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Ischemic stroke is becoming one of the most common causes of death and

disability in developed countries. Since current therapeutic options are quite

limited, focused on acute reperfusion therapies that are hampered by a very

narrow therapeutic time window, it is essential to discover novel treatments

that not only stop the progression of the ischemic cascade during the acute

phase, but also improve the recovery of stroke patients during the sub-acute

or chronic phase. In this regard, several studies have shown that endothelial

progenitor cells (EPCs) can repair damaged vessels as well as generate

new ones following cerebrovascular damage. EPCs are circulating cells with

characteristics of both endothelial cells and adult stem cells presenting

the ability to di�erentiate into mature endothelial cells and self-renew,

respectively. Moreover, EPCs have the advantage of being already present in

healthy conditions as circulating cells that participate in the maintenance of

the endothelium in a direct and paracrine way. In this scenario, EPCs appear

as a promising target to tackle stroke by self-promoting re-endothelization,

angiogenesis and vasculogenesis. Based on clinical data showing a better

neurological and functional outcome in ischemic stroke patients with higher

levels of circulating EPCs, novel and promising therapeutic approaches would

be pharmacological treatment promoting EPCs-generation as well as EPCs-

based therapies. Here, we will review the latest advances in preclinical as well

as clinical research on EPCs application following stroke, not only as a single

treatment but also in combination with new therapeutic approaches.
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Introduction

Ischemic stroke remains as one of the leading causes
of mortality and disability in Europe (1, 2). Following the
ischemic insult, two large areas can be usually distinguished:
the ischemic core, infarcted tissue with irreparable damage;
and the penumbra area, surrounding the ischemic core, which
contains hypoperfused tissue that is still viable (3). Following
the occlusion of the blood vessel, the pathological paths of
the ischemic cascade are activated, which eventually leads to
neuronal death by either necrosis or apoptosis (4, 5). Hypoxic
environment triggers glutamate excitotoxicity through amassive
release of glutamate after injury, which provokes neurotoxicity
by binding to N-methyl-D-aspartate receptors (NMDAR),
promoting the entry of large amounts of Ca2+ in neurons
(4–8). In addition, high concentrations of intracellular Ca2+

produce neuronal damage by increasing endoplasmic reticulum
(ER) stress, reactive oxygen species (ROS), and depletion of
ATP-depending processes (4, 5). Moreover, all together lead
to the uncoupling of the mitochondrial electron chain, further
increasing ROS and cellular death (4, 5). Overall, it is estimated
that 2 million neurons die for every minute of obstruction (9).

Among others, mechanical thrombectomy and thrombolysis
by the recombinant tissue plasminogen activator (rtPA) are
effective therapeutic approaches by restoring the blood flow
(10–17). However, these reperfusion therapies are hampered
by a very narrow therapeutic time window, therefore it is
necessary to search for alternatives and/or complementary
treatments encompassed in, monitoring of cerebral homeostasis,
reperfusion, neuroprotection and neurorepair strategies (12,
18, 19). In fact, angiogenesis and vasculogenesis represent two
targets to obtain improvements in the outcome of patients
following ischemic stroke (20–22). Whereas, angiogenesis
means the sprouting of new blood vessels from uninjured
ones, vasculogenesis is the de novo formation of blood vessels
driven by endothelial progenitor cells (EPCs) (23). Importantly,
it has been suggested that proinflammatory environments
(e.g., following stroke) may enhance the proliferation and
angiogenic function of EPCs (24). Therefore, both endothelial
cell repair-regeneration and tissue neovascularization appear as
key processes to restore the blood supply in the cortical areas
affected by the vessel occlusion.

