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Abstract: The toolbox for material characterization has never been richer than today. Great progress
with all kinds of particles and interaction methods provide access to nearly all properties of an object
under study. However, a tomographic analysis of the subsurface region remains still a challenge
today. In this regard, the Muon Induced X-ray Emission (MIXE) technique has seen rebirth fueled
by the availability of high intensity muon beams. We report here a study conducted at the Paul
Scherrer Institute (PSI). It demonstrates that the absence of any beam time-structure leads to low
pile-up events and a high signal-to-noise ratio (SNR) with less than one hour acquisition time per
sample or data point. This performance creates the perspective to open this technique to a wider
audience for the routine investigation of non-destructive and depth-sensitive elemental compositions,
for example in rare and precious samples. Using a hetero-structured sample of known elements and
thicknesses, we successfully detected the characteristic muonic X-rays, emitted during the capture of
a negative muon by an atom, and the gamma-rays resulting from the nuclear capture of the muon,
characterizing the capabilities of MIXE at PSI. This sample emphasizes the quality of a continuous
beam, and the exceptional SNR at high rates. Such sensitivity will enable totally new statistically
intense aspects in the field of MIXE, e.g., elemental 3D-tomography and chemical analysis. Therefore,
we are currently advancing our proof-of-concept experiments with the goal of creating a full fledged
permanently operated user station to make MIXE available to the wider scientific community as well
as industry.
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1. Introduction

Elemental analysis of materials, qualitative and quantitative, is used in a broad range
of scientific fields. Depending on the type of application, several elemental analysis tech-
niques have been developed over the years, broadly categorized into two types: destructive
and non-destructive. The different destructive methods include Auger Electron Spec-
troscopy [1], Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry [2],
Secondary Ion Mass Spectrometry [3], Inductive Coupled Plasma Atomic Emission Spec-
troscopy [4] and Inductive Coupled Plasma Mass Spectroscopy [5]. With these destructive
techniques, one can study trace elements (down to parts per quadrillion (ppq) levels)
near the surface of the material, but this comes with the cost that the investigated sam-
ple cannot be retained in its original form. Thus, such techniques are not appropriate
with rare and precious samples for which even a partial destruction is excluded. The
different non-destructive techniques include X-ray Photoelectron Spectroscopy [6], X-ray
Fluorescence (XRF) [7], Proton-induced X-ray Emission (PIXE) [8], Rutherford Backscat-
tering Spectrometry (RBS) [9], Nuclear Reaction Analysis (NRA) [10], Prompt Gamma-ray
neutron Activation Analysis (PGAA) [11], Neutron Activation Analysis (NAA) [12], and
Neutron Depth Profiling [13]. All these non-destructive techniques, with the exception of
PGAA and NAA, are able to provide information from near (i.e., up to ∼10 micrometer)
the surface of the material only. On the other hand, the PGAA and NAA techniques are
bulk measurements and not depth-sensitive, and the sensitivity is strongly isotope depen-
dent. The technique of Muon Induced X-ray Emission (MIXE) (Reference [14] called this
technique as Muonic X-ray Analysis (MXA). The Refs. [15–17] used Muon Induced X-ray
Emission (MIXE), while the Ref. [18] used Muonic Atom X-ray Spectroscopy (MAXRS); all
of which describe the same technique), a non-destructive technique, which was developed
more than 40 years ago [14,19–21], has recently been used extensively with pulsed muon
beams for elemental analysis [16,18,22–34]. The advantage of this technique is that it is
able to probe deep into the material, up to a few millimeters, and does not lead to a severe
radiation damage of the sample. The aim of the present manuscript is to demonstrate the
performance of the MIXE technique using a continuous muon beam.

