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Genetics of early-life head circumference 
and genetic correlations with neurological, 
psychiatric and cognitive outcomes
Suzanne Vogelezang1,2,3†, Jonathan P. Bradfield4,5†, the Early Growth Genetics Consortium, 
Struan F. A. Grant4,6,7,8†, Janine F. Felix1,2† and Vincent W. V. Jaddoe1,2*† 

Abstract 

Background: Head circumference is associated with intelligence and tracks from childhood into adulthood.

Methods: We performed a genome-wide association study meta-analysis and follow-up of head circumference in a 
total of 29,192 participants between 6 and 30 months of age.

Results: Seven loci reached genome-wide significance in the combined discovery and replication analysis of which 
three loci near ARFGEF2, MYCL1, and TOP1, were novel. We observed positive genetic correlations for early-life head 
circumference with adult intracranial volume, years of schooling, childhood and adult intelligence, but not with adult 
psychiatric, neurological, or personality-related phenotypes.

Conclusions: The results of this study indicate that the biological processes underlying early-life head circumference 
overlap largely with those of adult head circumference. The associations of early-life head circumference with cogni-
tive outcomes across the life course are partly explained by genetics.

Keywords: Head circumference, Genome-wide association study, Genetic correlations, Infancy
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Background
Head circumference is a complex trait, commonly used 
as an indicator of brain volume during development and 
associated with child and adult intelligence [1–3]. It is 
also used a s measure of skeletal growth in fetal life, at 
birth and in early childhood [4, 5]. Twin studies show 
heritability estimates ranging from 75 to 90%, which are 
consistent across the life course [6]. Large genome-wide 
association studies (GWAS) have identified multiple 

loci associated with child and adult head circumference, 
intracranial volume and brain volume [7–10]. Heritability 
estimates from GWAS range from 10 to 31% [8]. How-
ever, only two genetic loci associated with head circum-
ference between 6 and 30  months have been identified 
so far [11]. Identifying additional genetic loci related to 
early-life head circumference may contribute towards 
our understanding of early brain development. This is 
important since observational studies have associated 
early brain development with several neurological and 
psychiatric diseases, such as Alzheimer’s disease, schizo-
phrenia and autism [12–17]. The underlying mechanisms 
are poorly understood. Both genetics and environmental 
factors play a role [18]. Additionally, the shared genetic 
contribution between early-life head circumference 
and later-life outcomes is yet unknown. Unravelling 
this shared genetic contribution may help us to better 
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understand the etiology of later-life outcomes related to 
early-life head circumference.

We examined the genetic background of early-life head 
circumference by performing a two-stage GWAS meta-
analysis comprising 25 studies with a combined sample 
size of 29,192 European-ancestry participants between 
6 and 30 months of age. We also examined genetic cor-
relations of early-life head circumference with anthropo-
metrics, brain volume-related, neurological, psychiatric, 
cognitive, and personality related traits.

Methods
Study design
We conducted a two-stage meta-analysis in children of 
European ancestry to identify genetic loci associated with 
birth and early-life head circumference. Sex- and age-
adjusted standard deviation scores (SDS) were created 
for head circumference between 6 to 30 months (closest 
to 18  months, if multiple measurements were available) 
using Growth Analyzer 3.0 across all studies [19]. In the 
case of twin pairs and siblings, only one of each twin or 
sibling pair was included, either randomly or based on 
genotyping or imputation quality.

In the discovery stage, we performed a meta-analysis of 
early-life head circumference in 21 studies (N = 22,279), 
including the Amsterdam Born Children and their Devel-
opment-Genetic Enrichment Study (ABCD, N = 1018), 
the Avon Longitudinal Study of Parents and Children 
(ALSPAC, N = 3960), Children’s Hospital of Philadel-
phia (CHOP, N = 856), the Copenhagen Prospective 
Studies on Asthma in Childhood 2000 (COPSAC2000, 
N = 325) and 2010 (COPSAC2010, N = 603), the Dan-
ish National Birth Cohort- preterm birth study (DNBC-
PTB, N = 508), the Generation R Study (GenerationR, 
N = 2299), the Danish National Birth Cohort—the 
Genetics of Overweight Young Adults offspring study 
(DNBC GOYA-offspring, N = 230), the INfancia y Medio 
Ambiente [Environment and Childhood] Project, with 
two subcohorts that were entered into the meta-analysis 
separately (INMA-Sabadell and Valencia subcohort and 
INMA Menorca subcohort, N = 550), the German Infant 
Study on the influence of Nutrition Intervention PLUS 
environmental and genetic influences on allergy devel-
opment & Influence of life-style factors on the develop-
ment of the immune system and allergies in East and 
West Germany (GINIplus&LISA, N = 1455), the Leipzig 
Research Center for Civilization Diseases—Child study 
(LIFE-Child, N = 1365), the Norwegian Mother Child 
Cohort (MoBa, N = 836), the Northern Finland Birth 
Cohort 1966 (NFBC 1966, N = 4603), the Northern Fin-
land Birth Cohort 1986 (NFBC 1986, N = 826), the Physi-
cal Activity and Nutrition in Children Study (PANIC, 
N = 372), the Raine Study (Raine Study, N = 1373), the 

