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Abstract
Purpose  Preoperative prediction of mortality in femoral neck fracture patients aged 65 years or above may be valuable in the 
treatment decision-making. A preoperative clinical prediction model can aid surgeons and patients in the shared decision-
making process, and optimize care for elderly femoral neck fracture patients. This study aimed to develop and internally 
validate a clinical prediction model using machine learning (ML) algorithms for 90 day and 2 year mortality in femoral neck 
fracture patients aged 65 years or above.
Methods  A retrospective cohort study at two trauma level I centers and three (non-level I) community hospitals was con-
ducted to identify patients undergoing surgical fixation for a femoral neck fracture. Five different ML algorithms were 
developed and internally validated and assessed by discrimination, calibration, Brier score and decision curve analysis.
Results  In total, 2478 patients were included with 90 day and 2 year mortality rates of 9.1% (n = 225) and 23.5% (n = 582) 
respectively. The models included patient characteristics, comorbidities and laboratory values. The stochastic gradient boost-
ing algorithm had the best performance for 90 day mortality prediction, with good discrimination (c-statistic = 0.74), calibra-
tion (intercept = − 0.05, slope = 1.11) and Brier score (0.078). The elastic-net penalized logistic regression algorithm had the 
best performance for 2 year mortality prediction, with good discrimination (c-statistic = 0.70), calibration (intercept = − 0.03, 
slope = 0.89) and Brier score (0.16). The models were incorporated into a freely available web-based application, including 
individual patient explanations for interpretation of the model to understand the reasoning how the model made a certain 
prediction: https://​sorg-​apps.​shiny​apps.​io/​hipfr​actur​emort​ality/
Conclusions  The clinical prediction models show promise in estimating mortality prediction in elderly femoral neck frac-
ture patients. External and prospective validation of the models may improve surgeon ability when faced with the treatment 
decision-making.
Level of evidence  Prognostic Level II.

Keywords  Hip fracture · Femoral neck fracture · Geriatric trauma · Prediction model · Mortality · Machine learning · 
Precision medicine

Introduction

The number of hip fractures continues to rise, and are 
predicted to an incidence of 6.26 million cases each year 
worldwide in 2050 [1]. Numerous patient and injury char-
acteristics are associated with a high mortality rate after hip 

fracture, with incidences ranging from 14 to 35% in the first 
year [2–4]. The treatment decision for femoral neck fractures 
has been a frequent topic of discussion in the orthopedic 
literature, where the optimal treatment decision-making and 
implant choice remain challenging [5, 6].

Predicting mortality may guide which patient may benefit 
from arthroplasty surgery (hemi- or total hip arthroplasty), 
internal fixation (e.g. a sliding hip screw or cancellous 
screws) or nonoperative management [7, 8]. In patients aged 
65 years or above, the decision between arthroplasty and 
internal fixation remains under debate, and optimal treatment 
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may be individualized depending on patients’ preferences 
and goals, informed by the risk and benefits of treatment 
options [5, 6]. Long-term functional outcomes may be better 
in healthy older patients undergoing arthroplasty compared 
to internal fixation, with lower reoperation rates [9, 10]. A 
recent study showed that a shared decision-making process 
including non-operative management for a proximal femoral 
fracture might be a viable option for frail institutionalized 
patients with limited life expectancy [8]. Identifying patient 
and injury characteristics associated with mortality may aid 
surgeon, patients and family in shared decision-making and 
optimize care in femoral neck fracture patients [11]. In other 
words, a decision support tool to predict shorter- and longer-
term mortality would allow for risk stratification of patients 
aged 65 years or above with femoral neck fractures to guide 
treatment decision-making.

Thus, an accurate preoperative prediction model may be 
required to efficiently target patients benefiting from a spe-
cific intervention and facilitate true shared decision-making 
based on personalized risks and benefits. Many mortality 
prediction models have been described in the geriatric 
trauma [12, 13] and hip fracture population [14–16], but 
only few studies predict mortality in the hip fracture patient 
beyond the 30-day period with good model performance 
[14]. Most hip fracture registries have a follow-up period 
of maximum 1 year [17], the use of institutionally collected 
data creates the opportunity to develop prediction models 
with longer follow-up. Prior prospective randomized con-
trolled trials chose 2-year as the endpoint to account for 
longer follow-up for management of the acute hip fracture 
patient [6, 18]. In addition, clinical decision support using 
machine learning (ML) algorithms has been employed in 
the hip fracture population (e.g. 30 day mortality [16] or 
30 day delirium [19] prediction), and has also shown to be 
useful in helping to predict outcomes in other areas includ-
ing orthopaedic surgery [1–4, 20–22].

