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Abstract The genotype of an individual is an important predictor of their immune function, 
and subsequently, their ability to control or avoid infection and ultimately contribute offspring 
to the next generation. However, the same genotype, subjected to different intrinsic and/or 
extrinsic environments, can also result in different phenotypic outcomes, which can be missed 
in controlled laboratory studies. Natural wildlife populations, which capture both genotypic 
and environmental variability, provide an opportunity to more fully understand the phenotypic 
expression of genetic variation. We identified a synonymous polymorphism in the high-affinity 
Immunoglobulin E (IgE) receptor (GC and non-GC haplotypes) that has sex-dependent effects 
on immune gene expression, susceptibility to infection, and reproductive success of individuals 
in a natural population of field voles (Microtus agrestis). We found that the effect of the GC 
haplotype on the expression of immune genes differed between sexes. Regardless of sex, both 
pro-inflammatory and anti-inflammatory genes were more highly relatively expressed in individ-
uals with the GC haplotype than individuals without the haplotype. However, males with the GC 
haplotype showed a stronger signal for pro-inflammatory genes, while females showed a stronger 
signal for anti-inflammatory genes. Furthermore, we found an effect of the GC haplotype on the 
probability of infection with a common microparasite, Babesia microti, in females – with females 
carrying the GC haplotype being more likely to be infected. Finally, we found an effect of the 
GC haplotype on reproductive success in males – with males carrying the GC haplotype having 
a lower reproductive success. This is a rare example of a polymorphism whose consequences we 
are able to follow across immunity, infection, and reproduction for both males and females in a 
natural population.

Editor's evaluation
This study provides an unusually comprehensive analysis of the associations between polymorphism 
in an immune gene, the immunoglobulin E receptor Fcer1a, and immune responses, resistance to 
infection, and reproductive fitness in a wild rodent population. The investigators find that these 
effects appear to be sex-specific. This study provides critical observations of the possible conse-
quences of immune polymorphisms in wild populations and should be of interest to immunologists, 
evolutionary biologists, and ecologists investigating genotype-phenotype relationships and poten-
tial life-history tradeoffs.
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Introduction
In order for an individual to control or avoid infection and ultimately contribute offspring to the next 
generation, they must have a well-functioning immune system (Møller and Saino, 2004). An individ-
ual’s immune function is in part determined by their genotype (e.g., Paterson et al., 1998; Wanelik 
et al., 2018; Turner et al., 2011). Individuals within a population differ from each other in the geno-
types they carry, with the potential for these different genotypes to affect the activity of different 
immune components, and thereby influence susceptibility to infection and reproduction and survi-
vorship. Indeed, variability in immune responses to infection is well-characterized. The phenotypic 
expression of a genotype is dependent on the environment, including the sex of an individual (intrinsic 
environment) and exposure to infection (extrinsic environment). Since capturing genotypic and envi-
ronmental variability in controlled laboratory studies is problematic, natural wildlife populations have 
been proposed as models in which to understand the phenotypic expression of genetic variation and 
its consequences for susceptibility to infection and reproduction.

Studies of natural populations have explored the effects of genotype on immune phenotype and 
have observed consequences for susceptibility to infection. Most notably, variability in the genes of 
the major histocompatibility complex (MHC) has been associated with resistance to intestinal nema-
todes in domestic sheep (Paterson et al., 1998) and with resistance to malaria, hepatitis, and AIDS 
in humans (Hill et al., 1991; Carrington et al., 1999; Thursz et al., 1997). The role of variability else-
where in the genome, for shaping immune phenotype, has also been studied (Wanelik et al., 2018; 
Turner et  al., 2011). However, it remains challenging to follow the consequences of a genotypic 
effect for immunity, infection, and reproduction and to account for any sex-dependent expression of a 
genotype. This is because of the difficulty in obtaining phenotypic data across immune, infection, and 
reproductive traits, especially for large enough sample sizes to test for data-hungry genotype by sex 
interactions (Ober et al., 2008). In many cases, sex and other environmental factors are considered 
as a confounding variable to be controlled for in order not to hide any subtle genetic associations 
(Paterson et al., 1998). Other studies focus on a single sex for the sake of simplicity (Jackson et al., 
2014). More recently, however, there has been a growing body of large-scale field studies of natural 
populations able to apply genetic and immunological methods to follow large numbers of individuals, 
exposed to a challenging environment and with varying genetic backgrounds, throughout their lives. 
This allows us to make a more complete assessment of the impacts of genotype throughout the life of 
an individual, whether male or female. For example, Graham et al., 2010 found evidence for heritable 
variation in immunity associated with sex-dependent effects on Soay sheep reproduction. However, 
we know of no documented example of a polymorphism affecting immunity, susceptibility to infec-
tion, and reproduction in a natural population investigated in males and females. Here, we use a wild 
rodent, the field vole (Microtus agrestis), as a model in which to do this. Wild rodents, in particular, 
offer an opportunity to quickly follow large numbers of individuals throughout their lives, given their 
short lifespans. They also offer the opportunity to draw on the immunological and genetics resources 
developed for laboratory rodents, while providing a much more realistic ecological model of human 
populations (Turner et al., 2014; Turner and Paterson, 2013).

Immunoglobulin E (IgE)-mediated responses are associated with defense against helminths 
(Gounni et al., 1994) and with allergy (Tomassini et al., 1991). They are controlled by the high-affinity 
IgE receptor, FCER1, which is found on the surface of various immune effector cells, for example, 
mast cells, basophils, and eosinophils (Daeron and Nimmerjahn, 2014). In humans, naturally occur-
ring polymorphisms in FCER1 are known to affect an individual’s serum IgE levels, with consequences 
for their susceptibility to infection (Weidinger et al., 2008; Granada et al., 2012) and their risk of 
developing inflammatory disease (Hasegawa et al., 2003; Potaczek et al., 2006; Zhou et al., 2012; 
Niwa et al., 2010). Furthermore, sex differences in serum IgE levels (Weiss et al., 2006) and the inci-
dence of IgE-mediated inflammatory disease (Chen et al., 2008) have been documented in humans, 
suggesting that any polymorphism in this pathway is likely to experience different contexts in males 
and females. Indeed, one study found evidence for a polymorphism in the Fcer1a gene (the alpha 
chain of FCER1) whose association with susceptibility to systemic lupus erythematosus (a chronic 
inflammatory disease) differed between males and females (Yang et al., 2013).

In a previous study of a natural population of M. agrestis, we found that males carrying the GC haplo-
type of the Fcer1a gene expressed the transcription factor GATA3 at a lower level than males carrying 
non-GC haplotypes (Wanelik et al., 2018). GATA3 is a biomarker of tolerance to macroparasites in 
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mature males in our population (macroparasite infection gives rise to increased expression of GATA3, 
which gives rise to improved body condition and survival; Jackson et al., 2014). Here, we explore 
the effects of this GC haplotype further in both males and females to analyze the effect of genotype 
acting across immune gene expression, infection susceptibility and reproductive success.

Results
We sampled a natural population of M. agrestis in Kielder Forest, Northumberland, UK, over 3 years 
(2015–2017) and across seven different sites. Our study involved a cross-sectional component (n = 317 
destructively sampled voles) and a longitudinal component (n = 850 marked individuals monitored 
through time, with n = 2387 sampling points). We tested the consequences of the GC haplotype 
of the Fcer1a gene using both cross-sectional and longitudinal components of our study. As well as 
the GC haplotype (present at a frequency of 0.08), three other haplotypes were present in our study 
population: AC haplotype, AT haplotype, and GT haplotype, present at frequencies of 0.81, 0.10, and 
0.01, respectively. The two single-nucleotide polymorphisms (SNPs) composing the haplotype were 
found to be tightly linked (r2 = 0.50; D’ = 0.70).