Småbørns Kost Og Trivsel study, including two subco-
horts (SKOT 1, N = 170 and SKOT 2, N = 98), the Special 
Turku Coronary Risk factor Intervention Project (STRIP, 
N = 505), and the TEENs of Attica: Genes and Environ-
ment (TEENAGE, N = 327).

In the replication stage of early-life head cirvumference 
analysis, we included 4 studies (N = 6913): 319 additional 
children from the INfancia y Medio Ambiente [Environ-
ment and Childhood] (INMA) Project (INMA-Gipuzkoa 
subcohort), 5644 additional children from the Norwe-
gian Mother and Child Cohort (MoBa), the European 
Childhood Obesity Project (CHOP Study, N = 366), and 
the Exeter Family Study of Childhood Health (EFSOCH, 
N = 584). Characteristics of discovery and replication 
studies can be found in Additional file  2: Table  S1. The 
study design of birth head circumference can be found in 
the Additional file 1.

Study‑level analyses
Genome-wide association analyses were first run in all 
discovery cohorts for birth and early-life head circum-
ference separately. Studies used high-density Illumina 
or Affymetrix Single Nucleotide Polymorphism (SNP) 
arrays, followed by imputation to the 1000 Genomes Pro-
ject or Haplotype Reference Consortium (HRC). Before 
imputation, studies applied study specific quality filters 
on sample and SNP call rate, minor allele frequency and 
Hardy–Weinberg disequilibrium (see Additional file  2: 
Table  S1 for details). Linear regression models assum-
ing an additive genetic model were run in each study, to 
assess the association of each SNP with SDS head cir-
cumference, adjusting for principal components if this 
was deemed needed in the individual studies. As SDS 
head circumference is age and sex specific, no further 
adjustments were made. Before the meta-analysis, we 
applied quality filters to each study, filtering out SNPs 
with a minor allele frequency (MAF) below 1% and 
SNPs with poor imputation quality (MACH r2_hat ≤ 0.3, 
IMPUTE proper_info ≤ 0.4 or info ≤ 0.4).

Meta‑analysis
We performed fixed-effects inverse-variance weighted 
meta-analysis of all discovery samples using Metal [20]. 
Genomic control was applied to every study before the 
meta-analysis. Individual study lambdas before genomic 
control ranged from 0.99 to 1.03 (Additional file  2: 
Table S1). The lambda of the discovery meta-analysis was 
1.02. Linkage Disequilibrium (LD) score regression anal-
ysis showed an intercept of 1.0, indicating that the slight 
inflation was mainly caused by polygenicity of early-life 
head circumference and not by population stratifica-
tion, cryptic relatedness or other confounders [21, 22]. 
After the meta-analysis, we excluded SNPs for which 
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information was available in less than 50% of the studies 
or in less than 50% of the total sample size.

Genome-wide Complex Trait Analysis (GCTA) was 
used to select the independent SNPs for each locus [23]. 
We performed conditional analyses based on summary-
level statistics and LD estimation between SNPs from the 
Generation R Study as a reference sample to select inde-
pendently associated SNPs on the basis of conditional P 
values [23]. For early-life head circumference, 27 genome-
wide significant or suggestive loci (P values < 5 ×  10–8 and 
P values < 5 ×  10−6, respectively) were taken forward for 
replication in the 4 replication cohorts. Fixed-effects 
inverse variance weighted meta-analysis was performed 
for these 27 SNPs combining the discovery samples and 
all replication samples, giving a combined analysis beta, 
standard error and P value (Table 1). SNPs that reached 
genome-wide significance (P value < 5 ×  10–8) in the 
combined analysis were considered to be significantly 
associated with SDS-head circumference. For birth head 
circumference, SNPs were taken forward for replication, 
using the same methodology.