2. The MIXE Technique

The muon is a lepton of mass mµ = 105.66 MeV/c2, and thus ∼207 times heavier than
the electron (me = 0.511 MeV/c2). There are two kinds of muons, namely positive muons
(µ+, antiparticle) and negative muons (µ−, particle). For research on condensed matter
and material science, spin polarized µ+ are routinely used in different experiments such as
muon spin rotation, relaxation and resonance studies (µSR) [35]. The advantage of µ+ is
that these stop at interstitial sites in a sample, acting as localized magnetic probes by making
use of the asymmetric emission of positrons when they decay. The µ− can also be used for
µ−SR studies [36]. However, as the negative muons do not stop at an interstitial site but
are rather captured by the atoms of the sample, due to the electromagnetic interaction with
the nucleus, they form the so-called muonic atoms. Hence, the interpretation of µ−SR data
can be quite difficult, hampering a large use of this technique.

An alternative use of µ− is to study the formation process of muonic atoms. When a
µ− is captured by an atom, the resulting muonic atom is typically created in an excited state,
with the muon in an muonic orbit principal quantum number nµ ∼14 [37]. Subsequently,
the muon relaxes in a time-scale of the order of 10−13s to the lowest nµ = 1 muonic orbit
by emitting a series of so called muonic X-rays (µ-X rays) [38]. The energy of the µ-X rays,
which can be used to investigate the charge radius of the nucleus [39–41], is a fingerprint
of the type of atom having captured the muon. Hence, the determination of the µ-X ray
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energies provides information about the presence of the different atomic species. Correcting
the intensities of the observed µ-X rays, for various processes, allows to quantify the weight
percentages of the elements present in the sample under study. The processes to take into
account are the branching ratio of the µ-X rays, competing Coulomb capture probabilities
of the different elements (generally heavier atoms have a higher capture probability) and
X-ray absorption effects inside the sample.

Due to their higher mass, muons exhibit a different stopping profile in matter than
X-rays or electrons. Their energy loss distribution is similar to that of protons, a Bragg
curve. The mean penetration depth of muons depends on the density of the target material
and the incoming muon momentum [42]. This allows to deduce the elemental composition
of a material deep below the surface in the range from tens of µm to mm and profiling
with step sizes down to 10 µm to 100 µm, respectively. As an example, for a muon beam
with a mean momentum of 30 MeV/c (corresponding to a kinetic energy of 4.18 MeV) and
a momentum distribution characterized by a momentum bite ∆p/p = 2% (σ = ∆p), the
stopping depth is 260± 20 µm in a copper target.

Also owing to the heavier mass, a µ-X ray has an energy ∼207 times higher than that
associated with the corresponding electronic transition (neglecting finite size effects). This
much higher µ-X ray energy and the correspondingly smaller mass attenuation coefficient
has the consequence that the created µ-X rays have a much higher probability to pass
through the target material from much deeper regions than the characteristic X-rays of
electronic transitions.

In analogy to the Moseley law [43] for the electrons, and by assuming a point-charge
nucleus, one can express the Bohr model energy of the µ-X ray created between transitions
between states with principal quantum numbers ni (initial) and n f (final) as:

Ei→ f ,µ =
m̄µ

me
Ry(Z− Sscr,µ)

2(
1

n2
f
− 1

n2
i
) '

m̄µ

me
Ei→ f ,e ' 207× Ei→ f ,e , (1)

where m̄µ is the reduced mass of the system formed by the muon and the nucleus and
Ry is the Rydberg constant. Note that by analogy with the Moseley law, we replace the
atomic number Z by Ze f f = (Z− Sscr,µ). We have Sscr,µ = 0 since there is no screening of
the charge of the nucleus seen by the muon involved in the transition, as solely one µ− is
present at a given time in the sample. Though the Sscr,µ = 0, the electron screening also
affects the energy of the µ-X rays. While this effect can lead to energy shifts ranging from a
fraction of eV to few hundreds of eV (depending on the muonic transition and the element),
these are of the order of permille or less [44]. The situation is however different for the case
of electrons where for Kα transitions (2p→ 1s), for example, one has Sscr,e = 1 as already
one electron is present in the 1s level. This difference explains the first approximation in
Equation (1). Note that the Bohr model ignores the fine structure of the levels, which is
determined by relativistic effects and the spin-orbit coupling. Hence, all states with the
same principal quantum number n and different azimuthal quantum number ` have the
same binding energy in this model. Note also that for heavy nuclei, the µ-X ray energy
will be smaller than the one predicted by Equation (1), as the size of the nucleus cannot
be neglected anymore with respect to the characteristic radius of the muonic state. This
deviation will be smaller for large values of n f , corresponding to a large radius of the
muonic state.