The GC haplotype has effects on inflammation that differ between 
sexes
In humans, naturally occurring polymorphisms in the Fcer1a gene have previously been linked to inflam-
matory disease (Hasegawa et al., 2003; Potaczek et al., 2006; Zhou et al., 2012; Niwa et al., 2010). 
Therefore, we used the cross-sectional component of our study to test the effects of the GC haplotype 
on inflammation in males and females. Differential gene expression (DGE) analysis was performed 
on unstimulated splenocytes taken from 53 males and 31 females assayed by RNASeq, with the aim 
of identifying individual genes that were differentially expressed between those individuals with and 
without a copy of the GC haplotype. This DGE analysis showed that the identity of top differentially 
expressed genes differed between the sexes. In males, the top differentially expressed immune gene 
was the cytokine, Il33 (log fold change [logFC] = 2.76, p<0.001, q < 0.001; Appendix 1—table 2) 
while in females it was the suppressor of cytokine signaling Socs3 (logFC = 1.07, p<0.001, q = 0.05; 
Appendix 1—table 3). Looking at the ranking of each top differentially expressed immune gene in the 
opposite sex strengthens the case for differing effects in males and females, with Il33 ranked markedly 
lower in females (rank = 8224/12904, logFC = 0.29, p=0.70, q = 1.00) and Socs3 markedly lower in 
males (rank = 10886/12904, logFC = –0.05, p=0.84, q = 1.00). Il33 is commonly associated with the 
anti-helminthic response (Liew et al., 2010) and Socs3 with regulation of the immune response more 
broadly (Carow and Rottenberg, 2014). Given the link between Il33 and the antihelminthic response 
(and more generally, IgE-mediated responses and the antihelminthic response), we repeated the DGE 
analysis while controlling for cestode burden, but this had little effect on our results (same top differ-
entially expressed immune genes; see Appendix 1—table 4 and Appendix 1—table 5), suggesting 
that these effects were not driven by differences in cestode infection.

Both Il33 and Socs3 also share an association with the inflammatory response (Carow and Rotten-
berg, 2014; Cayrol and Girard, 2014). While Il33 positively regulates this response (appearing in the 
gene set GO:0050729), Socs3 negatively regulates it (GO:0050728). To test whether these effects on 
the inflammatory response were limited to these genes or were more widespread, we performed a 
gene set enrichment analysis (GSEA) that looked at the rankings of all genes present in each of these 
gene sets (GO:0050729 and GO:0050728). This analysis showed that both gene sets were more highly 
relatively expressed in individuals with the GC haplotype than individuals without the haplotype, and 
that this was true for both males and females. However, males with the GC haplotype showed a 
stronger signal for genes that positively regulate the inflammatory response (GO:0050729: p=0.007; 
GO:0050728: p=0.04; Figure  1A, upper panel) while females with the GC haplotype showed a 
stronger signal for genes that negatively regulate the inflammatory response (GO:0050728: p=0.001; 
GO:0050728: p=0.04; Figure 1A, lower panel).

To further explore these effects on the inflammatory response, we used an independent dataset for 
males and females whose spleens were stimulated with two immune agonists and assayed by Q-PCR 
(for a panel of 18 immune genes with limited redundancy; see 'Materials and methods' for how these 
genes were selected). From this ex vivo assay, one can gain insight into the types of immune response 
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that could be made to a pathogen in vivo (see 'Materials and methods' for details). Although our 
panel of genes did not include Il33 or Socs3, it did include other genes associated with the inflamma-
tory response, including Il17a, Ifng, Il1b, Il6, and Tnfa. We found that the effect of the GC haplotype 
on the stimulated expression levels of Il17a, a pro-inflammatory cytokine involved in the antibacterial 
response, displayed a significant interaction with sex (genotype by sex interaction in follow-up linear 
mixed effects model [LMM], likelihood ratio test [LRT] p=0.001). While females with the GC haplotype 
expressed lower levels of Il17a (estimate = –0.12, 95% CI = −0.19 to −0.04), males with the GC haplo-
type did not differ in their expressed levels of Il17a (estimate = 0.03, 95% CI includes zero = –0.02 to 
0.08; Appendix 1—table 6 and Appendix 1—table 7).

The GC haplotype affects oxidative stress
Inflammation and oxidative stress are closely related and often lead to pathology (Biswas, 2016). 
To test whether the effects of the GC haplotype on inflammation may be having knock-on effects 
on oxidative stress, we again used the cross-sectional component of our study. We tested the effect 
of the GC haplotype on antioxidant superoxide dismutase 1 (SOD1) enzymatic activity in males and 
females. SOD1 is one of the main antioxidative enzymes within the antioxidative enzyme system (Sun 
et al., 1989). We found that (irrespective of sex) individuals with the AT haplotype had lower SOD1 
activity compared with other haplotypes, including the GC haplotype (p=0.04; Appendix 1—table 8).

The GC haplotype affects susceptibility to Babesia infection in females
We then used the longitudinal component of our study to test the effects of the GC haplotype on 
the probability of infection with common parasites known to infect our study population: two micro-
parasites Babesia microti and Bartonella spp. and a range of macroparasites (ticks, fleas, and cestodes). 
We found an effect of the GC haplotype on the probability of infection with B. microti, which displayed 

Figure 1. Effects of GC haplotype (hGC). Upper panel: males. Lower panel: females: (A) Unstimulated immune gene expression: Barcode plots showing 
enrichment of the GO terms GO:0050729 (pro-inflammatory genes) and GO:0050728 (anti-inflammatory genes) in unstimulated splenocytes taken from 
individuals with (hGC+) vs. without (hGC-) the haplotype, showing that males with the haplotype have a pro-inflammatory bias, whereas females have 
an anti-inflammatory bias. In each plot, x-axis shows log fold change (logFC) in hGC+ vs. hGC-, black bars represent genes annotated with the GO 
terms and the worm shows relative enrichment. (B) Susceptibility to infection: association between hGC and the odds of infection with Babesia microti, 
showing that females with the haplotype have an increased susceptibility to infection (from a GLMM). (C) Reproduction: association between hGC and 
reproductive success, showing that males with the haplotype have lower reproductive success (from a GLM) (error bars represent ± standard error; 
*p<0.05; **p<0.01; see Table 1 for sample sizes). GLM = generalized linear model; GLMM = generalized linear mixed effects model.
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a marginally significant interaction with sex (genotype by sex interaction, LRT p=0.048; Appendix 1—
table 9). While females with the GC haplotype were more likely to be infected with B. microti (log 
odds ratio = 1.25, 95% CI = 0.44–2.07; Figure 1B, lower panel), males with the GC haplotype did 
not differ in their susceptibility to infection (log odds ratio = 0.14, 95% CI includes zero = –0.76 to 
1.03; Figure 1B, upper panel). However, we found no effect of the haplotype (interactive or not) 
on the probability of infection with the other parasites in our population (Appendix 1—table 10, 
Appendix 1—table 11 and Appendix 1—table 17).

The GC haplotype reduces male reproductive success
We genotyped both cross-sectional and longitudinal voles for 114 SNPs and used this dataset to 
construct a pedigree. We estimated each individual's reproductive success by counting the number of 
offspring it produced according to this pedigree. We then tested the effects of the GC haplotype on 
this measure of reproductive success. We tried to run a single model with both sexes (as above) but 
resulting residual variances differed significantly between the sexes, which reflects the fact that male 
and female reproduction are inherently different traits. This made it impossible to formally test for a 
genotype by sex interaction, and so instead we ran a separate model for each sex. We found that 
males with the GC haplotype had an average of 2.2 fewer offspring than males without the haplotype 
(p=0.04; Appendix 1—table 12; Figure 1C, upper panel). Despite a larger sample size and lower 
variability in reproductive success, females with the GC haplotype did not differ significantly in their 
number of offspring (genotype term did not appear in best model; Appendix 1—table 13; Figure 1C, 
lower panel). This is suggestive of a significant genotype by sex interaction. We ran the same models 
including microparasite variables, but this had little effect on our results (see Appendix 1—table 14 
and Appendix 1—table 15), suggesting that these effects were not driven by differences in micro-
parasite infection.

Discussion
In this study, we describe a polymorphism in the high-affinity receptor for IgE with effects that act 
across immune gene expression, oxidative stress, susceptibility to infection, and ultimately reproduc-
tive success in a natural population. This begins to reveal how genotypic effects can have multiple 
effects on different phenotypic or life history traits for organisms living in the natural environment. 
Interestingly, effects often differed between sexes, with evidence for opposing effects in the sexes 
(unstimulated immune gene expression) and an effect present in one sex but not the other (stimulated 
immune gene expression, susceptibility to infection, and reproductive success). However, we cannot 
rule out that, in the case of susceptibility to infection and reproductive success, there was a smaller 
effect present in the opposite sex (in the same or opposite direction), which our analysis did not have 
sufficient power to detect.