EPCs are circulating cells that exhibit both, progenitor-
and stem-cell characteristics, since they have the capacity to
differentiate into mature endothelial cells and self-renewing (25,
26). In the late 90’s, Asahara et al. were the pioneers to identify
EPCs in peripheral blood (27), and to determine their medullar
origin (20). However, there is controversy nowadays regarding
the origin of EPCs as both vascular and white adipocytic
niches have been suggested over the years (28–31). The main
function of EPCs is the maintenance of the endothelium by
either releasing angiogenic growth factors or acting as a cellular
reservoir for the replacement of injured endothelial cells (25,

32, 33). It is widely established that EPCs can be defined
according to their angiogenic properties: early-outgrowth EPCs
and late-outgrowth EPCs (25, 32, 33). On one hand, the early-
outgrowth EPCs, or colony-forming unit endothelial cells (CFU-
ECs), participate in the maintenance of the endothelium by the
paracrine release of different pro-angiogenic factors (33). On
the other hand, late-outgrowth EPCs, or endothelial colony-
forming cells (ECFC), are characterized by their capacity to
differentiate into mature endothelial cells, being the main player
in the de novo formation of blood vessels (33). Late EPCs can
also secrete several angiogenic factors, but in smaller quantities
than early EPCs (34). Furthermore, these two types of EPCs can
also be differentiated/classified by their in vitro characteristics:
whereas early EPCs appear within a few days of culture and
form colonies with spindle-shaped cells surrounding them, late
EPCs appear at 2–3 weeks and show a cobblestone shape (34).
Finally, kinase insert domain receptor (KDR) (also known as
vascular endothelial growth factor receptor 2, VEGFR-2), CD34,
and CD133 are the most common surface markers to detect
EPCs (25). However, there are discrepancies regarding CD133
since it was also established as a specific marker for early EPCs
(33). In addition, CD146 and von Willebrand factor (vWF) are
characteristic markers of late EPCs (33). Overall, unfortunately,
a unique marker to define EPCs clearly is still lacking.

Several studies have demonstrated that different factors
mobilize EPCs from their niches, such as granulocyte
macrophage-colony stimulating factor (GM-CSF) (35, 36),
granulocyte-colony stimulating factor (G-CSF) (37, 38);
vascular endothelial growth factor (VEGF) (39–42); stromal-
derived factor-1α (SDF-1α) (41–44); and erythropoietin (EPO)
(45). Interestingly, some of these factors (e.g., VEGF, GM-CSF,
and G-CSF) are also released by EPCs as paracrine signaling,
promoting angiogenesis and triggering the proliferation and
migration of endothelial cells (46–48). Moreover, EPCs release
different vasodilators and vasoconstrictors factors, such as
nitric oxide (NO) through the endothelial nitric oxide synthase
(eNOS) activity (34, 49), and the tPA (49); as well as anti-
inflammatory molecules (50). In the recent years, the role
of extracellular vesicles and exosomes has been described in
cell-to-cell signaling (51–53). Interestingly, EPCs also release
extracellular vesicles that participate in angiogenesis (53, 54).
Therefore, all these features make EPCs an interesting target
following cerebral ischemia as they modulate vasculogenesis
and angiogenesis, either by stimulating re-endothelialization
of injured vessels or by stimulating the formation of new
ones (26, 55, 56). Specifically, hypoxia-inducible factor-1
(HIF-1) is up-regulated under hypoxic conditions, which
activates the expression of VEGF and SDF-1α, among others;
eventually inducing the homing of EPCs to the hypoxic
tissues (44, 48, 55–58) (Figure 1). In addition to modulating
vasculogenesis and angiogenesis, EPCs release different factors
that reduce inflammation, promote neuronal survival, and
maintain the myelin sheath integrity in the damaged tissue,
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the latter probably by regulating the survival and migration
of oligodendrocytes through SDF-1α interaction (59, 60). In
summary, early and late EPCs work synergistically for proper
angiogenesis and revascularization: the high concentration of
angiogenic factors and inflammatory cytokines in the ischemic
injury area attracts early EPCs, then, early EPCs release different
factors in a paracrine way that promote angiogenesis and recruit
late EPCs to either restore the endothelium or form new vessels
guided by the early EPCs (33) (Figure 1).

Therefore, EPCs appear as a promising target to find new
therapies to overcome the ischemic damage, all thanks to their
ability to both directly participate in blood vessel repair and
remodeling, and indirectly release different trophic factors to
stimulate the repairing processes following ischemic injury.
Here, we will review the latest advances in preclinical as well as
clinical research at EPCs application following stroke, not only as
a single treatment but also in combination with new approaches.