Therefore, this study aimed to develop and internally 
validate a clinical prediction model using machine learning 
algorithms for 90 day and 2 year mortality in femoral neck 
fracture patients aged 65 years or above.

Materials and methods

Data source

This retrospective cohort study was approved and registered 
with the institutional review board (IRB) prior study start-
up. A search in the Research Patient Data Registry (RPDR) 
was performed to identify patients older than 65 years of 
age who underwent operative treatment for a femoral neck 
fracture, OTA type 31-B (as classified by the Orthopaedic 
Trauma Association (OTA) [23]), who presented to our 

institutions between January 2001 and December 2017. 
RPDR is a clinical data registry that collects medical records 
from institutions within the Partners Healthcare System 
and may be queried after IRB approval. Our institutions 
accounted for two level I trauma centers and three commu-
nity (non-level I trauma) hospitals. Patients were excluded 
if presented with a pathological fracture.

Primary outcomes

The primary outcome was 90 day and 2 year mortality in 
patients sustaining a femoral neck fracture, OTA type 31-B. 
Mortality was assessed by cross-referencing the Social 
Security Death Index (a database of people whose deaths 
were reported to the Social Security Administration) and 
through manual chart review. The time endpoints of 90 day 
and 2 year mortality were chosen on the basis of prior stud-
ies [6, 18, 24].

Baseline data

The following preoperative variables were collected: age, 
gender, race, ethnicity, marital status, veteran status, side 
of injury, displacement of the fracture, Charlson Comor-
bidity Index, presence of comorbidities [myocardial infarc-
tion, congestive heart failure, peripheral vascular disease, 
cerebrovascular accident, dementia, chronic obstructive 
pulmonary disease, rheumatic disease, peptic ulcer disease, 
liver disease, diabetes, hemi- and paraplegia, renal disease, 
cancer, coagulopathy, drug abuse, alcohol abuse, depres-
sion], preoperative medication use [immunosuppressants, 
anti-coagulants, steroids, bisphosphonates, angiotensin 
converting enzyme inhibitors, angiotensin receptor block-
ers, beta blockers, beta-2 agonists, opioids] and labora-
tory characteristics [calcium(mg/dL), creatinine(mg/dL), 
hemoglobin(g/dL), potassium(mEq/L), platelet count(103/
µL), prothrombin time(PT), International Normalized Ratio 
(INR), white blood cell count(103/µL), absolute lymphocyte 
count(103/µL), absolute neutrophil count(103/µL), neutro-
phil/lymphocyte ratio, platelet/lymphocyte ratio]. We did not 
assess peri- or postoperative variables as candidate input 
variables emphasizing the development of a preoperative 
prediction model to aid treatment decision-making.

Multiple imputation with the missForest methodology 
was used to impute variables with less than 30% missing 
data [25].

Variable selection

Variable selection was performed to identify and select those 
preoperative variables contributing most to our outcome var-
iable, conducted by entering all relevant explanatory vari-
ables into random forest algorithms with recursive selection 
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[26]. Given the rule of thumb for developing prediction 
models with a binary outcome (those with and without the 
outcome), we ensured at least 10 events for each predictor 
variable included in the model [27].

Development and internal validation of the clinical 
prediction model

The following ML algorithms were chosen for modeling 
based on prior research [19, 22, 28, 29]: Stochastic Gradi-
ent Boosting (SGM), Random Forest (RF), Support Vec-
tor Machine(SVM), Neural Network (NN) and Elastic-Net 
Penalized Logistic Regression (PLR).

Internal validation was carried out by performing a 
stratified 80:20 split of the dataset to create a training set 
(n = 1983) and a test set (n = 495). Subsequently, the algo-
rithms were trained on the training set with ten-fold cross-
validation repeated 3 times. Cross-validation means dividing 
data into a selected number of groups, named folds. First, 
the data are divided into 10 equally sized folds. Then, the 
algorithms were trained on 9 of the 10 folds (90% of the 
training data) and tested on the remaining fold (10% of the 
training data). Consecutively, performance was evaluated 
in the test dataset.