In humans, naturally occurring polymorphisms in the high-affinity IgE receptor have previously 
been linked to inflammatory disease (Hasegawa et al., 2003; Potaczek et al., 2006; Zhou et al., 
2012; Niwa et al., 2010). Our work is consistent with this and suggests differing effects of this poly-
morphism on the inflammatory phenotype of males and females. While males with the GC haplotype 
showed a pro-inflammatory bias, females with the haplotype showed an anti-inflammatory bias. A 
previous study on another polymorphism in the human ortholog of Fcer1a also found evidence for 
sex-dependent effects on inflammatory disease (Yang et al., 2013). In order to fully understand this 
genotype by sex interaction, it is important to consider background differences in the inflammatory 
phenotypes of males and females. Females in this study were pregnant for a large proportion of their 
lives (57% of post-juvenile females were pregnant or lactating at the time of capture in the longitudinal 
component of our study). In mammals, including humans, pregnancy has been shown to be a largely 
anti-inflammatory state, with pregnant females suppressing inflammation. This is to protect the fetus 
from attack by the mother’s immune system (Wegmann et al., 1993). While testosterone in males has 
an anti-inflammatory effect (Bianchi, 2019), it also drives males to use more space (Davis et al., 2015) 
and to be more aggressive (Martínez-Sanchis et al., 2003). These behaviors might increase their rates 
of contact with other individuals, and with their environment, and hence their likelihood of infection 
and subsequent immune stimulation. We suggest that the polymorphism may be exaggerating back-
ground sex differences in inflammatory activity. Sex hormones have been implicated in the differential 
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expression of some autosomal genes in males and females (Mayne et al., 2016), and could be driving 
these opposing effects. Some of the differences in immune phenotype that we observed may also be 
driven by difference in parasite infection (although we accounted for cestode burden in a follow-up 
analysis, we cannot rule this out).

The effect of Fcer1a polymorphism on inflammatory responses may also, in turn, affect individual 
susceptibility to infection. This is consistent with a previous association found between IgE-mediated 
responses and defense against helminths (Gounni et al., 1994). Although we did not find an associ-
ation between macroparasite burden (including cestode burden) and the GC haplotype in this study, 
in our previous study, we showed that males with the GC haplotype had a lower level of an immuno-
logical marker of tolerance to ticks, fleas, and adult cestodes (i.e., they were less tolerant) (Wanelik 
et al., 2018). Here, we use data on infection incidence to show that, in a different context, the same 
haplotype is also associated with resistance to a microparasite, B. microti, in females. Although obser-
vational studies of this kind are not able to identify causal relationships, a realistic scenario is that 
females with the GC haplotype are more likely to be infected with B. microti (i.e., they are less resis-
tant) as a result of a lower pro-inflammatory to anti-inflammatory cytokine ratio. Pro-inflammatory 
cytokines (e.g., IL-6, IFN-γ, and TNF-α) may help to resist B. microti infection (Djokic et al., 2018). 
A lack or imbalance of these cytokines may hamper this resistance. The panel of parasites that we 
have measured is not exhaustive, and previous studies have highlighted the important role of species 
interactions in the parasite community in driving infection risk in this study population (Telfer et al., 
2010). B. microti may therefore represent a community of parasites, to which this haplotype affects 
resistance in females.

A fitness consequence of the GC haplotype was observed in reduced male reproductive success. 
A realistic scenario is that the larger cost incurred by males with the GC haplotype due to inflamma-
tion reduced their reproductive value, as reproducing and mounting a pro-inflammatory response 
are both costly activities (Sheldon and Verhulst, 1996). Another realistic scenario is that the posi-
tive effect of the GC haplotype on levels of oxidative stress (as indicated by a tendency for higher 
SOD1 activity) may have had a more detrimental effect in males, damaging sperm and reducing fertil-
izing success. Sperm competition can be an important feature in the reproduction of microtines, for 
example, meadow vole (M. pennsylvanicus) (Delbarco-Trillo and Ferkin, 2004), with males having to 
produce many sperm of high quality in order to successfully outcompete other males. Sperm are also 
highly susceptible to damage by reactive oxygen species (ROS) (Losdat et al., 2011). In addition, the 
heightened level of oxidative stress may have impaired olfactory sexual signals, for example, excretion 
of major urinary proteins (MUPs) making males less attractive to females and negatively impacting on 
mating success (Garratt et al., 2014).

Despite the immune system playing an important role in determining the health and reproductive 
fitness of an individual, natural selection has not converged on a single immune optimum. Instead, 
individuals in natural populations vary widely in their response to infection. Understanding why immu-
noheterogeneity is maintained is a key question in eco-immunology. Antagonistic selection, where 
a mutation is beneficial in some environmental contexts and harmful in others, is thought to be one 
mechanism by which balancing selection is generated, and genetic variation in immunity can be main-
tained within natural populations (Graham et  al., 2010). In samples collected between 2008 and 
2010, we previously identified four haplotypes at this locus, GC, AC, AT, and GT, at frequencies of 
0.12, 0.76, 0.07, and 0.05, respectively (Wanelik et al., 2018). Seven years on, these frequencies have 
remained relatively unchanged (0.08, 0.81, 0.10, and 0.01). The fact that the GC haplotype remains 
in the population, despite its detrimental effects on male reproductive success and female infection 
susceptibility, suggests that it may be under balancing selection.

In order to be under balancing selection though, the GC haplotype would need to confer some 
advantage. We were not able to find evidence for any such advantage in this study, but we can 
speculate on one. Microtines show cyclical population dynamics, alternating between a 'peak' phase 
(associated with good conditions and high vole densities) and a 'crash' phase (poor conditions and low 
vole densities). Selection pressures acting during these two phases will be very different. We found 
that the GC haplotype was associated with a pro-inflammatory bias in males, indicating higher invest-
ment in promoting inflammation. Thus, one possible scenario is that higher investment in promoting 
inflammation is disadvantageous in the 'peak' phase when the risk of parasitism is low due to dilution 
effects, and it pays not to waste energy mounting a stronger immune response that is unnecessary. 
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However, it might be advantageous in the 'crash' phase when conditions are poor, and the risk of 
parasitism is high due to the time-lagged transmission of parasite infectious stages that have accu-
mulated during the peak phase. Vole numbers were extremely low in our study area between 2012 
and 2013 (indicating a 'crash phase'). In 2014, vole numbers began to increase and by the beginning 
of 2015 (the start of our study) had reached a peak. Although vole numbers declined throughout our 
study period, they never reached the extremely low numbers recorded in 2012–2013 (X. Lambin, 
personal communication, 2016). This suggests that we sampled in the region of a 'peak' phase, when 
this investment was disadvantageous, and that if we sampled during a true 'crash' phase we might 
detect an advantage to the GC haplotype in males.

There is a growing interest in human genomic (or precision) medicine, with the potential to use 
a patient’s genotypic information to personalize their treatment. What we have shown here demon-
strates that considering genotype in isolation can be misleading as the same polymorphism can have 
different outcomes not only for the immune gene expression, but the susceptibility to infection and 
ultimate reproductive success of males and females.

Materials and methods
We studied M. agrestis in Kielder Forest, Northumberland, UK, using live-trapping of individual 
animals from natural populations. Trapping was performed from 2015 to 2017 across seven different 
sites, each a forest clear-cut. Access to the sites was provided by the Forestry Commission. At each 
site, 150–197 Ugglan small mammal traps (Grahnab, Gnosjo, Sweden) were laid out in a grid, spaced 
approximately 3–5 m apart. Our study was divided into longitudinal and cross-sectional components.

Longitudinal data
Every other week, traps were checked every day, once in the morning and once in the evening. Newly 
trapped field voles were injected with a Passive Integrated Transponder (PIT) tag (AVID, Uckfield, UK) 
for unique identification. This approach allowed us to build up a longitudinal record for voles that were 
caught on multiple occasions. A total of 850 voles were individually marked in this way. We also took a 
small tissue sample from the tail for genotyping of individuals and a drop of blood from the tail which 
we put into 500 μl of RNAlater (Fisher Scientific, Loughborough, UK) for use in parasite detection (see 
below).