Concluding, by measuring the µ-X ray energy one can identify the element (similar to
the XRF technique), which had captured the muon. However, the fundamental differences
compared to the XRF technique are, that the muon momentum can be tuned to implant the
muons at controlled depths deep inside the material (from tens of micrometers to several
millimeters), and that the created µ-X rays have enough energy to escape the material and
being detected (We note here that for pure iron an X-ray created by the muonic transition
Kα2 will have a range three orders of magnitude larger than the corresponding X-ray
created by an electronic transition). This technique is referred to as the Muon Induced X-ray
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Emission (MIXE) technique. MIXE can be applied to carry out non-destructive elemental
analysis deep inside a material, which is not possible by XRF or PIXE.

Once the muon has reached its ground state, i.e., n f = 1, it either decays or gets
captured by the nucleus. The respective branching probabilities will depend on the overlap
between the muonic and nuclear wavefunctions. The probability of the capture by the
nucleus increases with Z through the reaction

µ− + p −→ n + νµ . (2)

This leads to a decrease of the muon lifetime, as the muon lifetime τ is given by

1
τ
=

1
τdecay

+
1

τnuclear capture
. (3)

For low Z muonic atoms the muon lifetime is essentially identical to that of the free
muon (∼2.2 µs), whereas for heavy atoms it can be lower than 100 ns [45].

The capture of the µ− by the nucleus (Equation (2)) results in the formation of a Z− 1
nucleus in an excited state, which will relax through different possible processes, for which
some are connected with the emission of characteristic gamma-rays. By determining the
energy of the gamma-rays, one obtains an additional confirmation of the type of atom
having captured the µ−. We note here that the possible nuclear capture of the muon (i.e., a
muon not experiencing a normal decay) may lead to the formation of a radioactive nucleus
and therefore questioning the claim of MIXE as a non-destructive method. We nevertheless
note that a typical experiment requires about 106 muons implanted into the sample, and
depending on the nucleus, a fraction of these will be captured by it. Such a low number
of possibly created radioactive nuclei is negligible in comparison to the number of atoms
present in a typical sample, which is of the order of the Avogadro number.

Presently, there are multiple applied research muon beam facilities in the world in
operation: (i) Paul Scherrer Institute (PSI), Switzerland; (ii) ISIS, Rutherford Appleton
Laboratory (RAL), United Kingdom; (iii) TRI Univeristy Meson Facility (TRIUMF), Canada;
(iv) Japan Proton Accelerator Research Complex, MUon Science Establishment (J-PARC
MUSE) and (v) MUon Science Innovative Channel (MuSIC), Japan. The interested reader
is referred to comprehensive review of Hillier et al. [46] about accomplishments, present
research and future capabilities at the institutes listed above. The cyclotron-based high
beam duty factor facilities at PSI, TRIUMF, and MuSIC provide continuous muon beams
to the experimental areas. The continuous muon beams allow detecting each incident
muon impinging on the experimental target one-at-a-time. In our experiments, the next
muon arrives on average after >10 muon lifetimes, allowing sufficient time for the previous
muon to decay or be captured by the nucleus and therefore minimizing event pile-up in
the germanium detectors, which are used to detect the µ-X rays.