Model performance

Model performance was evaluated according to a proposed 
framework for evaluation of a clinical prediction model [30] 
that includes: discrimination with the c-statistic, calibration 
slope and intercept (in line with the method by Cox [31]) and 
the overall performance with the Brier score.

The c-statistic (area under the curve of a receiver operat-
ing characteristic curve) is a score ranging from 0.50 to 1.0 
with 1.0 indicating the highest discrimination score and 0.50 
indicating the lowest. The higher the discrimination score, 
the better the model’s ability to distinguish patients who got 
the outcome from those who did not [32].

A calibration plot plots the estimated versus the observed 
probabilities for the primary outcome. A perfect calibration 
plot has an intercept of 0 (< 0 reflects overestimation, > 0 
reflects underestimating the probability of the outcome) 
and a slope of 1 (model is performing similarly in training 
and test sets) [30, 33]. In a small dataset, slope is often < 1 
reflecting model overfitting; probabilities are too extreme 
(low probability too low, high probability too high) [32].

The null-model Brier score, which equals the probability 
of mortality in the dataset, was used to benchmark the algo-
rithm’s Brier score. A Brier score lower than the null-model 
Brier score indicates superior performance of theprediction 
model to this null benchmark. Perfect prediction would have 
a Brier score of 0 and 1 the poorest prediction [30].

Decision curve analysis

In addition, decision curve analysis was undertaken and 
visualized to investigate the net benefit (weighted aver-
age of true positives and false positives) of the conducted 
algorithms over the range of risk thresholds for clinical 
decision-making [34]. The net benefit is a weighted average 
of true positives and false positives, formula = sensitivity 
x prevalence – (1-specificity) x (1 – prevalence) x odds at 
the threshold probability). With threshold probability, we 
refer to the probability that an algorithm ranks a ‘positive’ 
outcome over a ‘negative’ outcome. In this study, a ‘positive 
outcome’ is someone at high risk of mortality in 90 days 
or 2 years. If the threshold is set at 0.5, than patients with 
a probability > 0.5 are classified as ‘positive’, and < 0.5 are 
classified as ‘negative’. If the threshold is set at 0.8, then 
patients with a probability > 0.8 are classified as ‘positive’, 
and < 0.8 are classified as ‘negative’. The decision curve of 
the model is compared to decision curves of treating eve-
ryone as being at risk for shorter- or longer-term mortality 
(depending on the endpoint), and treating no one as being 
at risk.

For 90 day mortality, risk thresholds in the range of 1:3 
(risk of 25%) to 1:5 (risk of 17%) seemed clinically rel-
evant [35]. This effectively means we accept 3 to 5 cases 
of underestimation (a predicted probability that is too low 
for surviving up to 90 days, which may result in choosing 
a less invasive treatment option) per case of overestimation 
(a predicted probability that is too high for surviving up 
to 90 days, which may result in choosing a more invasive 
treatment option).

For 2 year mortality, higher risk thresholds, in the range 
of 1:2 (risk of 33%) to 1:3 (risk of 25%), seemed clini-
cally relevant [35]. Not performing arthroplasty surgery in 
patients surviving up to 2 year is worse than in patients sur-
viving up to 90 days. Therefore, we accept fewer cases of 
underestimation of the mortality probability.

Open‑access web‑application and individual patient 
explanation

The best-performing algorithms across the model perfor-
mance metrics as described above, for each primary outcome 
(i.e. 90 day and 2 year mortality), were deployed as an open-
access web application accessible on desktops, tablets and 
smartphones.

Individual patient-level explanations are incorporated 
in the web application for interpretation of the model to 
understand the reasoning how the model made a certain 
prediction. Local model explainability helps in understand-
ing which features of the patient contributed most to the 
model’s prediction [36].
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Statistical analysis

Categorical variables will be described as absolute num-
bers with frequencies, and continuous variables as medians 
with interquartile ranges (IQR). The model performance 
metrics were calculated with 95% confidence interval (CI). 
Given the retrospective study design, post hoc power anal-
yses were conducted to evaluate the sample size of the 
study with an alpha value of 0.05.