Functional mapping and annotation of genetic 
associations (FUMA)
To obtain predicted functional consequences for the 
SNPs that reached genome-wide significance in the com-
bined meta-analysis, we used SNP2FUNC in FUMA, a 
web-based platform to facilitate and visualize functional 
annotation of GWAS results [24]. To annotate the near-
est genes of the seven SNPs in biological context, we 
used the GENE2FUNC option in FUMA, which provides 
hypergeometric tests of enrichment of the list of near-
est genes in 53 GTEx tissue-specific gene expression sets 
[24, 25]. We used GENE2FUNC for two sets of genes: 1. 
Nearest genes of seven SNPs; 2. Genes located in a region 
of 500 kb to either side of the 7 SNPs [24].

Colocalization analysis
We used Bayesian colocalization analysis to examine 
evidence for colocalization between early-life head cir-
cumference and eQTL signals (GTEx v7). Colocali-
zation analyses were conducted using the R package 
coloc, https:// cran.r- proje ct. org/ web/ packa ges/ coloc, as 
described previously [26]. Briefly, in each of the GTEx 
v7 tissues, all cis-eQTLs at FDR < 5% were identified. For 
each eQTL, GWAS summary statistics were extracted 
for all SNPs that were present in > 50% of the studies 
and > 50% of the total sample size and that were in com-
mon to both GWAS and eQTL studies, within 1 MB of 
the transcription start site of the gene. For each such 
locus, colocalization analyses were done with default 
parameters, testing the following hypotheses [26]:

H0: No association with either trait;
H1: Association with early-life head circumference 
only;
H2: Association with gene expression only;
H3: Association with early-life head circumference 
and gene expression, two distinct causal variants;
H4: Association with early-life head circumference 
and gene expression, one shared causal variant.

 Support for each hypothesis was quantified in terms of 
posterior probabilities, defined at SNP level and indi-
cated by  PP0,  PP1,  PP2,  PP3 or  PP4, corresponding to the 
five hypotheses and measuring how likely these hypoth-
eses are. In most pairs, no evidence for association was 
found with either trait. In case association was observed, 
it was mostly with a single trait. To define colocalization 
we used restriction to pairs of early-life head circumfer-
ence and eQTL signals with a high posterior probability 
for colocalization, indicated by a PP4/(PP3 + PP4) > 0.9.

The Database for Annotation, Visualization and Integrated 
Discovery (DAVID)
To explore biological processes, we used DAVID, with the 
seven nearest genes as input, using the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database [27, 28].

Linkage‑disequilibrium score regression
The use of LD score regression to estimate genetic cor-
relations between two phenotypes has been described 
in detail previously [29]. Briefly, LD score is a measure 
of how much a genetic variation is tagged by each vari-
ant. A high LD score indicates that a variant is in high 
LD with many nearby polymorphisms. Variants with high 
LD scores are more likely to contain true signals and have 
a higher chance of overlap with genuine signals between 
GWAS. To estimate LD scores, summary statistics from 
GWAS meta-analysis are used to calculate the cross-
product of test statistics of per SNP, which is regressed 
on the LD score. The slope of the regression is a function 
of the genetic covariance between traits [29]:

where Ni is the sample size of study i, ρg is the genetic 
covariance, M is the number of SNPs in the reference 
panel with a MAF between 5 and 50%, lj is the LD score 
for SNP j, Ns quantifies the number of individuals that 
overlap both studies, and ρ is the phenotypic correlation 
amongst the Ns of overlapping samples. A sample over-
lap or cryptic relatedness between samples only affects 
the intercept from the regression but not the slope. Thus, 
estimates are robust even in presence of sample overlap 

E(z1jz2j) =

√
N1N2ρg

M
lj +

ρNs√
N1N2

https://cran.r-project.org/web/packages/coloc
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when comparing traits across distinct GWAS popula-
tions. Estimates of genetic covariance are therefore not 
biased by overlapping samples. Similarly, in case of pop-
ulation stratification, the intercept is affected but it has 
only minimal impact on the slope since population strati-
fication does not correlate with LD between variants.