Relationship between EPCs levels
and the prognosis following stroke

For years, the quantification of EPCs has been proposed as a
possible surrogate biomarker of cardiovascular function, since
low circulating levels of EPCs were associated with increased
cardiovascular risk (61–63). Indeed, although EPCs have been
related to endothelial cell regeneration and neovascularization
after tissue ischemia (61, 64–66), such cerebrovascular risk
factors reduce the baseline levels of circulating EPCs (67).
Accordingly, stroke patients displayed a lower number of EPCs
at the ischemic event onset than their healthy counterparts (65);
and such a reduced level of EPCs was negatively correlated with
systolic blood pressure, diastolic blood pressure, triglycerides,
LDL, and fasting blood glucose, all considered as vascular
risk factors (67). Interestingly, proteomic analysis of samples
from patients with ischemic stroke suggested that their EPCs
were in a more advanced differentiation state and had a lower
capacity for proliferation than those from healthy subjects (68).
This study reveals that cerebral ischemia not only acts locally
but also at systemic level, and such a general impact may
be related to the functional impairment, since EPC-mediated
protective vascular effects are mainly related to its proliferation
ability. Clinical studies showed that the body counterattacks
by increasing serum levels of pro-EPCs proliferation factors
following ischemic stroke (69–72). Likewise, there is an
increase in the levels of VEGF, SDF-1α, and active matrix
metalloproteinase-9 (MMP-9) in the first 24 h after the onset,
which are well-known molecules involved in EPC proliferation
(73–75). Interestingly, the serum levels of these markers at 24 h
correlated with the increment of EPCs during the first week
(71, 76); although this raise can be negatively influenced by
inflammatory factors such as leukocyte levels (76). Recently,
high serum levels of VEGF at 3 months post-stroke have been

associated with worse long-term (2-year) functional outcomes
after injury (77), suggesting that long-term values of pro-
EPCs proliferation factors might not be as beneficial as an
acute increase.

Although controversial (78, 79), it has been widely observed
that higher levels of circulating EPCs are related to a better
prognosis following ischemic stroke (80–85). Indeed, our group
was the first one to demonstrate the correlation between EPCs
levels and both the injury progression and outcome following
ischemic stroke (80). We observed that patients with higher
EPCs numbers during the first week after ischemic stroke
showed a reduction of the infarcted area and a neurological
improvement at days 7 and 90; as well as a better outcome at
3 months compared to those with lower levels of EPCs (80).
Importantly, patients with good outcome had higher numbers
of EPCs than those with poor outcome on day 7 and at
3 months after ischemic stroke, but not at admission; and
so, these results support the alleged beneficial role of EPCs
mobilization following cerebral ischemia (80, 85). Curiously,
it has been observed that the functional properties of EPCs
to migrate and promote angiogenesis have more effect on
both clinical outcome and in vivo angiogenesis than the
absolute cell number (85–87); and that all EPC subsets would
contribute similarly to this post-stroke angiogenesis (85).
This can be observed in the positive association between
functional properties of EPCs and increased flow diversion and
cerebral blood flow following ischemic stroke (88). Nevertheless,
the EPC-related cellular mechanisms underlying endogenous
vascular repair, better neurological and functional outcome
improvements and smaller growth of infarct volume are not
fully understood. In the recent years, microRNAs (miRNAs)
have been described to modulate the expression of several
genes, gaining a special interest as therapeutic molecules (89).
Accordingly, the profiling of miRNAs identified several ones
potentially involved in the EPC-mediated angiogenesis and
eventually good functional outcome following ischemic stroke
(85). The analysis of CD34+ cells revealed that only 9 miRNAs
were differentially expressed in the patients with a good
outcome: the downregulated ones (hsa-miRNA-22-5p and has-
miRNA-32-3p) induce cell senescence, and the upregulated ones
(miRNA-27b24, miRNA-181d25, and miRNA-328) are involved
in cell migration and angiogenesis (85). Interestingly, those
mechanisms underlying themobilization of CD34+ cells are also
present following hemorrhagic stroke (90–92). Along these lines,
a study using a mouse model of intracerebral hemorrhage (ICH)
revealed that the single-nucleotide polymorphism (arginine-
to-proline substitution) present at the codon 72 of the
human Tp53 gene (a tumor suppressor gene) is directly
related to endothelial cell survival, EPCs mobilization and
neovascularization (93). Moreover, ICH patients carrying the
arginine allele had a delayed neovascularization and impaired
functional outcome compared to those patients with the
proline allele (93). In summary, further studies are needed to
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FIGURE 1