Guidelines

The study set-up has been performed following the Trans-
parent Reporting of Multivariable Prediction Models for 
Individual Prognosis or Diagnosis Guideline (TRIPOD 
Statement) (Supplemental Table 1) [37].

Software

Data pre-processing and analysis were performed using R 
Version 4.1 (“R: A Language and Environment for Statisti-
cal Computing” The R Foundation, Vienna, Austria 2013) 
and R-studio Version 1.2.1335 (R-Studio, Boston, MA, 
USA). Hyperparameter tuning was performed as recom-
mended in the R package vignettes.

Results

Participants

In total, 2478 patients were included in this study with 90 day 
and 2 year mortality rates of 9.1% (n = 225) and 23.5% (n = 582) 
respectively. Of the included patients, 69.5% (n = 1723) patients 
were female, and the median age was 83 years (interquartile 
range = 76–88) (Table 1). The post hoc power analyses revealed 
100% power in both evaluations (α = 0.05).

Rates of missing data for covariates were as follows: 
race (144, 5.8%), ethnicity (144, 5.8%), marital status (98, 
4.0%), veteran status (465, 18.8%), calcium (394, 15.9%), 
creatinine (193, 7.8%), hemoglobin (194, 7.8%), potas-
sium (200, 8.1%), platelet (196, 7.9%), PT (274, 11.1%), 
INR (386, 15.6%), white blood cell count (193, 7.8%), 
absolute lymphocyte (567, 22.9%), absolute neutrophil 
(491, 19.8%), neutrophil/lymphocyte ratio (567, 22.9%), 
platelet/lymphocyte ratio (572, 23.1%).

90‑day mortality prediction model

The following variables were included after variable selec-
tion: (1) INR; (2) age; (3) creatinine level; (4) absolute 

Table 1   Baseline characteristics of study population, n = 2478

Variable n (%) | median (IQR)

Age 83 (76–88)
Female gender 1723 (69.5)
Race, white 2202 (94.3)
Ethnicity, hispanic 33 (1.4)
Marital status, married 931 (39.1)
Veteran 324 (16.1)
Side of injury, left 1273 (51.4)
Displaced fracture (Garden III–IV) 1765 (71.2)
Charlson comorbidity index 2 (0–3)
Comorbidities
 Myocardial infarction 379 (15.3)
 Congestive heart failure 718 (29.0)
 Peripheral vascular disease 417 (16.8)
 Cerebrovascular accident 442 (17.8)
 Dementia 309 (12.5)
 Chronic obstructive pulmonary disease 658 (26.6)
 Rheumatic disease 180 (7.3)
 Peptic ulcer disease 57 (2.3)
 Liver disease 129 (5.2)
 Diabetes 477 (19.2)
 Hemi paraplegia 60 (2.4)
 Renal disease 494 (19.9)
 Cancer 412 (16.6)
 Coagulopathy 164 (6.6)
 Drug abuse 69 (2.8)
 Alcohol abuse 91 (3.7)
 Depression 449 (18.1)

Medication
 Immunosuppressants 462 (18.6)
 Anti-coagulants 1320 (53.3)
 Steroids 409 (16.5)
 Bisphosphonates 168 (6.8)
 ACE inhibitors 602 (24.3)
 Angiotensin receptor blockers 194 (7.8)
 Beta blockers 1287 (51.9)
 Beta-2 agonists 470 (19.0)
 Opioids 1700 (68.6)

Laboratory characteristics
 Calcium 9.0 (8.6–9.4)
 Creatinine 0.93 (0.74–1.21)
 Hemoglobin 12.1 (11.0–17.8)
 Potassium 4.0 (3.7–4.3)
 Platelet 211 (168–269)
 PT 35 (26–47)
 INR 1.1 (1.0–1.2)
 White blood cell count 9.6 (7.5–12.1)
 Absolute lymphocyte 1.14 (0.82–1.55)
 Absolute neutrophil 7.77 (5.62–8.27)
 Neutrophil/lymphocyte ratio 6.7 (4.2–10.8)
 Platelet/lymphocyte ratio 188.8 (132.8–261.4)
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neutrophil; (5) CHF; (6) male gender; (7) hemoglobin; (8) 
displaced fracture; (9) hemiplegia and (10) COPD (Fig. 1).