Because of the correlation between the imputa-
tion quality and LD score, imputation quality is a con-
founder for LD score regression. Therefore, SNPs were 
excluded according to the following criteria: MAF < 0.01 
or INFO ≤ 0.9. The filtered GWAS results were uploaded 
on the online webtool, a web service with many GWAS 
meta-analyses available on which LD score regression 
has been implemented by the developers of the LD score 
regression method. In case multiple GWAS meta-anal-
yses were available for the same phenotype, the genetic 
correlation with early-life head circumference was esti-
mated using the most recent meta-analysis. Genetic 
correlations are shown in Fig.  3 and Additional file  1: 
Table S7.

Genetic risk score and percentage of variance explained
We combined the seven genome-wide significant SNPs 
from the combined meta-analysis into a Genetic Risk 
Score (GRS) by summing up the number of alleles that 
increase the SDS head circumference, weighted by the 
effect sizes from the combined meta-analysis. The GRS 
was rescaled to a range from 0 to 14, which is the maxi-
mum number of head circumference SDS increasing 

alleles and rounded to the nearest integer. Linear regres-
sion analysis was used to examine the associations of the 
risk score with head circumference and intracranial vol-
ume at different ages. For these analyses data from the 
Generation R Study and UK Biobank were used. When 
calculating the risk score for the Generation R study, 
effect estimates from the combined meta-analysis were 
used after excluding Generation R from the meta-analy-
sis. The variance explained was estimated by the adjusted 
 R2 of the models.

Results
Identification of genetic loci associated with early‑life head 
circumference
Individual study characteristics are shown in Additional 
file  2: Table  S1. In the discovery stage, we performed a 
fixed-effects inverse variance-weighted meta-analysis 
including data imputed to the 1000 Genomes or the Hap-
lotype Reference Consortium (HRC) reference panels 
from 21 studies (N = 22,279). Using data from the discov-
ery cohorts, single nucleotide polymorphisms (SNPs) at 
five independent loci reached genome-wide significance 
(P values < 5 ×  10–8) and SNPs at another 22 loci showed 
suggestive associations with early-life head circumfer-
ence (5 ×  10–8 < P values < 5 ×  10−6). A Manhattan plot 
of the discovery meta-analysis is shown in Fig. 1. No evi-
dence of inflation by population stratification or cryptic 
relatedness was found (genomic inflation factor (λ) = 1.02 
and LD-score regression intercept = 1.0) (Additional 

Fig. 1 Manhattan plot of results of the discovery meta-analysis of 21 GWAS. On the x-axis the chromosomes are shown. On the y-axis the − log 
10 of the P value is shown. Novel SNPs are shown in green. Known SNPs are shown in black. The genome wide significance cutoff of 5 ×  10–8 is 
represented by the grey dotted line
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file 1: Fig. S1) [21]. The index SNPs from each of the 27 
genome-wide and suggestive loci were followed up in 
four replication cohorts (N = 6913). The results of the 
discovery, replication and combined analyses are shown 
in Table 1 and Additional file 1: Tables S2 and S3. Results 
of the discovery analysis for SNPs with P values < 5 ×  10−6 
are shown in Additional file 3: Table S4.

Of the 27 SNPs identified in the discovery meta-anal-
ysis, seven reached genome-wide significance in the 
combined meta-analysis, in which we used data from the 
discovery and replication stage. An identified locus was 
defined to be a known locus if the index SNP was within a 
range of 500 kb upstream to 500 kb downstream of and in 
LD  (r2 ≥ 0.2) with a previously reported SNP for head cir-
cumference, intracranial volume, or brain volume at any 
age [7–11]. Of the seven genome-wide significant SNPs, 
three were novel: rs6095360 near ARFGEF2, rs3134614 
near MYCL1, and rs6016511 near TOP1 (Table  1 and 
Additional file  1: Tables S2 and S3). Regional plots of 
these three loci are shown in Fig. 2. The remaining four 
SNPs mapped to loci previously identified from GWAS 
on infant head circumference, adult intracranial vol-
ume, and/or adult brain volume (nearest genes: HMGA2, 
C12orf65, NT5C2, and GRB10) [7, 10, 11].

