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Abstract  

Multiple language assessments are necessary for diagnosing, characterising and quantifying the 

multifaceted deficits observed in many patients’ post-stroke. Current language batteries, however, 

tend to be an imperfect trade-off between time and sensitivity of assessment. There have hitherto been 

two main types of battery. Extensive batteries provide thorough information but are impractically long 

for application in clinical settings or large-scale research studies. Clinically-targeted batteries tend to 

provide superficial information about a large number of language skills in a relatively short period of 

time by reducing the depth of each test but, consequently, can struggle to identify mild deficits, 

qualify the level of each impairment or reveal the underlying component structure. In the current 

study, we compared these batteries across a large group of individuals with chronic stroke aphasia to 

determine their utility. In addition, we developed a data-driven reduced version of an extensive 

battery that maintained sensitivity to mild impairment, ability to grade deficits and the component 

structure. The underlying structure of these three language batteries (extensive, shallow and data-

reduced) was analysed using cross-validation analysis and principal component analysis. This 

revealed a four-factor solution for the extensive and data-reduced batteries, identifying phonology, 

semantic skills, fluency and executive function in contrast to a two-factor solution using the shallow 

battery (phonological/language severity and cognitive severity). Lesion symptom mapping using 

participants’ factor scores identified convergent neural structures based on existing language models 

for phonology (superior temporal gyrus), semantics (inferior temporal gyrus), speech fluency 

(precentral gyrus) and executive function (lateral occipitotemporal cortex) based on the extensive and 

data-reduced batteries. The two components in the shallow battery converged with the phonology and 

executive function clusters. In addition, we show that multivariate prediction models could be utilised 

to predict the component scores using neural data, however not for every component score within 

every test battery. Overall, the data-reduced battery appears to be an effective way to save assessment 

time yet retain the underlying structure of language and cognitive deficits observed in post stroke 

aphasia. 
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BDAE: Boston Diagnostic Aphasia Examination 

WAB: Western Aphasia Battery 

MTDDA: Minnesota Test for Differential Diagnosis of Aphasia 

PICA: Porch Index of Communicative Ability 

PSA: Post Stroke Aphasia 

PCA: Principle Component Analysis 

PALPA: Psycholinguistic Assessment of Language Processing in Aphasia 

CCTp: Camel and Cactus pictures 

BNT: Boston Naming Test 

T: Tokens 

WPM: Words Per Minute 

MLU: Mean Length of Utterances 

TTR: Type Token Ratio 

VBCM: Voxel Based Correlational Methodology 

PRoNTo: Pattern Recognition of Neuroimaging Toolbox 

FWEc: Family Wise Error corrected 

CSW: Comprehension Spoken Words 

CWW: Comprehension Written Words 

MCA: Middle Cerebral Artery  
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1. Introduction 

It is critical to have accurate and reliable ways of measuring symptoms, in order to perform 

differential diagnosis and implement the optimum treatment pathway. For 

neuropsychological disorders, the issue of measuring symptoms is non-trivial for a number of 

reasons. First, patients can have a wide range of deficits (e.g., memory, attention, speech and 

language, etc.), thus potentially necessitating a large number of assessments. Second, any 

given test needs sufficient dynamic range to capture a wide range of severities (complete 

impairment to well-recovered), which requires a sufficient number of items with varying 

degrees of difficulty to avoid floor or ceiling effects. This is particularly important when 

deficits are graded along principal behavioural axes as opposed to falling into classic binary 

distinctions (Lambon Ralph et al., 2003; Butler et al., 2014). Capturing the full range of 

deficits and their entire severity range requires an extensive, detailed assessment battery, 

which is rarely feasible in clinical settings, large-scale clinical trials or where patients have 

attention/fatigue deficits. The current study explored this challenging issue and the efficacy 

of alternative assessment strategies through the test case of post-stroke aphasia. Diagnosing 

language and cognitive deficits in post-stroke aphasia is particularly challenging as there is 

considerable variation in the cognitive/language domains affected and the severity of the 

impairments. In order to save time, most batteries adopt a “shallow” approach, i.e., preserve 

the breadth (test many domains) but reduce the depth of each test (number of items). In the 

current study we directly compared an extensive battery (containing numerous tests each with 

many assessment items) against (a) a popular ‘shallow’ battery, the Comprehensive Aphasia 

Test (CAT) (Swinburn et al., 2004); and (b) a novel data-driven ‘reduced’ test battery which 

limited the number of tests included but preserved their “depth”. For each, we investigated 

their ability: (i) to detect and grade the patients’ impairments; (ii) to reveal the underlying 

principal dimensions of variations across the patient cohort; and (iii) to map the 

corresponding lesion correlates.  

The long history of aphasia research contains many different approaches to assessment 

including early examples of systematic test batteries (Head, 1920). Many famous, popular 

batteries were designed to provide efficient clinical diagnoses of aphasia and their subtypes 

(i.e. Boston Diagnostic Aphasia Examination [BDAE] (Goodglass et al., 1972), Western 

Aphasia Battery [WAB] (Kertesz, 1982), Minnesota test for differential diagnosis of aphasia 

[MTDDA] (Schuell and Sefer, 1965), Porch Index of Communicative Ability [PICA] (Porch, 
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1967)). Many of these, however, have been found to be inadequate at identifying the nature 

of language impairments and guiding future interventions (Byng et al., 1990). Alternative 

approaches included batteries in the form of a ‘bank’ of psycholinguistically-sophisticated 

and detailed tests, such as the Psycholinguistic Assessment of Language Processing in 

Aphasia (Kay et al., 1992), from which experts select assessments to suit each individual 

patient. More recently, this style of psycholinguistically-informed tests were transformed into 

a new ‘shallow’, systematic battery (the Comprehensive Aphasia Test: (Howard et al., 

2010)). The CAT is usually administered over 1-2 hours and contains three sections: 1) 

cognitive screening; 2) language battery; and 3) a disability questionnaire. The language 

battery probes many different language activities each with a minimum number of carefully 

chosen items. The CAT was always intended to be an initial screening battery to be followed 

up by more detailed assessment of the identified areas of interest for each patient. 

Unsurprisingly, this efficient battery is used both clinically and in numerous research 

projects.   

A second core aim of the current study was to examine the ability of different types of 

assessment battery to capture the underlying variations in post-stroke aphasia (PSA). The 

considerable inter-participant variations in PSA are well known as are the limitations of 

considering these differences in terms of categorical classifications, which fail to capture 

important aspects about the underlying impairments, and are unable to relate classifications 

and the underlying lesions (Poeck, 1983; Basso, 2003; Howard et al., 2010). Based on 

detailed assessment batteries, contemporary studies have begun to reconceptualise PSA in 

terms of graded variations along a limited number of underpinning principal language and 

cognitive dimensions (e.g., phonology, semantics, fluency and executive-cognitive skill), 

each of which is clearly associated with specific critical brain regions (Butler et al., 2014; 

Halai et al., 2017; Lacey et al., 2017; Mirman, et al., 2015a; Mirman, et al., 2015b). 

Interestingly, similar analyses have been conducted on each section of the CAT separately 

(Swinburn et al., 2004). One dimension was obtained after applying PCA to the cognitive 

screen subtests, onto which all tests loaded strongly except line bisection. The language tests 

collapsed into three factors: comprehension (and writing), repetition and reading. The first 

two components could reflect the semantics and phonology factors found in the recent large-

scale examinations noted above. Reading from the CAT might also span these same two 

components, as a recent large-scale study has implicated nonword reading with phonological 

abilities, whilst word reading calls upon phonology and semantics in tandem (Woollams et 
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al., 2018). Key questions, therefore, for the current study included: (a) how well can different 

types of battery (full, shallow, reduced – see next) reveal the full collection of underlying 

dimensions; and (b) what dimensions are revealed by the CAT battery when the language and 

cognitive measures are analysed simultaneously.   

The use of PCA and other data-reduction techniques are also relevant to the current study for 

another reason. One of the first studies of PCA in PSA (Butler et al., 2014), found that it was 

possible to use the PCA task loadings to identify which individual tests best approximate 

each underlying dimension.  We used this finding as the basis for generating a different kind 

of reduced battery. Specifically, principal component analysis was used to determine: 1) 

which subset of tests are the best proxies for each principal component; and 2) within each 

test, which subset of items best capture the variance in that test’s data. By applying this 

method to the extensive battery, we generated a data-driven ‘reduced’ battery that is quick 

and efficient to administer, yet retains the extensive battery’s sensitivity for the underlying 

component structure. 