The performance of the conducted ML algorithms varied 
as measured by c-statistic from 0.53 to 0.74 in the independ-
ent testing set (Table 3) (performance of cross-validation on 
the training set can be found in Table 2). Model performance 
as assessed on calibration plot ranged from intercept − 0.08 

to 0.15, and slope ranged from 0.71 to 2.13. The Brier scores 
ranged from 0.078 to 0.082 with Null model Brier score 0.83 
(Table 3). The SGB algorithm was chosen as the final model 
with a c-statistic of 0.74, calibration intercept of − 0.05, 
calibration slope of 1.11 and a Brier score of 0.078.

2‑year mortality prediction model

The following variables were included after variable selec-
tion: (1) age; (2) male gender; (3) absolute neutrophil; (4) 
CHF; (5) use of beta-blocker; (6) COPD; (7) CVA; (8) 
hemoglobin; (9) creatinine level and (10) INR (Fig. 2).

The performance of the conducted ML algorithms var-
ied as measured by c-statistic from 0.63 to 0.70 in the 
independent testing set (Table 3) (performance of cross-
validation on the training set can be found in Table 2). 

n number; IQR interquartile range

Table 1   (continued)

Variable n (%) | median (IQR)

Mortality
 90 day 225 (9.1)
 2 year 582 (23.5)

Fig. 1   (A) Receiver operating curve, (B) global variable importance, (C) calibration plot and (D) decision curve analysis for the stochastic gradi-
ent boosting algorithm for prediction of 90 day mortality in the testing set, n = 495
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Model performance as assessed on calibration plot ranged 
from intercept − 0.04 to 0.22, and slope ranged from 0.83 
to 0.97. The Brier scores ranged from 0.16 to 0.17 with 
Null model Brier score 0.18 (Table 3). The PLR algorithm 
was chosen as the final model with a c-statistic of 0.70, 
calibration intercept of -0.03, calibration slope of 0.89 and 
a Brier score of 0.16.

Decision curve analysis

Decision curve analyses of both models revealed that deci-
sion changes based on the model outperformed as compared 

to the default strategies of changing management for all 
patients or for no patients (Figs. 1D and 2D). However, 
the clinical utility in relevant risk threshold ranges showed 
clearer benefit for the 2 year mortality model.

Available web‑application

The chosen algorithms were incorporated into a web-based 
application and deployed as open-access available tool for 
clinicians: https://​sorg-​apps.​shiny​apps.​io/​hipfr​actur​emort​
ality/.

Table 2   Algorithm performance on cross-validation of training set, n = 1983, mean (95% confidence interval)

NULL model Brier score: ninety day = 0.083, two year = 0.18
AUC​ area under the receiver operating curve
*Best-performing algorithm

c-statistic Calibration intercept Calibration slope Brier score

Ninety Day Mortality
Stochastic Gradient Boosting* 0.73 (0.71, 0.75) 0.20 (− 0.07, 0.47) 1.10 (0.98, 1.23) 0.077 (0.076, 0.079)
Random Forest 0.71 (0.70, 0.73) − 0.59 (− 0.79, − 0.39) 0.65 (0.56, 0.74) 0.080 (0.079, 0.081)
Support Vector Machine 0.54 (0.51, 0.57) − 1.06 (− 3.18, 1.06) 0.55 (− 0.37, 1.46) 0.083 (0.082, 0.083)
Neural Network 0.73 (0.71, 0.76) 0.02 (− 0.21, 0.25) 1.05 (0.93, 1.16) 0.078 (0.077, 0.079)
Elastic− Net Penalized Logistic Regression 0.74 (0.72, 0.76) − 0.05 (− 0.29, 0.18) 0.98 (0.87, 1.09) 0.078 (0.076, 0.079)

Two Year Mortality
Stochastic Gradient Boosting 0.71 (0.70, 0.73) − 0.04 (− 0.14, 0.06) 0.96 (0.88, 1.04) 0.16 (0.16, 0.17)
Random Forest 0.71 (0.69, 0.72) 0.00 (− 0.10, 0.10) 0.82 (0.75, 0.90) 0.16 (0.16, 0.17)
Support Vector Machine 0.64 (0.63, 0.66) 0.11 (− 0.11, 0.34) 1.09 (0.90, 1.28) 0.17 (0.17, 0.17)
Neural Network 0.71 (0.70, 0.73) − 0.02 (− 0.12, 0.07) 0.99 (0.91, 1.08) 0.16 (0.16, 0.17)
Elastic− Net Penalized Logistic Regression* 0.72 (0.70, 0.73) 0.05 (− 0.07, 0.17) 1.05 (0.95, 1.16) 0.16 (0.16, 0.16)