In the following, we will demonstrate that a continuous muon source, such as PSI,
is the ideal place to perform fast and precise MIXE measurements and that within a
few minutes of data collection one obtains a clear elemental identification. This enables
systematic measurements of a large number of samples in a short period of time. We would
like to stress that the use of the MIXE technique to perform elemental analysis at PSI already
started decades ago [47–49], but was hampered by the available muon rates at that time.
Nevertheless, already very promising results were obtained. Nowadays, the beam intensity
is at least a factor of 20 higher, opening new application possibilities of this technique.

3. Experimental Details and Results

The MIXE experiment was performed using the πE1 beamline, fed by the High
Intensity Proton Accelerator (HIPA) [50] of the Paul Scherrer Institute (PSI), Switzerland.
This beamline is capable of delivering positive or negative muons [51]. With this beamline,
we could achieve typical muon rates of ∼1.5 kHz and ∼60 kHz at momentum p = 20 and
45 MeV/c, respectively, with momentum bite ∆p/p = 2% (σ = ∆p). We also observed a
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pile-up of ∼1% with the muon rates of ∼60 kHz. Even at momentum bite of 0.5%, we
could obtain reasonable muon rates, which would be ideal for the investigation of thin
samples. As the πE1 beamline of the HIPA accelerator complex at PSI delivers a continuous
beam, one has to detect the individual arrival time of each muon using a muon entrance
detector, made of polyvinyltoluene (BC-400), and of ∼200 µm thickness. In addition, a
5 mm thick BC-400 muon counter with a 18 mm (diameter) hole was placed just before
the muon entrance counter. This detector served as a collimator and veto detector at the
same time. Together with a 1.5 m drift tube, from the last quadrupole of the beamline to
the muon detector arrangement, this guaranteed that the long focal distance resulted in a
similar sized beam spot on target. The experimental apparatus (see Figure 1 and [52]) was
originally developed for the muX experiment [53]. It consisted of a planar detector and a
stand-alone coaxial detector (efficiency, ε ∼70%) from PSI; a stand-alone coaxial detector
(ε ∼75%) from KU Leuven; one MINIBALL cluster module, with three detector crystals
(ε ∼60% each), from KU Leuven [54]; seven compact coaxial detectors (ε ∼60%) from
the IN2P3/STFC French/UK Ge Pool [55]; and a low-energy detector from ETH Zürich.
So, in total we had twelve coaxial and two low-energy Ge detectors. Out of the above-
mentioned detectors, two of these had a BGO anti-Compton shield. The timing resolution
of this setup was ∼50 ns and ∼20 ns at 200 keV and 1 MeV, respectively. The energy and
efficiency calibrations for this detector setup was done using the standard radioactive
sources of 152Eu, 88Y, 60Co and 137Cs. The target consisted of a three-layered sandwich
sample of iron (Fe), titanium (Ti), and copper (Cu) plates and was placed in vacuum. Each
layer was 500 µm thick with a diameter of 26.5 mm. There were two main purposes of
measuring such a sandwich sample consisting of pure elements: (i) to demonstrate the
possibility of measuring the different µ-X rays and gamma-rays for different elements,
(ii) to determine if by changing the muon momentum, we are able to probe the element
present at different depths inside the sample and how such measurements correlate with
simulations for penetration depths of negative muons. Hence, the measurement of such a
simple sample acts as proof of principle for later precise measurements on actual samples
like archaeological artefacts, battery and meteorite samples where the depth-dependent
elemental compositions are of interest. The simple geometry of the sample was also chosen
to benchmark our results with the ones obtained in a similar sample at the pulsed muon
source ISIS [29].