Finally, we examined the ability of each type of battery identify the corresponding neural 

correlates. In previous work, we mapped the four principal components to the integrity of  

discrete brain regions (Halai et al., 2017) that align with results from fMRI language studies 

in healthy participants (e.g. Hickok & Poeppel, 2007; Price, 2012). A number of studies have 

mapped different subsets of the CAT to brain damage (e.g., Hope et al., 2013, 2015, 2018). 

To gain a complete picture, in the current study we compared neural correlates that arise from 

each of the three batteries. Lesion-symptom mapping can now be conducted using univariate 

or multivariate methods (Bates et al., 2003; Tyler et al., 2005; Mah et al., 2014; Zhang et al., 

2014; DeMarco and Turkeltaub, 2018; Sperber and Karnath, 2018). Although there are strong 

advocates for each one, these alterative analyses tackle different fundamental questions, and 

have opposite strengths and weaknesses (Schumacher et al., 2019). Multivariate methods are 

predictive in nature and account for co-dependencies between features. This means, though, 

that obtaining local inference is inherently difficult as the models rely on a combination of 

(usually distributed) beta weights, which cannot be thresholded post-hoc (i.e. using 

permutation testing) unless a feature selection strategy or sparse solution is implemented. 

Furthermore, the beta weights assigned to features are not transparent (Haufe et al., 2014; 

Hebart and Baker, 2018) and therefore caution must be exercised before making strong 

inferences about high/low weights. The opposing strengths and weaknesses are true for the 
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univariate approaches, where local inferences and interpretation of weight strengths are 

straightforward yet such approaches might miss key dependences between regions and/or 

mislocalise the true effect (Mah et al., 2014; Zhang et al., 2014; Sperber and Karnath, 2018). 

With these issues in mind, in the current study we present both univariate and multivariate 

analyses for each test battery. 

 

2. Materials and Methods 

2.1. Participants 

Seventy-five chronic post-stroke (haemorrhagic or ischaemic) patients with aphasia were 

recruited for this study. Participants were assessed with the short form of the BDAE and 

assigned an aphasia classification (Goodglass et al., 1972). All participants were at least 

twelve months post-stroke, native English speakers with normal or corrected-to-normal 

hearing and vision. Participants were excluded based on the following criteria; having more 

than one stroke, other neurological conditions, contraindications for MR scanning or being 

left handed premorbidly. All cases had extensive neuropsychology and neuroimaging 

assessments (detailed below); additionally, a subgroup (N = 40) completed the CAT.  

The demographic characteristics are presented in Supplementary Materials Table 1. Informed 

consent was obtained from all participants prior to participation in the study under approval 

from the local ethics committee.  

2.2. Assessment 

All participants were tested on an extensive neuropsychological battery described in (Butler 

et al., 2014; Halai et al., 2017). The battery included several subtests from the 

Psycholinguistic assessment of language processing in aphasia (PALPA) (Kay et al., 1992): 

immediate and delayed repetition of non-words (PALPA 8); immediate and delayed 

repetition of words (PALPA 9). Tests from the Cambridge Semantic Battery (Bozeat et al., 

2000) included: spoken and written word-to-picture matching; 64-item picture naming task; 

and Camel and Cactus with pictures (CCTp). We also included the Boston Naming Test 

(BNT) (Goodglass et al., 1972), the 96-item synonym judgement test (Jefferies et al., 2009), 

comprehension of spoken sentences from the CAT, and forward and backward digit span 

(Wechsler, 1987). We also included cognitively demanding nonverbal tests, the Brixton 
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Spatial Rule Anticipation Task (Burgess and Shallice, 1997) and Raven’s Coloured 

Progressive Matrices (Raven, 1962). Four measures of fluency were extracted from the 

BDAE ‘Cookie Theft’ picture description task (Goodglass et al., 1972): number of speech 

tokens (T), words per minute (WPM), mean length per utterance (MLU) and type token ratio 

(TTR) (details of coding are provided in Borovsky, Saygin, Bates, & Dronkers, 2007 and 

Halai et al., 2017).  

All participants completed the extensive battery first as part of a larger on-going data 

collection protocol. We successfully re-visited forty participants to assess their performance 

on the CAT (electronic version) (Swinburn et al., 2004) omitting the disability questionnaire 

section as it was not relevant to the current study.  

2.3. Reduced Battery 

Our goal was to reduce the time it would take to administer neuropsychological testing while 

retaining sensitivity to the underlying component structure. To determine this target structure 

we took the extensive neuropsychological test battery in our full cohort of 75 patients and 

applied a varimax rotated principal component analysis (SPSS v20.0). For each principal 

component with an eigenvalue greater than 1 (the optimal number of components were also 

confirmed using k-fold cross-validation, see below for details), we included two tests in the 

reduced battery as representative proxies. Specifically, we took tests that loaded high on the 

target dimension and near zero on others as well as constraining selection with our 

knowledge of their clinical utility (i.e., if there were multiple high loading tests, we took the 

test that would be easiest to administer in a clinical setting). We excluded tests if they loaded 

onto multiple principal components (with a loading score >0.5). The only exceptions were the 

tests of naming and sentence comprehension because these are functionally important tasks 

for patients to be able to perform irrespective of their relationship to the underlying 

component structure of language. We therefore included the BNT, Cambridge Semantic 

Battery 64-item picture naming test and CAT spoken sentence comprehension test.  

As well as reducing the number of tests, we also sought to reduce the number of items in 

some of the longer assessments. For instance, the PALPA9, BNT, Cambridge Semantic 

Battery, and synonym judgement tests contained over 60 items each. We therefore halved the 

number of items in these tests in a data-driven manner. To achieve this, we coded item level 

responses for each of the 75 PSA participants for each test and performed an unrotated factor 
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analysis restricted to a one factor solution. The top 50% of items loading most strongly on the 

identified factor were included in the reduced item set for each test. Certain tests had an 

internal structure (i.e. factorial design) that respected psycholinguistic distinctions: the 96-

item synonym judgement test manipulates word frequency (2 levels) and imageability (3 

levels) yielding 6 distinct classes, while the Cambridge Semantic Battery 64-item picture 

naming comprised 32 living and 32 non-living items. For these tests, we conducted a separate 

factor analysis on each factorial level to retain the internal structure. Further details of the 

reduced tests are shown in Supplementary Materials Section 2. 

 

2.4.K-Fold Cross Validation Analysis 

In order to check the stability and reliability of the PCA solutions, we performed five-fold 

cross-validation analyses (Ballabio, 2015) (version 1.3 in MATLAB 2018a). This procedure 

allows us to determine the optimum number of components in our dataset by performing a 

PCA on a training set and predicting the scores of left-out cases (based on venetian blinds 

sampling). The prediction is carried out for N-1 models to determine which number of 

components provides the best solution corresponding to the lowest root mean squared error 

(N = number of tests). The behavioural data were scaled to percentage and the training data 

were normalised to z-scores before submitting to the cross-validation analysis. Once an 

optimal number of components was determined we performed a second leave-one-out 

validation analysis. In this analysis, a model was created using the optimal component 

number on the training data and the test data were predicted (by projecting the left-out data 

into the trained component space using the coefficient matrix). A correlation was obtained 

between the observed and predicted data as a measure of generalisability of the PCA model. 

 

2.5.Acquisition of neuroimaging data  

High resolution structural T1-weighted Magnetic Resonance Imaging (MRI) scans were 

acquired on a 3.0 Tesla Philips Achieva scanner (Philips Healthcare, Best, The Netherlands) 

using an eight-element SENSE head coil. A T1-weighted inversion recovery sequence with 

3D acquisition was employed, with the following parameters: TR (repetition time) = 9.0ms, 

TE (echo time) = 3.93ms, flip angle = 8°, 150 contiguous slices, slice thickness = 1 mm, 
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acquired voxel size 1 x 1 x 1 mm³, matrix size 256 x 256, FOV= 256 mm, TI (inversion time) 

= 1150ms, and SENSE acceleration factor 2.5 with a total scan acquisition time of 575 s. 

 

2.6. Analysis of neuroimaging data 

Structural MRI scans were pre-processed with Statistical Parametric Mapping software 

(SPM12: Wellcome Trust Centre for Neuroimaging, https://www.fil.ion.ucl.ac.uk/spm/). 

