position” is defined in a region with a comoving distance
to the source “sufficiently large” such that the gravitational field is “weak enough” but still
“local”, i.e., its wavelength is small w.r.t. the comoving distance from the observer χ (see
also [32, 195]). Considering an observer that measures a GW signal in a fixed direction n̂,
one expects that the total gravitational energy density in such a direction is given by the sum
of all the (unresolved) astrophysical contributions along the line of sight contained in a given
volume dVe(ŝ) and can be expressed as

dρtot
GW

dfodΩo
= dEtot

GW
dfodTodAodΩo

, (3.2)

from which we can build the total gravitational energy density Ωtot
GW =

∫
dΩo ω

tot
GW/4π where

ωtot
GW (fo, ŝ) = 4πfo

ρc,0

∑
i

∫
n

[i]
h (xαe , ~θ)

dE [i]
GW[xµo , ~θ(xµe )]
dfodTodAo

∣∣∣∣ dVe
dΩodχ

∣∣∣∣ dχd~θ , (3.3)

and [i] is related to the summation over all unresolved astrophysical sources that produce the
SGWB. Here dAo is the unit surface element at observer [31]. The vector ~θ = {Mh,M

∗, ~m, ~θ∗}
represents all the parameters which are: the halo mass Mh, the mass of stars that give origin
to the sources M∗; ~m indicates the masses of the compact objects and θ∗ includes the
astrophysical parameters related to the model (like spin, orbital parameters, star formation
rate). In eq. (3.3), n[i]

h is the (physical) number of halos at a given mass Mh, within the
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physical volume dVe, weighted with the parameters ~θ of the sources at xµe . The letter “e”
stands for “evaluated at the emission (source)” while “o” for “evaluated at the observer”.
Using the energy conservation we have

dE [i]
GWo

dfodTodAo
= 1

(1 + z)3D2
A(z)

dE [i]
GWe

dfedTedΩe
, (3.4)

where we have redefined E [i]
GW[xµo , ~θ(xµe )] = E [i]

GWo. Here T is the proper time of the observer
and DA is the angular diameter distance. Now, defining the total GW density as

n[i](xαe , ~θ) ≡ n
[i]
h (xαe )

dE [i]
GWe(z, fe, x

µ
e ,
~θ)

dfedTedΩe
, (3.5)

we can easily obtain the expression for the energy density

dρtot
GW

dfodΩo
=
∑
[i]

∫
a(x0)2n

[i](xαe , ~θ)
(1 + z)2 dχd~θ . (3.6)

Here, xµ(χ) are the comoving coordinates in the real frame (the “physical frame”), where χ
is the comoving distance from the source to the detector. The previous expression depends
on the position, but we can also define a position independent, isotropic version of it by
integrating over a spatial volume: we denote the corresponding quantity dρ̄tot

GW/dfodΩo with
a bar, as in section 2.1.

We use the observer frame where we perform observations (also called “cosmic GW
laboratory” in [195]). This is the correct frame where we want to reconstruct 3D maps/catalogs
of galaxies by using both EM and GW signals. Let us point out that if we use unperturbed
coordinates, instead of the observer coordinates, we are not able to interpret correctly the
correlation between for istance the AGWB and EM sources from observed galaxies. This
could induce a wrong estimate of our results [32, 195]. In particular, we consider coordinates
that are flattened in our past gravitational wave cone so that the GW geodesic from the
source can be defined with the following conformal space-time coordinates

x̄µ = (η̄, x̄) = (η0 − χ̄, χ̄ ŝ). (3.7)

Here, η0 is the conformal time today, χ̄(z) is the comoving distance to the observed redshift
and ŝ is the observed direction of the GW, i.e.

ŝi = x̄i

χ̄
= δij

∂χ̄

∂x̄j
. (3.8)

Using χ̄ as an affine parameter in the observer’s frame, the total derivative along the past
GW-cone is

d
dχ̄ = − ∂

∂η̄
+ ŝi

∂

∂x̄i
. (3.9)

Setting up a mapping between the observed frame and the “physical frame” in the
following way xµ(χ) = x̄µ(χ̄) + ∆xµ(χ̄), where ∆xµ(χ̄) is a suitable linear perturbation that
shifts the comoving four-coordinates from the real-space frame to the observed frame. Then
using the decomposition of eq. (3.3), we obtain

Ω̄tot
GW = fo

ρc,0

dρ̄tot
GW

dfo
= 4πfo

ρc,0

∑
[i]

∫
N [i](z, fe, ~θ)

(1 + z) dχ̄d~θ , (3.10)
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with N [i](z, fe, ~θ) = n̄[i](z, fe, ~θ)/(1+z)3 the total comoving number density at a given redshift
or χ̄. Notice that, by construction, the quantity Ω̄tot

GW is isotropic. At linear order, we obtain
the following AGWB energy density fluctuation

∆ωtot
GW

4π = fo
ρc

∑
[i]

∫
N [i](z, fe, ~θ )

(1 + z)

{
δ[i] + d lnN [i]

d ln ā ∆ ln a−
(

1 + H
′

H2

)
∆ ln a+ δf

− 1
H

d∆ ln a
dχ̄

}
dχ̄d~θ , (3.11)

where
a(χ)
ā(χ̄) = 1 + ∆ ln a = 1 +H∆x0, (3.12)

and δf is the linear perturbation of the frequency of the GW due to the anisotropies.
Finally, let us mention that when the integration along the line of sight is performed,

one should also consider the normalized selection window function w(z), whose form depends,
besides redshift, on the sensitivity/characteristics of the GW detector (see [32] and [38] for
more details about the window function). So we finally have

ω̄tot
GW
4π = fo

ρc,0

∑
[i]

∫
w(z)N

[i](z, fe, ~θ)
(1 + z) dχ̄d~θ , (3.13)

and

δtot
GW ≡

∆ωtot
GW

ω̄tot
GW

= 4πfo

Ω̄tot
GW ρc,0

∑
[i]

∫
w(z)N

[i](z, fe, ~θ )
(1 + z)

{
δ[i] +

[
d lnN [i]

d ln ā −
(

1 + H
′

H2

)]
∆ ln a

+ δf − 1
H

d∆ ln a
dχ̄

}
dχ̄d~θ . (3.14)

Connection with the halo and stellar mass function and with the star formation
rate. In general, the isotropic component of equation (3.10) is given by [196]

Ω̄tot
GW(fo) =

∑
i

Ω̄[i]
GW(fo) = 4πfo

ρc

∑
i

∫
dzdθ p[i](~θ ) R

[i]

H(z)
dE [i]

GW,e
dfedΩe

, (3.15)

where dE [i]
GWe/dfe/dΩe is the energy spectrum per unit solid angle, p[i](~θ ) is the probability

distribution of the source parameters ~θ and R[i] is the observed comoving merger rate density
of i-th unresolved type of source. In particular, the event rate (per unit of redshift) can be
derived from the cosmic star formation rate. For instance, assuming for simplicity that the
gravitational emission occurs shortly after the birth of the progenitor, it turns out that

R[i] = λ[i](z, ~θ )
(1 + z)

dρ[i]
∗

dTe
, (3.16)

where the (1 + z) term corrects the cosmic star formation rate (SFR) by the time dilation due
to the cosmic expansion and dρ[i]

∗ /dTe is the (density) cosmic SFR in M�, Mpc3 and yr−1.
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Here λ[i](z, ~θ) is a generic function which depends on the initial mass function M∗ and, in
general, on other parameters of the sources, as the halo mass Mh. So then we have

p[i](~θ )λ[i](z, ~θ )dρ[i]
∗

dTe
= w(z)N [i](z, fe, ~θ) = w(z)

[
n̄

[i]
h (z, fe, ~θ)
(1 + z)3

]
dE [i]

GWe(z, fe, x
µ
e ,
~θ)

dfedTedΩe
. (3.17)

Now, let us consider events with short emission (i.e. burst sources), as merging binary sources
(BH-BH, NS-NS and/or NS-BH). Then we have

dE [i]
GWe

dfedTedΩe
= d

dTe

dN [i]
GWe

dM∗

 dE [i]
GWe

dfedΩe
,

where dN [i]
GWe/dTedM∗ is the merging rate of events for each halo and at a given stellar mass

M∗, and the comoving density n̄[i]
h (z, fe, ~θ )/(1 + z)3 of the halos can be rewritten as

n̄
[i]
h (z, fe, ~θ)
(1 + z)3 = dN̄ [i]

h
dMh

, (3.18)

i.e. the comoving density at a given Mh. In order to give a very simple example, let us assume
that n̄h and N̄h are equal for all sources. In this case they do not depend only on Mh and we
can remove the index [i] and Nh(Mh, z) can be related to the fraction of mass F (Mh, z) that
is bound at the epoch z in halos of mass smaller than Mh, i.e.

dN̄h(Mh, z)
dMh

= ρ̄(z)
Mh

dF (Mh)
dMh

, (3.19)

where ρ̄(z) is the comoving background density (e.g., Press & Schechter (1974) [197], Sheth &
Tormen (1999) [198] or Tinker (2008) [199] mass fraction). Following [200, 201], it is possible
to express the mass function in terms of the multiplicity function of halos g(M)

g(Mh) = dF (Mh, z)
d lnMh

. (3.20)

Physically, this quantity gives the fraction of mass that is bound in halos per unit logarithmic
interval in mass. Finally let introduce the (mean) SFR that it is connected with N [i]

GWe in the
following way

d
dTe

dN [i]
GWe

dM∗

 =
dN [i]

GWe
dM∗ × SFR . (3.21)

Note that s(Mh, z) defined in [200, 201] can be related to the SFR in the following way
s(Mh, z) = (M∗/Mh)× SFR.