Parasite detection
We quantified infections by microparasites (B. microti and Bartonella spp.) in blood samples taken 
from longitudinal animals using SYBR green based two-step reverse transcription quantitative PCR 
(Q-PCR) targeted at pathogen ribosomal RNA genes. Expression values were normalized to two host 
endogenous control genes: Ywhaz and Actb. Blood samples were derived from tail bleeds. RNA was 
extracted from blood samples stored in RNAlater at –70°C using the Mouse RiboPure Blood RNA 
Isolation Kit (Thermo Fisher, Waltham, MA) according to the manufacturer’s instructions and DNAse 
treated. It was then converted to cDNA using the High-Capacity RNA-to-cDNA Kit (Thermo Fisher), 
according to the manufacturer’s instructions. B. microti primer sequences targeting the 18S ribosomal 
RNA gene were as follows ​CTAC​​GTCC​​CTGC​​CCTT​​TGTA​ (forward primer sequence) and ​CCAC​​GTTT​​
CTTG​​GTCC​​GAAT​ (reverse primer sequence). Bartonella spp. primer sequences targeting the 16S 
ribosomal RNA gene were as follows: ​GATG​​AATG​​TTAG​​CCGT​​CGGG​ (forward primer sequence) and ​
TCCC​​CAGG​​CGGA​​ATGT​​TTAA​ (reverse primer sequences). Assays were pipetted onto 384-well plates 
by a robot (Pipetmax; Gilson, Middleton, WI) using a custom program and run on a QuantStudio 6-flex 
Real-Time PCR System (Thermo Fisher) at the machine manufacturer's default real-time PCR cycling 
conditions. Reaction size was 10 µl, incorporating 1 µl of template (diluted 1/20) and PrecisionFAST 
qPCR Master Mix (PrimerDesign, Chandler’s Ford, UK) with low ROX and SYBR green and primers at 
the machine manufacturer’s recommended concentrations. Alongside the pathogen assays, we ran 
assays for two host genes (see above) that acted as endogenous controls. For the pathogen assays, 
we used as a calibrator sample a pool of DNA extracted from 154 blood samples from different 
M. agrestis at our study sites in 2015 and 2016; these DNA extractions were carried out using the 
QIAamp UCP DNA Micro Kit (QIAGEN, Hilden, Germany) following the manufacturer’s instructions. 
For the Ywhaz and Actb assays, the calibrator sample was the same cDNA calibrator sample as 
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described below for other host gene expression assays. Relative expression values (normalized to the 
two host endogenous control genes and presumed to relate to the expression of pathogen ribosomal 
RNA genes and in turn to the force of infection) used in analyses below are RQ values calculated by 
the QuantStudio 6-flex machine software according to the ∆∆Ct method, indexed to the calibrator 
samples. Melting curves and amplification plots were individually inspected for each well replicate to 
confirm specific amplification. We validated our diagnostic results by comparing our PCR RQ values to 
independent data for a subset of voles from the cross-sectional component of our study with mapped 
genus-level pathogen reads from RNASeq analysis of blood samples (n = 44), finding that the two 
datasets strongly corroborated each other (Bartonella spp., Spearman’s ‍ρ‍ = 0.79, p<0.001, n = 44; B. 
microti, Spearman’s ‍ρ‍ = 0.88, p<0.001, n = 43).

Cross-sectional data
For the cross-sectional component of the study (which ran from 2015 to 2016 only), animals were 
captured and returned to the laboratory where they were killed by a rising concentration of CO2, 
followed by exsanguination. As our UK Home Office license did not allow us to sample overtly preg-
nant females in this way, there are fewer females than males present in this dataset. This component 
of the study allowed us to take a more comprehensive set of measurements and to culture cells and 
perform stimulatory assays on them. A small tissue sample was taken from the ear of cross-sectional 
animals for genotyping (see below).

Parasite detection
After culling, the fur of cross-sectional animals was examined thoroughly under a binocular dissecting 
microscope to check for ectoparasites, which were recorded as direct counts of ticks and fleas. Guts 
of cross-sectional animals were transferred to 70% ethanol, dissected, and examined under a micro-
scope for gastrointestinal parasites. Direct counts of cestodes (by far the dominant endohelminths in 
biomass) were recorded.

SOD1 measurement
Given the well-established link between inflammation, oxidative stress, and pathology (Biswas, 2016), 
we measured antioxidant enzymatic activity in blood samples taken from cross-sectional animals. We 
chose to measure superoxide dismutase 1 (SOD1) because it is one of the main antioxidative enzymes 
within the antioxidative enzyme system (Sun et al., 1989) and is clearly linked to changes in immune 
gene expression in laboratory mice (Marikovsky et  al., 2003). Assays were carried out using the 
Cayman Superoxide Dismutase kit and following the manufacturer’s instructions except where other-
wise indicated below. Blood pellets from centrifuged cardiac bleeds were stored at –70°C and thawed 
on ice prior to assay. A 20 μl aliquot from each pellet was lysed in 80 μl of ultrapure water and centri-
fuged (10,000 × g at 4 °C for 15 min) and 40 μl of the supernatant added to a 1.6× volume of ice-
cold chloroform/ethanol (37.5/62.5 [v/v]) (inactivating superoxide dismutase 2). This mixture was then 
centrifuged (2500 × g at 4°C for 10 min) and the supernatant removed and immediately diluted 1:200 
in kit sample buffer. A seven-point SOD activity standard was prepared (0, 0.005, 0.010, 0.020, 0.030, 
0.040, and 0.050 U/ml) and the assay conducted on a 96-well microplate with 10 μl of standard or 
sample, 200 μl of kit radical detector solution, and 20 μl of xanthine oxidase (diluted as per the manu-
facturer’s instructions) per well. Plates were then covered with a protective film, incubated at room 
temperature for 30 min on an orbital shaker, and read at 450 nm on a VERSAmax tunable absorbance 
plate reader (Molecular Devices, San Jose, CA), subtracting background and fitting a linear relation-
ship to the standard curve in order to estimate SOD activity in unknown samples.

Splenocyte cultures
Spleens of cross-sectional animals were removed, disaggregated, and splenocytes cultured under 
cell culture conditions equivalent to those used in Jackson et al., 2011. Unstimulated splenocytes, 
taken from 84 cross-sectional animals collected between July and October 2015, were initially used to 
assay expression by RNASeq (see below). We exposed splenocytes from the remaining cross-sectional 
animals to stimulation with anti-CD3 antibodies (Hamster Anti-Mouse CD3e, Clone 500A2 from BD 
Pharmingen, San Diego, CA) and anti-CD28 antibodies (Hamster Anti-Mouse CD28, Clone 37.51 from 
Tombo Biosciences, Kobe, Japan) at concentrations of 2 μg/ml and of 1 μg/ml, respectively, for 24 hr. 
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Costimulation with anti-CD3 and anti-CD28 antibodies was used to selectively promote the prolifer-
ation of T-cells (Frauwirth and Thompson, 2002; Wanelik et al., 2020). We assumed that this would 
reflect the potential response of T-cell populations in vivo. Stimulated splenocytes were used to assay 
expression by Q-PCR.

RNASeq
Full details of the methods used for RNA preparation and sequencing can be found in Wanelik et al., 
2018. Briefly, samples were sequenced on an Illumina HiSeq4000 platform. High-quality reads were 
mapped against a draft genome for M. agrestis (GenBank accession no. LIQJ00000000) and counted 
using featureCounts (Liao et al., 2014). Genes with average log counts per million, across all samples, 
of less than one were considered unexpressed and removed from the data (n = 8410). Following 
filtering, library sizes were recalculated, data were normalized, and MDS plots were generated to 
check for any unusual patterns in the data. The mean library size was 19 million paired-end reads 
(range = 3–71 million paired-end reads).