Six SNPs located within 500  kb (upstream or down-
stream) from rs6095360 (ARFGEF2), rs3134614 
(MYCL1), and rs6016511 (TOP1) have been previously 
reported in relation to adult height [30]. The linkage dis-
equilibrium (LD) of the three novel SNPs near ARFGEF2, 
MYCL1, and TOP1 with these six adult height SNPs was 
weak to moderate. We found suggestive evidence of asso-
ciation for rs6095360 (ARFGEF2) with early-life length in 
28,949 participants between 6 and 30 months of age in an 
unpublished GWAS meta-analysis of 24 cohorts (P value 
4.58 ×  10–7), but the other two novel SNPs did not show 
evidence of association (Additional file 1: Table S5).

We also performed a meta-analysis of birth head cir-
cumference in a total of 32,084 participants. None of the 
SNPs reached genome-wide significance in this analysis. 
A total of 11 SNPs with P values between 5 ×  10–8 and 
5 ×  10–6 were taken forward for replication (N = 3750) 
and combined analyses, but none were genome-wide sig-
nificant in the combined analysis. Therefore, no follow-up 
analyses were performed for birth head circumference. 
A Manhattan plot and a Quantile–Quantile plot of the 
discovery meta-analysis of birth head circumference are 

shown in Additional file 1: Figs. S2 and S3. Results of the 
discovery analysis for SNPs with P values < 5 ×  10−6 are 
shown in Additional file 4: Table S6.

Functional characterization
To gain insight into the function of the seven SNPs asso-
ciated with early-life head circumference, we used several 
strategies. First, using Bayesian colocalization analysis, 
we examined evidence of colocalization between GWAS 
and eQTL signals for the seven index SNPs (GTEx v7), 
but did not find a signal at any of the seven loci. Second, 
to explore biological processes, we used the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database in the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) with the seven SNPs and their near-
est genes as input [27, 28], but no enriched biological 
processes were identified. Third, we did a look-up of the 
seven nearest genes in mouse-knockout data but there 
was no phenotypic information available for any of these 
gene knockouts [31]. Fourth, we examined gene expres-
sion profiles for the nearest genes to the seven SNPs 
with GTEx v7 in 53 tissues, using the tool for Functional 
Mapping and Annotation of Genome-Wide Association 
Studies (FUMA) [24, 25]. We did not find significant dif-
ferential expression for these seven nearest genes. Going 
a step further, we included all genes within a range of 
500  kb upstream to 500  kb downstream of the seven 
index SNPs and found significant differential expression 
in several brain structures, including the putamen, amyg-
dala, hippocampus, caudate, nucleus accumbens, sub-
stantia nigra, and anterior cingulate cortex, and in other 
tissues such as the heart, pancreas and liver [25].

Shared genetic background of early‑life head 
circumference with childhood and adult outcomes
First, to examine whether associations between early-
life head circumference and phenotypes in later life from 
observational studies were at least partly genetically 
explained, we estimated genetic correlations between 
early-life head circumference and other traits, using LD 
score regression, which is based on the genome-wide 
meta-analysis results [29]. We found positive genetic 
correlation coefficients for early-life head circumference 
with birth length  (Rg = 0.57, P value = 3.61 ×  10–12), birth 
weight  (Rg = 0.48, P value = 2.51 ×  10–8), adult height 
 (Rg = 0.34, P value = 9.77 ×  10–11), adult body mass index 

(See figure on next page.)
Fig. 2 a–c Locus zoom plots of the 3 novel loci. Shown are the results of the meta-analysis. Regional association plot of the 3 novel loci. SNPs are 
plotted with their P values from the discovery stage (as − log10; left y-axis) as a function of genomic position (x-axis). Estimated recombination rates 
(right y-axis) taken from 1000 Genomes, March 2012 release are plotted to reflect the local LD-structure around the top associated SNP (indicated 
with purple color) and the correlated proxies (indicated in colors)
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Fig. 2 (See legend on previous page.)
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(BMI)  (Rg = 0.13, P value = 0.03), adult intracranial vol-
ume  (Rg = 0.71, P value = 1.44 ×  10–5) and several cog-
nitive outcomes, including childhood intelligence (age 
range 6–18  years)  (Rg = 0.27, P value = 0.04), years of 
schooling  (Rg = 0.18, P value = 6.0 ×  10–4), and adult 
intelligence  (Rg = 0.25, P value = 1.0 ×  10–4), (Fig.  3 and 
Additional file 1: Table S7). We did not find genetic corre-
lations with any psychiatric (for instance bipolar disorder 
and autism spectrum disorder), neurological (Parkinson’s 
disease, Alzheimer’s disease) or personality-related out-
comes (for instance neuroticism) (P values > 0.05) (Addi-
tional file 1: Table S7).