Table 3   Algorithm performance in independent testing set, n = 495, mean (95% confidence interval)

NULL model Brier score: Ninety Day = 0.083, Two Year = 0.18
AUC = area under the receiver operating curve; 
*Best-performing algorithm

c-statistic Calibration intercept Calibration slope Brier score

Ninety Day Mortality
Stochastic Gradient Boosting* 0.74 (0.67, 0.80) − 0.05 (− 0.37, 0.26) 1.11 (0.73, 1.51) 0.078 (0.061, 0.098)
Random Forest 0.72 (0.64, 0.79) 0.15 (− 0.21, 0.45) 0.71 (0.38, 1.05) 0.082 (0.064, 0.103)
Support Vector Machine 0.53 (0.43, 0.60) 0.00 (− 0.30, 0.30) 2.13 (− 3.94, 8.21) 0.082 (0.063, 0.107)
Neural Network 0.71 (0.62, 0.78) − 0.08 (− 0.40, 0.23) 0.94 (0.55, 1.34) 0.078 (0.060, 0.100)
Elastic− Net Penalized Logistic Regression 0.72 (0.63, 0.79) − 0.01 (− 0.35, 0.28) 0.90 (0.53, 1.31) 0.078 (0.060, 0.098)

Two Year Mortality
Stochastic Gradient Boosting 0.69 (0.63, 0.74) − 0.02 (− 0.24, 0.21) 0.90 (0.61, 1.19) 0.17 (0.15, 0.19)
Random Forest 0.70 (0.64, 0.75) 0.22 (− 0.03, 0.45) 0.83 (0.58, 1.12) 0.17 (0.14, 0.19)
Support Vector Machine 0.63 (0.57, 0.69) 0.01 (− 0.19, 0.24) 0.97 (0.50, 1.48) 0.17 (0.15, 0.19)
Neural Network 0.70 (0.64, 0.75) − 0.04 (− 0.25, 0.18) 0.89 (0.60, 1.16) 0.16 (0.15, 0.18)
Elastic-Net Penalized Logistic Regression* 0.70 (0.63, 0.75) − 0.03 (− 0.27, 0.19) 0.89 (0.62, 1.19) 0.16 (0.15, 0.18)

https://sorg-apps.shinyapps.io/hipfracturemortality/
https://sorg-apps.shinyapps.io/hipfracturemortality/
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Individual patient‑level explanation

As an example, an 84 year-old male patient, after filling 
out the patient and injury characteristics values in the algo-
rithm, this patient has a 13% and 43% chances of mortality 
in respectively 90 day and 2 year following femoral neck 
fracture surgery (Figs. 3 and 4).

Factors increasing the likelihood of 90 day mortality were 
an INR of 1.5, male gender, hemoglobin level of 9, sustain-
ing a displaced fracture and an age of 84 years old. How-
ever, the lack of CHF and a creatinine level of 0.8 reduced 
the likelihood of mortality following femoral neck fracture 
surgery. The predicted probability (13%) was higher than the 
average probability in the total patient cohort (9.1%) (Fig. 3).

Factors increasing the likelihood of 2 year mortality were 
male gender, a history of COPD and dementia. However, a 

low absolute neutrophil level of 0.8 and the lack of CHF or 
having a history of CVA reduced the likelihood of mortality. 
The predicted probability (43%) was higher than the average 
probability (23.5%) (Fig. 4).

Discussion

The aim of this study was to develop and internally vali-
date a clinical prediction model that can predict 90 day 
and 2 year mortality in femoral neck fracture patients aged 
65 years or above to aid the challenging treatment decision-
making. The developed and internally validated models 
show promise in estimating mortality in this frail patient 
population.