3.2 Projection/propagation effects

As a first step, we compute the GW density fluctuation in the energy density in a spatially
flat FLRW background in the Poisson Gauge

ds2 = a(η)2
[
− (1 + 2Φ) dη2 + δij (1− 2Φ) dxidxj

]
. (3.22)
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In this gauge, v‖ = ŝivi = ŝ · v (where vi = ∂iv) and the GWs overdensity is written as

δ[i](P) = δ[i](SC) − beHv + 3Hv = b[i](η)δ[i]
m − beHv + 3Hv , (3.23)

where we have used Synchronous Comoving gauge (SC) to define the bias. In the Poisson
gauge we obtain (see [32, 38] for more details on the derivation)

δtot
GW = 4πfo

Ω̄tot
GW ρc,0

∑
[i]

∫
w(z)N

[i][z, fo(1 + z)]
(1 + z)

×
{
b[i]δm

+
(
b[i]e − 2− H

′

H2

)
ŝ · v− 1

H
ŝ · ∂(ŝ · v)− (b[i]e − 3)Hv+

+
(

3− b[i]e + H
′

H2

)
Φ + 1

H
Φ′ + 2

(
2− b[i]e + H

′

H2

)∫ χ̄

0
dχ̃Φ′+

+
(
b[i]e − 2− H

′

H2

)[
−H0

(∫ η̄0

η̄in
dη̃

Φ(η̃,0)
(1 + z(η̃))

)
+ Φo − (ŝ · v)o

]}
dχ̄ , (3.24)

where χ(z) is the comoving distance at redshift z, η0 is the conformal time today, H = a′/a is
the Hubble expansion rate in conformal time. With “ ′ ” we indicate derivatives with respect
to the conformal time. We have also defined the evolution bias for each source

b[i]e = d lnN [i]

d ln ā = − d lnN [i]

d ln(1 + z) . (3.25)

Each of the four lines of eq. (3.24) is characterized by a specific function: the gauge-invariant
matter density fluctuation δ, the gauge invariant velocity v, and the Bardeen potential Φ.
Notice that only the inclusion of all these terms allows to have a gauge-invariant observable. For
a comparison and mapping between the various theoretical derivations of anisotropies presented
in the literature and for a separate derivation based on a Boltzmann approach, see ref. [19].

3.3 Angular power spectrum for astrophysical sources

Similarly to CMB anisotropies a powerful observable to characterize the AGWB is the angular
power spectrum that can be computed exploiting the spherical symmetry and working with
spherical harmonics. In this section we expand the AGWB spectral energy density as

δGW(s) =
∞∑
`=0

+∑̀
m=−`

a`mY`m(s) , (3.26)

where the coefficients a`m are given by

a`m =
∫

d2sY ∗`m(s)δGW(s) . (3.27)

The AGWB angular power spectrum then reads

CGW
` =

m=+`∑
m=−`

〈a`ma∗`m〉
2`+ 1 =

∑
i,j;α,β

C
[ij]αβ
` , (3.28)
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where we have defined

C
[ij]αβ
` ≡

m=`∑
m=−`

〈a[i]α∗
`m a

[j]β
`m 〉

2`+ 1

=
∫

k2dk

(2π)3S
[i]α∗
` S [i]β

` Pm(k) (3.29)

where Pm(k) is the matter power spectrum today and S` are the source functions which
include all the effects described in eq. (3.24). The index [i] refers to the specific unresolved
astrophysical source while the greek index stands for the various contributions to the GW
energy density anisotropies.

To have some physical insight into the information encoded in the anisotropies of the
AGWB, we can use the Limber approximation. The general expression of the angular power
spectrum reduces to [30]

CGW
` (f) '

(
`+ 1

2

)−1 (
4π/Ω̄GW

)2 ∫
dkP (k)

∣∣∣∂rΩ̄(f, r)
∣∣∣2 , (3.30)

where ` is the multipole in the spherical harmonic expansion, P (k) is the galaxy power
spectrum, r is the (comoving) distance, related to the momentum k via the Limber constraint
kr = `+ 1/2. Each astrophysical model predicts a functional dependence of the astrophysical
kernel ∂rΩ̄, defined as

Ω̄GW(f) =
∫
dr∂rΩ̄(f, r) . (3.31)

It follows that the angular power spectrum depends on the astrophysical model chosen to
describe sub-galactic physics. In particular, low ` are sensitive to the low-redshift value of the
kernel ∂rΩ̄.

The angular power spectrum of the anisotropies in the AGWB from merging stellar-mass
binary BHs in the mHz band where LISA operates, has been computed in [37] using the
astrophysical framework of [164]. The result for three different frequencies is shown in figure 6.
It has been shown that AGWB anisotropies are very sensitive to sub-galactic astrophysical
modeling. In particular, different descriptions of stellar evolution and black hole binary
formation lead to fractional differences in the angular power spectrum of anisotropies up to
∼ 50%, independently on the global normalization (monopole) [36, 37].

Monopole and anisotropies contain complementary astrophysical information and study-
ing the latter will allow one to break degeneracies between different astrophysical ingredients
and potentially to constrain them separately.

3.3.1 Systematic effects on the angular power spectrum
In estimating the anisotropies of the astrophysical gravitational-wave background, the finite
number of the sources that contribute to the background at any given time and the very
short time each of them spends in the frequency of the interferometer, induce a white noise
(`-independent) term, W, in the angular power spectrum CGW

` :

CGW
` = CLSS

` +W , W ≡ 1
r3
H

∫
drr2V(r) , (3.32)

where V is some direction-independent (due to statistical isotropy) function describing the
variance, rH ≡ 1/H0 is the Hubble radius and CLSS

` stands for the angular power of the

– 25 –



J
C
A
P
1
1
(
2
0
2
2
)
0
0
9

`

<latexit sha1_base64="qNfGA8NmqgGuQ+lowkcYm1mCh5o=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpf6KMSgWnPr7hxklXgFqUGB5qD61R9GLJGoLBPUmJ7nxtZPqbacCZxV+onBmLIJHWEvo4pKNH46v3VGzjJlSMJIZ6Usmau/J1IqjZnKIOuU1I7NspeL/3m9xIY3fspVnFhUbLEoTASxEckfJ0OukVkxzQhlmme3EjammjKbxVPJQvCWX14l7Yu6d1m/erisNW6LOMpwAqdwDh5cQwPuoQktYDCGZ3iFN0c6L86787FoLTnFzDH8gfP5Aw/+jkM=</latexit>

(⌦̄
G

W
/4

⇡
)2

(`
+

1)
C

G
W

`

<latexit sha1_base64="SNBacchfTlJkL9BU9dFEjIDlKi8="></latexit>

Figure 6. Angular power spectrum of anisotropies for three frequencies in the mHz band, for the
reference astrophysical model of [37] and [36]. Multiplication by (` + 1) emphasizes the large-scale
behaviour of eq. (3.30), while we multiplied the spectrum by the monopole amplitude to show the
frequency scaling of anisotropies. The shaded region corresponds to the cosmic variance limit. Adapted
from [37].

intrinsic, astrophysical anisotropy. The shot noise dominates over the true astrophysical power
spectrum; the latter may be recovered with long enough observing runs and sufficient removal
of a large number of foreground sources [188].

To calculate the true, astrophysical angular power spectrum of a statistically-isotropic
gravitational-wave background, a novel method, based on combining statistically-independent
data segments, was proposed in [189]. The proposed estimator, constructed from the cross-
correlations between statistically-independent time intervals, reads

Ĉ` ≡
2

Nτ (Nτ − 1)

Nτ∑
µ=1

Nτ∑
ν=µ+1

Ĉµν` , (3.33)

where Nτ ≡ T/τ (with T the total observing time) denotes the number of segments and

Ĉµν` ≡
1

2`+ 1

+∑̀
m=−`

Ωµ
`mΩν?

`m . (3.34)

The estimator (3.33) is unbiased since

〈Ĉ`〉S,Ω = CGW
` , (3.35)

where the subscripts S,Ω stand for performing first the cosmological and the shot noise average.
In the limit of many data segments, Nτ � 1, the estimator (3.33) has the lowest-variance

Var[Ĉ`]S,Ω '
2

2`+ 1(CGW
` +WT )2, (3.36)

and, in this sense, it is the most efficient one. It is worth noting that the term WT in the
above equation is the same as the one appearing in the mean of the standard estimator
〈C(std)

` 〉S,Ω = CGW
` +WT , hence (3.33) is still affected by the shot noise. However, now the

shot noise only adds to the variance of the estimator and it does not affect the angular power
spectrum, as in the standard case.
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Since the shot noise power may exceed the real astrophysical angular power spectrum by
a factor as high as approximately 104, according [188], the proposed method for estimating
the true, astrophysical angular power spectrum of a statistically-isotropic astrophysical
gravitational-wave background, is indeed a valuable tool.

Another interesting method to alleviate this shot noise problem and extract information
on the underlying GW population, is to make use of the cross-correlation of the AGWB
background map with other cosmological observables such as galaxy distribution, see e.g. [187].
Indeed, the shot noise level of the cross-spectrum is primarily driven by the density of the
much denser galaxy survey (although the GW shot noise will still be a significant contribution
to the signal to noise of the cross-correlation).

4 LISA angular sensitivity

In this section we discuss the sensitivity of LISA to the anisotropies of the SGWB.