Vascular repair mediated by EPCs. After an ischemic stroke, HIF-1 is up-regulated and induces the expression of VEGF, SDF-1α, MCP-1 and EPO

in the ischemic injury area (1). These factors induce the homing of EPCs from their niches (bone marrow, vascular niches or white adipose

tissue) or circulation to the ischemic brain area (2). Firstly, early EPCs arrives at the site of injury, and paracrinally release factors that promote

angiogenesis and recruit late EPCs (3). Once the late EPCs arrive at the ischemic lesion zone, they restore the endothelium or from new vessels

guided by the early EPCs (4). In addition, both early and late EPCs reduce inflammation and promote neuronal survival and myelin sheath

integrity. EPCs, endothelial progenitor cells; EPO, erythropoietin; G-CSF, granulocyte-colony stimulating factor; GM-CSF, granulocyte

macrophage-colony stimulating factor; HIF-1, hypoxia-inducible factor-1; MCP-1, monocyte chemoattractant protein-1; SDF-1α,

stromal-derived factor-1α; VEGF, vascular endothelial growth factor.

decipher the mechanisms by which EPCs are associated with
cellular, neurological, and functional improvements following
ischemic stroke.

Targeting EPCs as a promising
treatment following stroke

The direct use of EPCs as a possible treatment for ischemic
damage has been studied for years in different animal models,
in which intravenously EPC-based cell therapy was the most
used one (Table 1). In addition, recent treatments based on
the secretome of EPCs and drugs that mobilize EPCs from
their physiological niches have been also addressed (Table 1).
Regarding clinical studies, the number of published results using
the direct administration of EPCs in human is scarce, and most
of the studies are based on pharmacological therapies increasing
the mobilization of circulating EPCs (Table 1).

Cell-based therapies using EPCs

In different animal models of middle cerebral artery
occlusion (MCAO), the intravenous injection of late EPCs
reduced the infarct volume and the number of apoptotic cells,
promoted angiogenesis, neurogenesis, axonal rewiring and BBB
protection at the site of injury, as well as a functional and
behavioral improvement after ischemic injury (94, 95, 97, 99).
Remarkably, the time-point post-ischemia treatment apparently
has no effect on the beneficial outcomes, since some studies
treated animals at 24 h (94, 95), and others at 2 h and then
for 7 days (97). Recently, an interesting approach has been
developed, in which EPCs were virally transfected with different
cytokines to improve their therapeutic properties (59, 98). For
example, EPCs transfected with adiponectin (98) or SDF-1α
(59) have several benefits such as promoting angiogenesis,
neurogenesis, remyelination, as well as attracting EPCs and
other neuronal and oligodendrocyte progenitors to the cerebral
ischemic tissues. Accordingly, this resulted in a larger vascular
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TABLE 1 Summary of relevant preclinical and clinical studies targeting EPCs following stroke.

Cell-based therapies

Preclinical studies

References Study Model Main outcomes

Moubarik et al. (94) Intravenously injection of EPCs from

human cord blood 24 h after transient

MCAO

Rat - A reduction in the number of apoptotic cells and

reactive astrogliosis, an increase in capillary density, and a

stimulation of neurogenesis at the ischemic area.

- Significant functional improvement at 7, 10, and 14 days

after MCAO compared to controls.

Rosell et al. (95) Intravenously injection of EPCs from

mouse spleen 30 h after permanent

MCAO

Mouse - Significant increases in capillary density in the peri-infarct

area, and in axonal rewiring.

- Significant improvement in forelimb strength.

Garrigue et al. (96) Intravenously injection of EPO-primed

EPCs from human cord blood 1 day

after transient MCAO

Rat - The injection of EPO-primed EPCs increased their

homing ability and the cerebral blood flow as well as

reduced the BBB disruption and cellular apoptosis at the

ischemic hemisphere on day 14 post-stroke.

Li et al. (59) Intravenously injection of

SDF-1α-transfected EPCs from human

cord blood 1 week after permanent

MCAO

Mouse - Increase in blood vessel density and myelin sheath

integrity, enhancement in neurogenesis, angiogenesis, as

well as the proliferation and migration of EPCs.