Fig. 2   A Receiver operating curve, (B) global variable importance, (C) calibration plot and (D) decision curve analysis for the elastic-net penal-
ized logistic regression algorithm for prediction of 2 year mortality in the testing set, n = 495
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Fig. 3   Example of individual patient-level explanation for 90 day mortality prediction
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Fig. 4   Example of individual patient-level explanation for 2 year mortality prediction
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Limitations

The results of this study should be viewed in light of sev-
eral limitations. First, the study was a retrospective study 
beholden to limitations inherent to such research design and 
prospective validation remains to be evaluated. Second, the 
mortality rate in our cohort was relatively low compared to 
other populations of hip fracture patients [38]. This resulted 
in predicted probabilities as shown in the calibration plots, 
up to 50% and 80% risk for respectively 90 day and 2 year 
mortality. This means that our model is likely more accu-
rate in healthier hip fracture patients. To ensure external 
validation, our model should be validated in a cohort with 
representative rates, and future studies should assess the 
transportability of the developed algorithm to datasets with 
patients with higher mortality rates. Third, for this study, 
we chose a 80/20 ratio for data splitting into training and 
test set, which has been mostly used in previous literature 
[20–22, 39]. There is no fixed rule for the ratio of data split-
ting but a different ratio for algorithm training may have 
led to different model performances. Fourth, preoperative 
risk stratification for mortality is needed to guide the diffi-
cult treatment decision-making, although intraoperative and 
postoperative factors associated with complications, such as 
reoperation or postoperative infection, may be confounding 
with mortality after surgery. Future research may estimate 
this influence looking at causality for confounding factors 
[40]. Fifth, patients were included in the study undergoing 
femoral neck fracture surgery. However, patients who were 
suspected by the clinician of a very short survival predic-
tion (e.g. 30 day) were chosen to be treated conservatively 
and were not investigated in this study. In future studies, 
both conservative and surgical treated patients should be 
included to optimize mortality prediction in all patients 
sustaining a femoral neck fracture to guide the challeng-
ing treatment decision-making (i.e. whether to operate or 
not?). Sixth, evaluating possible co-injuries occurring during 
trauma, some of which may cause significant disability, may 
influence survival outcome. Evaluating these co-injuries 
and calculating their injury severity score may have had an 
influence as candidate input variable on the model perfor-
mance. In addition, we did not investigate the influence of 
the presence of advanced directives, which may influence the 
decision-making process in patients aged 65 years or above. 
In future research, when comparing treatment effects in con-
servatively and operatively treated patients, we recommend 
these influences to be investigated. Lastly, the 2 year mortal-
ity was chosen on the basis of endpoints in prior prospective 
randomized controlled trials [5, 6]. The 90 days was chosen 
to predict short-term mortality and accounts for a possible 
underestimation in outcomes seen with only a 30 day mortal-
ity. From a patient and provider perspective, a death 90 days 
post hip fracture is just as significant as one within 30 days. 

It takes in to account not just acute in-hospital complications 
but also short-term complications that may occur in skilled 
nursing facility and discharge to the community. There is 
growing evidence in other specialties that 30-day mortality 
underestimates short-term mortality [41, 42]. Future stud-
ies may additionally investigate earlier time points, such as 
30 days or 1 year.

Findings

In the ranges of risk where we think clinical utility of the 
model is to be expected, the 2 year model clearly adds 
clinical utility over treating everyone or none with total 
hip arthroplasty. However, we assumed a more simplified 
scenario, since there are multiple treatment options avail-
able, namely nonoperative management, surgical fixation 
and arthroplasty surgery. The 90 day mortality model might 
add clinical utility for decisions between these tiered treat-
ment options, which are more subtle and complex to assume. 
Moreover, clinical utility should be reassessed after external 
validation, and with input from multiple institutions from 
different countries. If found to be externally valid (gener-
alizable to independent populations), future studies should 
prospectively evaluate the developed and validated tool. In 
patients with limited life expectancy, patients predicted with 
a high risk of short-term mortality, nonoperative manage-
ment might be a viable option in the shared decision-making 
process compared to surgical fixation [8]. If patients have 
a high chance of surviving beyond the 90 day endpoint, 
surgical management would be in place [43]. Frail patients 
with a nondisplaced hip fracture may be favored to surgical 
fixation compared to arthroplasty surgery [6, 18]. However, 
arthroplasty is associated with a lower risk of reoperation 
and better long-term functional outcomes, at the cost of 
greater infection rates, blood loss, and operative time and 
possibly an increase in early mortality rates and may be rec-
ommended in patients with a longer-term life expectancy 
(e.g., high probability of surviving beyond the 2 year end-
point) [44].