Images were normalised into standard Montreal Neurological Institute (MNI) space using a 

modified unified segmentation-normalisation procedure optimised for focally lesioned brains 

(Automated Lesion Identification – ALI v3) (Seghier et al., 2008). The resulting lesion 

outputs were visually inspected for accuracy and manually adjusted if needed. 

We conducted univariate and multivariate brain-behaviour mapping using the PCA 

component scores derived from: 1) the extensive test battery; 2) the data-driven reduced test 

battery; and 3) the CAT. Both brain-behaviour mapping approaches utilised the abnormality 

images from the ALI toolbox (hypo-intensity changes only, where each voxel is compared to 

a group of age and education matched controls and assigned a probability of abnormality). In 

the univariate analyses, we created three models (one for each PCA solution) and entered the 

corresponding components simultaneously. Voxel based correlational methodology (VBCM) 

(Tyler et al., 2005) was implemented in SPM12 to determine significant clusters, using a 

voxelwise threshold p<0.001 with a family-wise error corrected (FWEc) clusterwise 

threshold p<0.05. For transparency we calculated the model with and without lesion volume 

as an additional covariate. Lesion volume was obtained through the automated lesion 

identification method (Seghier et al., 2008). Anatomical labels used in the report are obtained 

from the Harvard-Oxford cortical and subcortical atlas and John Hopkins University white 

matter atlas in MNI space. We used the pattern recognition of neuroimaging toolbox 

(PRoNTo V2.1; http://www.mlnl.cs.ucl.ac.uk/pronto/) (Schrouff et al., 2013) to determine 

whether individual scores on principal components could be predicted based on multivariate 

analysis of the abnormality detected in the T1 image. We performed the regression analysis 

using the relevance vector regression (Tipping, 2001) on a masked region defined by 

thresholding the lesion overlap map at 10%. We chose this method as it is computationally 

efficient compared to other machines available in the package, which makes permutation 

testing of a large number of models more feasible. PRoNTo uses kernel methods to minimise 
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the high dimensionality problem, where a pair-wise similarity matrix is built between all 

neuroimaging scans (mean centred). The implementation does not require hyperparameter 

optimisation and all models were assessed for performance using a leave-one-out cross-

validation scheme (k-fold was not used due to small sample size). Model inference was 

determined by permutation testing (N = 1,000), where the dependant variable was shuffled 

randomly and the permuted correlations were used as the null distribution (alpha p < 0.05). 

 

Data availability 

Data are potentially available by request to M.A.L.R 

 

3. Results 

3.1 Patient demographics and lesion overlap 

There were no significant differences (p’s.> 0.05) between the full and subgroup participants 

in: age (62.59 [SD = 11.43] and 62.95 [SD = 11.56] years, respectively), education (12.04 

[SD = 2.10] and 12.33 [SD = 2.37] years, respectively) and months post stroke (55.51 [SD = 

48.22] and 52.08 [SD = 50.32] months, respectively). The gender composition of the groups 

was also not significantly different (55/20 and 27/13 males and females, respectively). 

We compared the lesion and behavioural profile of patients between the full and sub group. 

The top panels in Figure 1 show the lesion distribution for all participants and the subgroup. 

This primarily covers the areas of the left hemisphere supplied by the middle cerebral artery. 

We performed a Fischer exact test at each voxel across the brain to determine if the 

proportion of intact/damaged cases differed between the groups and found no significant 

differences (voxelwise p’s > 0.12), suggesting that the lesion profile was similar between 

groups. Furthermore, the lesion volume was not different between the full and sub group 

(16809 [SD=11555] and 16230 [SD=11493] number of voxels, respectively). In terms of 

behavioural profiles, rather than compare all raw test scores we compared the principal 

component scores (described in Section 3.3) for the full and sub groups extracted from the 

largest dataset available. Again, we found no significant differences between groups for any 

component (p’s > 0.27). The lower panel of Figure 1 shows a scatterplot for phonological and 
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executive skill factors, where the blue points represent the cases who did not complete the 

CAT. Overall, these results suggest the two groups were not significantly different from each 

other. 

 

The remaining results are split into three parts. In the first part, we directly compare 

behavioural results obtained on the CAT with the extensive test battery. Next, we extract the 

underlying structure of each battery (extensive, reduced and CAT) and finally, we use the 

principal component scores from each battery and map them to brain lesions (using both 

univariate and multivariate models).  

 

 

Figure 1.  
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3.2 Direct comparisons 

We compared equivalent or near equivalent tests in the extensive battery and the CAT. We 

matched seven subtests within the CAT (digit span, repetition of words and non-words, 

comprehension of spoken words [CSW], comprehension of written words [CWW], semantic 

memory and object naming) to nine tests from the extensive battery (digit span, PALPA 8 

and 9, spoken and written word-to-picture matching, camel and cactus test (pictures), 96-item 

synonym judgement test, Cambridge naming test, and Boston naming test). All tests have 

control cut-off scores (obtained from Thompson et al., 2018) except for digit span, PALPA 9 

and BNT, which were available in the original test manuals. In Figure 2 we present four pair-

wise comparisons as examples (repetition, naming, semantic memory and digit span; all 

detailed comparisons between tests are shown in Supplementary Materials Section 3). Using 

the cut-off scores for each test, we derived four quadrants. The bottom left quadrant and top 

right quadrant contains cases who were impaired or in the normal range in both tests, 

respectively (thus if the tests were in perfect agreement then all cases would fall into these 

quadrants). The bottom right quadrant represents cases that scored in the normal range on the 

CAT but were impaired on the extensive test, whereas cases in the top left quadrant were the 

opposite (i.e. in the normal range on the extensive test but impaired on the CAT). All scores 

are represented as percentages. Overall, each CAT subtest and its matched extensive test was 

found to be correlated though this relationship varied from test to test (R2 mean = 0.68, STD 

= 0.18, range = 0.43 – 0.92), being best for repetition and moderate for semantics. The 

proportion of patients identified within the normal range by the CAT but impaired on the 

extensive test was higher (mean = 19.69%, STD = 8.81%, range = 7.5 – 35%) than the 

reverse (mean = 4.06%, STD = 5.82%, range = 0 – 17.5%) (Wilcoxon rank test p = 0.0016).  
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Figure 2. 

 

3.3 Identifying the underlying structure of language batteries 

The k-fold analysis identified a four-factor solution for the extensive and reduced batteries 

regardless of whether it was computed in the full patient cohort or the subgroup. Only a two-

factor solution was identified for the CAT subgroup. Generalisability of the PCA models to 

the left-out cases was very high for all batteries and cohorts: extensive battery with all cases 

(r = 0.88), extensive battery with subgroup (r = 0.88), reduced battery with all cases (r = 

0.89), reduced battery with subgroup (r = 0.90) and CAT with subgroup (r = 0.79). 

Figure 3 shows the factor loadings for each of the PCA solutions. The PCA on the extensive 

battery with all cases replicated previous findings (Halai et al., 2017, 2018). This PCA model 

explained 76.7% of the variance and was split into ‘phonological skill’ (accounting for 32.5% 

variance), ‘executive function’ (16.8% variance), ‘speech quanta’ (13.8% variance) and 

‘semantics’ (13.6% variance). These components were replicated in the other iterations of the 
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extensive and reduced test batteries. The extensive battery on the subgroup (77.9% total 

variance explained) produced the following model: ‘phonological skill’ (34.1% variance), 

‘executive function’ (18.9% variance), ‘speech quanta’ (14.3% variance) and ‘semantics’ 

(10.7% variance). The reduced battery on all cases (78.5% total variance explained) produced 

the following model: ‘phonological skill’ (28.6% variance), ‘executive function’ (15.1% 

variance), ‘speech quanta’ (17.5% variance) and ‘semantics’ (17.5% variance). The reduced 

battery on the subgroup (80.4% total variance) produced the following model: ‘phonological 

skill’ (29.9% variance), ‘executive function’ (15.0% variance), ‘speech quanta’ (17.6% 

variance) and ‘semantics’ (18.0% variance). Correlational analyses measuring similarity 

across these components confirmed very high correlation values between equivalent 

components (r’s > 0.95, p<0.001), regardless of sample size or battery used, suggesting that 

the underlying PCA structure obtained on the extensive or reduced battery was stable and 

equivalent.  