- Reduction in brain atrophy and improvement in

the neurobehavioral function.

Hong et al. (97) Intravenously injection of EPCs from

mice 2 h after transient MCAO and for 7

days

Rat - Increase in angiogenesis, and reduction in ischemic volume

and gliosis at 14 days post-injury.

- Increase in motor coordination at 7 and

14 days post-injury.

Wang et al. (98) Intravenously injection of

adiponectin-transfected EPCs from rat

bone marrow 1 h after transient MCAO

Diabetic rat - Decrease in the infarct area, as well as in cellular apoptosis

in the peri-infarct area at 14 days post-injury.

- Increase in angiogenesis in the peri-infarct area at 14

days post-injury.

- Significant improvement in neurological function at 7 and

14 days post-stroke.

Kadir et al. (99) Intravenously injection of EPCs from

rat after MCAO

Rat - Improvement in barrier protection at 3 days post-MCAO.

Clinical studies

References Study Main outcomes

Fang et al. (100) Intravenously injection of autologous

EPCs 1 month after acute ischemic

infarction+ 4 years follow up

- No significant differences in neurological or functional improvements, except

for the Scandinavia Stroke Scale score at 3 months post-injection.

(Continued)
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TABLE 1 (Continued)

EPCs-Derived exosomes/secretome therapies

Preclinical studies

References Study Model Main outcomes

Rosell et al. (95) Intravenously injection of cell-free

conditioned media from mouse EPCs

30 h after permanent MCAO

Mouse - Significant increase in the peri-infarct capillary density.

- Significant improvement in forelimb strength.

Maki et al. (101) Intravenously injection of cell-free

conditioned media from mouse EPCs

24 h and 7 days after permanent bilateral

common carotid artery stenosis

Mouse - Increases in vascular density, myelin, and mature

oligodendrocytes in white matter.

- Improvement in the cognitive function at

28 days post-injury.

Wang et al. (102) Intravenously injection of either regular

exosomes or miR-126-enriched

exosomes from mouse EPCs 2 h after

permanent MCAO

Diabetic mouse - The application of miR-126-enriched exosomes were

more effective in decreasing infarct size and increasing

cerebral blood flow and microvascular density in the peri-

infarct area.

- Likewise, animals treated with miR-126-enriched

exosomes exhibited higher increases in angiogenesis and

neurogenesis as well as neurological functional recovery.

Pharmacological treatments targeting EPCs

Preclinical studies

References Study Model Main outcomes

Lee et al. (103) G-CSF treatment given 2 or 24 h or 4 or

7 days after transient MCAO and

maintained for 3 consecutive days.

Rat - G-CSF treatment increased the cerebral vasculature and

the proliferation of endothelial cells compared to the

control group.

- G-CSF treatment improved the behavioral recovery

and reduced the infarct volume, the inflammatory

infiltration, the BBB disruption, and the hemispheric

atrophy compared to controls.

- Specifically, G-CSF applications starting at 2 h, 1 or 4 days

after ischemia resulted in a better functional recovery and

a greater reduction in hemispheric atrophy than injection

starting at day 7. Moreover, the G-CSF injection starting at

1 day induced larger endothelial proliferation compared

with injection starting at 7 days.

Pellegrini et al.

(104)

EPCs transplantation+ EPO treatment

given 1 or 2 or 3 days after transient

MCAO and maintained for 3

consecutive days.

Rat - The combination of EPCs + EPO treatment showed

the best improvement in early and long-lasting

neurological status.

- EPCs+ EPO also was the most effective approach to

decrease apoptosis and to increase angiogenesis and

neurogenesis in the ischemic area compared to controls

and groups receiving EPCs or EPO alone.

Wang et al. (105) Atorvastin or G-CSF or G-CSF+SDF-1

treatments given either pre- or

post-transient MCAO

Rat - The combination of G-CSF+ SDF-1 showed the best

results by improving neurological performance, reducing

both cerebral infarction and blood-brain barrier

disruption, and promoting greater angiogenesis in

the ischemic brain.

(Continued)
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TABLE 1 (Continued)

Clinical studies

References Study Main outcomes

Dong et al. (106) 8 weeks of piperlongmine treatment

prior to permanent MCAO.