4.1 LISA angular response functions

We follow the notation of ref. [9], that we generalize to an anisotropic SGWB. We start from

hab (x, t) =
∫ +∞

−∞
df

∫
dΩk̂ e2πif(t−k̂·x) ∑

λ

h̃λ
(
f, k̂

)
eλab

(
k̂
)
, (4.1)

where in the chiral basis (λ = ±1 denoting, respectively, the right and the left polarization),
the polarization operators obey eλ∗ab

(
k̂
)

= eλab

(
−k̂
)

= e−λab

(
k̂
)
and they are normalized

according to eλ∗ab
(
k̂
)
eλ
′
ab

(
k̂
)

= δλλ′ , and where reality of the mode function is ensured by

h̃∗λ

(
f, k̂

)
= h̃−λ

(
−f, k̂

)
. An unpolarized and anisotropic SGWB is characterized by the

intensity I, defined through

〈
h̃λ
(
f1, k̂1

)
h̃λ′

(
f2, k̂2

)〉
= δ (f1 + f2)

δ(2)
(
k̂1 − k̂2

)
4π δλ,−λ′

∑
`m

Ĩ`m (|f1|) Ỹ`m
(
k̂1
)
, (4.2)

where Ỹ`m
(
k̂
)
≡
√

4π Y`m
(
k̂
)
, and Y`m

(
k̂
)
are the standard spherical harmonics, with this

normalization Ỹ00
(
k̂
)

= 1.
We want to relate the coefficients Ĩ`m to those of the fractional energy density in the

decomposition (2.8). Starting from eq. (4.1) and from the intensity function defined in (4.2),
we arrive to the following expression for the SGWB energy density over the critical energy
density

ρGW
ρcrit

= 1
32πG

〈
ḣij ḣij

〉/3H2
0

8πG

= 1
12H2

0

∫ +∞

−∞
df1 df2

∫
dΩk̂1

dΩk̂2

(
−4π2 f1 f2

)
e2πif1(t−k̂1·x)+2πif2(t−k̂2·x)

×
∑
λ1,λ2

eλ1
ij

(
k̂1
)
eλ2
ij

(
k̂2
)
δ (f1+f2)

δ(2)
(
k̂1−k̂2

)
4π δλ1,−λ2

∑
`m

Ĩ`m (|f1|) Ỹ`m
(
k̂1
)
, (4.3)
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where G is the Newton constant, whileH0 the present Hubble rate. Recalling the normalization
of the polarization operators, we then find

ρGW
ρcrit

= π

3H2
0

∫ +∞

0
d ln f f3 ∑

`m

Ĩ`m (f)
∫
dΩk̂ Ỹ`m

(
k̂
)
. (4.4)

Proceeding as in section 2.1, we then arrive to

Ĩ`m (f) = 1√
4π

3H2
0

4π2
ΩGW (f)

f3 δGW,`m . (4.5)

Let us now discuss how to measure these coefficients. We consider two locations ~x1,2,
at the unperturbed distance L (by “unperturbed”, we mean the quantity in absence of the
SGWB), and a photon that, starting from ~x2 at the unperturbed time t− L, arrives at ~x1 at
the unperturbed time t. The SGWB modifies the time of flight to L+ ∆T12 (t), with

∆T12 (t) = l̂a12 l̂
b
12

2

∫ L

0
ds hab (t (s) , ~x (s)) , (4.6)

where l̂12 is the unit vector going from ~x1 to ~x2. This time delay has an associated Doppler
frequency shift [9]

∆F12 (t) ≡ ∆ν12 (t)
ν

= − d

dt
∆T12 (t) . (4.7)

We denote by
∆F1(2) (t) ≡ ∆F21 (t− L) + ∆F12 (t) , (4.8)

the frequency shift for the closed ~x1 → ~x2 → ~x1 path. Differences between closed path shifts
originate the Time Delay Interferometry (TDI) 1.0 and 1.5 typically considered for LISA [9].
Specifically, the TDI 1.0 combination is given by the difference between the ~x1 → ~x2 → ~x1
and the ~x1 → ~x3 → ~x1 path:

∆F 1.0
1(23) (t) ≡ ∆F1(2) (t)−∆F1(3) (t) , (4.9)

while the TDI 1.5 combination is given by the difference between the ~x1 → ~x2 → ~x1 → ~x3 → ~x1
and the ~x1 → ~x3 → ~x1 → ~x2 → ~x1 path:

∆F 1.5
1(23) (t) ≡ ∆F1(2) (t− 2L) + ∆F1(3) (t)−∆F1(3) (t− 2L)−∆F1(2) (t)

= ∆F1(23) (t− 2L) + ∆F1(32) (t) . (4.10)

To simplify the notation, we denote5 by imod 3 the i-th satellite of the LISA triangle,
and define

∆Fi (t) ≡ ∆Fi(i+1,i+2) , i = 1, 2, 3 . (4.11)
We are interested in correlators between different measurements. The only statistical

variable that participates non trivially in the correlator is the GW mode function, see eq. (4.2).
Starting from the expression in eq. (A.3) for the TDI measurement, we obtain

〈∆Fi (t) ∆Fj (t)〉 = 4
∑
`m

∫ ∞
0

df

∣∣∣∣ ff∗ W (f)
∣∣∣∣2 R̃`mij (f) Ĩ`m (f)

≡
∑
`m

∫ ∞
0

df R`mij (f) Ĩ`m (f) , (4.12)

5Namely the index 4 coincides with 1, and the index 5 coincides with 2.
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where the frequency f∗ is related to the LISA arm length L by

f∗ ≡
1

2πL ' 0.019 Hz× 2.5 · 106 km
L

, (4.13)

where

|W (f)|2 =
{

1 , for TDI 1.0
4 sin2

(
f
f∗

)
, for TDI 1.5 . (4.14)

We introduced the anisotropic LISA response function

R̃`mij (f) ≡ 1
8π

∫
d2k̂ e−2πif k̂·(~xi−~xj) Ỹ`m

(
k̂
)

×
∑
A

RA
(
f k̂, l̂i,i+1, l̂i,i+2

)
RA∗

(
fk̂, l̂j,j+1, l̂j,j+2

)
, (4.15)

with the functions RA are given in eq. (A.4). In the isotropic case, the response function in
eq. (4.15) agrees with eq. (A.21) of [9].

As we show in appendix A, under a rigid rotation of the instrument the response function
transforms as a spherical harmonic. Specifically, if R is a rotation under which the position of
the three satellites changes according to ~xi → R~xi, we have

R̃`mRiRj (f) =
∑̀

m′=−`

[
D

(`)
mm′ (R)

]∗
R̃`m

′
ij (f) , (4.16)

where D(`)
mm′ are the elements of the Wigner D-matrix. For a rotation by an angle α about

the z-axis we then have
R̃`mRz(α)i, Rz(α)j (f) = eimα R̃`mij (f) . (4.17)

Using this fact, and the property

R̃`mji (f) = (−1)` R̃`mij (f) , (4.18)

(that we also prove in appendix A), we then learn that, if we place the three satellites in the
xy plane, the various components of the response function satisfy R̃`m11 R̃`m12 R̃`m13

R̃`m21 R̃`m22 R̃`m23
R̃`m31 R̃`m32 R̃`m33

 =

 R̃`m11 R̃`m12 (−1)` e
4πim

3 R̃`m12
(−1)` R̃`m12 e

2πim
3 R̃`m11 e

2πim
3 R̃`m12

e
4πim

3 R̃`m12 (−1)` e
2πim

3 R̃`m12 e
4πim

3 R̃`m11

 . (4.19)

In appendix A we also show that the response function satisfies

R̃`,−mij = R̃`m ∗ij , (4.20)

as well as
`+m = odd ⇒ R̃`mij (f) = 0 . (4.21)

Moreover, from eq. (4.18), we notice that

` odd ⇒ R̃`mii (f) = 0 (no sum over i) . (4.22)
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4.2 `-dependent response functions in the A, E, T channels

As shown by eq. (4.16), the anisotropic LISA response functions transform as spherical
harmonics under rotations. One can therefore consider the `−dependent response function

R̃`ij (f) ≡

 ∑̀
m=−`

∣∣∣R̃`mij (f)
∣∣∣2
1/2

, (4.23)

that is invariant under rotations, and therefore constant in time (it does not depend on the
orientation of the LISA triangle). As we show in the next subsection, it provides an estimate
for the response of LISA to a statistically isotropic SGWB, see subsection 4.4. From the
properties in eq. (4.19) we learn that

R̃`11 = R̃`22 = R̃`33 ,

R̃`12 = R̃`21 = R̃`13 = R̃`31 = R̃`23 = R̃`32 . (4.24)

It is customary to consider linear combinations of the ∆Fi measurements considered so far

∆FA ≡
∆F3 −∆F1√

2
, ∆FE ≡

∆F1 − 2∆F2 + ∆F3√
6

, ∆FT ≡
∆F1 + ∆F2 + ∆F3√

3
, (4.25)

which we write more compactly as

∆FO ≡ cOi ∆Fi , O ∈ {A, E, T} , i ∈ {1, 2, 3} . (4.26)

These combinations (that we have normalized as in ref. [9], so that the rotation matrix
associated with these transformations is orthogonal) diagonalize the noise covariance matrix,
in the hypothesis that LISA is an equilateral triangle, with identical instruments at the
vertices. In terms of the A,E, T channels the response function formally reads

R̃`mOO′ (f) = cOi cO′j R̃
`m
ij (f) . (4.27)

We evaluate these linear combinations, accounting for the identities in eq. (4.19), namely

R̃`OO′ (f) ≡

 ∑̀
m=−`

∣∣∣cOi cO′j R̃`mij (f)
∣∣∣2
1/2

. (4.28)

The resulting expressions acquire different forms for even and odd multipoles. Specifically,
for odd ` we find

R̃`AA (f) = R̃`EE (f) = R̃`TT (f) = 0 ,

R̃`AE (f) =

1
3
∑̀
m=−`

[
1 + 2 cos

(2mπ
3

)]2 ∣∣∣R̃`m12 (f)
∣∣∣2


1/2

,

R̃`AT (f) = R̃`ET (f) =

2
∑̀
m=−`

sin2
(
mπ

3

) ∣∣∣R̃`m12 (f)
∣∣∣2


1/2

, (4.29)
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` R̃`AA R̃`AE R̃`TT R̃`AT

0 9
20 −

169x2

1120 0 x6

4032 0

1 0 0 0 x3

112
√

2

2 9
14
√

5 −
13x2

56
√

5

√
5
3
x2

112
73x8

7983360
√

5
x4

192
√

30

3 0
√

7
30

x
8 0 x3

96
√

7

4 9
140 −

3719x2

147840
3

8
√

35 −
27x2

176
√

35
x6

12672

√
37
35

x4

1056

5 0 x
8
√

2310 0
√

211
110

x3

672

6
√

1829
195

x2

4928
x2

32
√

2730

√
463
13

x6

88704

√
17

2730
x4

2112

Table 1. Leading terms in a small frequency expansion of R̃`
OO′ (x) where x = f/f∗, and f∗ is given

in eq. (4.13). In each term, we have kept up to the leading f -dependent term. We recall that the
response functions are symmetric in the channels, that R̃`

EE = R̃`
AA, and that R̃`

ET = R̃`
AT .

and for even `

R̃`AA (f) = R̃`EE (f) =

1
4
∑̀
m=−`

∣∣∣(1+e−
4
3 imπ

)
R̃`m11 (f)−2R̃`m12 (f)

∣∣∣2


1/2

,

R̃`TT (f) =

1
9
∑̀
m=−`

[
1+2 cos

(2mπ
3

)]2 ∣∣∣R̃`m11 (f)+2R̃`m12 (f)
∣∣∣2


1/2

,

R̃`AE (f) =

1
3
∑̀
m=−`

sin2
(
mπ

3

) ∣∣∣(1+e
2imπ

3
)
R̃`m11 (f)−2R̃`m12 (f)

∣∣∣2


1/2

,

R̃`AT (f) = R̃`ET (f) =

2
3
∑̀
m=−`

sin2
(
mπ

3

) ∣∣∣(1+e
2imπ

3
)
R̃`m11 (f)+R̃`m12 (f)

∣∣∣2


1/2

. (4.30)

We also note that the property in eq. (4.18) implies that the response fuction is symmetric
in the channels, R̃`O′O = R̃`OO′ .