The results for the CAT were different. A two-factor solution was obtained with the model 

explaining 63.1% of the variance. The first factor (accounted for 39.5% variance) was loaded 

onto by tests requiring speech production and complex comprehension; hence, the factor was 

termed phonological-language severity. The second factor (23.6% variance) included all 

other tests not involving phonological production. These tests also varied in difficulty and so 

we termed this factor overall cognitive severity. Three tests load on both factors (writing to 

dictation and comprehension of spoken and written sentences). Line bisection did not load 

onto any factor (nor was it sufficient to create a third component in this data) as it does not 

measure language or cognitive performance. The interpretation of the two components are 

supported by finding correlations between the first CAT component with both the phonology 

and semantics dimensions derived from the full battery (r = 0.88 p < 0.001 and r = 0.44 p < 

0.005, respectively) and the second CAT component with the executive ability dimension (r = 

0.79, p<0.001). 

In summary, a four-factor solution was obtained with the extensive battery. This solution was 

highly stable and was maintained when the test battery was reduced and when applied to the 

smaller patient subgroup. In contrast, the CAT data produced a two-factor solution, where the 

first component related to phonological-language severity and the second component was 

related to executive or generalised cognitive severity. 
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Figure 3. 

 

3.4 Mapping brain-behaviour relationships 

The univariate results are summarised in Figure 4, which shows significant clusters for every 

principal component across different behavioural batteries (detailed peak co-ordinate 

information is provided in Supplementary Materials Section 4). All results were conducted 

with and without lesion volume correction but, for brevity, we only present the lesion 

corrected results here (uncorrected results are in Supplementary Materials Section 5). The 

neural correlates replicated previous findings (Halai et al., 2017): 1) phonology was related to 

the integrity of the superior temporal gyrus extending posteriorly into supramarginal gyrus 

and angular gyrus; 2) semantic ability related to the integrity of the middle and ventral 

temporal cortex extending posteriorly into occipital cortex; and 3) speech quanta was related 

to precentral gyrus and inferior frontal gyrus. We extended previous findings by identifying a 

large posterior cluster for executive skill centred on the lateral occipital cortex. This result 

was replicated across the full vs. data-driven reduced batteries and in the full cohort vs. 

patient subgroup. The two univariate neural correlates of the CAT components highly 

overlapped with the phonological and executive clusters from the extensive battery (in 

keeping with the behavioural correlations noted above). We compared results across batteries 

to determine if there were significant differences in their statistical maps; all unthresholded t-

maps were converted into z-maps (using SPM12 function spm_t2z.m) and pair-wise 

difference maps were obtained for equivalent components. We did not find any differences 

for any comparison (z threshold ±3.29 and arbitrary cluster extent > 100).  

Briefly, we note that the results when lesion volume correction was omitted were almost 

identical to those stated above. As expected, cluster sizes were larger without lesion volume 

correction but their locations were generally convergent with the clusters found with lesion 

volume correction. There was one minor exception: the speech quanta cluster in the extensive 

battery for the subgroup was significant at the typical threshold of p<0.001 voxelwise, with 

FWEc corrected p<0.05 (as opposed to p<0.005 voxelwise, with FWEc corrected p<0.05 

with lesion volume correction). 
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Figure 4. 

 

Finally, we present results from the multivariate analyses. Table 1 shows the cross-validated 

correlation coefficients and corresponding p-values for each model. Each analysis was 

performed twice, with lesion volume either included or excluded as a covariate. For models 

without lesion volume correction, the phonological skill component was predicted for the 

extensive battery (all and subgroup) (cross validated r = 0.30 and 0.35, respectively) and the 

equivalent CAT component (cross validated r = 0.37). Results were not significant for the 

phonological skill component obtained from the reduced battery on the subgroup but was at 

trend with all cases (cross validated r = 0.22, p = 0.075). In contrast, the semantic component 

was successfully predicted in all batteries (cross validated r’s > 0.43) apart from the CAT 

(which produces no equivalent principal component). The executive component was 

predicted for all batteries, including the equivalent CAT component (cross validated r’s > 

0.30). The speech quanta component was only predicted in the extensive and reduced battery 
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for all cases (cross validated r = 0.25 and 0.26, respectively). For models with lesion volume 

correction, models significantly predicting semantic component scores were obtained for all 

batteries (cross validated r’s > 0.27), again apart from the CAT (which produces no 

equivalent principal component). The executive component was predicted for the extensive 

and reduced subgroups (cross validated r = 0.49 and 0.36, respectively), while the same 

batteries for all cases were at trend (cross validated r’s > 0.19, p’s < 0.096). Finally, three 

models for phonological skill were at trend, including the extensive and reduced batteries for 

all cases and the reduced battery for the subgroup (cross validated r’s > 0.19, p’s < 0.096). 

The remaining models were not significant. In summary, the results for the extensive battery 

on all cases was very similar to the reduced battery for all cases (with and without lesion 

volume correction). The speech quanta component is poorly predicted in the subgroups for 

the extensive and reduced batteries (with and without lesion correction). Finally, CAT 

component scores were not significant predicted by multivariate lesion modelling when 

lesion volume correction is applied.  
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Table 1. Results from multivariate models predicting each principal component from brain 

abnormality images. The table shows the cross validated correlation between predicted and 

observed scores, where significant models were determined using permutation testing (N = 

1,000). Model performances with and without lesion volume correction are shown.  

Footnote: * p<0.05, † p<0.1  

 

Discussion 

Cognitive and language deficits due to brain injury or progressive disorders are typically 

multifaceted and can range from severe to very mild symptoms. There is a pressing need to 

be able to detect neuropsychological deficits across a wide range of severities and domains in 

a time frame that is feasible for application in clinical and research settings. Most clinical test 

batteries approach this problem by adopting a “shallow” battery that tests a wide range of 

deficits using a small number of trials (typically < 10 per domain tested). Shallow batteries 

can generate a quick impression of patients’ strengths and weaknesses across many different 

domains, which can be followed up with more detailed, targeted assessment. The limited 

Cross 

validated 

correlation   

Extensive 

Battery 

(all cases) 

Extensive 

Battery 

(subgroup) 

Reduced 

Battery 

(all cases) 

Reduced 

Battery 

(subgroup) 

Comprehensive 

Aphasia Test 

(subgroup) 

 

No lesion 

volume 

correction 

Phonology 0.30* 0.35* 0.22† 0.18 0.37* 

Semantics 0.48* 0.48* 0.43* 0.63* 
 

Executive 0.33* 0.59* 0.30* 0.40* 0.41* 

Speech 

quanta 0.25* 0.08 0.28* 0.10 
  

      
 

Lesion 

volume 

correction 

Phonology 0.25† 0.29† 0.19† 0.12 0.21 

Semantics 0.37* 0.36* 0.27* 0.50* 
 

Executive 0.21† 0.49* 0.19† 0.36* 0.20 

Speech 

quanta 0.13 0.004 0.16 0.03 
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dynamic range in each assessment, however, can be problematic for core clinical and 

research needs. Specifically, short subtests can be insensitive to mild impairments, struggle to 

grade different levels of impairment, and fail to detect longitudinal change. Such limitations 

are problematic in the clinic and research (e.g., missing mild impairments, inability to detect 

changing performance, insufficient test score variance for correlation-based analyses such as 

lesion symptom mapping). This potential inability to seriate patients is also potentially 

problematic for investigating clinical disorders, such as post-stroke aphasia (PSA) that exhibit 

graded variation along continuous behavioural dimensions (Butler et al., 2014; Corbetta et 

al., 2015, Mirman et al., 2015a; Lacey et al., 2017; Halai et al., 2018; Schumacher et al., 

2019). To explore these important clinical and research issues, the current study used the test 

case of PSA where there is a long history of using systematic multi-domain test batteries. 

Specifically, we compared an extensive, detailed test battery against a “shallow” assessment 

battery (the Comprehensive Aphasia Test; CAT) and then generated a new, data-driven 

battery which preserved the depth but reduced the number of tasks. For all three batteries we 

explored their ability to reveal the graded, multidimensional structure that underpins PSA and 

also their lesion correlates. 