Mouse with

hypercholesterolemia

- Enhancement in the angiogenic ability of EPCs.

- Reduction in the infarct volume.

- Improvement in the neurobehavioral outcome.

Schäbitz et al. (107) Intravenously administration of G-CSF

treatment (30 or 90 or 135 or 180 µg)

within 12 h after ischemia onset and for

3 days

- No significant differences in the clinical outcome.

- A beneficial effect was found linked to dose-dependent only in patients with

DWI lesions between 14 and 17 cm3 .

Alasheev et al. (108) Subcutaneously administration of

G-CSF treatment (10mg) within 48 h

after ischemia onset and for 5 days

- No significant difference in cerebral infarct volume between the experimental

and control groups.

Floel et al. (109) Intravenously administration of G-CSF

treatment (10 µg) at least 4 months after

ischemia insult and for 10 days

- No significant effect of the treatment on the test of hand motor function.

Sobrino et al. (110) Orally administration of citicoline

treatment (2,000mg) within 24 h after

stroke onset and for 6 weeks

- The administration of citicoline increased the concentration of EPCs, with

better benefits when combined with rtPA.

- There was a reduction of infarct growth as well as neurological and functional

improvement at 3 months post-stroke.

Ringelstein et al.

(111)

Intravenously administration of G-CSF

treatment (135 µg) within 9 h after

ischemia onset and for 3 days

- G-CSF treatment did not show significant results in mRS and NIHH scores at

day 90, neither in Barthel index and infarct size at day 30.

- A trend was observed regarding reduced infarct growth in the G-CSF group.

Mizuma et al. (112) Intravenously administration of G-CSF

treatment (150 or 300 µg) within 24 h

after ischemia onset and for 5 days

- Clinical outcome scores did not show any significant difference at 3 months.

density, better functional recovery, and smaller infarct volume
and apoptosis ratio when compared to animals treated with
wild-type EPCs (59, 98). It is important to note that such
pro-regenerative outcomes were seen at different time-window
applications, 1 h (98), and 1 week (59); in different MCAO
models, transient (98), and permanent (59); and even in
animals with diabetes, a known cerebrovascular risk factor
(98). Beyond ischemic stroke, intravenous injection of EPCs
at 6 h post-ICH promoted positive effects by reducing edema,
apoptosis, and BBB permeability; and increasing the expression
of tight junction proteins (113). Moreover, the levels of pro-
inflammatory cytokines such as interferon-γ, IL-6, and tumor
necrosis factor-alpha were reduced, whereas those of anti-
inflammatory cytokines such as transforming growth factor-
β1 and IL-10 were increased (113). Importantly, the magnetic
vectorization of EPCs has been tested with satisfactory results
(114); which encourages to keep researching new approaches
that improve the cell delivery to the ischemic area.

Despite these promising results in animal models of stroke,
the number of published results and clinical trials regarding

direct application of EPCs in patients is almost absent. This
is remarkable when we have in mind the fact that EPCs
can home to the damaged BBB and promote its restoration,
which would be extremely beneficial for patients with ischemic
damage. The work from Fang et al. exposed the outcomes
after the intravenously transplantation of EPCs (100). Such
results came from a small clinical trial (EPCs group, N =

5; placebo group, N = 6; NCT01468064 in ClinicalTrials.gov)
over 4 years, where authors observed a slight improvement
in neurological and motor functions following the application
of autologous EPCs (100). Although no significant differences
were found in those outcomes compared to control subjects
(possibly due to the small group of the follow-up), the trend
was promising enough to further study both neurological and
functional benefits of EPCs infusion in a larger cohort. Similarly,
previous I and II trials showed encouraging results following
autologous transplantation of CD34+ cells in stroke patients,
either at the acute/subacute phase (115, 116), or chronic phase
(117). It is important to remark that the administration of
different subtypes of EPCs (late or early) and/or their origin
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(bone marrow, cord blood or spleen) might influence the
outcome following application and, therefore, they are aspects
to have in mind when analyzing the data. Overall, this reinforces
the need of increasing the number of clinical trials addressing the
beneficial outcomes of EPCs transplantation following stroke.