Second, we performed a look-up of the seven identi-
fied SNPs in GWAS meta-analyses data on potentially 
related phenotypes, including adult intracranial volume, 
intelligence, Alzheimer’s disease, neuroticism, depres-
sion and educational attainment [7, 32–35]. Rs10883848 
(NT5C2) was genome-wide significantly associated with 
adult intracranial volume (P value = 1.48 ×  10–9). All 
effect estimates for intracranial volume were in the same 
direction as those for head circumference in early-life 

(Additional file  1: Table  S8). Additionally, rs6095360 
(ARFGEF2) was associated with adult intelligence at a 
genome-wide level (P value = 2.31 ×  10–16). We did not 
observe evidence of genome-wide significant associa-
tions with Alzheimer’s disease, neuroticism, depression 
or educational attainment. Suggestive evidence for asso-
ciation was observed for rs8756 (HMGA2) with adult 
intracranial volume (P value = 6.32 ×  10–8), for rs9795522 
(C12orf65) with adult intelligence (P value = 1.41 ×  10–6) 
and for rs8756 (HMGA2) with educational attainment 
(P value = 1.41 ×  10–6) (Additional file  1: Tables S9–13). 
None of the SNPs showed evidence of association with 
birth head circumference in the GWAS meta-analysis 
(Additional file 1: Table S14).

Third, we calculated a combined genetic risk score 
(GRS) using the seven index SNPs identified in the cur-
rent study. We summed the number of head circumfer-
ence-increasing alleles weighted by the effect sizes from 
the combined meta-analysis after excluding the Genera-
tion R Study, in which we tested the GRS longitudinally. 
The GRS was associated with fetal head circumference 

Fig. 3 Genome-wide genetic correlations between early-life head circumference and adult traits and diseases. On the x axis the traits and diseases 
are shown. The y-axis shows the genetic correlations  (Rg) and corresponding standard errors, indicated by error bars, between early-life head 
circumference and each trait, estimated by LD score regression. The genetic correlation estimates  (Rg) are colored according to their intensity and 
direction. Red indicates a positive correlation, blue indicates a negative correlation. References can be found in Additional file 1: Table S7
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in the third trimester of pregnancy (N = 1984), at post-
natal ages 1  month (N = 1501), 6  months (N = 1662), 
11  months (N = 1528), and 6  years (N = 4010) and at 
the mean (SD) age of 64 (7.5) years (N = 22,152) in UK 
Biobank data (P values < 0.05) (Fig.  4 and Additional 
file 1: Table S15).

Discussion
In a GWAS meta-analysis including 29,192 participants 
of European ancestry aged 6 to 30  months of age, we 
identified seven genome-wide significant SNPs associ-
ated with early-life head circumference, of which three 
were novel and had not been related with head circum-
ference, intracranial volume or brain volume before. We 
observed positive genetic correlations between early-life 
head circumference and adult intracranial volume as well 
as cognitive outcomes.

We used multiple approaches to identify potential 
underlying mechanisms. As there is no strong evidence 
linking the nearest genes to the seven SNPs as causal 
genes, we included all genes within 500 kb to either side 
of the genome-wide significant SNPs in a GTEx analy-
sis. We found differential expression of these genes in 
different brain structures that are related to cognitive 

functions and emotional control, indicating a potential 
functional role of these genes in the brain [36–39]. How-
ever, as donors aged 20–79  years were included in the 
GTEx data source, we were not able to look at expression 
of the genes in brain structures in early life. Using colo-
calization analysis, no potentially causal genes were iden-
tified [26]. Future studies should also determine whether 
the nearest genes, identified in this study, are indeed the 
causal genes and assess their expression in child brain 
structures.