Overall, our results show that multiple subtests in the CAT were less sensitive to mild 

impairments than in the extensive battery (on average 19.69% cases missed) and the 

correlations between the tests, whilst good in general (average R2 = 0.68), varied (being best 

for repetition and weakest for semantics). Indeed, semantic deficits were harder to detect in 

the CAT, with 30-35% of impaired cases missed depending on the task. Cross-validated PCA 

of the extensive battery showed that there were four, very robust dimensions of variation 

(phonology, semantics, fluency and cognitive-executive skill). In contrast, the CAT only 

generated two dimensions (phonology-language and generalised cognition) which, in the case 

of language spanned two of the components derived from the full battery. We successfully 

used PCA to derive a new reduced battery that allowed a data-drive reduction in the number 

of tests and also reduced the number of items in some of the longer assessments. As intended, 

this reduced battery retained the four, robust language and cognitive components. Finally, in 

a series of univariate and multivariate lesion-symptom mapping analyses, the same pattern of 

results emerged; the full and data-driven reduced batteries revealed the same discrete areas 

associated with each of the four PCA components, whilst the CAT generated two areas of 

interest that overlapped with a subset of those observed from the alternative batteries. 
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It is, of course, important to consider the targets of investigation before selecting the most 

suitable assessments. The psycholinguistically-informed CAT was designed to provide a 

broad sampling of many different language activities through a ‘shallow’ test design. This is 

the common approach to saving assessment time though, as demonstrated in the current 

study, it is also possible to use an alternative approach in which time is saved by reducing the 

number of tests but preserving the depth of each test. The latter approach, by definition, 

cannot sample many different activities but the greater number of test items allow it to be 

sensitive to mild impairments and grade impairments. The resulting larger dynamic range can 

be important in both the clinical and research; for example when needing to measure change 

over time (e.g., to track decline in progressive disorders, performance improvements in 

spontaneous recovery or after intervention, etc.) or when relating variation in language-

cognitive performance to other factors and the distribution of underlying brain damage. The 

ability to fathom the underlying behavioural variations using PCA is also very likely to 

reflect the available dynamic range in the tests (like any correlation-based analysis, PCA 

requires sufficient variation to be present). Whilst it can be important to assess performance 

on specific activities, the PCA results from this large and diverse PSA cohort indicate that a 

large proportion of the total cohort variation (~80%) can be captured by four orthogonal 

dimensions. This follows from the facts that (a) each task is not “pure” but instead reflects a 

combination of core language and cognitive skills and (b) that, resultantly, there is 

considerable collinearity across different tests (Patterson and Lambon Ralph, 1999; Butler et 

al., 2014; Halai et al., 2017). PCA also provides a data-driven solution to the question; which 

subset of tests should be selected from an extensive battery? The same multidimensional 

variation can be captured by selecting a subset of tasks that are aligned with only one of the 

principal components.     

Finally, we discuss the neural correlates and multivariate prediction results for the 

components scores across the different test batteries. The univariate VBCM analysis 

identified separable neural correlates for all component scores across all test batteries. The 

clusters were highly convergent with recent reports that have found: 1) phonology to be 

related to the supramarginal gyrus but extending into posterior superior temporal gyrus 

(Hickok and Poeppel, 2007; Price, 2012; Butler et al., 2014; Halai et al., 2017, 2018); 2) 

semantics to be related to anterior inferior and middle temporal gyrus (Lambon Ralph et al., 

2017); and 3) speech quanta being related to precentral gyrus extending into the insula 

(Borovsky et al., 2007; Kinoshita et al., 2015; Halai et al., 2017). The current study also 
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identified regions in the left occipital, posterior temporal and posterior parietal lobe that were 

related to executive ability. There is evidence that the lateral temporo-occipital areas are 

activated for demanding visuo-spatial tasks (Fedorenko et al., 2013; Humphreys and Lambon 

Ralph, 2017) or when location and feature information must be combined (Simpson et al., 

2011). These processes are required when completing the Raven’s Coloured Progressive 

Matrices and Brixton Spatial Anticipation Test, which loaded highly with the executive 

component. Other recent investigations of the PSA population have found that executive 

ability is correlated with superior frontal and paracingulate regions (Geranmayeh et al., 2017; 

Lacey et al., 2017; Alyahya et al., 2018; Schumacher et al., 2019). One explanation for the 

discrepancy might relate to the pattern of middle cerebral artery (MCA) lesions observed in a 

typical stroke population, whereby the highest probability of damage occurs in the 

striatocapsular region and insula (Phan et al., 2005) and only very large MCA strokes damage 

the superior frontal and occipital regions (as they fall in watershed regions of the anterior 

cerebral and posterior cerebral artery, respectively). This would support the generally 

accepted hypothesis that increased lesion size is consistent with increased behavioural 

deficits, both language and executive.  

Interestingly, the pattern of neural correlates across the components within different test 

batteries was remarkably similar. This probably reflects the fact that the batteries seem to 

assess the same four underlying dimensions. Even for the CAT, the lesion correlates for its 

two PCA components were almost identical to the clusters found for phonology and 

executive skills in the extensive battery. The ability to predict the component scores using 

lesion information was also highly consistent when all cases were used in the extensive and 

reduced battery. The lesion data was able to predict all components without lesion volume 

correction and 3/4 tests with lesion volume correction (although some models were at trend). 

Results were mixed for the subgroup batteries, such that the models typically failed at 

predicting phonology and speech quanta. One reason for the lack of consistency might simply 

be due to the sample size, since multivariate decoding methodologies typically require large 

samples as data are partitioned into train/test sets for cross-validation. A recent simulation 

study (Sperber et al., 2019) suggested that approximately 100 subjects are required to have 

stable/reproducible beta parameter mapping, whereas for prediction of clinical outcomes the 

number peaked at 40 and was relatively stable from this point up to 100 cases. The numbers 

in the current study reflect these two ranges: 75 for the extensive battery (which generated 

robust results) and 40 for the subgroup analyses. 
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Figure Captions 

Figure 1. Lesion overlap map for all subjects (top left) and subgroup (top right) in MNI 

space. The crosshair in both images is located at the maximum lesion overlap. The lower 

panel shows the distribution of phonological and executive skill component scores for all 

subjects (blue and red combined) and subgroup (red only).  

Figure 2. Pairwise comparisons between four example CAT subtests and their matched 

extensive battery tests: repetition, naming, semantic memory and forward digit span. Each 

graph has cut-off lines for ‘normal’ performance for the CAT (red line) and extensive (green 

line) test. 

Figure 3. Composite figure showing test loadings for five principal component analyses: a) 

extensive battery on all cases and subgroup, b) reduced battery on all cases and subgroup, and 

c) comprehensive aphasia test on subgroup. Loadings between -0.2 – 0.2 are omitted for 

clarity as they represent weak relationships to the components. The colour coding 
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corresponds to each component: phonology (blue), semantics (red), executive (purple) and 

speech quanta (green). 

Figure 4. VBCM results for all components with lesion volume correction using voxelwise 

p<0.001 and family wise error cluster correction p<0.05 (except the speech quanta cluster for 

the extensive battery [subgroup], which is thresholded using a voxelwise p < 0.002 and 

family wise error cluster correction p < 0.05). The rows represent each principal component; 

phonological skill / severity, semantic skill, executive skill/severity and speech quanta. The 

grey patches in the final column indicate that there were no corresponding CAT components 

for semantic skill and speech quanta. Each panel has a cross hair located at the peak voxel. 

Scale t-values = 3 - 5. 
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Supplementary Materials 
 

Section 1. 

Table 1. Demographic information for the full sample of cases with chronic post stroke 

aphasia and the subgroup. Cases are ordered by lesion volume. Abbreviations: Transcortical 

sensory aphasia (TSA); Transcortical motor aphasia (TMA) 