Q-PCR
We used SYBR green-based Q-PCR to measure the expression levels of a panel of 18 genes 
(Appendix 1—table 16) in splenocytes, from our cross-sectional animals, that had been stimulated 
with T-cell agonist anti-CD3 and anti-CD28 antibodies. We did this, in part, to validate our RNASeq 
results in an independent dataset. We used the observed expression profile as a general measure of 
the potential responsiveness of the immune system to an inflammatory stimulation in vivo. We note 
that the genetic focus of our study, Fcer1a, codes for the alpha chain protein of the high-affinity 
IgE receptor that is expressed on cells such as eosinophils, basophils, and mast cells (Daeron and 
Nimmerjahn, 2014). Although the high-affinity IgE receptor may not be expressed significantly by the 
T-cells preferentially stimulated in our cultures (but see Schadt, 2009), the principle that genetic vari-
ants functionally expressed in one cell type may affect the function of other cell types through molec-
ular interaction networks is embodied in the modern understanding of network biology (Schadt, 
2009; Barabási et al., 2011). Thus, the effect of polymorphism in Fcer1a, expressed in cells such as 
eosinophils, basophils, or mast cells, either in vivo prior to isolation, or in the ex vivo cultured sple-
nocyte population, could act indirectly on T-cells through various pathways, including via cytokine 
signaling (Rothenberg and Hogan, 2006; Akuthota et al., 2008; Villanueva, 2015). For example, 
eosinophils are known to promote helper T-cell activation and proliferation in ex vivo co-culture (Liu 
et al., 2006; Harfi et al., 2013) and in in vivo models (Shi et al., 2004). The choice of our panel of 
genes was informed by (i) known immune-associated functions in mice, combined with (ii) significant 
sensitivity to environmental or intrinsic host variables in our previous studies (Jackson et al., 2014; 
Jackson et al., 2011) or in a recent DGE analysis of RNASeq data (not reported here), and (iii) the aim 
of limited redundancy, with each gene representing a different immune pathway.

Primers (20 sets, including 2 endogenous control genes) were designed de novo and supplied by 
PrimerDesign (16 sets) or designed de novo in-house (4 sets) and validated (to confirm specific ampli-
fication and 100 ± 10% PCR efficiency under assay conditions). All PrimerDesign primer sets were 
validated under our assay conditions before use. The endogenous control genes (Ywhaz and Sdha) 
were selected as a stable pairing from our previous stability analysis of candidate control genes in M. 
agrestis splenocytes (Jackson et al., 2011). We extracted RNA from splenocytes conserved in RNAl-
ater using the RNAqueous Micro Total RNA Isolation Kit (Thermo Fisher), following the manufactur-
er’s instructions. RNA extracts were DNAse treated and converted to cDNA using the High-Capacity 
RNA-to-cDNA Kit (Thermo Fisher), according to the manufacturer’s instructions, including reverse 
transcription negative (RT-) controls for a subsample. SYBR green-based assays were pipetted onto 
384-well plates by a robot (Pipetmax, Gilson) using a custom program and run on a QuantStudio 6-flex 
Real-Time PCR System (Thermo Fisher) at the machine manufacturer's default real-time PCR cycling 
conditions. Reaction size was 10 µl, incorporating 1 µl of template and PrecisionFAST qPCR Master 
Mix with low ROX and SYBR green (PrimerDesign) and primers at the machine manufacturer’s recom-
mended concentrations. We used two standard plate layouts for assaying, each of which contained 
a fixed set of target gene expression assays and the two endogenous control gene assays (the same 
sets of animals being assayed on matched pairs of the standard plate layouts). Unknown samples were 
assayed in duplicate wells and calibrator samples in triplicate wells, and no template controls for each 
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gene were included on each plate. Template cDNA (see above) was diluted 1/20 prior to assay. The 
calibrator sample (identical on each plate) was created by pooling cDNA derived from across all sple-
nocyte samples. Samples from different sampling groups were dispersed across plate pairs, avoiding 
confounding of plate with the sampling structure. Gene relative expression values used in analyses 
are RQ values calculated by the QuantStudio 6-flex machine software according to the ∆∆Ct method, 
indexed to the calibrator sample. Melting curves and amplification plots were individually inspected 
for each well replicate to confirm specific amplification.

Longitudinal and cross-sectional data
Genotyping
We genotyped both cross-sectional and longitudinal animals for 346 SNPs in 127 genes. See Wanelik 
et al., 2018 for details of the approach used to select these SNPs. Our list included two synony-
mous and tightly linked (r2 = 0.50; D’ = 0.70) SNPs in the gene Fcer1a (the alpha chain of the high-
affinity receptor for IgE) on scaffold 582 (CADCXT010006977 in ENA accession GCA_902806775; 
see Appendix 1—table 1 for genomic location information), which we had previously identified as a 
candidate tolerance gene in a natural population of M. agrestis. In this previous work, we had iden-
tified four haplotypes at this locus present in our population: GC, AC, AT, and GT, at frequencies of 
0.12, 0.76, 0.07, and 0.05, respectively. We had also identified the GC haplotype as being of particular 
interest, given its significantly lower expression level of the transcription factor GATA3 (a biomarker 
of tolerance to macroparasites in our population) compared to the other haplotypes (Wanelik et al., 
2018). We concluded that this haplotype tagged a causal mutation in the coding sequence, or in the 
up- or downstream regulatory regions. DNA was extracted from a tail sample (longitudinal compo-
nent) or an ear sample (cross-sectional component) taken from the animal using DNeasy Blood and 
Tissue Kit (QIAGEN). Genotyping was then performed by LGC Biosearch Technologies (Hoddesdon, 
UK; http://www.biosearchtech.com) using the KASP SNP genotyping system. This included negative 
controls (water) and duplicate samples for validation purposes. The resulting SNP dataset was used 
for two purposes: (i) genotyping individuals within the locus of interest and (ii) pedigree reconstruction 
(see below).

Pedigree reconstruction
We used a subset of our SNP dataset to reconstruct a pedigree for both cross-sectional and longitu-
dinal animals using the R package Sequoia (Huisman, 2017). SNPs that violated the assumptions of 
Hardy–Weinberg equilibrium were removed from the dataset. For pairs of SNPs in high linkage disequi-
librium (most commonly within the same gene), the SNP with the highest minor allele frequency (MAF) 
was chosen. A minimum MAF cutoff of 0.1 and call rate of >0.7 was then applied, and any samples for 
which >50% of SNPs were missing were removed. This resulted in a final dataset including 114 SNPs 
– a sufficient number for very good performance of parentage assignment (Huisman, 2017).

Life history information, namely, sex and month of birth, was inputted into Sequoia where possible. 
Juvenile voles weighing less than 12 g on first capture were assigned a birth date 2 weeks prior to 
capture. Juvenile voles weighing between 12 and 15 g on first capture were assigned a birth date 
4 weeks prior to capture. Finally, adult voles breeding on first capture were assigned a birth date 
6 weeks prior to capture (minimum age at first breeding) (Begon et al., 2009; Burthe et al., 2010). 
Adult voles not breeding on first capture could not be assigned a birth date as it was not known 
whether they had previously bred or not. Virtually all samples (99%) were assigned a sex, and approxi-
mately half (54%) were assigned a birth month. As we sampled individuals from across seven different 
clear-cut areas of the forest, each several kilometers apart, these were assumed to be independent, 
closed populations with negligible dispersal. Site-specific pedigrees were therefore generated.

We assessed the accuracy of our reconstructed pedigrees by checking whether predicted parent–
offspring pairs met expectations given the biology of M. agrestis. As expected, the majority of 
predicted parent–offspring pairs (87%) were born in the same year. We also expected parents and 
offspring to overlap in space. Again, as expected, the majority of predicted parent–offspring pairs 
(92%) were, at some point, found along the same transects (horizontal or vertical). We also inspected 
log10 likelihood ratios (LLRs) for parent pairs as recommended in the user manual for Sequoia. Almost 
all LLRs were positive (n = 698/720 or 97% of LLRs) indicating confidence in our assignments. Indi-
viduals with vs. without our haplotype of interest did not differ in their probability of appearing in a 
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pedigree (‍χ
2
‍ = 0.09, d.f. = 1, p=0.76). For each individual that ended up in a pedigree, that is, with 

one or more relatives recorded (n = 652; site COL = 3; site BLB = 125; site GRD = 204; site CHE = 
137; site RAV = 16; site SCP = 90; site HAM = 77), the number of offspring was counted to provide 
a measure of their reproductive success. Few individuals were first trapped as juveniles, with the 
majority trapped as adults that had already recruited into the population. Our measure of reproduc-
tive success then more closely resembles the number of recruited (rather than newborn) offspring per 
individual. Half of the individuals present in our pedigrees (n = 325) were found to have no offspring. 
We expect the majority of these to be true zeros (representing actual reproductive failure) as we 
generally sampled a large proportion of the total population within clear-cuts. We also minimized the 
chance of false zeros by excluding those individuals (e.g., at the periphery of a study grid) that did not 
end up in a pedigree because we identified no relatives (including offspring), likely because we had 
not sampled in the right place.