Figure 1. A photograph of the experimental setup showing the assembly of the detectors.
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The sample was measured at six different muon momenta, p = 28.6, 35.0, 37.5, 40.0,
42.5, and 45.0 MeV/c, with momentum bite ∆p/p = 2% (σ = ∆p). A data collection time of
∼30 min was used for each muon momentum. The statistical uncertainty of the presented
raw spectra follows the Poisson statistics (σ =

√
N) and is therefore omitted in the figures

for visibility of the smaller peaks. A comparison of the presented spectra to data, taken at
other facilities can be performed, by taking into account the according bin widths (stated
in the y-labels). Figure 2 shows the µ-X ray spectra of the muonic K-series, measured
with all the twelve coaxial Ge detectors, for the six different muon momenta, in the energy
range 900 < E < 2150 keV. At the lowest momentum (p = 28.6 MeV/c) (Figure 2a), all the
muons stop in the first sample layer and one is able to observe the entire K-series of the µ-X
rays from Fe. In addition, the 2p3/2 − 1s1/2 (Kα1) and the 2p1/2 − 1s1/2 (Kα2) transitions at
1257.2 keV and 1253.1 keV are resolved, as shown in the inset of Figure 2a.

Upon increasing the muon momentum, one detects first the µ-X rays from both the Fe
and Ti layers (p = 35.0 and 37.5 MeV/c, see Figure 2b,c); then the ones from all the three Fe,
Ti and Cu layers (p = 40.0, see Figure 2d). At p = 42.5 MeV/c (Figure 2e), one looses the
Fe-signal and only Ti and Cu µ-X rays are observed. At p = 45.0 MeV/c (Figure 2f), only
the Cu muonic X-rays are observed. It should be noted that the photopeak signal-to-noise
ratio (SNR) is ∼20 for the Kα line of Cu (see Figure 2f).

To perform the analysis and estimate where the muons are stopping, we have chosen
the characteristic µ-X ray peaks of the three layers as follows: (i) Kα1 (1253.1 keV) and
Kα2 (1257.2 keV) lines of Fe, (ii) Kα (931.8 keV) of Ti, and (iii) Kα1 (1507.7 keV) and Kα2
(1514.2 keV) lines of Cu. The intensity of these peaks was obtained by dividing the area
under these peaks (after a proper background subtraction, as described in Ref. [56]) by the
efficiency at the corresponding energies.

Since at p = 28.6 MeV/c, we see only the Fe lines, the total intensity of the Kα1
(1253.1 keV) and Kα2 (1257.2 keV) peaks is normalized to 100. At p = 35.0 MeV/c, as both
Fe and Ti lines are present, the intensities of the peaks of Fe and Ti are normalized in such a
manner that both sum up to 100. The same procedure is followed for the rest of the muon
momenta. By analyzing the relative intensities of the different peaks, we are thus able to
estimate experimentally the fraction of the muon ensemble stopping in the different layers
at a given muon momentum.

To validate our approach, we compared our results with stopping profile simulations
obtained with the Particle and Heavy Ion Transport code System (PHITS) simulation tool
(ver. 2.88) [57,58]. The PHITS simulations were used to represent the interaction of the
negative muon beam, with a given muon momentum (p) and a Gaussian momentum
distribution with standard deviation σ = ∆p (relative width ∆p/p = 2%), on the three-
layered sandwich sample (Fe,Ti, and Cu) placed in vacuum, including the 200-µm-thick
muon entrance detector. The simulations were carried out from p = 28 to 46 MeV/c, at
intervals of 1 MeV/c to obtain the percentage of muons stopping in a given layer and the
penetration depths of the muons. The interpolated simulated data points (using Hermite
interpolation of order three) are shown as solid lines (blue for Fe, green for Ti, and red for
Cu) in Figure 3a. The efficiency corrected and normalized intensities (as described in the
previous paragraph) of the muonic−Kα lines of Fe, Ti, and Cu were used to estimate the
percentage of muons stopping in each layer. They are shown in the figure as blue filled
circles, green filled squares and red filled diamonds, respectively. The difference between
the experimental and the simulated points, called the residuals, at the six different muon
momenta is shown in Figure 3 (bottom panel). From this plot, one can see that we obtain a
very good agreement, within ∼10%.