Therapies based on EPCs-derived
secretome/exosomes

Although promising, the use of cell therapies in
stroke implies several risks such as emboli, immunological
incompatibility, or infection (50). Therefore, new and safer
research lines for the treatment of stroke are mandatory to avoid
such issues. In this regard, the impressive work of Rosell et al.
demonstrated for the first time that the infusion of cell-free
conditioned medium (secretome) from late EPCs at 1 day
post-ischemia was sufficient to increase capillary density in
peri-infarct areas and eventually improve functional recovery
in mice undergoing permanent MCAO (95). Subsequently, the
therapeutic benefit of secretome was tested in a mouse model
of prolonged cerebral hypoperfusion by bilateral stenosis of
the common carotid artery (101). Although the secretome
was administered at 24 h and 7 days after starting cerebral
hypoperfusion, the results were similar to those obtained by
Rosell et al.: increased vascular density, myelin, and mature
oligodendrocytes in the white matter as well as improved
cognitive function (101). More recently, the secretome of EPCs
derived from stroke patients has proved to restore BBB function
and promote angiogenesis in in vitro models of ischemia
(118). Regarding neurogenesis, the interaction between neural
stem cells (NSCs) and endothelial cells has been suggested
for years (22, 95, 119–123). In this crosstalk, NSCs provide
a vasculotrophic support for endothelial cells (ECs) under
hypoxic conditions via the VEGF/HIF-1α axis (122), whereas
either EPCs- or ECs-derived secretome protect NSCs against
ischemic damage [(95, 123), respectively]. Interestingly, in vitro

studies from Jing et al. revealed that the culture of NSCs with
EPC-conditioned medium from hypoxic conditions increased
their proliferation rate likely through VEGF secretion (124).
Similarly, EPCs-derived secretome increases the proliferative
rate of oligodendrocyte precursor cells (OPCs) and decreases
their apoptosis, as well as enhances myelination under hypoxic
environments either in vitro (101, 125) or in vivo (101). Several
growth factors might be exerting the beneficial role mediated
by the EPCs-derived secretome on oligodendrocyte remodeling
following ischemic damage, such as C-X-C motif chemokine 12,
VEGF and angiogenin, among others (101, 125, 126).

One of the components of the secretome of EPCs are
exosomes, a type of extracellular vesicle that participates in cell-
to-cell communication by releasing its contents, as mentioned
above (51–53, 102). In the case of EPCs-derived exosomes,

they are known to participate in angiogenesis and even protect
the endothelium from suffering further damage or dysfunction
under the hypoxia-reoxygenation process (53, 54, 127). Notably,
EPCs-exosomes reduced ischemic damage and apoptosis,
preserved cerebral blood flow and vascular microdensity,
promoted angiogenesis and neurogenesis, as well as, improved
neurological function in a mouse model of permanent MCAO
(102). Interestingly, this beneficial effect was enhanced by using
exosomes enriched in miRNA-126, a molecule involved in
vascular function and angiogenesis (102). In fact, one of the
beneficial effects of practicing exercise before the stroke is that it
increases miRNA-126 levels in EPCs-exosomes, which correlates
with reduced infarct volume and apoptosis and increased
microvascular density in mice undergoing permanent MCAO
(128). Likewise, EPCs-exosomes transfected with miRNA-126
were uptaken by astrocytes enhancing their survival rate and
reducing both cellular toxicity and ROS generation under
in vitro hypoxia (129). Other miRNAs also have beneficial
roles following ischemia, such as the miRNA-210 whose
inclusion into EPCs-exosomes boosted their beneficial roles
by improving the mitochondrial function in endothelial cells
following hypoxia/reoxygenation damage (130).

As previously stated, the therapeutic application of EPCs still
has some concerns, including the large number of cells needed
for the treatment and their potential to become tumorigenic; and
so, the attention is being focused on the use of EPCs-derived
exosomes/secretome. Unfortunately, this field is in a preclinical
stage, although the experiments with extracellular vesicles have
demonstrated to exert similar beneficial roles to the cell-based
treatment (118). Therefore, clinical trials and studies on humans
are needed to confirm preclinical data regarding the use of EPCs-
derived exosomes and/or secretomes as a more reliable and safer
approach than cell-based therapies.