These expressions can be evaluated numerically, for arbitary frequency, or evaluated
analytically in the small frequency regime. For the first few multipoles, we obtain the values
in the table 1. In figures 7 and 8 we show instead a comparison between the full shape of the
response functions and the small frequency expressions for these first multipoles.

4.3 Signal-to-noise ratio for anisotropic signals
We consider the Fourier transform of the signal in eq. (4.26), performed with an integration
time τ

∆̃FO (f, t) ≡
∫ t+τ/2

t−τ/2
dt′∆FO

(
t′
)
e−2iπft′ . (4.31)

This signal, if present, adds up with the instrumental noise in the measurement

m̃O (f, t) ≡ ∆̃FO (f, t) + ñO (f, t) . (4.32)
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Figure 7. Angular overlap functions, defined through eqs. (4.15) and (4.23), for the first few multipoles
for the AA = EE correlation (first row) and for the AE correlation (second row). The solid red line is
from an exact evaluation. The dashed black line is the small frequency approximation in table 1.
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Figure 8. Angular overlap functions, defined through eqs. (4.15) and (4.23), for the first few multipoles
for the TT correlation (fist row) and for the AT = ET correlation (second row). The solid red line is
from an exact evaluation. The dashed black line is the small frequency approximation in table 1.
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We assume that the noise is Gaussian and we recall that it is diagonal in the A,E,T basis,
namely

〈nO (f)nO′ (f)〉 ≡ 1
2δ
(
f − f ′

)
δOO′ NO (f) , (4.33)

where the explicit expressions for NO (f) are given in appendix B. Then we define the estimator
as

C ≡
∑
O,O′

∫ T

0
dt

∫ +∞

−∞
df [m̃O (f, t) m̃∗O′ (f, t)− 〈ñO (f, t) ñ∗O′ (f, t)〉] Q̃OO′ (t, f) , (4.34)

where the functions Q̃OO′ (t, f) are weights to be chosen in order to maximize the Signal-
to-Noise Ratio (SNR) for this measurement [202]. The measurement time is denoted by
T . For simplicity, we are integrating over equal times, disregarding correlations between
measurements done at different times. In the estimator, we subtracted the expectation value
of the instrumental noise ñO associated with the measurement ∆̃FO, so to obtain an unbiased
characterization of the SGWB. From the estimator, we get the SNR

SNR = 〈C〉√〈
|C|2

〉 , (4.35)

that, as we will see, can be made real by an appropriate choice of the weights Q.
As we show in appendix B, the expectation value of the estimator is

〈C〉 =
∑
OO′

τ

2

∫ T

0
dt

∫ +∞

0
df
∑
`,m

Ĩ`m (f) R`mOO′ (f)
[
Q̃OO′ (t, f) + Q̃O′O (t, −f)

]
, (4.36)

where we recall that the intensity multipoles coefficients have been defined in eq. (4.2), while,
R`mOO′ = cOicO′j R

`m
ij .

In appendix B we also show that, under the hypothesis that the noise dominates over
the signal,

〈
|C|2

〉
=
∑
OO′

τ2

4

∫ T

0
dt

∫ +∞

0
dfNO (f)NO′ (f)

∣∣∣Q̃OO′ (t, f) + Q̃O′O (t, −f)
∣∣∣2 . (4.37)

Choosing the weigth function as discussed in appendix B, see eq. (B.12) and the following
discussion, leads to the optimal SNR

SNR = 3H2
0

4π2
√

4π

√√√√√∑
O,O′

∫ ∞
0

df

∫ T

0
dt

Ω2
GW (f)

f6NOO (f) NO′O′ (f)

∣∣∣∣∣∣
∑
`,m

δGW,`m (f) R`mOO′ (f)

∣∣∣∣∣∣
2

,

(4.38)
where δGW,`m has been defined in (2.8).

4.4 Sensitivity to `-multipoles

Eq. (4.38) provides the SNR for the detection of a SGWB which is the sum of all possible
multipoles contributions. Although we have not explicitly written it, the response functions
R`mOO′ (f) also depend on time, as they are functions of the positions of the satellites. A full
analysis of the separate contributions of the various multipoles would then require a component
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separation, which is in practice the inversion of the time-dependent streams measured by
the satellite to the multipole amplitudes p`m. We leave this discussion to section 6. Here
we estimate the relative sensitivity of LISA to different `−multipoles by assuming that only
one multipole dominates the SGWB and that multipoles with the same ` but different m
are obtained from the same Gaussian statistics. This amounts to assuming a statistically
isotropic SGWB, with correlators given by eq. (2.9).

Taking this into account, the expected SNR (4.38) can be written as a sum over the
various multipoles,

SNRtot ≡
√∑

`

SNR2
` , (4.39)

where, for each multipole,

SNR` = 3H2
0

4π2
√

4π

√√√√∑
O,O′

∫ ∞
0

df

∫ T

0
dt

Ω2
GW (f)

f6NO (f) NO′ (f)C
GW
`

[
R`OO′ (f)

]2
, (4.40)

where we recall that the response function R`OO′ (f) is the quantity defined in eq. (4.28) and
rescaled as in eq. (4.12). In the following, we can work directly in terms of R̃`OO′ (f) by
rescaling the noise functions accordingly, see eqs. (B.14) and (B.15). Moreover, ad discussed
above, the response function R̃`OO′ to a statistically isotropic signal is time-independent, so
that the integral over time in eq. (4.40) simply results in the usual property that the SNR
grows with the square root of the observation time. Finally, we factor out the uncertainty in
the Hubble rate by dividing it by its rescaled value h and by considering the Ωh2 combination,
as it is standard. This leads to

SNR` = 3 (H0/h)2

4π2
√

4π

√√√√T ∑
O,O′

∫ ∞
0

df
Ω2

GW (f)h4

f6 ÑO (f) ÑO′ (f)
CGW
`

[
R̃`OO′ (f)

]2
. (4.41)

From this expression we define the “channel-channel” sensitivity

Ω`
GW,OO′,n (f) h2 ≡ 4π2√4π

3 (H0/h)2
f3
√
ÑO (f) ÑO′ (f)
R̃`OO′ (f)

, (4.42)

as well as the optimally weighted sum over the three channels

Ω`
GW,n (f) h2 ≡

∑
O,O′

[
1

Ω`
GW,OO′,n (f) h2

]2

−1/2

. (4.43)

The total sensitivity to the `−multiple is shown in figure 9 for multipoles up to ` = 10.
From this quantity, we can immediately obtain

SNR2
` = T

∫ ∞
0

df


√
CGW
` ΩGW (f) h2

Ω`
GW,n (f) h2

2

. (4.44)

We note that the curves shown in figure 9 are rescaled by Y00 = 1/
√

4π, in such a way that the
curve shown for ` = 0 coincides with the SciRD (Science Requirement Document) sensitivity
curve for a homogeneous signal [203] obtained from summing over the A,E, T channels.
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Figure 9. Estimated LISA sensitivity to a given multipole ` of the SGWB, for multipoles up to
` = 10. Even (odd) multipoles are shown with solid (dashed) lines. The sensitivity is obtained by
optimally summing over the LISA channels, see eqs. (4.42) and (4.43).

4.5 Sensitivity to kinematic anisotropies

Doppler anisotropies induced by the motion of the detector with respect to the SGWB
rest frame count among the guaranteed features of the SGWB. In fact, already the early
work [10], which sets the basis for the analysis of SGWB anisotropies with ground-based GW
interferometers, estimated the prospects for ground-based detectors to measure the kinematic
dipole of the SGWB. In this subsection we briefly consider the same question in the context
of LISA.

The size and properties of kinematic anisotropies depend on the frequency profile of
the rest-frame SGWB energy density ΩGW(f). This fact can be important for enhancing the
amplitude of kinematic anistropies in certain early-universe scenarios where the SGWB has
rich features, as the ones discussed in section 2.

We consider two cosmological frames: the first, denoted with S ′, is comoving with the
SGWB rest frame; the second, denoted with S, moves with constant velocity with respect to
the rest frame S ′. We assume that the SGWB density parameter in the rest frame, Ω′GW(f),
is perfectly isotropic and depends only on frequency f . A boost transformation relates the
SGWB density parameter in the rest frame S ′ to the one in the moving one S. We indicate
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Figure 10. The SNR for the dipole (left) and the quadrupole (right) induced by boosting an isotropic
SGWB with fractional energy density ΩGW , assumed to be scale free across the LISA band. An
observation time of T = 1 year is assumed.

with v = βv̂ (where β = v in units with c = 1) the velocity of the frame S with respect to
the rest frame S ′.