The high rates, low pile-up and excellent SNR (see Figure 2) allows the analysis of
elemental composition in a short time scale (30–60 min). This opens the possibility of
statistically intense applications like an elemental 3D-tomography employing a transmis-
sion muon tracker (a hodoscope similar to the one described in Ref. [18]). The continuous
muon beam of PSI will allow the unique feature of individual muon tracking. Therefore, in
contrast to scanning techniques by collimation, a 3D tomography at PSI will not hamper
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any rates or efficiencies discussed in this manuscript. Thus, the overall acquisition time
scales only with the chosen discretization. The use of such a hodoscope would also allow a
superior offline collimation compared to the common practice of physical collimation, as
employed with our veto counter. An adapted collimation on a sample-by-sample basis is
e.g., important for cases of in-planar inhomogeneity and/or for a region-of-interest smaller
than the beam spot.
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Figure 2. The counts (N) of the muonic X-ray spectrum in the energy range 900 to 2150 keV,
from all the twelve coaxial Ge detectors, for the six different muon momenta (p) (a) 28.6 MeV/c,
(b) 35.0 MeV/c, (c) 37.5 MeV/c, (d) 40.0 MeV/c, (e) 42.5 MeV/c, and (f) 45.0 MeV/c. The data
accumulation time for each momentum was ∼30 min. The µ-X rays of Fe, Ti and Cu are labelled in
blue, green, and red colors, respectively. The energies of the µ-X rays were taken from [59,60]. The
inset in panel (a) shows the zoomed portion of the spectrum (from 1240 to 1270 keV), to emphasize
the fine structure of the muonic Kα lines in Fe. A statistical error of the data points (

√
N) is not shown

for visibility of the smaller peaks.



Appl. Sci. 2022, 12, 2541 8 of 14

500 μm 1000 μm

500 μm

μ-

30 35 40 45

0

20

40

60

80

100

S
to

p
p

e
d

m
u

o
n

s
(%

) Fe

Ti

Cu

Fe

Ti

Cu

30 35 40 45
-10

-5

0

5

10

Muon Momentum (MeV/c)

R
e

s
id

u
a

ls
(%

)

Figure 3. (top panel) Percentage of muons stopping in each layer of the sandwich sample obtained
from simulations (shown by solid lines) and experiment (points) for the three different layers Fe
(blue line and blue filled circles), Ti (green line green filled squares) and Cu (red line and red filled
diamonds). The inset shows a sketch of the orientation of the sandwich sample with respect to the
negative muon beam and the thickness of the individual layers. Two black dashed lines are drawn at
the intersection of the simulated curves. (bottom panel) The residuals (experimental-simulated) in
percentage for the different data points.

In addition to the µ-X rays, the gamma-rays produced after the nuclear capture of
muons have also been observed in the present experiment. We show this for the data
measured at the muon momentum of p = 28.6 MeV/c, where all the muons stop in the very
first Fe layer. The gamma-rays, resulting from the nuclear capture in Fe, were previously
studied in Ref. [61] and Ref. [60]. In Ref. [61], only six gamma-rays were detected in
the Fe spectrum, resulting from the isotopes 56Fe (µ−, νγ) 56Mn, 56Fe (µ−, νnγ) 55Mn,
56Fe (µ−, ν3nγ) 53Mn, and 56Fe (µ−, νpnγ) 54Cr. A gamma-ray at 847 keV was observed,
due to the decay of the first excited state of 56Fe, in both the prompt µ-X ray and the delayed
gamma-ray spectra. The presence of this 847 keV in the delayed spectrum was explained
to be arising due to the inelastic scattering of the 56Fe nucleus by neutrons following
the muon capture. In the other Ref. [60], up to forty-nine gamma-rays originating from
the de-excitation of the 56Fe (µ−, νγ) 56Mn, 56Fe (µ−, νnγ) 55Mn, 56Fe (µ−, ν2nγ) 54Mn,
56Fe (µ−, ν3nγ) 53Mn and 56Fe (µ−, νpnγ) 54Cr isotopes were observed. From our analysis,
we observed all the gamma-rays mentioned in the previous two references. In addition, we
also observe the gamma rays from 56Fe (µ−, νp2nγ) 53Cr or 54Fe (µ−, νpγ) 53Cr.