Statistical analyses
Not all individuals appeared in all datasets; therefore, sample sizes (reported in Table 1) vary between 
analyses. All analyses were performed in R statistical software version 3.5.2 (R Development Core 
Team, 2018).

Differential gene expression analysis
DGE analysis was performed on filtered and normalized count data using the R package edgeR 
(Robinson et al., 2010), the aim being to identify individual genes that were differentially expressed 
between those individuals with and without a copy of the GC haplotype (i.e., a dominant model). Only 
those individuals for which haplotype could be inferred with certainty could be included (n = 53 males 

Table 1. Model specifications including, for each main model, covariates included in the full model, 
datasets used, and sample sizes (F = included as a fixed effect; R = included as a random effect).

DGE 
analysis

Haplotype association analyses

Response variable

Immune gene 
expression Parasite infection

Reproductive 
success

SOD1
activity

Covariates
Snout-vent length F F

Eye lens weight F F

Reproductive 
status F F F

Body condition F F F

Birth month F

Culled or not F

Site F; R (Il17a LMM) F (Macro); R (Micro) F F

Year F F F F

Season F; R (Il17a LMM) F (Macro); R (Micro) F

Individual ID R (Micro)

Assay plate R (Il17a LMM)

Dataset C C
C (Macro)
L (Micro) C+L C

Sample size ♀31 ♂53 Il17a LMM: ♀73 ♂220

Macro: ♀82 ♂235
B. microti: ♀1075 ♂1247
Bartonella spp.: ♀1283 
♂1104

♀419
♂232

♀81
♂227

C = cross-sectional; L = longitudinal; DGE = differential gene expression; LMM = linear mixed effects model.
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and n = 31 females; none of which were known to have two copies of the GC haplotype, hence the 
choice of a dominant model). Samples from different sexes were analyzed together. To test whether 
the top differentially expressed genes differed between the sexes, we included a dummy variable with 
four levels (males with haplotype, males without haplotype, females with haplotype, females without 
haplotype) and inspected the contrasts of interest (males with versus without haplotype; females with 
versus without haplotype). As this was an exploratory analysis, used in conjunction with more targeted 
measurements of immune gene expression (see below), model specification was kept as simple as 
possible and no covariates were initially included. However, in a follow-up DGE analysis we controlled 
for a key parasite variable (cestode burden).

Having confirmed a sex-dependent effect of the GC haplotype on the expression of some inflam-
matory genes (see 'Results') in the initial DGE analysis, we ran separate DGE analyses for males 
and females and tested more broadly for enrichment of pro- and anti-inflammatory genes in our 
results; more specifically, the Gene Ontology terms ‘positive regulation of inflammatory response’ 
(GO:0050729; n = 143) and ‘negative regulation of inflammatory response’ (GO:0050728; n = 149). 
The aim here was to answer the question: are pro- or anti-inflammatory genes more highly ranked rela-
tive to other genes, when we compare individuals with and without the GC haplotype, and does this 
also differ between the sexes? This GSEA was performed using the R package limma (Ritchie et al., 
2015), and genes were ranked on log fold change.

Haplotype association analyses
Following the exploratory DGE analysis, the GC haplotype was tested for associations with (i) gene 
expression assayed by Q-PCR to validate these results, (ii) macro- and microparasite infection to test 
whether the GC haplotype predicted an individual’s susceptibility to infection, and (iii) reproductive 
success to test whether the GC haplotype was associated with any reproductive costs. Given the well-
established link between inflammation and oxidative stress (Reuter et al., 2011; Collins, 1999), we 
also tested for an association between the GC haplotype and SOD1 activity.

For all analyses, this was initially attempted using the R package hapassoc (Burkett et al., 2006) 
in order to maximize sample size (see below). Hapassoc infers haplotypes on the basis of data from 
single SNPs and allows likelihood inference of trait associations with resulting SNP haplotypes and 
other attributes. It adopts a generalized linear model framework and estimates parameters using an 
expectation–maximization algorithm. Hapassoc models assumed an additive genetic model. If the 
haplotype combination of an individual cannot, with certainty, be inferred from its genotyping data 
(i) because it is heterozygous at two or more markers or (ii) because it has missing data for a single 
marker, the approach implemented in hapassoc is to consider all possible haplotype combinations for 
that individual. Standard errors accounting for this added uncertainty are calculated using the Louis, 
1982 method. We compared the GC haplotype against the other two major haplotypes (AC and 
AT). Another haplotype, the GT haplotype, was identified in the population but this was present at 
such low frequencies (frequency ≤ 0.01 among individuals for which haplotype could be inferred with 
certainty) that it was omitted from all analyses. Results reported in the text for macroparasites and 
SOD1 activity come from these hapassoc models.

However, there are some restrictions on model specification within hapassoc (e.g., random terms 
cannot be included, limited choice of error distributions), so this was followed up with regression 
models for some analyses. As in the DGE analysis, these regression models only included those indi-
viduals whose haplotype combination could be inferred with certainty. Results reported in the text 
for gene expression assayed by Q-PCR, microparasites, and reproductive success come from these 
regression models. Again, as in the DGE analysis, genotype was coded as the presence or absence 
of the GC haplotype (i.e., a dominant model). Regression models were run using the R package lme4 
(Bates et al., 2015) or glmmADMB (Skaug et al., 2016; Fournier et al., 2012).

Table 1 provides a summary of (hapassoc or regression) model specifications. As we found evidence 
for sex-dependent effect in the initial DGE analysis, with the exception of the model for reproductive 
success (see below), all models included a genotype by sex interaction that was retained if it improved 
model fit. All models also accounted for other biological and technical covariates (the choice of which 
was informed by our previous work, the literature, and/or our experimental design). Full regression 
models (including all covariates and interactions of interest) were reduced using backward stepwise 
deletion of nonsignificant terms to minimize Akaike’s information criterion (AIC), following the drop1 
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function. This was not possible for hapassoc models. Summary tables, including all estimates, standard 
errors, and z-statistics, are included in Appendix 1. Associated significance values are also included in 
these tables, except for LMMs and GLMMs, for which significance values were based on LRTs and are 
reported in the main text. Throughout, residuals from regression models were checked for approxi-
mate normality and homoscedasticity, and all covariates were tested for independence using variance 
inflation factors (all VIFs < 3).

Association between GC haplotype and immune gene expression assayed 
by Q-PCR
As we ran a total of 18 hapassoc models (one model per gene), the Benjamini and Hochberg method 
of correction was applied to all p-values (Benjamini and Hochberg, 1995). Resulting q-values (FDR-
corrected p-values) are reported, alongside original p-values (Appendix  1—table 6). A hapassoc 
model including a genotype by sex interaction was tested against a null model without an interac-
tion term. A Gamma error distribution and log link were used. Other covariates considered potential 
drivers of immune gene expression and included in both models were informed by our previous 
work (Jackson et al., 2011). These included snout-vent length (SVL), eye lens weight (categorized 
into seven intervals; SVL and eye lens weight capture the combined influence of age and historical 
growth trajectory), reproductive status (males were considered to be reproductively active if they had 
descended testes; females if they were pregnant or had perforate vaginas), and body condition (esti-
mated by regressing body weight against life history stage, SVL, and its quadratic term). Site, year, 
and season (four levels, designated as spring [March and April], early summer [May and June], late 
summer [July and August], and autumn [September and October]) were included to account for any 
spatial and/or temporal autocorrelation. All covariates were included as fixed effects. We did not use 
a multidimensional approach (such as principal component analysis) because of limited redundancy in 
our panel of genes.

In order to confirm these results, an LMM was run for a single immune gene for which expression 
appeared to be associated with genotype (q = 0.037). The LMM included random terms for site and 
season, as well as assay plate number (Table 1). The latter was included to account for nonindepen-
dence due to immunological assaying structure. All other covariates were the same as the hapassoc 
model. A Yeo-Johnson transformation (with λ = –2) was used to achieve more normal and homosce-
dastic residuals (Yeo and Johnson, 2000).

Association between GC haplotype and parasite infection
The three macroparasite measurements taken from cross-sectional animals (counts of ticks, fleas, 
and cestodes) were log-transformed (log10 [x+1]) and summarized as a single principal component 
(explaining 39% of total variation; Appendix 1—table 17) to avoid difficulties in interpretation due to 
multiple testing. See Wanelik et al., 2018 and Jackson et al., 2014 for full details of this approach. 
This combined measure of macroparasite burden was modeled using a hapassoc model with a 
Gaussian error distribution.