In the technical appendix C we derive the resulting expression of an anisotropic SGWB
energy density ΩGW(f, n̂) as a function of the rest-frame density Ω′GW(f). Assuming that the
parameter β is small, we can Taylor expand up to second order in β and write

ΩGW(f, n̂) = Ω′GW(f)
{

[1 +M (f)] + n̂ · v̂D (f) +
[
(n̂ · v̂)2 − 1

3

]
Q(f)

}
. (4.45)

The functions of frequency M , Q, D, control respectively the contributions of kinematic
effects to the monopole, dipole, and quadrupole of GW energy density in the detector frame.
They read

M(f) = β2

6 (8 + nΩ (nΩ − 6) + αΩ) , (4.46)

D(f) = β (4− nΩ) , (4.47)

Q(f) = β2
(

10− 9nΩ
2 + n2

Ω
2 + αΩ

2

)
. (4.48)

In analogy with CMB literature, we introduce the SGWB spectral tilts

nΩ(f) = d ln Ω′GW(f)
d ln f , (4.49)

αΩ(f) = dnΩ(f)
d ln f . (4.50)

The expressions (4.46), (4.47), (4.48) quantitatively demonstrate that enhanced spectral tilts
can amplify kinematic anisotropies in certain scenarios.

We plot in figure 10 the SNR for LISA to detect the kinematic dipole and quadrupole
induced by a scale-invariant profile of Ω′GW(f) = constant in the SGWB rest frame. Notice the
different vertical scale in the two plots, due to the fact that LISA sensitivity to the quadrupole
is a factor ∼ 103 β better than that to the dipole, as discussed in the previous sections.
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Figure 11. The SNR for a broken power law, inspired by models of strongly first-order phase
transitions, versus the break frequency. For these models, the total energy density contributes 0.1% of
the total energy density during the radiation era. An observation time of T = 1 year is assumed.

We also show in figure 11 the sensitivity to the dipole induced by a boost with velocity
β on the SGWB spectrum generated by a strongly first order phase transition. We model the
spectral density as a broken power law, using eq. (8) of ref. [98], and illustrated in figure 3
therein. We allow the location of the break to vary, but fix the amplitude so that the total
energy density integrated over all frequencies contributes 0.1% of the critical energy density
during the radiation era. The SNR scales linearly with the amplitude of the dipole, so boosting
to 1% raises the SNR by 10. In this case, the rich frequency profile of the SGWB energy
density in the rest frame leads to a pronounced frequency-dependence of the amplitude of the
SNR in the LISA band.

5 Fisher forecast

The next step of our analysis is to estimate, for the LISA strain and angular resolution
sensitivity, statistical forecasts on the detectability of the lowest multipoles of the SGWB
angular power spectrum, using a Fisher matrix method.

We consider a total observation time of tobs = 3 years (corresponding to the total 4 years
nominal mission assuming 75% efficiency), and a frequency resolution ∆f = 10−6 Hz, which cor-
responds to segmenting the TDI data stream into chunks of 11.5 days (i.e. the inverse of the fre-
quency resolution), and using as the final spectrum the average over the spectra of the chunks.

We work under the assumption of statistical isotropy, where different multipoles ` are
uncorrelated and all orders m are drawn from the same distribution for each multipole (only
under this assumption it is justified to average over different parts of the sky, or in practice
different time segments). We consider each multipole separately, in order to obtain a measure
of the information contained in each of them.

Following the result obtained in eq. (4.44), we define the SGWB power spectrum at
multipole ` as

Ω`
GW(f)h2 =

√
CGW
` ΩGW(f)h2 , (5.1)

where CGW
` is the angular power spectrum of the GW density contrast as defined in eq. (2.9).
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For the sake of generality, we consider a power-law SGWB spectrum peaking at a fiducial
multiple L only, parameterized by the logarithmic amplitude log10Ac at a pivot frequency
fc = 2.5 · 10−3 Hz, that is chosen close to the frequency where LISA has the best sensitivity,
and by a spectral index α,

Ω`
GW(f)h2 = δ`,L10log10 Ac

(
f

fc

)α
. (5.2)

For each multipole ` and channel combination OO′, we assume a Gaussian likelihood over the
averaged data L` given by

lnL` = −Nc
2
∑
OO′

∑
k

(
D(k)
OO′,` −D

(k),th
OO′,`

)2

σ
(k)2
OO′,`

, (5.3)

where Nc is the number of data segments in the analysis; the sum runs over frequencies (or
frequency bins) fk, DOO′,` denotes the averaged signal over the data segments in the channel
combination OO′, and Dth

OO′,` is the theoretical ansatz for the data,

D(k),th
OO′,` = R̃OO′,`(fk)Ω`

GW(fk)h2 + ÑΩ
OO′(fk) , (5.4)

where R̃OO′,` is the frequency response of the detector and ÑΩ
OO′ is the noise as defined in

the previous section expressed in Omega units. The variance can be expressed in terms of
the theoretical ansatz as σ(k)2

OO′,` =
(
D(k),th
OO′,`

)2
. In practice, instead of summing over channels

in the likelihood, we consider a single data vector and compare it with the effective noise
combination defined by eq. (4.43) and shown in figure 9, and drop the OO′ channel indices in
what follows.

Assuming a fixed noise model, the Fisher information matrix for the likelihood defined
in eq. (5.3) is simply

C−1
θρ ≡ Fθρ = −∂θ∂ρ lnL|bestfit = Nc

∑
k

(
∂θΩ`

GW(fk)h2
) (
∂ρΩ`

GW(fk)h2
) 1
σ

(k)2
`

, (5.5)

where θ, ρ are a combination of the signal model parameters log10Ac and α, and the corre-
sponding partial derivatives are

∂log10 AcΩ`
GWh

2 = log(10)Ω`
GWh

2 and ∂αΩ`
GWh

2 = log
(
f

fc

)
Ω`

GWh
2 . (5.6)

The estimated LISA sensitivity to a single-monopole power-law SGWB defined in eq. (5.2)
has been represented on figure 12 for the monopole (` = 0), dipole (` = 1) and quadrupole
(` = 2), for a series of fiducial values of the SGWB amplitude log10Ac and spectral index α.
In all cases, the standard deviation for each parameter is considered marginalised over the
other one (i.e. taken from the diagonal elements of the covariance matrix Cθρ, defined as the
inverse of the Fisher information matrix).

As one can see in figure 12, for ` = 0, 2, sufficiently high log-amplitudes are recovered
independently of the sign of the spectral index (but enhanced by stronger indices), due to
the pivot frequency being chosen to approximately coincide with the peak in sensitivity at
both multipoles. In contrast, for ` = 1 positive spectral indices enhance the recovery of the
amplitude. This is on the one hand because the corresponding sensitivity peaks at slightly

– 39 –



J
C
A
P
1
1
(
2
0
2
2
)
0
0
9

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0
log10Ac

10 3

10 2

lo
g 1

0A
c

= 2
= 4/3
= 2/3
= 0
= 2/3
= 4/3
= 2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

10 3

10 2

10 1

log10Ac = 9
log10Ac = 10
log10Ac = 11
log10Ac = 12
log10Ac = 13

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0
log10Ac

10 3

10 2

10 1

100

101

102

lo
g 1

0A
c

= 2
= 4/3
= 2/3
= 0
= 2/3
= 4/3
= 2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

10 3

10 2

10 1

100

101

102

log10Ac = 9
log10Ac = 10
log10Ac = 11
log10Ac = 12
log10Ac = 13

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0
log10Ac

10 3

10 2

10 1

lo
g 1

0A
c

= 2
= 4/3
= 2/3
= 0
= 2/3
= 4/3
= 2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

10 3

10 2

10 1

log10Ac = 9
log10Ac = 10
log10Ac = 11
log10Ac = 12
log10Ac = 13

Figure 12. The LISA marginalized 1σ forecasted limits on log10 Ac (left panels) and α (right panels)
at the multipole l = 0, 1 and 2 (top, center and bottom panels), for a series of fiducial values the of
SGWB amplitude and spectral index. See comments in main text.

larger frequency with respect to fc; and on the other hand because of the milder slope of the
sensitivity with respect to ` = 0, 2 towards high frequencies, so that the power law is closer to
the high-frequency noise spectrum for lower |α| in ` = 1 than in ` = 0, 2 (see figure 9).

For all multipoles, the spectral index is obviously recovered more effectively for higher
log-amplitudes. In the optimal case of a signal amplitude of order ΩGW(f = fc)h2 = 10−9, a
null spectral index could be reconstructed with an uncertainty of order 10−3, 10−2, 10−3 for
the ` = 0, 1, 2 multipoles respectively. In the more pessimistic case of ΩGW(f = fc)h2 = 10−13,
for ` = 0, 2 the spectral index could be reconstructed with an uncertainty of order 0.1 or
greater for largely positive or negative values of it, but this uncertainty approaches order
one for SGWB spectra with a spectral index between −1 and 1. In such a low-amplitude
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scenario, LISA will thus be more sensitive to models with a strongly varying SGWB spectrum.
Notice how, for the same reasons described in the previous paragraph, the dipole ` = 1 is
more sensitive towards positive spectral indices, whereas for ` = 0, 2 the accuracy is almost
symmetric with respect to the sign.

6 Map-making method

In this section we briefly describe the maximum likelihood map-making method for stochastic
backgrounds proposed in [54] and provide estimates for the noise power spectrum N` obtained
by simulating and mapping the noise directly in the sky domain. Recently, another method to
map the gravitational-wave sky with LISA has been developed and it is based on a Bayesian
algorithm to map the power of the SGWB using a spherical harmonic approach [204].

The maximum likelihood map-making with GW detectors relies on the specific scan
strategy of the interferometer array, which describes how the sky signal is sampled as a function
of time. The reconstruction of the GW sky and the angular resolution at which it may be
achieved then depend on the amount of modes sampled throughout the whole duration of the
observation.

To simplify the mapping procedure we assume that the anisotropic SGWB signal intensity
I has a simple power-law spectral shape which may be factored out, such that

I(f, n̂) = E(f) I(f0, n̂) , (6.1)

where E(f) = (f/f0)γ , and f0 is a specific reference frequency.
As for the scan strategy, we assume the spacecrafts follow three heliocentric, quasi-

circular orbits remaining at a constant arm-length distance from each other, and that the
noise in the detector is well understood. Specifically, as in section 4, the noise is modelled
by two contributions: acceleration noise and interferometer noise. For more details, see
equations (30) and (31) in [54] and the description of the noise parameters in the official mock
data release [205].