The potential roles of the nearest genes to the novel 
loci are still poorly understood. MYCL1, (MYCL proto-
oncogene, BHLH transcription factor), and TOP1 (DNA 
topoisomerase 1) have been suggested to play a role in 
various types of cancer [40–44]. The role of these genes 
in the development of head circumference in early life is 
currently unknown. A mutation in ARFGEF2 has been 
previously associated with several phenotypes related 
to brain development, including microcephaly [45, 46]. 
The three novel SNPs are located near regions that have 
been previously reported for adult height, indicating that 
they might represent loci involved in growth [30]. How-
ever, the strong association of rs6095360 (nearest gene: 
ARFGEF2) with adult intelligence (P value = 2.31 ×  10–16) 

Fig. 4 Associations of early-life head circumference genetic risk score with head circumference at different time points in the Generation R Study 
and from UK Biobank data. On the x axis the different ages are shown at which the genetic risk score of the seven early-life head circumference SNPs 
is tested. On the y axis the beta’s and 95% confidence intervals from linear regression analyses are shown. Detailed data can be found in Additional 
file 1: Table S15
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might indicate a role in brain development as well [32]. 
Future functional studies should investigate the role of 
these genes and should determine whether these genes 
are indeed causal.

Observational studies suggest that early life head cir-
cumference is not only related to intracranial volume 
in adults, but also to adult intelligence, Alzheimer’s dis-
ease, schizophrenia and autism [1–3, 12–17]. In observa-
tional studies of such associations, effect estimates may 
be influenced by confounding factors and reverse causa-
tion, potentially evoking spurious associations [47, 48]. 
Genetic studies such as ours can provide more insight 
into the etiology of complex diseases. We found a strong 
genetic correlation of head circumference in early life 
with intracranial volume in adults, underlining the idea 
that early-life head circumference is a valid measure for 
brain growth during early development [3, 7]. Abnormal 
growth trajectories of head circumference are related to 
adverse neurological outcomes [49]. Additionally, varia-
tion within the normal range of head circumference has 
been reported to be associated with cognitive and behav-
ioral traits [2, 50, 51]. In the current study, we observed 
positive genetic correlations for head circumference in 
early life with childhood intelligence, years of school-
ing and adult intelligence. These findings indicate that 
the association of early-life head circumference with 
cognitive function from observational studies is at least 
partly explained by a shared genetic background, which 
is in line with the observed positive genetic correlations 
between intracranial volume and cognitive function in 
the literature [7, 8, 52]. Altogether, the findings from the 
current study and from previous literature suggest that 
the associations between measures of early-life brain vol-
ume and cognition decades later are partly genetically 
explained.

It has been suggested that heritability estimates are 
consistent from childhood onwards [6]. Whether this 
genetic stability starts from early life onwards, is cur-
rently not well studied. We observed evidence for asso-
ciation of two of the seven SNPs with adult intracranial 
volume [7]. We combined the seven index SNPs into a 
weighted GRS. Although we have used effect sizes of the 
meta-analysis after excluding the Generation R Study, the 
discovery of the seven SNPs was based on the meta-anal-
ysis including the Generation R Study, potentially result-
ing in overfitting of the GRS. We found an association of 
the GRS with fetal head circumference in third trimester, 
head circumference in infancy and childhood and intrac-
ranial volume in adulthood. The effect estimates were 
largely similar for the different time points. We did not 
observe an association of the GRS with birth head cir-
cumference. This may be explained by the larger vari-
ance in birth head circumference that might be present 

due to the deformation of the head during birth. Also, in 
the GWAS meta-analysis of head circumference at birth, 
no SNPs were genome-wide significantly associated with 
birth head circumference. Thus, the genetic background 
of early-life head circumference seems to partially over-
lap with the genetic background of related measures in 
later life. The SNPs identified in infancy seem to repre-
sent effects across multiple ages. However, as not all 
SNPs identified for early-life head circumference were 
associated with adult intracranial volume, it has been 
suggested that some of the underlying mechanisms are 
age-specific.

Conclusions
We identified seven SNPs associated with early-life head 
circumference. Three of these are novel and four mapped 
to loci that are known for head circumference, intracra-
nial volume, or brain volume. We observed a strong posi-
tive genetic correlation of early-life head circumference 
with adult intracranial volume and cognitive outcomes in 
childhood and adulthood. The well-known associations 
of head circumference with later cognitive phenotypes 
are partly explained by genetics. Our findings may con-
tribute to the understanding of the early-life brain devel-
opment, which may lay the foundation for diseases later 
in life.
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