Microparasite infection status was assessed multiple times for the majority of individuals in the 
longitudinal component of the study (mean = 2.8; range = 1–11). Due to these repeated measures, 
microparasite infection could not be modeled using hapassoc. Instead, to test for an association 
between the GC haplotype and the probability of an individual being infected with a microparasite, 
we ran a GLMM with a binary response (infected or not), log link, and a random term for individual. 
Other covariates, considered potential drivers of both macro- and microparasite infection, were, 
again, informed by our previous work (Wanelik et  al., 2018; Jackson et  al., 2014; Taylor et  al., 
2018). These included body condition, reproductive status, year, season, and site (Table 1). Season 
and site were included as random terms in the GLMM for microparasites, as was individual identity, to 
account for nonindependence due to repeat sampling.

Association between GC haplotype and reproductive success
Our measure of reproductive success was zero-inflated (50% zeros). This is consistent with a previous 
study of the closely related common vole (Microtus arvalis) (Wang et al., 2019). A Poisson error 
distribution was therefore deemed inappropriate, and it could not be modeled using hapassoc. 
Instead, to test for an association between the GC haplotype and reproductive success, we ran a 
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GLM with a quasi-Poisson error distribution. This distribution has been previously used to model 
predictors of reproductive success in other organisms, and accounts for the overdispersion caused 
by excess zeros.

We only recorded a reproductive failure (i.e., zero reproductive success) for those individuals with 
some other familial relationship in our pedigree, purposefully omitting those individuals (e.g., at the 
periphery of a study grid) for which we may have recorded no relatives (including offspring) simply 
because we had not sampled in the right place. Therefore, we expect all (or most) of our zeros to repre-
sent actual reproductive failure. For this reason, zero-inflated models were deemed inappropriate.

As detailed in the 'Results,' we tried to run a single quasi-Poisson GLM with both sexes but 
resulting residual variances differed significantly between the sexes (F test to compare variances of 
two samples; p=0.02), making it impossible to formally test for a genotype by sex interaction. Instead, 
we ran a separate model for each sex. We included birth month as a covariate in this model, given 
that autumn-born voles (of the closely related common vole) have been shown to have a lower chance 
to reproduce than spring-born voles (Wang et al., 2019). Other covariates included in this model 
were whether or not an individual was culled for the cross-sectional component of this study (again, 
reducing the opportunity to reproduce), site, and the year in which an individual was most frequently 
captured (Table 1). In a follow-up analysis, we also controlled for B. microti and Bartonella spp. infec-
tion status. More specifically, we included the proportion of samples taken from an individual that 
were Babesia-positive and the proportion of samples taken from an individual that were Bartonella-
positive. All covariates were included as fixed effects. Only a single female was trapped in one of the 
sites (COL) and consequently caused convergence problems in the female model. This female was 
therefore omitted.

Association between GC haplotype and SOD1 activity
SOD1 activity was modeled using a hapassoc model with a Gaussian error distribution. Other covari-
ates, considered potential drivers of SOD1 activity, were informed by the literature. Previous studies 
on wild rodents have shown that antioxidant levels increase with both reproductive effort (Garratt 
et al., 2011) and with age (Hindle et al., 2010). Studies on birds have also shown that improvements 
in body condition are often accompanied by increases in antioxidant activity, for example, in response 
to supplemental feeding (Wilcoxen et al., 2015). We therefore included SVL, eye lens weight, repro-
ductive status, and body condition as covariates in our model. As in other models, we included site, 
year, and season to account for spatial and/or temporal autocorrelation in our data (Table  1). All 
covariates were included as fixed effects.
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Appendix 1

Appendix 1—table 1. Position of single-nucleotide polymorphisms (SNPs) and other key features in 
the Fcer1a gene.
Features lie in scaffold CADCXT010006977 within assembly GCA_902806775.

Feature Start End

Fcer1a gene 10745528 10745528

Exon 5 10745528 10745881

Exon 4 10746818 10747076

Exon 3 10748609 10748864

Exon 2 10750044 10750065

Exon 1 10750465 10750642

5’ UTR 10750520 10750642

CDS 10750465 10750520

CDS 10750044 10750065

CDS 10748609 10748864

CDS 10746818 10747076

CDS 10745729 10745881

3’ UTR 10745528 10745729

SNP 2 10748718 10748719

SNP 1 10746846 10746847

Appendix 1—table 2. Top 10 annotated genes that were differentially expressed between males 
with vs. without the GC haplotype, including associated log fold changes (logFC), p-values, and q-
values (false discovery rate [FDR]-corrected p-values).

Gene Protein LogFC p-value q-value

Snai3 Snail family zinc finger 3 1.698 1.220 × 10–9 1.574 × 10–5

Pla2g4c Phospholipase A2, group IVC (cytosolic, calcium-independent) 2.904 6.386 × 10–9 4.120 × 10–5

Il33 Interleukin 33 2.756 1.474 × 10–7 4.755 × 10–4

Mmp13 Matrix metallopeptidase 13 2.571 4.427 × 10–7 1.142 × 10–3

Uba7 Ubiquitin-like modifier activating enzyme 7 0.771 5.979 × 10–7 1.286 × 10–3

Robo4 Roundabout guidance receptor 4 0.892 3.738 × 10–6 4.385 × 10–3

Ttn Titin 1.665 8.995 × 10–6 7.254 × 10–3

Flnc Filamin C, gamma 1.554 1.245 × 10–5 9.447 × 10–3

Crb2 Crumbs family member 2 1.327 1.567 × 10–5 1.063 × 10–2

Muc16 Mucin 16 1.937 1.971 × 10–5 1.156 × 10–2

Appendix 1—table 3. Annotated genes that were differentially expressed (q ≤ 0.1) between 
females with vs. without the GC haplotype, including associated log fold changes (logFC), p-values, 
and q-values (false discovery rate [FDR]-corrected p-values).

Gene Protein LogFC p-value q-value

Tldc1 TBC/LysM associated domain containing 1 1.489 2.502 × 10–8 3.228 × 10–4

Peg3 Paternally expressed 3 1.440 5.369 × 10–5 0.049

Socs3 Suppressor of cytokine signaling 3 1.071 6.061 × 10–5 0.052

https://doi.org/10.7554/eLife.77666
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Appendix 1—table 4. Top 10 annotated genes that were differentially expressed between males 
with vs. without the GC haplotype when controlling for cestode burden, including associated log 
fold changes (logFC), p-values, and q-values (false discovery rate [FDR]-corrected p-values).

Gene Protein LogFC p-value q-value

Il33 Interleukin 33 3.091 2.473 × 10–10 3.191 × 10–6

Snai3 Snail family zinc finger 3 1.672 5.259 × 10–9 3.393 × 10–5

Pla2g4c
Phospholipase A2, group IVC 
(cytosolic, calcium-independent) 2.883 1.562 × 10–8 6.721 × 10–5

Uba7
Ubiquitin-like modifier activating 
enzyme 7 0.809 2.477 × 10–8 7.990 × 10–5

Mmp13 Matrix metallopeptidase 13 2.606 4.090 × 10–7 8.796 × 10–4

Robo4 Roundabout guidance receptor 4 0.892 8.160 × 10–6 9.572 × 10–3

Ttn Titin 1.599 2.532 × 10–5 1.951 × 10–2

Flnc Filamin C, gamma 1.493 2.721 × 10–5 1.951 × 10–2

Crb2 Crumbs family member 2 1.261 3.512 × 10–5 2.151 × 10–2

Appendix 1—table 5. Annotated genes that were differentially expressed (q ≤ 0.1) between 
females with vs. without the GC haplotype when controlling for cestode burden, including 
associated log fold changes (logFC), p-values, and q-values (false discovery rate [FDR]-corrected 
p-values).

Gene Protein LogFC p-value q-value

Tldc1 TBC/LysM associated domain containing 1 1.489 2.890 × 10–8 3.730 × 10–4

Socs3 Suppressor of cytokine signaling 3 1.083 4.133 × 10–5 0.041

Peg3 Paternally expressed 3 1.411 6.375 × 10–5 0.055

Ppp1r3c Protein phosphatase 1, regulatory (inhibitor) subunit 3C 1.662 8.798 × 10–5 0.071

Appendix 1—table 6. Significance values from hapassoc models for expression of 18 genes 
(assayed by Q-PCR) in splenocytes.
Splenocytes were stimulated with anti-CD3 and anti-CD28 antibodies in order to promote the 
proliferation of T-cells. q-values (false discovery rate [FDR]-corrected p-values) are reported 
alongside original p-values for the genotype by sex interaction.