The data vector is defined (similarly to equation (4.32)) as d = Rh+ n, where the first
term specifies the pure signal component, made up of the contraction between the linear
detector response R (see equation (A.4) in the appendix) and the SGWB strain h, and n is
the noise component. We keep the formalism general here for the sake of conciseness; note
that for multiple LISA TDI channels d is a vector in TDI space. To estimate the intensity
I(f0, n̂) directly, the data are considered in frequency space: d(f) with f belonging to the
appropriate frequency interval observed by LISA. We assume the noise is zero-mean and
Gaussian with covariance N = n⊗n and the signal component is also Gaussian such that the
total, signal plus noise, covariance of the data is C = AĨ + N. Here A is the operator that
describes the response of the detector to the strain intensity. This can be integrated in time
and projected onto pixel or spherical harmonic space. In the case of multiple TDI channels it
represents the full correlated response matrix. Also note that in the case of multiple correlated
TDI channels, e.g. X, Y , and Z as considered in [54], the noise covariance is the full correlated
covariance matrix with the auto-correlated noise model for the diagonal and cross-correlated
model for the off-diagonal terms. Ĩ is the observed realisation of GWB intensity on the sky.
The likelihood L of the data is then

L ∝ 1
|C|1/2

e−
1
2 d†C−1 d , (6.2)
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as described in [206] for the case of CMB mapping, it is possible to find the iterative solution
which maximises L,

Ĩα = 1
2F
−1
αα′Tr

[
C−1 ∂C

∂Iα′
C−1 (D−N)

]
, (6.3)

Fαα′ = 1
2Tr

[
C−1 ∂C

∂Iα
C−1 ∂C

∂Iα′

]
, (6.4)

where F is the Fisher information matrix and D ≡ d† ⊗ d. In practical applications, given
the constraints on scan strategies and response functions for gravitational wave observations,
the Fisher matrix will need to be regularised in order the correct iterative solution to be
found using eq. (6.3). Here, the intensity of the sky-map is indexed generically by α such
that Iα are the set of “parameters”, on which the signal component of C depends, that have
to be estimated. For any particular application, the indices α could stand for either map
domain pixels “p” or spherical harmonic domain multipoles “`,m”. The choice here is to
work in the map domain, as it is not overly expensive in this case, and leads to a clearer
understanding and regularisation of the Fisher matrix, as explained in [54, 186]; in the latter,
tests of the method and a regularisation technique are presented. In principle, the Ĩα could
be estimated for a frequency band as narrow as the resolution permits, however this would
result in a poorly regularised problem. To improve this the estimation must be done using
wider frequency bands. Here we simply adopt the broad-band limit by assuming a spectral
shape as in eq. (6.1). In practice this means the traces in eqs. (6.3) and (6.4) include a sum
over the full frequency response, such that the final estimate is given with respect to a single
reference frequency Ĩα(f0).

Note that the term ∂C
∂Iα′

= Aα represents the directional quadratic response of the
detector, and is equal to A = R ⊗R up to appropriate normalisation factors. Aα will, in
general be time dependent, presenting a sky modulation with period of one year. Hence, to
apply this mapping algorithm effectively, the data must be segmented into short observation
time-frames, throughout which the sky response is assumed to be constant and for which
the noise can be estimated accurately. The duration of each segment τ also sets the lower
bound on the observable frequency window, hence there is a trade-off between frequency and
(potential) sky resolution: in principle a shorter time window τ will allow access to higher
pixel resolution, but it will also fix the frequency resolution to 1/τ . Assuming statistical
independence between time-frames, the two traces in eqs. (6.3) and (6.4) are then obtained
by averaging6 over all the frames available.

For the purpose of this paper, we use the method described above directly in pixel space
to calculate the noise power spectrum N`, assuming the LISA noise curves as in [54], over an
observation time of one year. This is simply done by running the iterative map-maker over a
noise-dominated data set, such that the Fisher matrix — setting now α ≡ p — reduces to

Fpp′ = 1
2Tr

[
N−1 ApN−1 Ap′

]
. (6.5)

The statistically isotropised, angular power spectrum of the noise N` can then be estimated
by expanding and inverting the Fisher matrix [207]:

N` = 1
2`+ 1

∑
m

∣∣∣ (Y`m,pFpp′ Y†p′,`m)−1 ∣∣∣ , (6.6)

6For actual data this average would be weighted by noise estimates but here we assume the noise is constant
and uncorrelated between time-frames.
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Figure 13. Noise power spectrum for LISA in Ω2
GW units at reference frequency f0 = 0.01 Hz. Note

the N` here is in good agreement with the curve shown in [208], figure 4, taking into account that the
observation time considered here is one year, whereas in [208] it is four.

where the linear operator Y`m,p ≡ Y`m(p̂) and similar for its adjoint. This is similar in spirit
to what is presented in [208], however note that here the estimate is obtained by simulating
and integrating the full scan strategy, without assuming the noise is isotropic to begin with.
The N` estimates are shown in figure 13, in units of Ω2

GW at reference frequency f0 = 0.01 Hz
for a quicker comparison with signal models. This matches the convention chosen in [208],
and the ` = 0 mode of the two estimated noise power spectra matches well. Note that in
figure 13 an observation time of four years is assumed.

The discrepancy at odd `s between the noise power spectrum obtained by the inverse
Fisher matrix and the analytic computation presented in [208] is in part due to the substantially
different sampling of the m modes. While these are marginalised over at a fixed time in
equation (4.28) to obtain the instantaneous `-mode response, in the map-making procedure
these are kept into account, and through the scan strategy contribute to breaking the
degeneracies in the odd `-modes of (instantaneous) R̃`OO. The higher-` section of the curve is
highly dominated by the conditioned inversion; in fact, the noise covariance matrix found
in this case is highly singular, and ∼90% of its eigenvalues has been discarded to produce
the curve in figure 13. The conditioning has a stronger impact on the higher-` end of the
angular spectrum, as the response of the detector is weaker at higher angular scales. It is
therefore difficult to compare numerical estimates of the effective noise at different angular
scales to the result of analytical estimates. This is an active field of research, and it is clear
that a robust regularisation scheme will be required when attempting to reconstruct the
higher modes of the angular power spectrum with this configuration of the LISA instrument.
Inevitably, the presence of complicating factors such as non-stationarity, noise uncertainties,
and scanning systematics in real data will exacerbate this issue and mapping techniques will
require significant developments in order to reconstruct anisotropies as optimally as possible.
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7 Conclusions

The anisotropies of the SGWB represent a powerful tool to characterize and distinguish
the different sources of GWs. We have seen in this paper how different GW sources are
characterized by different angular spectra. Such anisotropies have mainly two contributions:
one directly related to the production mechanism of each particular GW source, and one
being an effect of the propagation of GWs on our perturbed Universe, which is common for
all the GWs sources. We have made an overview of the main cosmological and astrophysical
sources characterized by anisotropies, that are expected to be present in the LISA frequency
band. We have presented the angular spectrum for different cosmological backgrounds (i.e.,
inflation, phase transition, PBH and cosmic strings) and an astrophysical one (Solar Mass
Black Hole Binaries). We have then built a SNR estimator to quantify the sensitivity of LISA
to different multipoles. To do this, we have computed the responses of LISA in harmonic space
as functions of frequency for the AET TDI channels. We have also derived the analytic form
of the responses in the low frequency limit. It is important to stress that, when anisotropic
signals are considered, both the auto-correlation responses (i.e., AA, EE) and cross-correlation
ones (i.e., AE, AT) are different from zero. We have shown how LISA will have a better
sensitivity to detecting a quadrupole (i.e., ` = 2) than it will for the dipole (i.e., ` = 1).
We have quantified the SGWB energy density required to observe the kinematic dipole and
quadrupole induced by the motion of the LISA detector with respect to the SGWB rest
frame. We found that an βΩGW ∼ 2 × 10−11 is required to observe a dipolar signal, while
the sensitivity to the quadrupole is a factor ∼ 103β larger than that to the dipole. We have
also performed a forecast of the detectability of the lowest multipoles of the SGWB angular
power spectrum through a Fisher matrix analysis. We have shown that for ` = 0, 2 sufficiently
high amplitudes are recovered independently of the sign of the spectral index (but enhanced
by stronger indices). On the other hand for ` = 1, positive spectral indices enhance the
recovery of the amplitude; conversely the spectral index is recovered more effectively for higher
log-amplitudes, for all multipoles. Finally, taking into account the LISA motion and the sky
scan strategy, we have applied a maximum likelihood map-making technique to extract the
noise angular power spectrum N` as a function of the multipole `.

The LISA sensitivity and angular resolution will allow to detect the anisotropies of the
SGWB, opening the possibility to use them in the process of characterization of the SGWB,
and also to study their correlation to other cosmological tracers such as the Cosmic Microwave
Background [102, 110, 112, 120] and galaxies as tracers of the Large-Scale Structure [209–213].
This represents an exciting possibility to use LISA to explore our universe in a completely
new perspective.

Acknowledgments

It is a pleasure to thank Valerie Domcke, Juan Garcia-Bellido and Sabino Matarrese for useful
discussions. We acknowledge the LISA Publication and Presentation committee, in particular
Sharan Banagiri for carefully reading and useful comments on the draft. N.B. and D.B. ac-
knowledge partial financial support by ASI Grant No. 2016-24-H.0. R.C. is supported in part
by U.S. Department of Energy Award No. DE-SC0010386. CRC acknowledges support under
a UKRI Consolidated Grant ST/T000791/1. V.DL. and A.Rio. are supported by the Swiss
National Science Foundation (SNSF), project The Non-Gaussian Universe and Cosmological
Symmetries, project number: 200020-178787. M.F. would like to acknowledge support from the

– 44 –



J
C
A
P
1
1
(
2
0
2
2
)
0
0
9

“Atracción de Talento” CAM grant 2019-T1/TIC15784. DGF (ORCID 0000-0002-4005-8915)
is supported by a Ramón y Cajal contract with ref. RYC-2017-23493, by the project PROME-
TEO/2021/083 from Generalitat Valenciana, and by the project PID2020-113644GB-I00 from
Ministerio de Ciencia e Innovación. G.F. acknowledges financial support provided under the
European Union’s H2020 ERC, Starting Grant agreement no. DarkGRA-757480 and under
the MIUR PRIN programme, and support from the Amaldi Research Center funded by the
MIUR program “Dipartimento di Eccellenza” (CUP: B81I18001170001). M.Pe. is supported
by Istituto Nazionale di Fisica Nucleare (INFN) through the Theoretical Astroparticle Physics
(TAsP) and the Inflation, Dark Matter and the Large-Scale Structure of the Universe (InDark)
project. The work of M.Pi. was supported by STFC grants ST/P000762/1 and ST/T000791/1.
M.Pi. acknowledges support by the European Union’s Horizon 2020 Research Council grant
724659 MassiveCosmo ERC- 2016-COG. A.Ric. acknowledges funding from Italian Ministry of
Education, University and Research (MIUR) through the “Dipartimenti di eccellenza” project
Science of the Universe. M.S. is supported in part by the Science and Technology Facility
Council (STFC), United Kingdom, under the research grant ST/P000258/1. The work of
LS is partially supported by the US-NSF grants PHY-1520292 and PHY-1820675. G.T. is
partially supported by the STFC grant ST/T000813/1. S.C. acknowledges support from the
Belgian Francqui Foundation through a Francqui Start-up Grant.