ID Gender Aphasia 

classification 

Age Years of 

education 

Months 

post-stroke 

Lesion 

volume 

Sub-

group 

1 F Anomia 43 16 15 175 * 

2 M Anomia 75 11 12 1481  

3 F Anomia 53 11 47 1526  

4 M Anomia 68 11 21 3311 * 

5 M Broca 61 11 16 3528  

6 F Conduction 46 16 21 3897 * 

7 M Anomia 50 19 16 4538 * 

8 M Conduction 68 11 37 4773  

9 M Anomia 65 17 25 4806  

10 M Conduction 67 11 13 4879 * 

11 F Broca 48 12 16 5273  

12 M TSA 63 12 24 5822  

13 M Conduction 67 17 14 6557 * 

14 M Anomia 65 10 85 6607 * 

15 F Wernicke 77 16 34 6843  

16 M Anomia 56 16 17 6974 * 

17 F Anomia 51 11 66 6975 * 

18 M Anomia 84 9 35 7854  

19 F Anomia 68 16 22 8118  

20 M Anomia 87 12 35 8238  

21 M Anomia 44 11 40 8437 * 

22 M Anomia 86 9 17 8528 * 

23 M Mixed Non-fluent 68 11 14 8788 * 

24 F Anomia 73 11 89 8921  

25 F Anomia 69 19 39 9159 * 

26 F Mixed Non-fluent 77 11 20 9229 * 

27 F Anomia 52 12 76 9767 * 

28 F Mixed Non-fluent 51 11 40 10051 * 
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29 M Anomia 67 11 60 10073  

30 M TMA 76 11 116 11239  

31 M Broca 85 10 46 11393  

32 M Broca 52 17 33 11915 * 

33 F Mixed Non-fluent 75 11 160 12057 * 

34 M Broca 82 10 13 12131 * 

35 F Anomia 58 11 278 12699 * 

36 M Broca 59 13 37 13080 * 

37 M Global 78 11 17 13187 * 

38 F Anomia 77 11 56 13577 * 

39 M Mixed Non-fluent 58 13 32 14625  

40 M Anomia 56 11 26 14681 * 

41 M Global 66 11 12 14890  

42 M Anomia 66 11 126 15492  

43 M Anomia 80 11 84 15857 * 

44 M Anomia 59 11 34 16433 * 

45 M Broca 80 12 65 18163  

46 M Broca 58 11 135 18392 * 

47 M Broca 54 13 35 18632 * 

48 M Anomia 63 12 12 18639  

49 F Anomia 44 13 37 18948 * 

50 M Global 74 11 18 19500  

51 M Broca 51 12 34 20043  

52 M Anomia 85 10 69 21489  

53 M Mixed Non-fluent 73 11 23 22732 * 

54 M Anomia 51 13 72 22948 * 

55 F TMA 73 11 46 23863 * 

56 M Mixed Non-fluent 67 11 120 26097  

57 M Broca 50 12 16 26218  

58 F Mixed Non-fluent 67 14 176 26283  

59 F Broca 66 11 63 26491 * 

60 M Global 72 11 42 27054  

61 M Broca 62 11 104 27242  

62 M Mixed Non-fluent 81 11 69 28144  

63 M Mixed Non-fluent 67 11 44 31317  

64 M Mixed Non-fluent 63 12 42 31599  

65 M Global 72 11 155 32981  

66 M Global 58 13 57 33239 * 

67 M Mixed Non-fluent 64 11 29 33239 * 

68 M Mixed Non-fluent 79 11 63 33678  
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69 M Mixed Non-fluent 78 13 36 34242 * 

70 M Broca 73 11 114 36877 * 

71 M Global 52 11 73 37822 * 

72 M Mixed Non-fluent 70 11 38 37850 * 

73 F Mixed Non-fluent 52 11 99 40313  

74 M Global 68 12 50 41379 * 

75 M Mixed Non-fluent 76 11 192 42568  
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Section 2. 

In the following section we show the results of the factor analyses (unrotated single 

dimension) performed on the individual item level scores of each test (or their condition 

manipulations). This identified each items’ loading onto the factor explaining the largest 

amount of variance in the data; the top 50% of items were included. Table 2 shows the items 

that were included in the reduced tests for: 1) PALPA 9 (word repetition), 2) Boston naming 

test (BNT), 3) Cambridge semantic battery 64-item picture naming, and 4) 96-item synonym 

judgement test. Each column in Table 2 shows the top 50% loading items following the factor 

analysis, with the bottom section showing descriptive statistics of the loading values.  

 The PALPA 9 test for word repetition consists of 80 items and a one factor solution 

explained 48.87% of the variance. The BNT has 60 items and a one factor solution explained 

39.39% of the variance. As the same Cambridge semantic battery items were used in both the 

picture naming and word-picture matching tests, we wanted to ensure item consistency across 

tests. Picture naming had a larger variance of scores in the stroke cohort compared to the 

spoken word to picture matching test (SD = 33.9 and 11.5, respectively) and so we performed 

the factor analysis on the Cambridge naming test (CNT). The battery consists of 64 items 

with two animacy groups (living and non-living). A factor analysis on each dimension 

showed that the model for the living category explained 44.05% variance and the non-living 

model explained 46.74% variance. The same reduced item list derived from the CNT test data 

was used in the reduced spoken word-to-picture matching test. The 96-synonym judgement 

test is split into six groups along high/low frequency (HF/LF) and high/mid/low imageability 

(HI/MI/LI) dimensions. A factor analysis on the item scores within each group produced the 

following models: HF HI 33.50% variance explained; HF MI 26.34% variance explained; HF 

LI 16.70% variance explained; LF HI 41.80% variance explained; LF MI 24.99% variance 

explained; LF LI 14.76% variance explained. 
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Table 2. Item list for the reduced tests: 1) psycholinguistic assessment of language processing in aphasia - word repetition (PALPA 9), 2) Boston 

naming, 3) Cambridge semantic battery 64-item picture naming, and 4) Synonym judgement. Each column is the result of a separate factor 

analysis and descriptive statistics for the loading of the items are shown at the bottom. Abbreviations: High frequency (HF), low frequency (LF), 

high imageability (HI), mid imageability (MI), low imageability (LI). 

 
 

PALPA 

9 

Boston 

Naming 

Test 

Cambridge Naming Test Synonym Judgement 

 
Living 

Non-

Living HF-HI HF-MI HF-LI LF-HI LF-MI LF-LI 

 
Village Scissors Camel Scissors Forest Pattern Value Tulip Humour Alias 

 
Marriage Mushroom Swan Plane Student Freedom Function Frog Expanse Despot 

 
Hospital Pencil Owl Candle River Ancient Reason Puppy Quake Protocol 

 
Tractor Hanger Apple Piano Money Master Tendency Zipper Rogue Dirge 

 
Moment Dart Cat Saw Sun Property Advantage Lobster Enamel Audit 

 
Potato Racquet Cow Toaster Plant Fashion Keep Jewel Boredom Deity 

 
Character Harmonica Pear Train Rock Distance Basic Kitten Gallant Arbiter 

 
Audience Canoe Banana Brush Child Pair Effect Chestnut Adultery Bequest 

 
Gravy Volcano Rhino Basket 

      

 
Battle Mask Pineapple Key 

      

 
Window Igloo Horse Comb 

      

 
Fire Unicorn Dog Bus 

      

 
Hotel Comb Elephant Dustbin 

      

 
Quality Seahorse Mouse Helicopter 

      

 
Treason Noose Strawberry Envelope 

      

 
Miracle Whistle Frog Lorry 

      

 
System House 
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Gravity Funnel 

        

 
Radio Helicopter 

        

 
Member Saw 

        

 
Idea Bench 

        

 
Bonus Harp 

        

 
Coffee Camel 

        

 
Mother Toothbrush 

        

 
Concept Dominos 

        

 
Student Scroll 

        

 
Alcohol Bed 

        

 
Picture Snail 

        

 
Attitude Acorn 

        

 
Manner Tree 

        

 
Church 

         

 
Dogma 

         

 
Effort 

         

 
Elephant 

         

 
Crisis 

         

 
Spider 

         

 
Onion 

         

 
Purpose 

         

 
Funnel 

         

 
Tribute                   

Loadings 
          

Mean 0.754 0.718 0.727 0.744 0.677 0.599 0.490 0.705 0.582 0.472 
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SD 0.029 0.048 0.042 0.049 0.079 0.065 0.090 0.038 0.065 0.124 

Min 0.704 0.629 0.680 0.688 0.563 0.533 0.416 0.675 0.480 0.354 

Max 0.822 0.810 0.842 0.875 0.763 0.743 0.692 0.795 0.676 0.706 
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Section 3 

Table 3. Direct comparison between pair-wise CAT sub-tests and the equivalent extensive 

test. For each comparison, we show the R2 (variance explained) based on correlations, 

proportion of cases who were determined to have intact or impaired scores (compared to pre-

existing norm data taken from the original test batteries or, where none were available, from 

Thompson et al., 2018). The final two columns indicate the proportion of patients who were 

identified as impaired on the extensive tests but not on the CAT (% missed with CAT) and 

those identified as impaired on the CAT but not on the extensive test (% missed with 

Extensive). 