Pharmacological treatments targeting
EPCs

As mentioned previously, drug treatments to increase the
number of EPCs appear as another interesting alternative to
cell therapy. The application of GM-CSF, SDF-1α, statins,
or EPO results in the mobilization of EPCs from their
niches. Indeed, several works observed cellular and functional
improvements following the administration of these drugs in
rats undergoing either transitory (103, 104) or permanent
MCAO (105). Overall, such pharmacological treatments resulted
in a reduction of infarct volume, apoptosis, BBB disruption; an
increase of angiogenesis and neurogenesis; an improvement of
neurological function (103–105); and, interestingly, an increase
in the levels of factors that induce homing of EPCs, such as
VEGF or basic fibroblast growth factor (bFGF) in peripheral
blood (105). Moreover, the levels of several growth factors
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involved in neurogenesis, such as glial cell-derived neurotrophic
factor (GDNF), growth-associated protein-43 (GAP-43) and
BDNF were also increased (104, 105). Importantly, there is a
therapeutic synergy when combining GM-CSF with SDF-1α
(105) or EPCs with EPO (104), which improves the effects
of both drugs and cells. Notably, the injection of EPO-
primed EPCs lead to an improvement in their migratory
capacity, and it also had beneficial effects on the cerebral
blood flow, apoptosis, and BBB disruption in a rat model
of transient MCAO (96). Importantly, some of these drugs,
and others, have been tested in patients where they showed
therapeutic benefits. For example, patients treated with statins
or citicoline (CDP-choline) after the stroke had a significant
increase in the levels and mobilization of EPCs, which
predicted with high sensitivity and specificity a good outcome
at 3 months following injury (110, 131, 132). Likewise, the
treatment with piperlongumine, an alkaloid extracted from
Piper longum, exhibited anti-platelet aggregation and anti-
inflammatory properties, and its administration significantly
improved the functions of EPCs as well as reduced ischemic
damage in an ischemic brain model of high-fat diet-fed mice
(106). Although all these drugs promote the mobilization of
EPCs, none is EPCs-specific as they induce homing of other
progenitor cells and other beneficial effects. Therefore, cellular
and functional improvements seen in patients with stroke
treated with those drugs cannot be attributed exclusively to
their effect on EPCs. The development of new drugs targeting
exclusively EPCs is mandatory to confirm that the EPC-
mediated beneficial effects are enough to promote functional
recovery following ischemia.

Recently, the potential clinical use of the G-CSF is getting
attention as it possesses a more specific activity spectrum
(133). The G-CSF is a glycoprotein released by endothelium
and immune cells that acts as a hematopoietic growth factor
(134). Among other beneficial mechanisms following vascular
injury, the G-CSF can promote angiogenesis by mobilizing
EPCs from the bone marrow to the peripheral blood (135).
This makes it a promising target to enhance vascular repair in
CNS injuries. However, results in ischemic stroke patients could
not find reliable improvements neither the clinical outcome
nor infarct volume, even after a phase IIb trial (107–109, 111,
112). Noteworthy, a meta-analysis study did show a motor
improvement, which was probably due to the increase in CD34+

counts, therefore, a higher mobilization of EPCs to the damaged
area (136). Interestingly, there is an ongoing phase 1/2a clinical
trial to evaluate the safety and efficacy of combining EPO
and G-CSF treatments in patients with neurological diseases,
including ischemic and hemorrhagic stroke (NCT02018406,
ClinicalTrials.gov). Overall, further studies are mandatory to
confirm the potential use of G-CSF as another alternative
treatment following cerebral ischemia.

Concluding remarks

As shown here, there is compelling evidence that support
the potential of EPCs as a therapeutic target. Data from both
preclinical and clinical studies showed promising results that are
being slowly translated to clinical trials. Although the clinical
trials have reduced the expectations regarding functional and
cognitive outcomes; they do have shown the safety of the cell-
based therapy (injection of EPCs) and drug treatments (G-CSF).
Those clinical trials were performed in small cohorts of patients,
and so, more trials with higher numbers are needed to confirm
undoubtedly the impact of such therapies following cerebral
ischemia. Finally, several preclinical studies have highlighted the
beneficial role of EPCs secretome/exosomes, but no clinical trials
using EPCs secretome have been carried out so far. Therefore,
the use of such approach may overcome the concerning
regarding EPCs cell-based therapies and provide a more specific
spectrum than drug treatments.
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