A Properties of the anisotropic response function

We insert the expression (4.1) into (4.6) and perform the line of sight integration, obtaining

∆T12 (t) =L

∫
d3ke−2πi~k·~x2

∑
A

[
e2πik(t−L)M

(
~k, l̂12

)
h̃A
(
~k
)
GA
(
k̂, l̂12

)

+e−2πik(t−L)M∗
(
−~k, l̂12

)
h̃∗A

(
−~k
)
GA∗

(
−k̂, l̂12

)]
, (A.1)

where we have defined h̃A
(
~k
)
≡ h̃A

(
k, k̂

)
/ k2 and

M
(
~k, l̂ij

)
≡ eiπLk(1+k̂·l̂ij) sin

(
πLk

(
1 + k̂ · l̂ij

))
πLk

(
1 + k̂ · l̂ij

) , GA
(
k̂, l̂ij

)
≡
l̂aij l̂

b
ij

2 eAab

(
k̂
)
. (A.2)

Lengthy but straightforward algebra then leads to the TDI combinations (defined in
eqs. (4.9) and (4.10)):

∆F1(23) (t) = −
∫
d3ke−2πi~k·~x1 ik

f∗

∑
A

[
e2πik(t−L)W (k) h̃A

(
~k
)
RA

(
~k, l̂12, l̂13

)

− e−2πik(t−L)W ∗ (k) h̃∗A
(
−~k
)
RA∗

(
−~k, l̂12, l̂13

) ]
. (A.3)

In this expression, f∗ is the frequency defined in eq. (4.13), and we have introduced the
function

RA
(
~k, l̂ij , l̂ik

)
≡ GA

(
k̂, l̂ij

)
T
(
~k, l̂ij

)
− GA

(
k̂, l̂ik

)
T
(
~k, l̂ik

)
, (A.4)
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with
T
(
~k, l̂12

)
≡ e−ik/f∗M

(
~k, l̂21

)
+ e−i~k·l̂12/f∗M

(
~k, l̂12

)
, (A.5)

as well as the function W which is different for the two TDI combinations:

W (k) =
{

1 , for TDI 1.0
e−2ik/f∗ − 1 , for TDI 1.5 (A.6)

The correlation between the TDI measurements in eq. (A.3) is expressed by eq. (4.12).
As stated in the main text, the anisotropic LISA response function in eq. (4.15) satisfies the
properties in eqs. (4.19), (4.20), (4.21), and (4.22), that we now prove.

To prove the first property, we consider a rigid rotation of the instrument, for which the
position of the three satellites changes according to ~xi → R~xi.

We perform an analogous rotation on the integration variable in eq. (4.15), and, account-
ing for the fact that scalar products of two vectors are invariant under a rotation we arrive
to

R̃`mRiRj (f) = 1
8π

∫
d2k̂ e−2πif k̂·(~xi−~xj) Ỹ`m

(
Rk̂
)∑

A

×
[
GA

(
Rk̂, Rl̂i,i+1

)
T
(
fk̂, l̂i,i+1

)
− GA

(
Rk̂, Rl̂i,i+2

)
T
(
fk̂, l̂i,i+2

)]
×
[
GA∗

(
Rk̂, Rl̂j,j+1

)
T ∗
(
fk̂, l̂j,j+1

)
− GA∗

(
Rk̂, Rl̂j,j+2

)
T ∗
(
fk̂, l̂j,j+2

)]
.

(A.7)

The behavior of the polarization operators under a rotation can be found in eq. (A.17) of
ref. [214]. Using that result, we can see by direct computation that, for any two unit vectors
û, v̂, ∑

A

GA
(
Rk̂, Rû

)
GA∗

(
Rk̂, Rv̂

)
=
∑
λ

GA
(
k̂, û

)
GA∗

(
k̂, v̂

)
. (A.8)

As a consequence, the rotation matrix is eliminated from the last two lines of eq. (A.7), and
one is left with the rotation of the spherical harmonic, from which eq. (4.16) is obtained.

Inserting the expression in eq. (A.2) for M in eq. (A.5), we see that T ∗
(
−~k, l̂ij

)
=

T
(
~k, l̂ij

)
. An identical property is shared by the GW polarization operators, and therefore

by the functions GA. As a consequence,∑
A

RA∗
(
−~k, l̂ij , l̂ik

)
RA

(
−~k, l̂lm, l̂ln

)
=
∑
A

RA
(
~k, l̂ij , l̂ik

)
RA∗

(
~k, l̂lm, l̂ln

)
. (A.9)

We start from eq. (4.15) for R̃`mji . We send k̂ → −k̂ in the integrand, and we use the
property that we have just proven. We arrive to an expression that is identical to the r.h.s. of
eq. (4.15), with the only difference that the argument of the spherical harmonic is = k̂. From
the transformation of the spherical harmonics under parity we then obtain the property in
eq. (4.18).

Let us now prove the property in eq. (4.21). We place the LISA satellites in the xy
plane, with the center of LISA at the origin, and we simultaneously send the positions of
the satellites ~xi → −~xi, and change sign to the integration variable k̂ in eq. (4.15). These
two operations do not change the scalar products k̂ · l̂ entering in the integrand of eq. (4.15).
Therefore, they do not modify the first factor nor the second line of the integrand of eq. (4.15),
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but only affect the spherical harmonics. Next, we rotate the LISA triangle and the integration
variable by 180◦ around the z-axis. These two operations only affect the spherical harmonic
in the integrand of (4.15). Under both sets of operations, the spherical harmonic changes to

Ỹ`m
(
k̂
)
→ Ỹ`m

(
−k̂
)

= (−1)` Ỹ`m
(
k̂
)
→ (−1)` Ỹ`m

(
Rz,πk̂

)
= (−1)`+m Ỹ`m

(
k̂
)
. (A.10)

On the other hand, performing both sets of operations leaves the position of the LISA satellites
unaffected, and therefore cannot change the response function. It follows that the response
function must vanish whenever `+m is odd, as stated in eq. (4.21).

Finally, let us prove the property in eq. (4.20). We start from eq. (4.15) for R̃`,−mij . We
change integration variable k̂ → −k̂, we use the property Y`,−m

(
−k̂
)

= (−1)`+m Y ∗`m

(
k̂
)
, as

well as eq. (A.9). We end up with the conjugate of the r.h.s. of eq. (4.15) times the factor
(−1)`+m. From the last property that we have proven, we know that the response function is
non vanishing only if `+m is even, namely only if this additional factor is one. This proves
the property in eq. (4.20).

B Optimal signal-to-noise ratio

In this appendix we derive eqs. (4.36), (4.37), and (4.38) given in the main text. Moreover,
we give the explicit expressions for the noise functions (4.33).

We start from the evaluation of the expectation value 〈C〉 of the estimator (4.34). Thanks
to the subtraction of the noise expectation value, only the signal contributes to 〈C〉. We
insert the expression (A.3) into the Fourier transform (4.31) of the signal. Lengthy but
straightforward algebra then leads to the two-point function

〈
∆̃FO (f, t) ∆̃F ∗O′

(
f ′, t

)〉
=
∫
dk k2 k

2

f2
∗

∑
`,m

Ĩ`m (k) 2
k2 |W (kL)|2 R̃`mOO′ (k)

×
[
δτ (f − k) δτ

(
f ′ − k

)
+ δτ (f + k) δτ

(
f ′ + k

)]
, (B.1)

where eq. (4.2) has been used for the two-point function of the SGWB. In this expression we
have denoted by δτ the (rescaled) sinc function

δτ (f) ≡ sin (π τ f)
π f

, (B.2)

that emerges from the integration over dt′ in eq. (4.31). The notation is justified by the fact
that δτ (f) approaches the Dirac delta function δD (f) in the limit of infinite τ , or, in practical
terms, for τ � 1/f . In this limit the above expression for the two-point function simplifies to

〈
∆̃FO (f, t) ∆̃F ∗O′

(
f ′, t

)〉
= δ (f − f ′)

2
∑
`,m

Ĩ`m (f) R`mOO′ (f) , (B.3)

while, in the case of equal frequencies, one of the time integration involved in the Fourier
transform becomes trivial, leading to〈

∆̃FO (f, t) ∆̃F ∗O′ (f, t)
〉

= τ

2
∑
`,m

Ĩ`m (f) R`mOO′ (f) . (B.4)
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We insert this into eq. (4.34), split the integral in positive and negative frequencies, rename
f → −f in the negative frequency range, and use the fact that both Ĩ`m and R`mOO′ are even
functions of the frequency. This leads to eq. (4.36) for the expectation value of the estimator.