Neuropsychological tests % Intact % Impaired R2 
% missed 

with CAT 

% missed with 

Extensive 

Repetition PALPA 9 12.50 87.50 
0.92 15 0 

 CAT Word 27.50 72.50 

 PALPA 8 - - 
0.67 - - 

 CAT Non-word 27.50 72.50 

Digit Span Wechsler 

(forward) 
17.50 82.50 

0.71 15 0 
 CAT (forward) 32.50 67.50 

Naming Cambridge 

Naming Test 
10.00 90.00 

0.89 17.5 5 
 CAT Objects 22.50 77.50 

 Boston Naming 

Test 
5.00 95.00 

0.84 20 2.5 
 CAT Objects 22.50 77.50 

Comprehension Cambridge 

Spoken WPM 
57.50 42.50 

0.44 17.5 5 
 CAT spoken 

WPM 
70.00 30.00 

 Cambridge 

Written WPM 
57.50 42.50 

0.56 7.5 17.5 
 CAT written 

WPM 
47.50 52.50 

 96 Synonyms 15.00 85.00 
0.65 35 2.5 

 CAT written 47.50 52.50 
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WPM 

 96 Synonyms 15.00 85.00 

0.28 62.5 0  CAT spoken 

WPM 
77.50 22.50 

 Camel and 

Cactus (pictures) 
47.50 52.50 

0.43 30 0 
 CAT Semantic 

memory 
77.50 22.50 

Abbreviations: Comprehension aphasia test (CAT), Psycholinguistic assessment of language 

processing in aphasia (PALPA) and word-to-picture matching (WPM). 
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Section 4. 
Table 4. Neural correlates for PCA factors after accounting for lesion volume 

Battery Component 

Cluster 

(no. of 

voxels) Anatomy 

Z-

score 

MNI co-ordinates 

x y z 

Extensive 

(all cases) 

Phonology 2123 Supramarginal posterior L 4.05 -48 -44 12 

  
Superior Longitudinal fasciculus L 3.97 -45 -44 -2 

   
Central operculum L 3.91 -47 -9 3 

   
Planum polare L 3.55 -44 -9 -14 

   
Inferior frontal occipital fasciculus L 3.52 -33 -32 2 

   
Inferior frontal occipital fasciculus L 3.49 -41 -17 -12 

   
Inferior longitudinal fasciculus L 3.47 -42 -24 -6 

   
Superior temporal posterior L 3.34 -54 -30 5 

   
Planum polare L 3.28 -47 -17 -3 

   
Middle temporal anterior  L 3.26 -51 -6 -18 

   
Middle temporal temporoccipital L 3.13 -54 -45 -5 

 
Semantics 1686 Amygdala L 4.49 -35 -11 -17 

   
Inferior longitudinal fasciculus L 4.06 -41 -2 -30 

   
Inferior longitudinal fasciculus L 3.58 -47 -18 -18 

   
Accumbens L 3.2 -32 0 -17 

  
724 Frontal orbital L 4.45 -38 24 -24 

   
Temporal pole L 4.42 -47 23 -20 

   
Frontal orbital L 3.87 -39 17 -18 

   
Frontal orbital L 3.22 -39 27 -17 

  
1161 Middle temporal temporoccipital L 3.98 -44 -51 3 

   
Inferior frontal occipital fasciculus L 3.81 -29 -77 11 

   
Lateral occipital Superior L 3.55 -35 -78 17 

   
Lateral occipital inferior L 3.55 -38 -65 11 

   
Forceps major L 3.32 -26 -69 20 

   
Inferior longitudinal fasciculus L 3.23 -44 -42 -11 

 
Executive 3033 Lateral occipital Superior L 4.96 -35 -80 18 

   
Forceps major L 4.85 -20 -86 8 

   
Forceps major L 4.21 -29 -72 14 

   
Lateral occipital Superior L 4.17 -27 -87 11 

   
Supracalcarine L 3.95 -26 -63 21 

   
Lateral occipital inferior L 3.94 -35 -77 8 

   
Occipital pole L 3.92 -8 -93 6 

   
Inferior longitudinal fasciculus L 3.74 -32 -77 0 

   
Lateral occipital Superior L 3.33 -41 -69 18 
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Lateral occipital inferior L 3.25 -42 -72 6 

  
1437 Postcentral R 4.4 45 -23 60 

   
Postcentral R 4.39 26 -36 66 

   
Precentral R 4.39 17 -29 69 

   
Precuneous R 3.83 8 -44 51 

   
Postcentral R 3.74 38 -27 54 

   
Postcentral R 3.72 12 -42 63 

   
Postcentral R 3.64 12 -39 72 

   
Precentral R 3.43 15 -27 60 

   
Precentral R 3.41 38 -21 63 

   
Postcentral R 3.38 50 -17 45 

   
Postcentral R 3.12 39 -20 44 

 
Speech quanta 703 Central operculum L 4.06 -56 -8 11 

   
Postcentral L 3.69 -68 -8 14 

 
    Precentral L 3.35 -60 -2 27 

Extensive 

(subgroup) 

Phonology 506 Supramarginal posterior L 3.9 -56 -45 41 

  
Supramarginal posterior L 3.66 -65 -50 35 

   
Supramarginal posterior L 3.61 -65 -42 44 

   
Supramarginal posterior L 3.49 -59 -53 47 

  
805 Superior Longitudinal fasciculus L 3.88 -47 -45 32 

   
Supramarginal posterior L 3.77 -47 -47 23 

   
Supramarginal posterior L 3.64 -47 -45 9 

   
Superior Longitudinal fasciculus L 3.56 -38 -51 18 

   
Superior Longitudinal fasciculus L 3.47 -39 -42 14 

 
Semantics 469 Frontal orbital L 4.42 -24 17 -27 

   
Temporal pole L 3.59 -48 23 -18 

   
Frontal orbital L 3.4 -18 24 -24 

  
3211 Supramarginal posterior L 4.13 -62 -53 33 

   
Middle temporal temporoccipital L 4 -51 -45 -5 

   
Inferior longitudinal fasciculus L 3.87 -44 -45 -9 

   
Supramarginal anterior  L 3.8 -65 -41 26 

   
Superior temporal posterior L 3.76 -63 -41 9 

   
Supramarginal posterior L 3.75 -60 -48 18 

   
Planum temporale L 3.74 -48 -39 18 

   
Supramarginal posterior L 3.65 -51 -50 24 

   
Superior temporal posterior L 3.63 -69 -35 11 

   
Middle temporal temporoccipital L 3.61 -47 -51 11 

   
Superior temporal posterior L 3.5 -54 -42 5 

   
Planum temporale L 3.34 -57 -32 9 

   
Superior temporal posterior L 3.32 -59 -27 -2 
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Middle temporal posterior L 3.27 -59 -32 -12 

   
Superior temporal posterior L 3.21 -68 -17 -2 

  
511 Lateral occipital inferior R 4.06 32 -81 -24 

   
Occipital fusiform anterior  R 3.96 20 -80 -23 

   
Lateral occipital inferior R 3.79 30 -90 -26 

 
Executive 2593 Lateral occipital inferior L 4.62 -26 -89 6 

   
Lateral occipital inferior L 4.5 -42 -72 8 

   
Lateral occipital inferior L 4.26 -35 -78 9 

   
Lateral occipital Superior L 4.16 -33 -81 17 

   
Lateral occipital Superior L 3.77 -39 -75 20 

   
Temporal occipital fusiform L 3.62 -36 -48 -12 

   
Lateral occipital inferior L 3.45 -45 -81 9 

   
Inferior longitudinal fasciculus L 3.35 -38 -56 -5 

  
391 Middle frontal R 4.57 33 33 39 

  
326 Superior frontal R 4.5 21 32 54 

   
Superior frontal R 4.14 14 32 62 

   
Frontal pole R 3.11 14 38 53 

  
437 Precuneous R 4.04 12 -57 65 

   
Lateral occipital Superior R 3.68 20 -63 66 

   
Superior parietal Robule R 3.64 32 -54 65 

 
Speech quanta 468 Postcentral L 3.28 -66 -6 15 

   
Precentral L 3.27 -63 0 32 

   
Precentral L 3.19 -60 0 18 

 
    Central operculum L 3.05 -54 -9 9 

Reduced 

(all cases) 

Phonology 472 Superior Longitudinal fasciculus L 3.71 -47 -47 -3 

  
Supramarginal posterior L 3.58 -47 -45 9 

 
Semantic 4620 Middle temporal temporoccipital L 4.51 -44 -51 5 

   
Uncinate fasciculus L 4.35 -38 -6 -23 

   
Amygdala L 4.3 -35 -12 -17 

   
Inferior longitudinal fasciculus L 4.1 -41 0 -30 

   
Superior Longitudinal fasciculus L 3.83 -42 -41 8 

   
Middle temporal temporoccipital L 3.69 -39 -63 11 

   
Inferior longitudinal fasciculus L 3.69 -47 -18 -18 

   
Middle temporal posterior L 3.67 -57 -32 -12 

   
Inferior frontal occipital fasciculus L 3.63 -35 -29 -2 

   
Inferior temporal posterior L 3.44 -50 -44 -17 

   
Planum polare L 3.37 -47 -17 -5 

   
Planum temporale L 3.25 -54 -36 11 

  
1185 Temporal pole L 4.36 -50 23 -20 

   
Temporal pole L 4.3 -42 24 -23 
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Frontal orbital L 3.97 -38 15 -20 