Figure 4a shows the µ-X ray and gamma-ray spectra from Fe in the energy range
0–200 keV, measured using the two low-energy germanium detectors. In order to differen-
tiate between these two spectra, a time-gate cut has been applied. As the muon cascade
down to the 1s ground state is almost instantaneous after its capture by an atom, the
associated µ-X ray emission will happen basically in coincidence with the muon entrance
time. Therefore, by applying a time-cut of −50 ns < tdi f f < 50 ns one selects primarily the
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µ-X rays of Fe (see Figure 4(ai), where the µ-X rays of the N-series at 65.6, and 79.6 keV
and of the M-series at 92.6, 134.9, 157.8, and 172.3 keV are observed, already reported in
Refs. [59,62]). Here, tdi f f is the time difference between the muon entrance counter and
the germanium detector. Similarly, by using a time cut of 100 ns < tdi f f < 200 ns, i.e., a
time range where the µ-X rays have already been emitted, the µ-X rays are no more present
in the histogram and solely the gamma-rays are obtained (see Figure 4(aii)). Figure 4(aii),
exhibits the gamma-rays from the 54−56Mn nuclei. None of those have been reported in
previous works, probably because these transitions are at low energy. The energy values of
these gamma-rays were taken from the adopted level schemes in National Nuclear Data
Center (NNDC) [63]. Some uncertainty was related to the existence of the 126 keV state [61],
as the observation of a 858 keV gamma-ray was reported, which is a result of the decay
from 984 keV state to the 126 keV state. Our present data clearly confirms the existence
of the 126 keV state, since we observed the 126 keV gamma-ray. Since the time difference
between the emission of the µ-X rays and the gamma-rays is very small, one would still
observe the gamma-rays (but with much lower intensity compared to the µ-X rays) also in
the prompt µ-X ray spectrum. We observe this in Figure 4a and some of these peaks are
marked with a black dashed line.

Figure 4(bi,ii) shows the µ-X ray and gamma-ray spectra from Fe in the energy range
200–500 keV, measured using all the twelve coaxial detectors. We observe µ-X rays of the L-
series at 265.3, 268.9, 358.0, 362.0, 400.6, 404.6, 423.8, 427.8, 437.8, 442.5, 447.3, and 451.5 keV,
as observed in Ref. [47]. The gamma-rays are from the 53,54,56Mn isotopes. Figure 4c shows
the µ-X ray and gamma-ray spectra from Fe in the energy range 500–1000 keV, measured
using again all the twelve coaxial detectors. Figure 4(ci) shows a µ X-ray of 578.9 keV,
but this does not belong to Fe. This is the muonic Kα line of Cl, which is present in the
plastic (PVC), a cylindrical shaped plastic sample holder. It is to be noted that we also
observed the muonic Kα line of C at 75.2 keV (Figure 4(ai)). The gamma-rays are from
54,55Mn, 53,54Cr, and 56Fe isotopes, as shown in Figure 4(cii). All these gamma-rays, except
those of 53Cr, were observed in the previous references. Figure 4d exhibits the µ X-ray and
gamma-ray spectra from Fe in the energy range 1000–2000 keV. The µ X-rays of the K-series
at 1253.06, 1257.19, 1522.3, 1615.3, 1658.2, 1681.7, 1695.7, and 1704.7 keV are observed (see
also Ref. [60]). The gamma-rays originate from 53,54,55Mn and 53Cr isotopes. All these
gamma-rays, except those of 53Cr, were observed in the previous references.