In the computation of the variance of the estimator disregard the contribution of the
signal, under the assumption that it is dominated by the noise. Analogously to Tq. (4.31),
the Fourier transform of the noise reads

ñO (f, t) =
∫ t+τ/2

t−τ/2
dt′ e−2πift′ nO

(
t′
)

=
∫ t+τ/2

t−τ/2
dt′ e−2πift′

∫
dk e2πikt′ nO (k)

=
∫
dk e−2πit(f−k) δτ (f − k)nO (k) . (B.5)

Remembering the noise correlators

〈nO (f)nO′ (f)〉 ≡ 1
2δ
(
f − f ′

)
δOO′ NO (f) , (B.6)

lead to〈
ñO (f, t) ñO′

(
f ′, t′

)〉
= δOO′

2

∫
dk e−2πit(f−k)e2πit′(−f ′−k) δτ (f − k) δτ

(
f ′ + k

)
NO (k) .

(B.7)
We use this in the evaluation of 〈|C|2〉, that we evaluate under the assumption that the

noise is Gaussian, obtaining

〈
|C|2

〉
= 1

2
∑

OO′O′′O′′′

(∫ T/2

0
dtav

∫ tav

−tav
dtd+

∫ T

T/2
dtav

∫ T−tav

tav−T
dtd

)∫ +∞

−∞
df

∫ +∞

−∞
df ′
∫
dk

∫
dk′

×Q̃∗OO′ (tav+td, f)Q̃O′′O′′′
(
tav−td, f ′

)
NO (k)NO′

(
k′
)
δτ (f−k)δτ

(
f−k′

)
e4πitd(k′−k)

×
[
δOO′′ δO′O′′′ δτ

(
f ′−k

)
δτ
(
f ′−k′

)
+δOO′′′ δO′O′′ δτ

(
f ′+k

)
δτ
(
f ′+k′

)]
, (B.8)

where t = tav + td and t′ = tav − td, and t (respectively, t′) is the time integration variable in
the first (respectively, second) C entering in the variance.

We assume that the weight Q changes slowly over timescales comparable with the
measured inverse frequencies, so that we can assume that it depends only on the combination
tav. We can then integrate over td. In doing so, the only quantity depending on td in eq. (B.8)
is the last phase of the second line, and the two integrals of this quantity expressed by the
parenthesis in the first line give, respectively, 2δtav (4 (k − k′)) and 2δT−tav (4 (k − k′)). The
measurement times are much greater than the inverse of the frequencies, so that both these
quantities can be approximated by 1/2 δD (k − k′). The two integrals then provide the same
result and we can simply add up to the intervals of the integral over tav. Performing the k′
integration, we then obtain〈
|C|2

〉
= 1

4
∑

OO′O′′O′′′

∫ T

0
dtav

∫ +∞

−∞
df

∫ +∞

−∞
df ′
∫
dk Q̃∗OO′ (tav, f) Q̃O′′O′′′

(
tav, f

′)
×NO (k)NO′ (k) δτ (f − k) δτ (f − k)

[
δOO′′ δO′O′′′ δτ

(
f ′ − k

)
δτ
(
f ′ − k

)
+ δOO′′′ δO′O′′ δτ

(
f ′ + k

)
δτ
(
f ′ + k

) ]
. (B.9)
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As we did for the expectation value, we can then substitute the functions δτ with the
Dirac delta-function, since the time τ is much greater than the inverse frequencies. We then
perform the integrals over f and f ′, the sums over O′′ and O′′′, and we relabel k → f and
tav → t in the resulting expression〈
|C|2

〉
= τ2

4
∑
OO′

∫ T

0
dt

∫ +∞

−∞
dk Q̃∗OO′ (t, f)

[
Q̃OO′ (t, f) + Q̃O′O (t, −f)

]
NO (f)NO′ (f) .

(B.10)
Using the fact the noise is an even function of f , this expression can be finally written as
eq. (4.37) of the main text.

Starting for the expressions eqs. (4.36) and (4.37), for, respectively, the expectation
value and the variance of the estimator (4.34), it is convenient to define

QOO′ (t, f) ≡ τ

2

√
NO (f) NO′ (f)

[
Q̃OO′ (t, f) + Q̃O′O (t, −f)

]
, (B.11)

in terms of which,

SNR = 〈C〉〈
|C|2

〉 =
∑
OO′

∫∞
0 df

∫ T
0 dt γOO′ (f, t) QOO′ (t, f)√∑

OO′
∫ T

0 dt
∫+∞

0 df |QOO′ (t, f)|2
, (B.12)

where, making use of eqs. (4.36) and (4.5),

γOO′ (f, t) ≡
3H2

0
4π2
√

4π
ΩGW (f)

f3

∑
`,m δGW,`m (f)R`mOO′ (f)√

NO (f) NO′ (f)
. (B.13)

We then see that the SNR is maximized by QOO′ (t, f) = c × γ∗OO′ (f, t), where c is an
arbitrary constant that we can set to one. This leads to eq. (4.38) of the main text.

We conclude this appendix by providing the LISA noise functions used in our computa-
tions, referring the interested reader to ref. [9] for a detailed discussion of these quantities.
For the A and E channels one has

ÑA,E ≡
NA,E

4(f/f∗)2 |W (f)|2

= 1
2

[
2+cos

(
f

f∗

)]
P 2

L2
pm2

Hz

[
1+
(2mHz

f

)4
]

+2
[
1+cos

(
f

f∗

)
+cos2

(
f

f∗

)]
A2

L2
fm2

s4 Hz

[
1+
(0.4mHz

f

)2
][

1+
(

f

8mHz

)4]( 1
2πf

)4
,

(B.14)

where the coefficients P and A provide, respectively the amplitude of the Interferometry
Metrology System and the acceleration noise. We assume the central values for these
coefficients from ESA mission specifications requirements, namely P = 15 and A = 3. For the
T channel one has instead

ÑT ≡
NTT

4 (f/f∗)2 |W (f)|2

=
[
1− cos

(
f

f∗

)]
P 2

L2
pm2

Hz

[
1 +

(2 mHz
f

)4
]

+ 2
[
1− cos

(
f

f∗

)]2 A2

L2
fm2

s4 Hz

[
1 +

(0.4 mHz
f

)2
] [

1 +
(

f

8 mHz

)4]( 1
2πf

)4
. (B.15)
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C Boost-induced anisotropies of the SGWB

We derive the expressions for the anisotropies of the SGWB induced by a boost transformation.
We use the same methods as in refs. [215–218]. We consider two frames: the first, denoted
with S ′, is comoving with the SGWB rest frame; the second, denoted with S, moves with
constant velocity v with respect to the rest frame S ′.

A boost transformation relates the SGWB density parameter in the rest frame S ′ to the
one in the moving one S. We denote with f ′ the frequency of the GW in the SGWB rest
frame. and with n̂′ the unit vector denoting its direction. The frequency f in the frame in
motion is associated with f ′ by a Lorentz transformation reading

f = D f ′ , (C.1)

with
D =

√
1− β2

1− β n̂ · v̂ , (C.2)

where v = βv̂ is the relative velocity of the two frames, and β = v in units with c = 1.
In order to compute how the GW energy density changes under a Doppler boost, we

work in terms of the GW distribution function, denoted with ∆′(f ′). We assume for simplicity
it only depends on the frequency f ′ in the SGWB rest frame (i.e. the SGWB is perfectly
isotropic in the frame S ′). We express the number of gravitons for unit of phase space in the
rest-frame S ′ as:

dN ′ = ∆′(f ′) f ′2 df ′ d2n̂′ dV ′ , (C.3)

where dV ′ corresponds to the infinitesimal volume containing gravitons with propagation
vector n̂′ in the element of measure df ′ d2n̂′. It is not difficult to prove that the combination
f ′2 df ′ d2n̂′ dV ′ is invariant under boosts. In fact, we have the relations f ′ = D−1 f , d2n̂′ =
D2 d2n̂, dV ′ = D dV (see refs. [217, 218]). On the other hand, the number of gravitons (C.3)
is independent of the frame, and dN ′ = dN . Hence [215]

∆′(f ′) = ∆(f) . (C.4)

The GW distribution function ∆ can be used to define the energy density of GW in the rest
frame as energy per unit volume and unit solid angle:

dρ′GW(f ′, n̂′) = f ′ dN ′

d2n̂′ dV ′ = ∆′(f ′) f ′3 df ′ . (C.5)

This definition allows us to express the GW density parameter Ω′GW(ω′, n̂′) in the rest frame
S ′ as

Ω′GW(f ′, n̂′) ≡ 1
ρc

dρ′GW
d ln f ′ = 3π f ′4

2H2
0 M

2
Pl

∆′(f ′) . (C.6)

Using eq. (C.4), we have the equality

ΩGW(f, n̂) =
(
f

f ′

)4
Ω′GW(f ′, n̂′) . (C.7)

Hence, we find that the GW density parameter in the moving frame S is related with the
corresponding quantity in the frame S ′ at rest through the general formula

ΩGW(f, n̂) = D4 Ω′GW

(
D−1 f

)
(C.8)
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with D given in eq. (C.2). Notice that in the moving frame S the expression of ΩGW is
anisotropic, due to the dependence of D on n̂. The parameter β is usually small: for example,
for cosmological backgrounds, CMB suggests that β ' 1.23× 10−3. Under the assumption of
small β, we Taylor expand eq. (C.8).

We introduce the tilts of the SGWB spectrum as

nΩ(f) = d ln Ω′GW(f)
d ln f , (C.9)

αΩ(f) = dnΩ(f)
d ln f . (C.10)

Expanding eq. (C.8) in powers of β, and limiting the expansion to order β2 we find that
the GW density parameter in the moving frame S receives a kinematic modulation of the
monopole, and the generation of a kinematic dipole and a kinematic quadrupole due to boost
effects:

ΩGW(f, n̂) = Ω′GW(f)
[
1 +M(f) + n̂ · v̂D(f) +

(
(n̂ · v̂)2 − 1

3

)
Q(f)

]
. (C.11)

The frequency-dependent coefficients (we don’t display the explicit frequency-dependence of
the spectral tilts)

M(f) = β2

6 (8 + nΩ (nΩ − 6) + αΩ) , (C.12)

D(f) = β (4− nΩ) , (C.13)

Q(f) = β2
(

10− 9nΩ
2 + n2

Ω
2 + αΩ

2

)
, (C.14)

indicate respectively the monopole, dipole, quadrupole boost contributions.
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