Gene p-value q-value

Cd4 0.124 0.822

Cd8a 0.744 0.866

Foxp3 0.499 0.845

Gata3 0.563 0.845

Il10 0.866 0.866

Mpo 0.173 0.822

Tbx21 0.650 0.866

Tgfb1 0.271 0.822

Ifng 0.399 0.822

Il17a 0.002 0.037

Il1b 0.749 0.866

Il6 0.282 0.822

Ms4a1 0.281 0.822

Appendix 1—table 6 Continued on next page
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Gene p-value q-value

Orai1 0.353 0.822

Tnfa 0.858 0.866

Il2 0.411 0.822

Apobr 0.857 0.866

Arg1 0.552 0.845

Appendix 1—table 7. Estimates, standard errors, and z-statistics from best LMM for Yeo-Johnson-
transformed Il17a expression levels.

Estimate SE z

(Intercept) 0.107 0.023 4.61

Genotype –0.115 0.037 –3.10

Sex male –0.055 0.019 –2.89

Year 2016 0.084 0.018 4.60

Genotype × sex male 0.143 0.044 3.25

Appendix 1—table 8. Effect sizes, standard errors, z-statistics, and associated significance from 
Gaussian hapassoc model for SOD1 activity.

Estimate SE z p-value

(Intercept) 0.614 1.514 0.406 0.685

hAT –0.453 0.223 –2.032 0.042

Reproductive status active –0.112 0.266 –0.422 0.673

Sex male 0.031 0.250 0.124 0.901

SVL 0.016 0.017 0.945 0.345

Lens weight 2 0.568 0.531 1.070 0.284

Lens weight 3 0.440 0.549 0.801 0.423

Lens weight 4 0.445 0.587 0.758 0.448

Lens weight 5 0.415 0.653 0.636 0.525

Lens weight 6 0.301 0.752 0.400 0.689

Lens weight 7 –0.307 1.095 –0.280 0.779

Body condition 0.020 0.030 0.677 0.498

Site CHE 1.429 0.431 3.316 0.001

Site COL 2.675 1.099 2.434 0.015

Site GRD 1.476 0.437 3.379 0.001

Site RAV 0.904 0.918 0.984 0.325

Site SCP 1.107 0.419 2.643 0.008

Year 2016 0.593 0.242 2.457 0.014

Season early summer –0.392 0.389 –1.007 0.314

Season late summer –0.098 0.266 –0.369 0.712

Season spring –0.969 0.383 –2.529 0.011

Appendix 1—table 6 Continued

https://doi.org/10.7554/eLife.77666


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Immunology and Inflammation

Wanelik et al. eLife 2023;0:e77666. DOI: https://doi.org/10.7554/eLife.77666 � 23 of 25

Appendix 1—table 9. Effect sizes, standard errors, and z-statistics from best binomial GLMM for 
probability of infection with Babesia microti.

Estimate SE z

(Intercept) –2.214 0.377 –5.87

Genotype 1.254 0.416 3.02

Sex male 0.957 0.229 4.19

Year 2016 1.260 0.277 4.55

Year 2017 1.047 0.302 3.46

Reproductive 
status active 0.754 0.144 5.24

Body condition 0.044 0.016 2.76

Genotype × sex 
male –1.116 0.615 –1.82

Appendix 1—table 10. Effect sizes, standard errors, and z-statistics from best binomial GLMM for 
probability of infection with Bartonella spp.

Estimate SE z

(Intercept) 0.236 0.369 0.64

Year 2016 0.740 0.135 5.49

Year 2017 2.280 0.175 13.01

Appendix 1—table 11. Effect sizes, standard errors, z-statistics, and associated significance from 
Gaussian hapassoc model for macroparasite infection summarized by a single principal component.

Estimate SE z p-value

(Intercept) 0.050 0.331 0.152 0.879

hAC –0.102 0.130 –0.786 0.432

hAT –0.108 0.158 –0.682 0.495

Sex male –0.271 0.126 –2.146 0.032

Season early summer –0.103 0.182 –0.567 0.571

Season late summer 0.012 0.132 0.090 0.929

Season spring 0.327 0.176 1.854 0.064

Reproductive status active –0.222 0.119 –1.868 0.062

Body condition –0.019 0.014 –1.328 0.184

Year 2016 –0.473 0.124 –3.810 0.000

Site CHE 0.714 0.226 3.157 0.002

Site COL 0.762 0.575 1.327 0.185

Site GRD 0.707 0.229 3.090 0.002

Site RAV 1.100 0.481 2.288 0.022

Site SCP 0.747 0.220 3.389 0.001

Appendix 1—table 12. Effect sizes, standard errors, z-statistics, and associated significance from 
best quasi-Poisson GLM for reproductive success in males.

Estimate SE z p-value

(Intercept) 1.743 0.243 7.171 1.05 × 10–11

Appendix 1—table 12 Continued on next page
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Estimate SE z p-value

Genotype –0.484 0.237 –2.042 0.042

Year 2016 0.592 0.185 3.193 0.002

Year 2017 –0.437 0.199 –2.193 0.029

Birth month –0.358 0.048 –7.449 1.97 × 10–12

Culled yes 0.422 0.150 2.809 0.005

Appendix 1—table 13. Effect sizes, standard errors, z-statistics, and associated significance from 
best quasi-Poisson GLM for reproductive success in females.

Estimate SE z p-value

(Intercept) 1.137 0.264 4.298 2.15 × 10–5

Year 2016 0.520 0.211 2.466 0.014

Year 2017 –0.118 0.215 –0.549 0.584

Birth month –0.298 0.047 –6.391 4.42 × 10–10

Appendix 1—table 14. Effect sizes, standard errors, z-statistics, and associated significance from 
best quasi-Poisson GLM for reproductive success in males when controlling for Babesia microti and 
Bartonella spp. infection.

Estimate SE z p-value

(Intercept) 1.467 0.418 3.513 7.64 × 10–4

Genotype –1.081 0.425 –2.544 0.013

Year 2016 0.238 0.279 0.854 0.396

Year 2017 –0.912 0.386 –2.338 0.022

Birth month –0.464 0.091 –5.090 2.69 × 10–6

Proportion of samples Babesia-positive 0.849 0.276 3.076 0.003

Proportion of samples Bartonella-positive 0.997 0.440 2.268 0.026

Appendix 1—table 15. Effect sizes, standard errors, z-statistics, and associated significance from 
best quasi-Poisson GLM for reproductive success in females when controlling for Babesia microti 
and Bartonella spp. infection.

Estimate SE z p-value

(Intercept) 1.483 0.305 4.867 3.20 × 10–6

Birth month –0.310 0.073 –4.229 4.38 × 10–5

Proportion of samples Babesia-positive 0.569 0.247 2.308 0.0226

Appendix 1—table 16. Panel of 18 genes for which expression levels in splenocytes stimulated with 
anti-CD3 and anti-CD28 antibodies were measured using two-step reverse transcription quantitative 
PCR (Q-PCR).

Gene Protein

Cd4 T-cell surface glycoprotein CD4

Cd8a T-cell surface glycoprotein CD8 
alpha chain

Foxp3 Forkhead box protein P3

Gata3 GATA binding protein 3

Appendix 1—table 12 Continued

Appendix 1—table 16 Continued on next page
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Gene Protein

Il10 Interleukin-10

Mpo Myeloperoxidase

Tbx21 T-box transcription factor TBX21

Tgfb1 Transforming growth factor beta 1

Ifng Interferon gamma

Il17a Interleukin-17a

Il1b Interleukin-1 beta

Il6 Interleukin-6

Ms4a1 B-lymphocyte antigen CD20

Orai1 Calcium release-activated calcium 
channel protein 1

Tnfa Tumor necrosis factor alpha

Il2 Interleukin-2

Apobr Apolipoprotein B receptor

Arg1 Arginase-1

Appendix 1—table 17. Loadings from principal component analysis summarizing infection by 
macroparasites (ticks, fleas, and cestodes).

Macroparasite PC1

Cestodes –0.481

Ticks –0.592

Fleas –0.646

Appendix 1—table 16 Continued
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