When aiming to develop a prediction model that is appli-
cable in daily practice, variables should be included in the 
trained algorithm that are readily available and use of defini-
tions that are in line with daily practice should be followed. 
In this study, variables derived from variable selection are 
clinically readily available and in line with daily practice. It 
is important to emphasize that treatment decision-making 
should not be solely based on the outcome of an individual-
ized probability calculator. The orthopaedic surgeon should 
discuss the available treatment options and reach a treatment 
decision following a shared decision-making process. Pre-
diction of mortality is only one of the aspects to be consid-
ered in treatment decision-making.
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The most important factors associated with a greater 
risk of 90 day mortality included in the SGB algorithm 
were INR, age, creatinine level, absolute neutrophil, CHF, 
male gender, hemoglobin level, displaced fracture, hemi-
plegia and COPD. For 2 year mortality, the most impor-
tant factors were age, male gender, absolute neutrophil, 
CHF, use of beta-blocker, COPD, CVA, hemoglobin, 
creatinine level and INR. Our findings are in line with 
previous research on proximal femoral neck fractures in 
general and broader populations. Regarding age and sex, 
prior studies revealed a higher risk for higher age and the 
male gender [45–47]. The effect of CHF, CVA and COPD 
is in line with the high risk reported for a higher ASA 
classification in earlier studies [48, 49]. A possible expla-
nation for this effect might be a lower physical condition 
of the patient at baseline and therefore a less adequate 
recovery after complications (e.g. pneumonia). Another 
explanation for comorbidities in general could be a lower 
life expectancy as a result of the comorbidity itself. In 
regard to displacement of the fracture, a reasonable expla-
nation for the higher risk might be the disruption of the 
vascularization of the femoral head and the tendency that 
a displaced fracture comes from a frailer patient to start 
with where more displacement occurred compared to a 
younger patient (with the same level energy of trauma). 
This could lead to multiple complications and secondary 
surgery eventually resulting in death [50]. The prognostic 
value of laboratory characteristics in predicting mortality 
after hip surgery is a less explored subject. But the eleva-
tion of creatinine and absolute neutrophil count reflects 
respectively declined renal function and inflammation 
[51]. Which again is linked to a higher ASA score and a 
lower baseline physical condition. Whereas a higher INR 
is reflecting the inability to coagulate and most likely the 
use of anticoagulants, resulting in a higher risk for bleed-
ing and as a result of this a higher risk for morbidity and 
mortality [46, 51]. On the contrary a lower hemoglobin 
is related to chronic comorbidities, which might reflect in 
a lower odds for mortality for higher hemoglobin levels 
[51].

Over the recent years, a lot of research has been done 
predicting mortality in femoral neck fracture patients. The 
greater part of these tools developed made an estimation 
of risk based on age, gender and in general the presence 
of comorbidity [52, 53], whereas the other part looked 
at postoperative factors, such as early ambulation after 
surgery and postoperative lab values [54, 55]. In contrast 
to the broader presence of comorbidity, our study used 
the ability of ML algorithms to differ between the effects 
of different types of comorbidity in a large database to 
estimate the individual value of each factor. This resulted 
in a more patient centered prediction tool.

Future perspectives

External validation is essential before testing and imple-
menting the ML algorithm in clinical practice. Subse-
quently, a prospective observational study of the compar-
ison of the current ML model prediction compared to a 
physician’s prediction of mortality can assess the clinical 
usefulness of the developed model. This will assess if the 
model’s prediction was more accurate than those of the 
treating physician [56]. An internally and externally vali-
dated algorithms can then be integrated into the electronic 
health record with an active feedback loop to improve the 
model performance and ultimately be integrated in the 
clinical workflow [57, 58].

Conclusion

In summary, the developed and internally validated clini-
cal prediction model effectively predicts 90 day and 2 year 
mortality in femoral neck fracture patients aged 65 years 
or above with good model performance on discrimination, 
calibration and Brier score. Especially the model for 2 year 
mortality would likely improve the challenging treatment 
decision-making. Nevertheless, the model first requires 
external validation in an independent cohort. The model 
can be freely accessed: https://​sorg-​apps.​shiny​apps.​io/​hipfr​
actur​emort​ality/.
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