   
Temporal pole L 3.8 -56 5 -27 

   
Temporal pole L 3.33 -50 14 -20 

   
Temporal pole L 3.29 -60 5 -3 

   
Frontal orbital L 3.29 -29 21 -29 

   
Temporal pole L 3.24 -41 18 -36 

  
447 Lateral occipital Superior L 3.94 -30 -77 15 

   
Lateral occipital Superior L 3.58 -26 -69 23 

 
Exeutive 409 Postcentral R 4.5 48 -21 59 

   
Precentral R 3.76 38 -21 65 

   
Postcentral R 3.38 39 -26 56 

  
1016 Precentral R 4.45 17 -29 71 

   
Postcentral R 4.42 26 -36 66 

   
Postcentral R 4.09 12 -38 74 

   
Postcentral R 3.67 12 -42 63 

   
Precentral R 3.64 15 -29 62 

   
Precuneous R 3.58 8 -44 51 

  
1937 Lateral occipital Superior L 4.22 -33 -80 18 

   
Forceps major L 4.12 -20 -86 8 

   
Lateral occipital inferior L 4.01 -24 -89 2 

   
Occipital pole L 4.01 -8 -92 6 

   
Lateral occipital Superior L 3.95 -27 -87 11 

   
Lateral occipital Superior L 3.59 -36 -68 17 

   
Forceps major L 3.53 -29 -72 14 

   
Supracalcarine L 3.52 -26 -63 23 

   
Lateral occipital inferior L 3.52 -35 -78 8 

   
Lateral occipital inferior L 3.47 -32 -78 0 

 
Speech quanta 579 Central operculum L 3.94 -57 -8 11 

   
Postcentral L 3.59 -68 -8 12 

 
    Precentral L 3.29 -60 -2 27 

Reduced 

(subgroup) 

Phonology 551 Supramarginal posterior L 4.12 -57 -45 42 

  
Supramarginal posterior L 3.65 -65 -42 44 

   
Supramarginal posterior L 3.59 -59 -53 47 

   
Supramarginal posterior L 3.44 -63 -50 36 

   
Supramarginal posterior L 3.24 -45 -51 47 

   
Angular L 3.21 -50 -56 54 

 
Semantic 6727 Inferior longitudinal fasciculus L 4.74 -42 -45 -9 

   
Inferior longitudinal fasciculus L 4.67 -36 -51 -11 

   
Middle temporal temporoccipital L 4.37 -53 -45 -5 

   
Forceps major L 4.27 -29 -75 14 
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Middle temporal temporoccipital L 4.19 -47 -51 11 

   
Middle temporal posterior L 3.94 -57 -29 -12 

   
Inferior longitudinal fasciculus L 3.92 -44 -32 -15 

   
Lateral occipital inferior L 3.84 -39 -66 6 

   
Angular L 3.73 -60 -50 17 

   
Supramarginal posterior L 3.73 -53 -44 20 

   
Middle temporal posterior L 3.7 -57 -21 -17 

   
Inferior temporal temporoccipital L 3.69 -41 -62 -2 

   
Supramarginal posterior L 3.64 -65 -50 29 

   
Inferior longitudinal fasciculus L 3.59 -47 -24 -14 

   
Superior temporal posterior L 3.57 -62 -38 3 

   
Temporal fusiform posterior L 3.57 -38 -33 -23 

   
Superior temporal posterior L 3.56 -57 -24 -3 

   
Planum temporale L 3.52 -56 -32 9 

   
Planum temporale L 3.52 -42 -41 11 

   
Supramarginal anterior  L 3.51 -66 -39 26 

   
Superior temporal posterior L 3.48 -68 -32 9 

   
Superior temporal posterior L 3.28 -68 -39 15 

   
Superior temporal posterior L 3.22 -68 -20 -2 

  
160 Amygdala L 3.8 -32 -30 -8 

   
Brain Stem 3.65 -24 -24 -2 

 
Exeutive 520 Postcentral R 4.23 47 -23 59 

   
Precentral R 4.2 26 -23 62 

   
Precentral R 3.73 15 -27 72 

   
Precentral R 3.6 33 -27 56 

   
Postcentral R 3.56 41 -29 63 

   
Corticospinal R 3.3 18 -20 56 

  
1706 Lateral occipital inferior L 4.13 -26 -89 5 

   
Lateral occipital inferior L 3.85 -41 -74 11 

   
Inferior longitudinal fasciculus L 3.77 -35 -71 6 

   
Lateral occipital Superior L 3.74 -32 -77 12 

   
Inferior longitudinal fasciculus L 3.56 -36 -62 0 

   
Inferior frontal occipital fasciculus L 3.48 -29 -78 5 

   
Inferior longitudinal fasciculus L 3.48 -39 -51 -6 

   
Lateral occipital Superior L 3.37 -35 -86 14 

   
Lateral occipital Superior L 3.31 -39 -74 20 

 
Speech quanta 493 Precentral L 3.53 -62 0 33 

   
Postcentral L 3.5 -66 -6 15 

 
    Precentral L 3.5 -65 0 24 

CAT Phonological 1785 Supramarginal posterior L 4.32 -56 -45 41 
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(subgroup) severity 
 

Angular L 4.08 -59 -54 47 

   
Supramarginal posterior L 3.91 -47 -47 23 

   
Supramarginal posterior L 3.88 -47 -45 9 

   
Supramarginal posterior L 3.88 -65 -42 44 

   
Supramarginal posterior L 3.72 -48 -48 35 

   
Supramarginal posterior L 3.7 -65 -51 36 

   
Superior Longitudinal fasciculus L 3.68 -38 -51 18 

   
Superior Longitudinal fasciculus L 3.59 -39 -42 14 

   
Angular L 3.34 -53 -56 53 

   
Superior Longitudinal fasciculus L 3.22 -44 -39 2 

   
Angular L 3.11 -47 -53 47 

 
Executive 

severity 

3197 Lateral occipital inferior L 5.32 -26 -87 3 

  
Lateral occipital Superior L 4.65 -26 -84 12 

   
Lateral occipital inferior L 4.33 -38 -80 11 

   
Lateral occipital inferior L 4.18 -42 -72 11 

   
Lateral occipital Superior L 4.05 -33 -89 11 

   
Inferior longitudinal fasciculus L 3.43 -39 -54 -5 

   
Middle temporal temporoccipital L 3.31 -44 -63 11 

   
Lateral occipital Superior L 3.16 -26 -62 27 

  
387 Frontal pole R 5.24 30 44 27 

   
Frontal pole R 4.57 36 35 23 

   
Frontal pole R 3.33 26 44 17 

  
711 Parietal operculum R 5.09 38 -30 18 

   
Planum temporale R 4.84 42 -32 9 

   
Planum polare R 4.09 45 -21 2 

   
Pallidum R 3.7 29 -23 8 

   
Inferior frontal occipital fasciculus R 3.41 33 -23 -2 

  
383 Hippocampus L 4.64 0 -35 -26 

   
Hippocampus L 4.26 0 -27 -29 

   
Hippocampus L 3.77 5 -30 -20 

  
511 Precuneous R 4.55 8 -69 24 

   
Precuneous R 4.34 6 -60 14 

   
Precuneous R 4.16 9 -75 35 

  
628 Postcentral R 4.5 47 -24 59 

   
Precentral R 4.4 26 -18 57 

   
Corticospinal R 4.2 20 -29 51 

  
342 Hippocampus R 4.15 23 -11 -21 

  
365 Forceps minor R 4.11 11 32 -6 

   
Forceps minor R 3.9 15 36 2 

   
Frontal medial R 3.76 9 44 -17 
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      Frontal medial R 3.63 11 35 -14 
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Section 5. 

  

Figure 1. VBCM results for all principal components for each test battery. The components 

for each column were entered simultaneously and with no additional covariates. The results 

are thresholded using p < .001 voxelwise with family wise error cluster correction p < .05.  

The rows represent each principal component; phonological skill / severity, semantic skill, 

executive skill/severity and speech quanta. The grey patches in the final column indicate that 

there were no corresponding CAT components for semantic skill and speech quanta. 
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