With respect to the muon lifetime (τµ = 2.2 µs), the emission of muonic X-rays
(τX-ray < 10−13 s) can be seen as in coincidence with the formation of the muonic atom,
while the emission of gamma-rays (τγ < 10−12 s) in coincidence with the nuclear capture
of the muon. Therefore, the measurement of the gamma-rays as a function of time can be
used to determine the muon lifetime in a particular element in the sample. As an example,
we report here in Figure 5 the intensity of the 1528.3 keV gamma-ray (from muon capture
in Fe at p = 28.6 MeV/c) as a function of the time of the Ge detector signals (in 100 ns
wide windows). The fit of this plot results in a mean lifetime of muon in Fe to be 201(2) ns,
which is in good agreement with the values of 201(4) [64], 207(3) [65], 206.7(2.4) [66] and
206.0(1.0) ns [45]. We note here that this muon lifetime determination was not our primary
goal and that a measurement as short as 30 min already provides an excellent precision.
Hence, it appears that the identification of the gamma-rays and the determination of the
mean lifetime of the muon act as additional proofs for the elemental identification. And we
stress again that the determination of the mean lifetime of all elements is only possible due
to the continuous muon beam, where each muon arrival time is measured.
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Figure 4. The prompt counts (N) of the muonic X-ray spectrum ((i) −50< tdiff <50 ns) and delayed
counts (N) of the gamma-ray spectrum from the nuclear capture of muons ((ii) 100< tdiff <200 ns) in
the Fe layer of the three-layered sandwich sample at p = 28.6 MeV/c within the energy ranges of
(a) 0 < E < 200 keV, (b) 200 < E < 500 keV, (c) 500 < E < 1000 keV, (d) 1000 < E < 2000 keV, and
(e) 2000 < E < 3100 keV. The µ-X ray energies are written in red, while the gamma-ray energies are
in blue. A statistical error of the data points (

√
N) is not shown for visibility of the smaller peaks.
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originating from the de-excitation after muon capture in the Fe nucleus, shown by red filled circles.
The formula I(t) = I[exp(−t/τ)] is fit to the data, represented by the black solid line (see also
Equation (3)).

4. Summary and Conclusions

By measuring a three-layered sandwich sample of known elements, we demonstrated
the advantages of using the Muon Induced X-ray Emission (MIXE) technique at continuous
muon beams, available at PSI. The presence of the characteristic muonic X-rays (µ-X rays)
from these known elements provides a detailed picture of the elemental composition of the
different elements as a function of depth. The good agreement between the experimental
and simulated data validates our data acquisition and analysis procedures. Moreover,
it will allow us to utilize the simulation to design future experiments and implement a
more sophisticated iterative simulation procedure, which would take into account the
absorption of µ-X rays in irregular shaped samples of non-uniform densities. The missing
time structure of the beam resulting in the low SNR of <1% combined with the high rates
will allow the tracking of individual muons with a transmission hodoscope. This opens the
possibility of the future application of elemental 3D-tomography by discretizing the impact
positions while scanning momentum for different implantation depths. Such configuration
can utilize the full rate of the PSI beamline and, therefore, the acquisition time will merely
scale with the desired 3D voxelization. Moreover, it will allow an offline collimation to
adapt the analysis on a by-sample basis.

The possibility to detect gamma rays of the excited daughter isotopes after nuclear
capture of the muon, in addition to the µ-X rays, provides a further confirmation of the
identification of the elements. Relying on this success, it is clear that this technique, applied
at continuous muon beams, appears as a very powerful tool to analyze different types
of samples, which could be precious (as archaeological artefacts) or rare (as meteorite or
“returned” samples). By exploiting the depth-dependent elemental identification and the
short measurement times, we foresee to even perform experiments in operando devices,
such as batteries, to track elemental composition changes.
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